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ABSTRACT

Candidate visual binary systems are often found by identifying two stars that are closer together

than would be expected by chance. However, in regions with non-trivial density distributions,

the ‘random’ distances between stars varies because of the background distribution, as well

as the presence of binaries. We show that when no binaries are present, the distribution of

the ratios of the distances to the nearest and tenth nearest neighbours, d1/d10, is always well

approximated by a Gaussian with mean 0.2–0.3 and variance 0.16–0.19 for any underlying

density distribution. The introduction of binaries causes some (or all) nearest neighbours to

become closer than expected by random chance, introducing a component to the distribution

where d1/d10 is much lower than expected. We show how a simple single or double Gaussian

fit to the distribution of d1/d10 can be used to find the binary fraction in any underlying density

distribution quickly and simply.

Key words: methods: statistical – stars: binaries.

1 IN T RO D U C T I O N

Many stars – quite possibly most stars – form in binary and multiple

systems (Duchêne & Kraus 2013; Reipurth et al. 2014). As multiple

systems are a typical outcome of star formation, the properties of

these systems are a clue to how stars form, and a strong constraint

on star formation theories (Goodwin 2010).

Many multiple systems are discovered through visual searches,

by looking for two stars that are closer than would be expected

through random chance (this has been done since Michell 1767).

A fundamental problem with this method is quantifying at what

distance(s) a pair is close enough to be considered a possible binary,

and at what distance(s) it is probably a random alignment. This is

often based on the Struve (1852) formula,

P =
N (N − 1)(πs2)

2A
, (1)

where P is the probability that two stars will be closer than a

separation s if they are two of N stars within an area A. The problem

with this approach is that the surface densities of the stars almost

always vary significantly across the region of interest in a non-trivial

(substructured, centrally condensed, fractal, filamentary) way. A

similar problem occurs when using more sophisticated methods

such as the angular two-point correlation function (e.g. Bahcall &

Soneira 1981; Dhital et al. 2010), which requires a model of the

background distribution. This means that while it is useful for

the field, for example, in complex (young) regions, it is unclear

if the method is finding binaries or underlying structure. The same

⋆ E-mail: s.goodwin@sheffield.ac.uk

problem applies to the Larson (1995) approach (i.e. the ‘Larson

plot’).

In this paper, we introduce a very simple method to analyse a

region with any underlying density structure and to find the likely

total binary fraction. This method is ‘Struve-like’, although it sets

the area of interest as being that to the tenth nearest neighbour

and considers the distribution of possible distances to the nearest

neighbour as a ratio. This avoids variations in local density across

the whole region.

Whilst we formulate and discuss this method in the context of

finding binary stars in two-dimensional spatial data, it can also be

applied to the search for the fraction of pairing above random chance

in any data set.

2 M E T H O D O L O G Y

There are many ways of defining the proportion of stars that are

multiples (see Reipurth & Zinnecker 1993 for a list). In this paper,

we consider that stars are only in binary systems and we quantify

the fraction as the ‘binary fraction’, Fbin = B/(S + B), where B is the

number of binary systems and S is the number of single systems.

Stars in young regions have a wide variety of underlying density

distributions, from substructured/fractal to spherical and centrally

condensed, containing tens to thousands of stars; for example, see

Cartwright & Whitworth (2004), who quantify the structure of

various young regions with the Q-parameter.

In this paper, we analyse fractal regions (created using the method

of Goodwin & Whitworth 2004) with fractal dimensions D = 1.6

(very clumpy), D = 2 (moderately clumpy) and D = 3 (smooth, not
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Finding binary fractions 3447

Figure 1. Projected density distributions of N = 5000 stars with no binaries. Top-left panel, a D = 1.6 fractal; top-right panel, a D = 2.0 fractal; bottom-left

panel, a D = 3.0 fractal; bottom-right panel, a Plummer sphere. The X–Y size scale is ∼2 pc to mimic realistic regions, but this is not important (see text).

far from a Poisson distribution), and also Plummer (1911) spheres

(created using the method of Aarseth, Hénon & Weilen 1974).

Fig. 1 illustrates one realization of each of our semi-realistic

young regions,1 each with 5000 stars. The top-left panel shows a

fractal with fractal dimension D = 1.6, the top-right panel shows a

D = 2 fractal, the bottom-left panel shows a D = 3 (roughly uniform

density) fractal and the bottom-right panel shows a Plummer sphere.

Each of these regions contains no binaries (just 5000 single stars).

Each distribution is created in three dimensions and projected

into two dimensions (in each case looking along an arbitray z-axis).

Each projection is 5 × 105 au on a side (roughly 2 pc, to mimic a

realistic young region – although, as we shall see, the absolute scale

is unimportant).

