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Abstract

Cross-Lingual Word Embeddings (CLWEs)

encode words from two or more languages

in a shared high-dimensional space in which

vectors representing words with similar mean-

ing (regardless of language) are closely lo-

cated. Existing methods for building high-

quality CLWEs learn mappings that minimise

the ℓ2 norm loss function. However, this op-

timisation objective has been demonstrated to

be sensitive to outliers. Based on the more ro-

bust Manhattan norm (aka. ℓ1 norm) goodness-

of-fit criterion, this paper proposes a simple

post-processing step to improve CLWEs. An

advantage of this approach is that it is fully ag-

nostic to the training process of the original

CLWEs and can therefore be applied widely.

Extensive experiments are performed involv-

ing ten diverse languages and embeddings

trained on different corpora. Evaluation results

based on bilingual lexicon induction and cross-

lingual transfer for natural language inference

tasks show that the ℓ1 refinement substantially

outperforms four state-of-the-art baselines in

both supervised and unsupervised settings. It

is therefore recommended that this strategy be

adopted as a standard for CLWE methods.

1 Introduction

Cross-Lingual Word Embedding (CLWE) tech-

niques have recently received significant atten-

tion as an effective means to support Natural Lan-

guage Processing applications for low-resource lan-

guages, e.g., machine translation (Artetxe et al.,

2018b) and transfer learning (Peng et al., 2021).

The most successful CLWE models are the so-

called projection-based methods, which learn map-

pings between monolingual word vectors with very

little, or even zero, cross-lingual supervision (Lam-

ple et al., 2018; Artetxe et al., 2018a; Glavaš

et al., 2019). Mainstream projection-based CLWE

models typically identify orthogonal mappings by

∗Chenghua Lin is the corresponding author.

minimising the topological dissimilarity between

source and target embeddings based on ℓ2 loss

(aka. Frobenius loss or squared error) (Glavaš et al.,

2019; Ruder et al., 2019). This learning strategy

has two advantages. First, adding the orthogonal-

ity constraint to the mapping function has been

demonstrated to significantly enhance the quality of

CLWEs (Xing et al., 2015). Second, the existence

of a closed-form solution to the ℓ2 optima (Schöne-

mann, 1966) greatly simplifies the computation

required (Artetxe et al., 2016; Smith et al., 2017).

Despite its popularity, work in various appli-

cation domains has noted that ℓ2 loss is not ro-

bust to noise and outliers. It is widely known in

computer vision that ℓ2-loss-based solutions can

severely exaggerate noise, leading to inaccurate

estimates (Aanaes et al., 2002; De La Torre and

Black, 2003). In data mining, Principal Compo-

nent Analysis (PCA) using ℓ2 loss has been shown

to be sensitive to the presence of outliers in the

input data, degrading the quality of the feature

space produced (Kwak, 2008). Previous studies

have demonstrated that the processes used to con-

struct monolingual and cross-lingual embeddings

may introduce noise (e.g. via reconstruction er-

ror (Allen and Hospedales, 2019) and structural

variance (Ruder et al., 2019)), making the pres-

ence of outliers more likely. Empirical analysis of

CLWEs also demonstrates that more distant word

pairs (which are more likely to be outliers) have

more influence on the behaviour of ℓ2 loss than

closer pairs. This raises the question of the appro-

priateness of ℓ2 loss functions for CLWEs.

Compared to the conventional ℓ2 loss, ℓ1 loss

(aka. Manhattan distance) has been mathemat-

ically demonstrated to be less affected by out-

liers (Rousseeuw and Leroy, 1987) and empiri-

cally proven useful in computer vision and data

mining (Aanaes et al., 2002; De La Torre and

Black, 2003; Kwak, 2008). Motivated by this in-

sight, our paper proposes a simple yet effective
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post-processing technique to improve the quality of

CLWEs: adjust the alignment of any cross-lingual

vector space to minimise the ℓ1 loss without vi-

olating the orthogonality constraint. Specifically,

given existing CLWEs, we bidirectionally retrieve

bilingual vectors and optimise their Manhattan dis-

tance using a numerical solver. The approach can

be applied to any CLWEs, making the post-hoc

refinement technique generic and applicable to a

wide range of scenarios. We believe this to be the

first application of ℓ1 loss to the CLWE problem.

To demonstrate the effectiveness of our method,

we select four state-of-the-art baselines and con-

duct comprehensive evaluations in both supervised

and unsupervised settings. Our experiments in-

volve ten languages from diverse branches/families

and embeddings trained on corpora of different

domains. In addition to the standard Bilingual Lex-

icon Induction (BLI) benchmark, we also investi-

gate a downstream task, namely cross-lingual trans-

fer for Natural Language Inference (NLI). In all

setups tested, our algorithm significantly improves

the performance of strong baselines. Finally, we

provide an intuitive visualisation illustrating why

ℓ1 loss is more robust than it ℓ2 counterpart when

refining CLWEs (see Fig. 1). Our code is avail-

able at https://github.com/Pzoom522/

L1-Refinement.

Our contribution is three-fold: (1) we propose a

robust refinement technique based on the ℓ1 norm

training objective, which can effectively enhance

CLWEs; (2) our approach is generic and can be

directly coupled with both supervised and unsu-

pervised CLWE models; (3) our ℓ1 refinement al-

gorithm achieves state-of-the-art performance for

both BLI and cross-lingual transfer for NLI tasks.

