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a b s t r a c t 

High-resolution (HR), isotropic cardiac Magnetic Resonance (MR) cine imaging is challenging since it re- 

quires long acquisition and patient breath-hold times. Instead, 2D balanced steady-state free precession 

(SSFP) sequence is widely used in clinical routine. However, it produces highly-anisotropic image stacks, 

with large through-plane spacing that can hinder subsequent image analysis. To resolve this, we propose 

a novel, robust adversarial learning super-resolution (SR) algorithm based on conditional generative ad- 

versarial nets (GANs), that incorporates a state-of-the-art optical flow component to generate an auxiliary 

image to guide image synthesis. The approach is designed for real-world clinical scenarios and requires 

neither multiple low-resolution (LR) scans with multiple views, nor the corresponding HR scans, and 

is trained in an end-to-end unsupervised transfer learning fashion. The designed framework effectively 

incorporates visual properties and relevant structures of input images and can synthesise 3D isotropic, 

anatomically plausible cardiac MR images, consistent with the acquired slices. Experimental results show 

that the proposed SR method outperforms several state-of-the-art methods both qualitatively and quan- 

titatively. We show that subsequent image analyses including ventricle segmentation, cardiac quantifi- 

cation, and non-rigid registration can benefit from the super-resolved, isotropic cardiac MR images, to 

produce more accurate quantitative results, without increasing the acquisition time. The average Dice 

similarity coefficient (DSC) for the left ventricular (LV) cavity and myocardium are 0.95 and 0.81, respec- 

tively, between real and synthesised slice segmentation. For non-rigid registration and motion tracking 

through the cardiac cycle, the proposed method improves the average DSC from 0.75 to 0.86, compared 

to the original resolution images. 

© 2021 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Cardiac Magnetic Resonance (MR) cine imaging allows struc- 

ural and functional analysis of the heart, through accurate es- 

imation of clinical parameters such as left ventricular (LV) vol- 

me and ejection fraction (EF), which are important predictors of 

linical outcomes ( Knauth et al., 2008 ). Due to its excellent re- 

roducibility of quantitative measurements compared with other 

odalities, cardiac cine MR imaging is attractive for population 

maging studies ( Marwick et al., 2013 ) such as in the UK Biobank
∗ Corresponding author. 
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 Petersen et al., 2013 ), the German National Cohort ( Bamberg et al., 

015 ), and the Canadian Alliance for Healthy Hearts and Minds 

CAHHM) ( Anand et al., 2016 ). 

Although high-resolution (HR), isotropic cardiac MR images can 

acilitate better visualisation and more accurate assessment for 

omplex cardiac morphology, 3D cine imaging of the heart is chal- 

enging due to relatively long acquisition and patient breath-hold 

imes. Instead, the 2D b-SSFP (balanced steady-state free preces- 

ion) sequence is regularly used in clinical practice as it pro- 

ides excellent signal-to-noise ratio, good contrast between tissues 

nd blood/vessels, and considerably reduces motion-induced signal 

ropout ( Scheffler and Lehnhardt, 2003 ). However, typical 2D b- 

SFP acquisitions consist of a few 2D short-axis (SAX) slices (gener- 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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Fig. 1. An example of typical cardiac MR images from the UK Biobank with in-plane 

spatial resolution 1 . 8 × 1 . 8 mm, through-plane resolution 10 mm. From left to right, 

the three images display a short-axis (SAX) slice, two long-axis (LAX) slices, respec- 

tively. While in-plane spatial resolution is sufficient for image analysis, slice spacing 

is large due to acquisition constraints and hardly captures the detailed anatomy. 
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lly ranging between 8 and 12), resulting in highly anisotropic vol- 

mes with large through-plane spacing (e.g., 1.8 × 1.8 × 10 mm), 

s illustrated in Fig. 1 . Such clinically acquired scans hamper not 

nly visual interpretation, but also pose significant challenges to 

ubsequent quantitative analyses. For instance, low through-plane 

esolution images make accurate non-rigid registration challenging 

o achieve, which is necessary for automatic cardiac strain analy- 

is. Also, anisotropic 2D cine images may yield high variations in 

tructural and functional assessment due to the difficulty of seg- 

enting the myocardium near the apex and base of the ventricles. 

herefore, these limitations have led to an interest in developing 

obust and efficient methods to improve the resolution of cardiac 

R scans. 

Traditional interpolation methods can be adapted to this sce- 

ario by using intensity/object-based interpolation. Intensity-based 

nterpolation methods are essentially weighted averaging schemes 

f the input images, and thus yield blurring effects and unrealistic 

esults. Object-based methods typically rely on image registration, 

here corresponding points between consecutive slices are found, 

nd intermediate slices are subsequently interpolated. Such meth- 

ds include the modified version of the control grid interpolation 

CGI) ( Frakes et al., 2008 ), multi-resolution registration-based slice 

nterpolation ( Leng et al., 2013 ), and higher-order spline-based in- 

erpolation ( Horváth et al., 2017 ). However, registration-based slice 

nterpolation methods have several limitations: First, the consecu- 

ive slices must have similar anatomical features. Second, the regis- 

ration method must be able to estimate the correct transformation 

o match these similar features. Violation of either aspect yields 

alse correspondence maps, which leads to incorrect interpolation 

esults (cf. Fig. 2 ). 