In most simulated young regions (all except the D = 3 roughly

uniform distribution), the projected surface densities of stars vary

1It does not matter if these are particularly realistic models of real star-

forming regions, only that they are non-trivial density distributions.

significantly across the field of view (dense clumps in the D = 1.6

and D = 2 fractals, and a central concentration in the Plummer

sphere). The core of our problem in searching for binaries is to

determine in such complex distributions whether two objects are

closer together than would be expected by chance, in particular

when we have no a priori model of the underlying distribution (and

where the presence of an unknown binary population might bias

any attempt to quantify the underlying distribution).

Note that the slightly box-like appearance of the D = 3 fractal

is an artefact of how it was generated (see Goodwin & Whitworth

2004). It is possible to ‘jiggle’ the distribution to remove these

artefacts, but we have decided to keep them in order to make the

distribution more complex.

In order to see if some stars are closer than would be expected,

we need a model of the distribution as if there were no binaries. To

do this, we use the ratio of the distance of the nearest neighbour,

d1, to the distance of the tenth nearest neighbour, d10. We take the

tenth nearest neighbour because this is enough neigbours distant

to go beyond local multiple systems, but close enough to avoid

MNRAS 488, 3446–3451 (2019)
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3448 S. Akter and S. P. Goodwin

Figure 2. CDFs of the d1/d10 ratios for the four N = 5000 density

distributions in Fig. 1. Fractal dimension D = 1.6 is the red line (top-

left panel in Fig. 1), D = 2.0 is the black line (top-left panel in Fig. 1), D =
3.0 is the brown line (bottom-left panel in Fig. 1) and the Plummer sphere

is the green line (bottom-right panel in Fig. 1).

Figure 3. The spread of the CDFs of the d1/d10 ratios for 1000 realizations

(250 of each type). The green error bars show the spread of the central 50 per

cent of distributions, and the blue error bars show the extremes of all 1000

realizations. All realizations can be fitted well with Gaussians with means

0.20–0.29 and standard deviations 0.16–0.19.

large-scale (surface) density variations/structure. It is also a large

enough number to avoid too much ‘noise’ in the distance of the tenth

nearest neighbour (i.e. if the distance to the tenth nearest neighbour

is changed too much, then it becomes either the ninth or the eleventh

nearest neighbour).

If we assume that the ten nearest neighbours are distributed

randomly (i.e. there are no binary companions, and no density

variations on the scale out to the tenth nearest neighbour), then

we expect the nearest neighbour to be, on average, at a distance of

1/
√

10 ∼ 0.3d10. To test this, we perform Monte Carlo simulations

of Poisson distributions. We find that the ratio of d1/d10 is always

close to a Gaussian with mean 0.20–0.29 and standard deviation

0.16–0.19 when N = 500 (when N = 5000 these ranges decrease to

0.22–0.26 and 0.17–0.18, respectively). The fact that the distribution

of d1/d10 would be close to a Gaussian is not obvious a priori, but

appears always to be the case (at least for reasonably large N).

In Fig. 2, we plot the cumulative distribution functions (CDFs)

of d1/d10 for all four distributions plotted in Fig. 1. As we can

see, despite all four projected distributions looking very different

visually, the distributions of d1/d10 are all very similar. All four

distributions are close to a Gaussian (which, again, is not obvious

a priori). As we can see in Fig. 2, the mean and median values of

d1/d10 are ∼0.3 for all distributions. Fitting a Gaussian to each CDF,

the means and standard deviations of d1/d10 are 0.22 ± 0.18 (red

line, top left D = 1.6 fractal), 0.24 ± 0.17 (black line, top right D =
2 fractal), 0.25 ± 0.17 (brown line, bottom left D = 3 fractal), and

0.26 ± 0.16 (green line, bottom right Plummer sphere).

There are slight variations between the CDFs of d1/d10 depending

on the underlying distributions. The D = 1.6, very clumpy fractal

(shown by the red line) has a slightly lower mean (0.22) than the rest

as it is clumpy enough that the tenth nearest neighbour is sensitive

to the large-scale fractal structure. All the standard deviations of

the d1/d10 ratios are also slightly larger than that for a Poisson

distribution, because of the non-uniform nature of the distributions.

However, we will see that these differences are negligible when

compared with the effect of binaries.

In Fig. 3, we show the range of d1/d10 distributions found in a

large ensemble of 250 different realizations of each of our four

different density distributions (1000 different realizations in total,

each with N = 5000 single stars). The inner green error bars show

the range of the middle 50 per cent of realizations, and the blue

error bars show the maximum range of all 1000 realizations.

Across all realizations, the mean is always in the range 0.20–

0.29, and the standard deviations are in the range 0.16–0.19 for the

best-fitting (single) Gaussian.