2 Related Work

CLWE methods. One approach to generating

CLWEs is to train shared semantic representations

using multilingual texts aligned at sentence or doc-

ument level (Vulić and Korhonen, 2016; Upadhyay

et al., 2016). Although this research direction has

been well studied, the parallel setup requirement

for model training is expensive, and hence imprac-

tical for low-resource languages.

Recent years have seen an increase in interest in

projection-based methods, which train CLWEs by

finding mappings between pretrained word vectors

of different languages (Mikolov et al., 2013; Lam-

ple et al., 2018; Peng et al., 2020). Since the input

embeddings can be generated independently using

monolingual corpora only, projection-based meth-

ods reduce the supervision required for training and

offer a viable solution for low-resource scenarios.

Xing et al. (2015) showed that the precision of

the learned CLWEs can be improved by constrain-

ing the mapping function to be orthogonal, which

is formalised as the so-called ℓ2 Orthogonal Pro-

crustes Analysis (OPA):

argmin
M∈O

‖AM−B‖2, (1)

where M is the CLWE mapping, O denotes the or-

thogonal manifold (aka. the Stiefel manifold (Chu

and Trendafilov, 2001)), and A and B are matri-

ces composed using vectors from source and target

embedding spaces.

While Xing et al. (2015) exploited an approx-

imate and relatively slow gradient-based solver,

more recent approaches such as Artetxe et al.

(2016) and Smith et al. (2017) introduced an exact

closed-form solution for Eq. (1). Originally pro-

posed by Schönemann (1966), it utilises Singular

Value Decomposition (SVD):

M
⋆ = UV

⊺,with UΣV⊺ = SVD(A⊺
B), (2)

where M
⋆ denotes the ℓ2-optimal mapping matrix.

The efficiency and effectiveness of Eq. (2) have led

to its application within many other approaches,

e.g., Ruder et al. (2018), Joulin et al. (2018) and

Glavaš et al. (2019). In particular, PROC-B (Glavaš

et al., 2019), a supervised CLWE framework that

simply applies multiple iterations of ℓ2 OPA, has

been demonstrated to produce very competitive

performance on various benchmark tasks including

BLI as well as cross-lingual transfer for NLI and

information retrieval.

While the aforementioned approaches still re-

quire some weak supervision (i.e., seed dictionar-

ies), there have also been some successful attempts

to train CLWEs in a completely unsupervised fash-

ion. For instance, Lample et al. (2018) proposed

a system called MUSE, which bootstraps CLWEs

without any bilingual signal through adversarial

learning. VECMAP (Artetxe et al., 2018a) applied

a self-learning strategy to iteratively compute the

optimal mapping and then retrieve bilingual dictio-

nary. Comparing MUSE and VECMAP, the latter

tends to be more robust as its similarity-matrix-

based heuristic initialisation is more stable in most

cases (Glavaš et al., 2019; Ruder et al., 2019). Very



recently, some studies bootstrapped unsupervised

CLWEs by jointly training word embeddings on

concatenated corpora of different languages and

achieved good performance (Wang et al., 2020).

The ℓ2 refinement algorithm. CLWE models

often apply ℓ2 refinement, a post-processing step

shown to improve the quality of the initial align-

ment (see Ruder et al. (2019) for survey). Given

existing CLWEs {XLA
, XLB

} for languages LA and

LB, bidirectionally one can use approaches such

as the classic nearest-neighbour algorithm, the in-

verted softmax (Smith et al., 2017) and the cross-

domain similarity local scaling (CSLS) (Lample

et al., 2018) to retrieve two bilingual dictionar-

ies DLA 7→LB
and DLB 7→LA

. Note that word pairs in

DLA 7→LB
∩DLB 7→LA

are highly reliable, as they form

“mutual translations”. Next, one can compose bilin-

gual embedding matrices A and B by aligning

word vectors (rows) using the above word pairs.

Finally, a new orthogonal mapping is learned to

fit A and B based on least-square regressions, i.e.,

perform ℓ2 OPA described in Eq. (1).

Early applications of ℓ2 refinement applied a sin-

gle iteration, e.g. (Vulić and Korhonen, 2016). Due

to the wide adoption of the closed-form ℓ2 OPA

solution (cf. Eq. (2)), recent methods perform mul-

tiple iterations. The iterative ℓ2 refinement strategy

is an important component of approaches that boot-

strap from small or null training lexicons (Artetxe

et al., 2018a). However, a single step of refinement

is often sufficient to create suitable CLWEs (Lam-

ple et al., 2018; Glavaš et al., 2019).

3 Methodology

A common characteristic of CLWE methods that

apply the orthogonality constraint is that they opti-

mise using ℓ2 loss (see § 2). However, outliers have

disproportionate influence in ℓ2 since the penalty

increases quadratically and this can be particularly

problematic with noisy data since the solution can

“shift” towards them (Rousseeuw and Leroy, 1987).

The noise and outliers present in real-world word

embeddings may affect the performance of ℓ2-loss-

based CLWEs.

The ℓ1 norm cost function is more robust than ℓ2
loss as it is less affected by outliers (Rousseeuw and

Leroy, 1987). Therefore, we propose a refinement

algorithm for improving the quality of CLWEs

based on ℓ1 loss. This novel method, which we

refer to as ℓ1 refinement, is generic and can be ap-

plied post-hoc to improve the output of existing

CLWE models. To our knowledge, the use of al-

ternatives to ℓ2-loss-based optimisation has never

been explored by the CLWE community.