Conventional super-resolution (SR) techniques have also been 

pplied to improve the resolution of cardiac MR images. These 

ethods generally fall into two main categories: reconstruction 

hrough the combination of multiple acquired low-resolution (LR) 

rthogonal scans to achieve the higher resolution ( ur Rahman 

nd Wesarg, 2010; Gholipour et al., 2010 ), and example-based SR, 

hich aims to up-sample LR images to their most likely HR ver- 

ion via knowledge of the relationship between HR and LR im- 

ge features from example data ( Manjón et al., 2010a; Rousseau 

t al., 2011; Konukoglu et al., 2013; Jog et al., 2014 ). The former

ot only requires additional acquisitions from multiple orthogonal 

iews, but also depends on the quality of alignment of the im- 

ges for fusion. Particularly, the non-rigid motion in cardiac imag- 

ng and the LR of the acquired images make accurate registration 

ifficult to achieve, limiting the final effectiveness of such methods. 

he latter group of methods requires correspondences between LR 

nd HR image patches from an example database, which may not 

lways be available or feasible to acquire in clinical applications. 

Similarly, one can adopt deep convolutional neural networks 

CNN) to learn end-to-end mapping between the LR/HR images di- 

ectly ( Dong et al., 2014; Oktay et al., 2016; Basty and Grau, 2018;

haudhari et al., 2018 ). There were also SR methods based on gen- 

rative adversarial nets (GANs) that have demonstrated to boost 
2 
he performance for the super-resolved MRI or CT images. For in- 

tance, ( Chen et al., 2018b ) combined a light-weighted densely 

onnected network and a GAN to provide the state-of-the-art per- 

ormance while keeping the model smaller and faster. ( Lyu et al., 

019 ) proposed a GAN-CIRCLE network that was constrained by the 

dentical, residual, cycle learning ensemble and achieved two-fold 

esolution enhancement for MRI and CT. A multi-scale GAN with 

esion focused SR was also studied to achieve stable and efficient 

raining and improve perceptual quality of super-resolved results 

 Zhu et al., 2019 ). ( Wang et al., 2020 ) suggested an enhancement

o tackle GAN-based 3D SR by introducing a residual-in-residual 

ense block (RRDG) generator that is both memory efficient and 

chieves state-of-the-art performance. ( Kudo et al., 2019 ) proposed 

o condition the discriminator on the body parts and realised CT 

mage super resolution for different body parts with a single 3D 

AN. However, acquiring either the appropriate HR, near isotropic 

D cardiac MR images or multiple 2D LR stacks in different ori- 

ntations is often infeasible and impractical. Thus, here our dis- 

ussion only focused on the typical clinical scenario where only 

parsely-sampled SAX images were available. 

There also exist methods that attempt to fill in the missing 

lices by exploring redundant, relevant details and capturing repet- 

tive anatomical structure in a scan or in clinical image collec- 

ions ( Manjón et al., 2010b; Plenge et al., 2013; Dalca et al., 2018 ).

ecently, ( Zhao et al., 2020 ) used in-plane HR information to re- 

tore LR through-plane slices. They first trained a regression model 

o generate in-plane image patches at the original resolution ac- 

uired, from LR image patches generated by filtering the original 

mage patches. Subsequently, they applied the trained regression 

odel in the through-plane direction to generate self-supervised 

R images. However, these methods were designed and validated 

n images involving almost no organ motion, such as brain MRI 

nd hence may not deal with motion often presented in dynamic 

ardiac cine MR acquisitions, such as inter-slice motion and mis- 

lignment. 

Alternatively, video frame interpolation, which has been exten- 

ively studied in the computer vision (CV) domain, may be applied 

n this scenario. The most common approach to video interpolation 

s based on optical flow ( Herbst et al., 2009; Liu et al., 2017; Jiang

t al., 2018; Niklaus and Liu, 2018; Bao et al., 2019b ). These meth- 

ds first estimate object motion through optical flow using CNN 

odels and then perform frame warping to synthesise pixels us- 

ng reference frames. Instead of estimating a temporal motion field 

n the adjacent frame sequences, the same underlying concept can 

lso be adapted to derive spatial motion/transformation from two 

onsecutive slices in the through-plane direction, and synthesise 

he corresponding intermediate slice. While achieving impressive 

erformance, these methods still have several limitations: First, the 

rames synthesised from optical flow suffer from blurriness, as in- 

ccurate flow estimation from frames far apart and bilinear warp- 

ng blend neighbouring pixels, due to the sub-pixel shifts. Second, 

he optical flow estimation can struggle to maintain accuracy in 

he presence of large motion patterns, leading to ghost or over- 

aid artefacts. These artefacts are even more pronounced in cardiac 

R images as the anatomical structures change substantially be- 

ween consecutive slices (cf. Fig. 2 ). Recently, ( Bao et al., 2019a )