To summarize, the distribution of the dimensionless ratio d1/d10

is always very similar without binaries for a wide variety of different

morphologies: roughly, a Gaussian with mean ∼0.20–0.29 and

standard deviation ∼0.16−0.19.

2.1 Adding binaries

We now investigate the effect of adding a population of binaries

to our distributions. We take regions with a total number of stars,

either N = 500 or N = 5000. The total number of stars is fixed to

within ±1, and the binary fraction sets what fraction of the total

are either single stars or binaries (e.g. with N = 500 and a binary

fraction of 50 per cent, there are 167 single stars and 166 binary

systems for a total of 167 + (2 × 166) = 499 stars). Single stars

and the centres of mass of binary systems are placed according to

the desired density distribution (Plummer or fractal).

We include binary systems with an Opik law (log-flat) separation

distribution between 1 and 2000 au in three dimensions, which we

randomly project into two dimensions (assuming zero eccentricity).

2.2 Recovering binary fractions

The left column of Fig. 4 shows three Plummer spheres with N =
5000 stars and binary fractions of 0 per cent (top), 100 per cent

(middle) and 50 per cent (bottom). Each panel is very similar

visually. The density of points seems higher in the top panel (no

binaries) and lower in the middle panel (all binaries), but this is

only because we require that N is the same in both. With no prior

MNRAS 488, 3446–3451 (2019)
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Finding binary fractions 3449

Figure 4. Projected views of stars in Plummer spheres with N = 5000 stars alongside the d1/d10 CDFs and their best-fitting Gaussians: the top, middle and

bottom rows show 0, 100 and 50 per cent binary fractions, respectively.

knowledge of N, it would be easy to think that the middle panel had

far fewer stars in total. Looking closely, it is possible to convince

oneself that the middle panel has more close pairs, but this is only

really visible in the outer regions, because in the centre crowding

confuses the eye.

The right column of Fig. 4 shows the CDFs of the d1/d10 ratio,

determined as above, for each of the distributions to the left.

The top row is for no binaries. The CDF of d1/d10 is essentially the

same as that of the Plummer sphere in Fig. 2 (with slight differences

because it is a different realization). The dashed green line is a best-

fitting Gaussian with mean 0.26 and variance 0.18, of the form

expected for a distribution with no objects closer than expected by

random chance.

The middle row is for all binaries. The CDF of d1/d10 is again

fitted by a single Gaussian, but the mean is only 0.005 (standard

deviation 0.008), much lower than that expected for any distribution

with no binaries. The most distant nearest neighbours only have

a d1/d10 of ∼0.03, which means that almost all stars have a

MNRAS 488, 3446–3451 (2019)
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3450 S. Akter and S. P. Goodwin

Figure 5. Left panel: a projected view of an N = 5000 D = 1.6 fractal with a 20 per cent binary fraction. Right panel: the CDF of d1/d10 (red line) with a two

Gaussian best fit (green dashed line).

Figure 6. The binary fraction against the relative weight of the binary

Gaussian fit. The solid lines are N = 500 star regions, and the dashed lines

are N = 5000 star regions. Black lines are fractal distributions and red lines

are Plummer spheres. All four lines lie almost on top of each other.

companion much closer than expected by random chance, whatever

the underlying distribution.

The bottom row is for half binaries/half single stars. The CDF of

d1/d10 is now a much more complex shape and a single Gaussian is

an extremely poor fit. There is a rapid rise from zero to ∼0.03 for

around 60 per cent of pairings, then a gentler rise towards a ratio of

unity for the last roughly 40 per cent of pairings.

Unsurprisingly, this form of the distribution is a mixture of the

random CDF in the top panel and the CDF for all binaries in the

middle panel (half of our pairings are true binaries and half are

random). The best fit to the CDF is two Gaussians with relative

weights 0.62 : 0.38, one Gaussian with mean 0.005 and standard

deviation 0.005 (the binaries) and the second Gaussian with mean

0.27 and standard deviation 0.15 (the random pairings).

As another example, in the left panel of Fig. 5, we show a D =
1.6 fractal with N = 5000 stars and a 20 per cent binary fraction.

Because of the underlying fractal nature of this distribution, it is

not possible to see whether there are some stars closer together than

might be expected. However, the right panel of Fig. 5 shows that the

CDF of the d1/d10 ratio shows a similar form to the bottom panel of

Fig. 4: a sharp rise at low d1/d10 (the binaries) and then a broader

distribution out to large d1/d10 (the random pairings).

The best fit to the CDF on the right of Fig. 5 is two Gaussians with

weighting 0.29 : 0.71, one Gaussian with mean 0.004 and standard

deviation 0.0015 (the binaries) and the second Gaussian with mean

0.25 and standard deviation 0.16 (the random pairings).