To begin with, analogous to ℓ2 OPA (cf. Eq. (1)),

ℓ1 OPA can be formally defined and rewritten as

argmin
M∈O

‖AM−B‖1

=argmin
M∈O

tr[(AM−B)⊺ sgn(AM−B)], (3)

where tr(·) returns the matrix trace, sgn(·) is the

signum function, and ∈ O denotes that M is sub-

ject to the orthogonal constraint. Compared to ℓ2
OPA which has a closed-form solution, solving

Eq. (3) is much more challenging due to the dis-

continuity of sgn(·). This issue can be addressed

by replacing sgn(·) with tanh(α(·)), a smoothing

function parameterised by α, such that

argmin
M∈O

tr[(AM−B)⊺ tanh(α(AM−B))]. (4)

Larger values for α lead to closer approximations

to sgn(·) but reduce the smoothing effect. This ap-

proach has been used in many applications, such as

the activation function of long short-term memory

networks (Hochreiter and Schmidhuber, 1997).

However, in practice, we find that Eq. (4)

remains unsolvable in our case with standard

gradient-based frameworks for two reasons. First,

α has to be sufficiently large in order to achieve

a good approximation of sgn(·). Otherwise, rela-

tively small residuals will be down-weighted dur-

ing fitting and the objective will become biased

towards outliers, just similar to ℓ2 loss. However,

satisfying this requirement (i.e., large α) will lead

to the activation function tanh(α(·)) becoming eas-

ily saturated, resulting in an optimisation process

that becomes trapped during the early stages. In

other words, the optimisation can only reach an

unsatisfactory local optimum. Second, the orthog-

onality constraint (i.e., M ∈ O) also makes the

optimisation more problematic for these methods.

We address these challenges by adopting the

approaches proposed by Trendafilov (2003). This

method explicitly encourages the solver to only

explore the desired manifold O thereby reducing

the ℓ1 solver’s search space and difficulty of the

optimisation problem. We begin by calculating the

gradient ∇ w.r.t. the objective in Eq. (4) through

matrix differentiation:

∇ = A
⊺(tanh(Z) + Z⊙ cosh−2(Z)), (5)



where Z=α(AM−B) and ⊙ is the Hadamard

product. Next, to find the steepest descent direction

while ensuring that any M produced is orthogonal,

we project ∇ onto O, yielding1

πO(∇):=
1

2
M(M⊺∇−∇⊺

M)+(I−MM
⊺)∇. (6)

Here I is an identity matrix with the shape of M.

With Eq. (6) defining the optimisation flow, our ℓ1
loss minimisation problem reduces to an integra-

tion problem, as

M
⋆ = M0 +

∫
− πO(∇) dt, (7)

where M0 is a proper initial solution of Eq. (3)

(e.g., ℓ2-optimal mapping obtained via Eq. (2)).

Empirically, unlike the aforementioned standard

gradient-based methods, by following the estab-

lished policy of Eq. (6), the optimisation process of

Eq. (7) will not violate the orthogonality restriction

or get trapped during early stages. However, this

ℓ1 OPA solver requires extremely small step size

to generate reliable solutions (Trendafilov, 2003),

making it computationally expensive2. Therefore,

it is impractical to perform ℓ1 refinement in an iter-

ative fashion like ℓ2 refinement without significant

computational resources.

Previous work has demonstrated that applying

the ℓ1-loss-based algorithms from a good initial

state can speed up the optimisation. For instance,

Kwak (2008) found that feature spaces created by

ℓ2 PCA were severely affected by noise. Replac-

ing the cost function with ℓ1 loss significantly re-

duced this problem, but required expensive linear

programming. To reduce the convergence time,

Brooks and Jot (2013) exploited the first princi-

pal component from the ℓ2 solution as an initial

guess. Similarly, when reconstructing corrupted

pixel matrices, ℓ2-loss-based results are far from

satisfactory; using ℓ1 norm estimators can improve

the quality, but are too slow to handle large-scale

datasets (Aanaes et al., 2002). However, taking the

ℓ2 optima as the starting point allowed less biased

reconstructions to be learned in an acceptable time

(De La Torre and Black, 2003).

Inspired by these works, we make use of ℓ1 re-

finement to carry out post-hoc enhancement of ex-

isting CLWEs. Our full pipeline is described in

1See Chu and Trendafilov (2001) for derivation details.
2It takes averagely 3 hours and up to 12 hours to perform

Eq. (7) on an Intel Core i9-9900K CPU. In comparison, the
time required to solve Eq. (2) in each training loop is less than
1 second and the iterative ℓ2-norm-based training takes 1 to 5
hours in total.

Algorithm 1 ℓ1 refinement

Input: CLWEs {XLA
,XLB

}
Output: updated CLWEs {XLA

M
⋆,XLB

}
1: DLA 7→LB

← build dict via XLA
and XLB

2: DLB 7→LA
← build dict via XLB

and XLA

3: D ← DLA 7→LB
∩DLB 7→LA

4: A,B← looks up for D in XLA
,XLB

5: perform integration to solve Eq. (7) for M⋆, with initial
value M0 ← I, until stopping criteria are met

Algorithm 1 (see § 4.3 for implemented configu-

rations). In common with ℓ2 refinement (cf. § 2),

steps 1-4 bootstrap a synthetic dictionary D and

compose bilingual word vector matrices A and B

which have reliable row-wise correspondence. Tak-

ing them as the starting state, in step 5 an identity

matrix naturally serves as our initial solution M0.

During the execution of Eq. (7), we record ℓ1
loss per iteration and see if either of the following

two stopping criteria have been satisfied: (1) the up-

dated ℓ1 loss exceeds that of the previous iteration;

(2) on-the-fly M has non-negligibly departed from

the orthogonal manifold, which can be indicated

by the maximum value of the disparity matrix as

max(|M⊺
M− I|) > ǫ, (8)

where ǫ is a sufficiently small threshold. The result-

ing M
⋆ can be used to adjust the word vectors of

LA and output refined CLWEs.

A significant advantage of our algorithm is its

generality: it is fully independent of the method

used for creating the original CLWEs and can there-

fore be used to enhance a wide range of models,

both in supervised and unsupervised settings.

4 Experimental Setup

4.1 Datasets

In order to demonstrate the generality of our pro-

posed method, we conduct experiments using two

groups of monolingual word embeddings trained

on very different corpora:

Wiki-Embs (Grave et al., 2018): embeddings de-

veloped using Wikipedia dumps for a range of

ten diverse languages: two Germanic (English|EN,

German|DE), two Slavic (Croatian|HR, Russian|RU),

three Romance (French|FR, Italian|IT, Spanish|ES)

and three non-Indo-European (Finnish|FI from the

Uralic family, Turkish|TR from the Turkic family

and Chinese|ZH from the Sino-Tibetan family).

News-Embs (Artetxe et al., 2018a): embeddings

trained on a multilingual News text collection, i.e.,



the WaCKy Crawl of {EN, DE, IT}, the Common

Crawl of FI, and the WMT News Crawl of ES.

News-Embs are considered to be more challeng-

ing for building good quality CLWEs due to the

heterogeneous nature of the data, while a consid-

erable portion of the multilingual training corpora

for Wiki-Embs are roughly parallel. Following pre-

vious studies (Lample et al., 2018; Artetxe et al.,

2018a; Zhou et al., 2019; Glavaš et al., 2019), only

the first 200K vocabulary entries are preserved.

4.2 Baselines

Glavaš et al. (2019) provided a systematic evalua-

tion for projection-based CLWE models, demon-

strating that three methods (i.e., MUSE, VECMAP,

and PROC-B) achieve the most competitive per-

formance. A recent algorithm (JA) by Wang et al.

(2020) also reported state-of-the-art results. For

comprehensive comparison, we therefore use all

these four methods as the main baselines for both

supervised and unsupervised settings:

MUSE (Lample et al., 2018): an unsupervised

CLWE model based on adversarial learning and

iterative ℓ2 refinement;

VECMAP (Artetxe et al., 2018a): a robust unsu-

pervised framework using a self-learning strategy;

PROC-B (Glavaš et al., 2019): a simple but effec-

tive supervised approach to creating CLWEs;

JA-MUSE and JA-RCSLS (Wang et al., 2020):

a recently proposed Joint-Align (JA) Framework,

which first initialises CLWEs using joint embed-

ding training, followed by vocabularies realloca-

tion. It then utilises off-the-shelf CLWE methods to

improve the alignment in both unsupervised (JA-

MUSE) and supervised (JA-RCSLS) settings.

In the original implementations, MUSE, PROC-

B and JA were only trained on Wiki-Embs while

VECMAP additionally used News-Embs. Although

all baselines reported performance for BLI, they

used various versions of evaluation sets, hence

previous results are not directly comparable with

the ones reposted here. More concretely, the test-

sets for MUSE/JA and VECMAP are two different

batches of EN-centric dictionaries, while the testset

for PROC-B also supports non-EN translations.

4.3 Implementation Details of Algorithm 1

The CSLS scheme with a neighbourhood size of

10 (CSLS-10) is adopted to build synthetic dictio-

naries via the input CLWEs. A variable-coefficient

ordinary differential equation (VODE) solver3 was

implemented for the system described in Eq. (7).

Suggested by Trendafilov (2003), we set the maxi-

mum order at 15, the smoothness coefficient α in

Eq. (5) at 1e8, the threshold ǫ in Eq. (8) at 1e-5, and

performed the integration with a fixed time interval

of 1e-6. An early-stopping design was adopted to

ensure computation completed in a reasonable time:

in addition to the two default stopping criteria in

§ 3, integration is terminated if
∫
dt reaches 5e-3

(dt is the differentiation term in Eq. (7)).

In terms of the tolerance of the VODE solver,

we set the absolute tolerance at 1e-7 and the rel-

ative tolerance at 1e-5, following the established

approach of Kulikov (2013). These tolerance set-

tings show good generality empirically and were

used for all tested language pairs, datasets, and

models in our experiments.

5 Results

We evaluate the effectiveness of the proposed ℓ1
refinement technique on two benchmarks: Bilin-

gual Lexicon Induction (BLI), the de facto stan-

dard for measuring the quality of CLWEs, and a

downstream natural language inference task based

on cross-lingual transfer. In addition to compari-

son against state-of-the-art CLWE models, we also

report the performance of the single-iteration ℓ2
refinement method which follows steps 1-4 of Al-

gorithm 1 then minimises ℓ2 loss in the final step.