The parameters of the CDF with two Gaussians, required to fit

the 50 per cent binary fraction Plummer sphere in the bottom panel

of Fig. 4 and the 20 per cent binary fraction D = 1.6 fractal in

Fig. 5, are very similar. The only significant difference is the relative

weightings, which are directly related to the binary fractions in each

case. Also, the binary component has a slightly higher weighting

than the binary fraction: 0.62 for a 50 per cent binary fraction and

0.29 for a 20 per cent binary fraction. The difference between the

Gaussian weightings and the underlying binary fractions is due to a

small number of random pairings with a low-enough separation to

be considered as possible binaries, which over-weights the ‘binary’

Gaussian.

To test the relationship between the weighting factor and true

binary fractions, we create 250 realizations of each of region with

N = 500 and 5000 stars, with binary fractions of 0, 20, 40, 60,

80 and 100 per cent, with density distributions that are Plummer

spheres and D = 1.6, 2 and 3 fractals. In each case, we test whether

a single or two Gaussian model is a better fit to the data.

If a single Gaussian is the best fit and if the mean and standard

deviation are in the ranges 0.2–0.3 and 0.16–0.19, respectively,

then we can be confident we are observing a random (no binary)

population (or one in which binaries are so wide that they are

indistinguishable from single stars). If the mean is much lower than

0.2, then we can be confident we are observing a 100 per cent binary

population.

MNRAS 488, 3446–3451 (2019)
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Finding binary fractions 3451

If the data are fitted best by two Gaussians, then we expect

one of these Gaussians to have a mean of 0.2–0.3 and a standard

deviation of 0.16–0.19 (the single population), and the other to

have a significantly lower mean and standard deviation (the binary

population).

In Fig. 6, we show the weighting of the binary Gaussian (i.e. the

Gaussian that has a mean less than 0.20) against the binary fraction.

As expected, the relative weight of this Gaussian increases from

zero when the binary fraction is zero, to a weighting of unity when

the binary fraction is unity.

For the reasons discussed above, the increase is not quite linear

and the offset between the weighting and binary fraction is greatest

when they are both roughly a half (when ‘contamination’ is worst).

The different colours and line styles in Fig. 6 represent different N

and different density distributions (see caption for details). However,

they are all very similar to each other, showing that the weighting of

the binary does not depend on the underlying density distribution.

As a fairly good rule of thumb, the Gaussian weighting is typically

0.05–0.10 higher than the true binary fraction for most intermediate

binary fractions.

There are cases where it is possible to imagine an unclear or

ambiguous result from this analysis. For example, if the mean

of a best-fitting single Gaussian were around 0.2, it would be

difficult to decide if this was due to wide binaries or the particular

density distribution. It is also possible to imagine particular density

distributions and/or binary separations that would be impossible

to distinguish. One could also imagine a situation where three (or

more) Gaussians were required to fit a particularly unusual binary

separation distribution (especially if embedded in a complex density

distribution).

3 C O N C L U S I O N

We have developed a method to estimate the fraction of objects that

are closer than expected by chance in an arbitrary distribution. We

have developed this to search for binary stars (i.e. gravitationally

bound pairs) in astrophysical data, but the method is applicable to

many possible data sets.

We summarize the method, as follows.

(i) Find the distances to the nearest and tenth nearest neighbours

of every object and construct a CDF of d1/d10.

(ii) Fit both single and double Gaussian models to the CDF.

(iii) If a single Gaussian is the best fit and the mean and standard

deviation are in the range 0.20–0.30 and 0.16–0.19, respectively,

then the data show no evidence of binaries.

(iv) If a single Gaussian is the best fit with a mean much lower

than 0.2, then the data suggest a 100 per cent binary fraction.

(v) If a double Gaussian is the best fit, we expect one Gaussian

to have the mean and standard deviation of the single population

(roughly 0.20–0.30 and 0.16–0.19, respectively), and the other to

model the binary population. The underlying binary fraction is

related to the relative weightings of the Gaussians (where the binary

Gaussian tends to be 0.05–0.10 higher than the true binary fraction).

It is worth noting that our example data sets are ‘perfect’ and we

observe every object. Real data are subject to biases and selection

effects and, in particular, observational data will have a resolution

limit below which no two objects can be distinguished, which will

mean that the d1/d10 ratio is truncated at this limit. Obviously,

the particular limitations of any data set should be included when

analysing that data set.

In this paper, we only aim to find the binary fraction in a data set,

and we do not go beyond this. It is possible to extend this analysis to

find the probability that the nearest neighbour is a true binary, and to

estimate the (two-dimensional) distribution of binary separations.

However, we leave this for future work.
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