To reduce randomness, we executed each model

in each setup three times and the average accuracy

(ACC, aka. precision at rank 1) is reported. Fol-

lowing Glavaš et al. (2019), by comparing scores

achieved before and after ℓ1 refinement, statis-

tical significance is indicated via the p-value of

two-tailed t-tests with Bonferroni correction (Dror

et al., 2018) (note that p-values are not recorded

for Tab. 2b given the small number of runs).

5.1 Bilingual Lexicon Induction

Refining unsupervised baselines. Tab. 1a fol-

lows the main setup of Lample et al. (2018), who

tested six language pairs using Wiki-Embs4. Af-

ter ℓ1 refinement, MUSE-ℓ1, JA-MUSE-ℓ1, and

VECMAP-ℓ1 all significantly (p < 0.01) outper-

form their corresponding base algorithms, with

an average 1.1% performance gain over MUSE,

3http://www.netlib.org/ode/vode.f
4Note that we are unable to report the result of English

to Esperanto as the corresponding dictionary is missing, see
https://git.io/en-eo-dict-issue.



EN–DE EN–ES EN–FR EN–RU EN–ZH

MUSE
␃ 74.0 81.7 82.3 44.0 32.5

MUSE-ℓ2 74.0 82.1 82.6 *43.8* *31.9*

MUSE-ℓ1 75.2 82.6 82.9 *45.6* *33.8*

JA-MUSE
␄ 74.2 81.4 82.8 45.0 36.1

JA-MUSE-ℓ2 74.1 81.6 82.7 45.1 36.2

JA-MUSE-ℓ1 75.4 82.0 83.1 46.3 38.1

VECMAP
␅ 75.1 82.3 80.0 49.2 00.0

VECMAP-ℓ2 74.8 82.3 79.4 48.9 00.0

VECMAP-ℓ1 75.4 82.9 80.2 49.9 00.0

(a) Wiki-Embs (setup of Lample et al. (2018)).

EN–DE EN–ES EN–FI EN–IT

MUSE
␃ 00.0 07.1 00.0 09.1

MUSE-ℓ2 00.0 00.0 00.0 00.0

MUSE-ℓ1 00.0 00.0 00.0 00.0

JA-MUSE 47.9 48.4 33.0 37.2
JA-MUSE-ℓ2 47.9 48.6 32.9 37.3

JA-MUSE-ℓ1 48.8 49.7 35.2 37.7

VECMAP
␃ 48.2 48.1 32.6 37.3

VECMAP-ℓ2 48.1 47.9 32.9 37.1

VECMAP-ℓ1 49.0 48.9 34.4 37.8

(b) News-Embs (setup of Artetxe et al. (2018a)).

Table 1: ACC (%) of unsupervised BLI. (a) Rows marked with ␃, ␄ and ␅ are respectively from Lample et al. (2018),

Wang et al. (2020) and Zhou et al. (2019). NB: for EN–{RU, ZH} we observed one failed run (ACC <10.0%), where

we only record the average of successful scores with *. (b) Rows marked with ␃ are from Artetxe et al. (2018a).

EN–DE EN–FI EN–FR EN–HR EN–IT EN–RU EN–TR

JA-RCSLS 50.9 33.9 63.0 29.1 58.3 41.3 29.4
JA-RCSLS-ℓ2 50.7 33.8 63.0 29.1 58.2 41.3 29.5

JA-RCSLS-ℓ1 51.6 34.5 63.4 30.4 59.0 41.9 30.2

PROC-B ␃ 52.1 36.0 63.3 29.6 60.5 41.9 30.1
PROC-B-ℓ2 51.8 34.4 63.1 28.2 60.5 39.8 28.0

PROC-B-ℓ1 52.6 36.3 63.7 30.5 60.5 42.3 30.9

(a) Wiki-Embs (setup of Glavaš et al. (2019)).

EN–DE EN–FI EN–IT

JA-RCSLS 46.8 42.0 37.4
JA-RCSLS-ℓ2 46.9 42.2 37.5

JA-RCSLS-ℓ1 48.3 44.6 39.0

PROC-B 47.5 41.4 37.3
PROC-B-ℓ2 47.1 41.7 37.4

PROC-B-ℓ1 52.6 43.3 41.1

(b) News-Embs.

Table 2: MRR (%) of supervised BLI. Rows marked with ␃ are from the supplementary of Glavaš et al. (2019).

1.1% over JA-MUSE, and 0.5% over VECMAP.

To put these improvements in context, Heyman

et al. (2019) reported an improvement of 0.4% for

VECMAP on same dataset and language pairs.

Our method tends to work better on the more

distant language pairs. For instance, for the dis-

tant pairs EN–{RU, ZH}, the increments achieved

by MUSE-ℓ1 are 1.6% and 1.3%, respectively;

whereas for the close pairs EN–{DE, ES, FR} the av-

erage gain is a maximum of 0.9%. A similar trend

can be observed for JA-MUSE-ℓ1 and VECMAP-ℓ1.

(As the VECMAP algorithm always collapses for

EN–ZH, no result is reported for this language pair).

Another set of experiments were conducted to

evaluate the robustness of our algorithm follow-

ing the main setup of Artetxe et al. (2018a), who

tested four language pairs based on the more ho-

mogeneous News-Embs. Tab. 1b shows that JA-

MUSE-ℓ1 and VECMAP-ℓ1 consistently improves

the original VECMAP with an average gain of 1.2%

and 1.0% (p<0.01). Obtaining such substantial

improvements over the state-of-the-art is nontriv-

ial. For example, even a very recent weakly su-

pervised method by Wang et al. (2019) is inferior

to VECMAP by 1.0% average ACC. On the other

hand, MUSE fails to produce any analysable re-

sult as it always collapses on the more challenging

News-Embs. Improvement with ℓ1 refinement is

also larger when language pairs are more distant,

e.g., for VECMAP-ℓ1 the ACC gain on EN-FI is

1.8%, more than double of the gain (0.7%) on the

close pairs EN–{DE, IT} (cf. Tab. 1a and above).

We also conduct an ablation study by report-

ing the performance of ℓ2 refinement scheme

({MUSE, JAMUSE, VECMAP}-ℓ2). This observa-

tion is in accordance with that of Lample et al.

(2018), who reported that after performing ℓ2 re-

finement in the first loop, applying further iterations

only produces marginal precision gain, if any.

Overall, the ℓ1 refinement consistently and sig-

nificantly improve the CLWEs produced by base

algorithms, regardless of the embeddings and se-

tups used, thereby demonstrating the effectiveness

and robustness of the proposed algorithm.

Refining supervised baselines. To test the gen-

eralisability of our method, we also applied it on

state-of-the-art supervised CLWE models: PROC-

B (Glavaš et al., 2019) and JA-RCSLS (Wang et al.,

2020). Following the setup of Glavaš et al. (2019),

we learn mappings using Wiki-Embs and 1K train-

ing splits of their dataset.

Their evaluation code retrieves bilingual word

pairs using the classic nearest-neighbour algorithm

and outputs the Mean Reciprocal Rank (MRR). As

shown in Tab. 2a, both JA-RCSLS-ℓ1 and PROC-

B-ℓ1 outperform the baseline algorithms for all



Unsupervised DE–IT DE–TR FI–HR FI–IT HR–RU IT–FR TR–IT

ICP␃ 44.7 21.5 20.8 26.3 30.9 62.9 24.3

GWA␃ 44.0 10.1 00.9 17.3 00.1 65.5 14.2

MUSE
␃ 49.6 23.7 22.8 32.7 00.0 66.2 30.6

MUSE-ℓ2 50.3 23.9 23.1 32.7 34.9 67.1 *30.5*

MUSE-ℓ1 50.7 26.5 25.4 35.0 37.9 67.6 *33.3*

JA-MUSE 50.9 25.6 23.4 34.9 36.9 68.3 34.7
JA-MUSE-ℓ2 50.9 25.5 23.4 34.7 36.9 68.4 34.7

JA-MUSE-ℓ1 51.5 28.4 26.1 36.0 37.6 68.7 36.1

VECMAP
␃ 49.3 25.3 28.0 35.5 37.6 66.7 33.2

VECMAP-ℓ2 48.8 25.7 28.5 35.8 38.4 67.0 33.5

VECMAP-ℓ1 50.1 28.2 30.3 37.1 40.1 67.6 35.9

Supervised

DLV␃ 42.0 16.7 18.4 24.4 26.4 58.5 20.9

RCSLS␃ 45.3 20.1 21.4 27.2 29.1 63.7 24.6

JA-RSCLS 46.6 20.9 22.1 29.0 29.9 65.2 25.3
JA-RSCLS-ℓ2 46.4 20.8 22.3 29.0 29.8 65.2 25.3

JA-RSCLS-ℓ1 47.3 22.2 23.8 30.1 31.2 65.9 26.6

PROC-B ␃ 50.7 25.0 26.3 32.8 34.8 66.5 29.8
PROC-B-ℓ2 50.0 24.1 25.6 31.8 34.3 66.4 29.6

PROC-B-ℓ1 51.1 25.6 26.9 33.6 35.0 67.4 30.5

Table 3: MRR (%) of BLI for non-EN language pairs. Rows

marked with ␃ are from the supplementary of Glavaš et al. (2019).

MUSE yielded one unsuccessful run for TR–IT, and we only record

the average of the two successful scores with *.
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(c) MUSE on IT-FR Wiki-Embs (cf. Tab. 3).

Figure 1: Changes to ||AM − B||2 after ap-

plying ℓ1 (upper) and ℓ2 (lower) refinement.

Each word pairs is represented by a bar or-

dered on the x-axis by the distance between

them. See Appendix A for alternative version.

language pairs (with the exception of EN–IT where

the score of PROC-B is unchanged) with an aver-

age improvement of 0.9% and 0.5%, respectively

(p<0.01).

JA-RCSLS-ℓ1 and PROC-B-ℓ1 were also tested

using News-Embs with results shown in Tab. 2b5.

ℓ1 refinement achieves an impressive improvement

for both close (EN–{DE, IT}) and distant (EN–FI)

language pairs: average gain of 1.9% and 3.9%

respectively and over 5% for EN–DE (PROC-B-ℓ1)

in particular. The ℓ2 refinement does not benefit

the supervised baseline, similar to the lack of im-

provement observed in the unsupervised setups.

Comparison of unsupervised and supervised

settings. This part provides a comparison of the

effectiveness of ℓ1 refinement in unsupervised

and supervised scenarios. Unlike previous exper-

iments where only alignments involving English

were investigated, these tests focus on non-EN se-

tups. Glavaš et al. (2019)’s dataset is used to con-

struct seven representative pairs which cover every

category of etymological combination, i.e., intra-

language-branch {HR–RU, IT–FR}, inter-language-

branch {DE–IT}, and inter-language-family {DE–

TR, FI–HR, FI–IT, TR–IT}. The 1K training splits

are used as seed lexicons in supervised runs. Apart

5Note that results for EN–ES is not included, as no EN–ES

dictionary is provided in Glavaš et al. (2019)’s dataset.

from our main baselines, we further report the

results of several other competitive CLWE mod-

els: Iterative Closest Point Model (ICP, Hoshen

and Wolf, 2018), Gromov-Wasserstein Alignment

Model (GWA, Alvarez-Melis and Jaakkola, 2018),

Discriminative Latent-Variable Model (DLV, Ruder

et al., 2018) and Relaxed CSLS Model (RCSLS,

Joulin et al., 2018).

Results shown in Tab. 3 demonstrate that the

main baselines (MUSE, JA-MUSE, VECMAP, JA-

RCSLS, and PROC-B) outperform these other mod-

els by a large margin. For all these main baselines,

post applying ℓ1 refinement improves the mapping

quality for all language pairs (p < 0.01), with av-

erage improvements of 1.7%, 1.4%, 1.8%, 1.1%,

and 0.8%, respectively. Consistent with findings in

the previous experiments, ℓ2 refinement does not

enhance performance. Improvement with ℓ1 refine-

ment is higher when language pairs are more dis-

tant, e.g., for all inter-language-family pairs such as

FI–HR and TR–IT, even the minimum improvement

of MUSE-ℓ1 over MUSE is 2.3%.

Comparing unsupervised and supervised ap-

proaches, it can be observed that MUSE, JA-MUSE

and VECMAP achieve higher overall gain with ℓ1
refinement than JA-RCSLS and PROC-B, where

JA-MUSE-ℓ1 and VECMAP-ℓ1 give the best over-

all performance. One possible explanation to this



phenomenon is that there is only a single source

of possible noise in unsupervised models (i.e. the

embedding topology) but for supervised methods

noise can also be introduced via the seed lexicons.

Consequently unsupervised approaches drive more

benefit from ℓ1 refinement, which reduces the in-

fluence of topological outliers in CLWEs.

Topological behaviours of ℓ1 and ℓ2 refinement.

To validate our assumption that ℓ2 refinement is

more sensitive to outliers while its ℓ1 counterpart

is more robust, we analyse how each refinement

strategy changes the distance between bilingual

word vector pairs in the synthetic dictionary D

(cf. Algorithm 1) constructed from trained CLWE

models. Specifically, for each word vector pair we

subtract its post-refinement distance from the orig-

inal distance (i.e., without applying additional ℓ1
or ℓ2 refinement step). Fig. 1 shows visualisation

examples for three algorithms and language pairs,

where each bar represents one word pair. It can

be observed that ℓ1 refinement effectively reduces

the distance for most word pairs, regardless of their

original distance (i.e., indicated by bars with neg-

ative values in the figures). The conventional ℓ2
refinement strategy, in contrast, exhibits very dif-

ferent behaviour and tends to be overly influenced

by word pairs with large distance (i.e. by outliers).

The reason for this is that the ℓ2-norm penalty in-

creases quadratically, causing the solution to put

much more weight on optimising distant word pairs

(i.e., word pairs on the right end of the X-axis show

sharp distance decrements). This observation is

in line with Rousseeuw and Leroy (1987) and ex-

plains why ℓ1 loss performs substantially stronger

than ℓ2 loss in the refinement.

Case study. After aligning EN-RU embeddings

with unsupervised MUSE, we measured the dis-

tance between vectors corresponding to the ground-

truth dictionary of Lample et al. (2018) (cf. Fig. 1a).

We then detected large outliers by finding vector

pairs whose distance falls above Q3 + 1.5 · (Q3−
Q1), where Q1 and Q3 respectively denote the

lower and upper quartile based on the popular Inter-

Quartile Range (Hoaglin et al., 1986). We found

that many of the outliers correspond to polysemous

entries, such as {state (2× noun meanings and 1×
verb meaning), состояние (only means status)},

{type (2× nominal meanings and 1× verb mean-

ing), тип (only means kind)}, and {film (5× noun

meanings), фильм (only means movie)}. We then

Unsupervised EN–DE EN–FR EN–RU EN–TR

ICP␃ 58.0 51.0 57.2 40.0

GWA␃ 42.7 38.3 37.6 35.9

MUSE
␃ 61.1 53.6 36.3 35.9

MUSE-ℓ2 61.1 53.0 *57.3* *48.9*

MUSE-ℓ1 63.5 55.3 *58.9* *52.3*

JA-MUSE 61.3 55.2 58.1 55.0
JA-MUSE-ℓ2 61.2 55.2 57.6 55.1

JA-MUSE-ℓ1 62.9 57.9 59.4 57.5

VECMAP
␃ 60.4 61.3 58.1 53.4

VECMAP-ℓ2 60.3 60.6 57.7 53.5

VECMAP-ℓ1 61.5 63.7 60.1 56.4

Supervised

RCSLS␃ 37.6 35.7 37.8 38.7

JA-RSCLS 50.2 48.9 51.0 51.7
JA-RSCLS-ℓ2 50.4 48.6 50.9 51.5

JA-RSCLS-ℓ1 51.3 50.1 53.2 52.6

PROC-B ␃ 61.3 54.3 59.3 56.8
PROC-B-ℓ2 61.0 54.8 58.9 55.1

PROC-B-ℓ1 62.1 54.8 60.7 58.2

Table 4: ACC (%) of NLI. Rows marked with ␃ are

from Glavaš et al. (2019). MUSE yielded one unsuc-

cessful run for EN–RU and EN–TR respectively, which

we exclude when calculating the average (with *).

re-perform ℓ2-based mapping after removing these

vector pairs, observing that the accuracy jumps

to 45.9% (cf. the original ℓ2-norm alignment it

is 43.8% and after ℓ1 refinement it is 45.6%, cf.

Tab. 1). This indicates that although all baselines

already make use of preprocessing steps including

vector normalization, outlier issues still exist and

harms the ℓ2 norm CLWEs. However, they can be

alleviated by the proposed ℓ1 refinement technique.

5.2 Natural Language Inference

Finally, we experimented with a downstream NLI

task in which the aim is to determine whether a

“hypothesis” is true (entailment), false (contradic-

tion) or undetermined (neutral), given a “premise”.

Higher ACC indicates better encoding of semantics

in the tested embeddings. The CLWEs used are

those trained with Wiki-Embs for BLI. For MUSE,

JA-MUSE and VECMAP, we also obtain CLWEs

for EN–TR pair with the same configuration.

Following Glavaš et al. (2019), we first train the

Enhanced Sequential Inference Model (Chen et al.,

2017) based on the large-scale English MultiNLI

corpus (Williams et al., 2018) using vectors of lan-

guage LA (EN) from an aligned bilingual embedding

space (e.g., EN–DE). Next, we replace the LA vec-

tors with the vectors of language LB (e.g., DE), and

directly test the trained model on the language LB
portion of the XNLI corpus (Conneau et al., 2018).

Results in Tab. 4 show that the CLWEs refined



by our algorithm yield the highest ACC for all lan-

guage pairs in both supervised and unsupervised

settings. The ℓ2 refinement, on the contrary, is not

beneficial overall. Improvements in cross-lingual

transfer for NLI exhibit similar trends to those in

the BLI experiments, i.e. greater performance gain

for unsupervised methods and more distant lan-

guage pairs, consistent with previous observations

(Glavaš et al., 2019). For instance, MUSE-ℓ1 JA-

MUSE-ℓ1 and VECMAP-ℓ1 outperform their base-

lines by at least 2% in ACC on average (p < 0.01),

whereas the improvements of JA-RSCLS-ℓ1 and

PROC-B-ℓ1 over their corresponding base methods

are 2% and 2.1% respectively (p < 0.01). For both

unsupervised and supervised methods, ℓ1 refine-

ment demonstrates stronger effect for more distant

language pairs, e.g., MUSE-ℓ1 surpasses MUSE by

1.2% for EN–FR, whereas a more impressive 2.7%

gain is achieved for EN–TR.

In summary, in addition to improving BLI per-

formance, our ℓ1 refinement method also produces

a significant improvement for a downsteam task

(NLI), demonstrating its effectiveness in improv-

ing the CLWE quality.

6 Conclusion and Future Work

This paper proposes a generic post-processing tech-

nique to enhance CLWE performance based on

optimising ℓ1 loss. This algorithm is motivated

by successful applications in other research fields

(e.g. computer vision and data mining) which ex-

ploit the ℓ1 norm cost function since it has been

shown to be more robust to noisy data than the

commonly-adopted ℓ2 loss. The approach was

evaluated using ten diverse languages and word

embeddings from different domains on the popu-

lar BLI benchmark, as well as a downstream task

of cross-lingual transfer for NLI. Results demon-

strated that our algorithm can significantly improve

the quality of CLWEs in both supervised and un-

supervised setups. It is therefore recommended

that this straightforward technique be applied to

improve performance of CLWEs.

The convergence speed of the optimiser pre-

vented us from performing ℓ1 loss optimisation

over multiple iterations. Future work will focus on

improving the efficiency of our ℓ1 OPA solver, as

well as exploring the application of other robust

loss functions within CLWE training strategies.

Ethics Statement

This work provides an effective post-hoc method

to improve CLWEs, advancing the state-of-the-art

in both supervised and unsupervised settings. Our

comprehensive empirical studies demonstrate that

the proposed algorithm can facilitate researches in

machine translation, cross-lingual transfer learning,

etc, which have deep societal impact of bridging

cultural gaps across the world.

Besides, this paper introduces and solves an op-

timisation problem based on an under-explored ro-

bust cost function, namely ℓ1 loss. We believe it

could be of interest for the wider community as

outlier is a long-standing issue in many artificial

intelligence applications.

One caveat with our method, as is the case for

all word-embedding-based systems, is that various

biases may exist in vector spaces. We suggest this

problem should always be looked at critically. In

addition, our implemented solver can be computa-

tionally expensive, leading to increased electricity

consumption and the associated negative environ-

mental repercussions.
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(a) VECMAP on EN-RU Wiki-Embs (cf. Tab. 1a).
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(b) PROC-B on EN-FI News-Embs (cf. Tab. 2b).
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(c) MUSE on IT-FR Wiki-Embs (cf. Tab. 3).

Figure A.1: Changes to ||AM−B||2 after applying ℓ1 (upper) and ℓ2 (lower) refinement. Different from Fig. 1, in each

sub-figure the upper and lower Y-axis scales are uniformed.