uggested considering the contribution of each optical flow based 

n the depth information and compensated for the issue that mul- 

iple flow vectors may overlap at the same position. Also, to reduce 

rtefacts around motion boundaries, the authors used an adaptive 

arping layer to warp the input frames, contextual features, and 

epth maps based on the estimated flows and local interpolation 

ernels, and refined the output frame through a CNN-based, cas- 

aded model. However, although this depth-aware frame interpola- 

ion can generate frames with precise object shapes, the synthesis 

etwork tends to generate blurry images with fewer details, since 
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Fig. 2. A comparison of the reference slice and the synthesised slices between the linear interpolation, registration-based interpolation ( Horváth et al., 2017 ), optical flow- 

based frame interpolation ( Jiang et al., 2018 ), depth-aware flow interpolation ( Bao et al., 2019a ) and the proposed SR approach for the UK Biobank cardiac MR dataset. 
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he generic CNN cannot capture the multi-modal distribution of 

eal images, as can be seen in Fig. 2 . 

Our goal was to reconstruct high-resolution, 3D isotropic car- 

iac MR images, from single SAX stacks of sparsely sampled 2D 

lices. Several aspects were challenging: First, the through-plane 

pacing of the SAX image is approximately 8 times the in-plane 

patial resolution (e.g. 10 mm vs 1.2 mm), whilst the up-sampling 

actor of classic SR algorithms is usually around 2-4. Second, we fo- 

used on data typically acquired in a clinical setting, i.e. neither the 

elationships between HR/LR image features, nor additional scans 

rom other orthogonal views, which most SR algorithms rely on, 

ere available. No ground-truth was available for training, as those 

ntermediate slices we aim to synthesise, were not acquired in 

he standard clinical 2D b-SSFP imaging protocol due to acquisi- 

ion constraints. Finally, cardiac images exhibit a significant degree 

f variability in terms of orientation, anatomy and motion. For in- 

tance, inter-slice misalignment may exist within a SAX stack, due 

o variations in the position of the diaphragm during breath-hold 

cquisitions. 

In this work, we proposed a novel, robust method based on 

ecent techniques of conditional GANs ( Goodfellow et al., 2014; 

irza and Osindero, 2014; Isola et al., 2017 ). We showed that with 

edicated loss functions, adversarial optimisation, and an auxil- 

ary image generated by a state-of-the-art optical flow method 

 Bao et al., 2019a ), our network can be trained end-to-end us- 

ng unsupervised transfer learning. Here, transfer learning indi- 

ates that the state-of-the-art optical flow model used to gener- 

te guided images was pretrained on the “labelled” video clips and 

ideo frames in the CV domain. The proposed framework effec- 

ively incorporates visual properties and relevant textures of input 

mages and can synthesise HR anatomically plausible 3D cardiac 

R images, consistent with the available slices. The main contri- 

utions of our approach are: 

(1) A novel deep conditional GAN architecture was proposed to 

nable HR, 3D isotropic cardiac MR reconstructions, using single 

parsely-sampled image stacks. The method does not require the 

orresponding HR scans or multiple LR scans. 

(2) To synthesise visually appealing cardiac MR images and fa- 

ilitate accurate quantitative measurements, we adopted a dedi- 

ated generator and discriminator in this work. The generator con- 

ains residual blocks, where all normalisation layers are condi- 

ioned and modulated with two consecutive input images to en- 

ure that visual properties and relevant texture details are effec- 

ively propagated through the network. A multi-scale discriminator 

as employed to ensure recovery of both global and local spatial 

eatures. 

(3) To maintain precise object shapes and motion consistency, 

e adopted a state-of-the-art optical flow interpolation technique 

n the CV context to produce an intermediate auxiliary image. 

his was used to guide image generation by matching its fea- 

ures with the synthesised image. We proposed a composite loss 
g

3 
unction to train the network in an unsupervised transfer learning 

ashion. 

(4) We comprehensively analysed the model by evaluating its 

erformance across a large cohort of subjects at, a single cardiac 

hase and across multiple time points in the cardiac cycle. We 

emonstrated that subsequent image analyses including ventricle 

egmentation, cardiac quantification and non-rigid registration can 

enefit from the proposed method by generating super-resolved, 

sotropic cardiac MR images. 

The paper is organised as follows. Section II introduces the 

enerative model and learning algorithm. Section III describes 

he experiments conducted to validate the model, and Section 

V presents the results of qualitative and quantitative analyses 

onducted to evaluate model performance. Then, we discuss es- 

ential characteristics of our model in contrast with the state- 

f-the-art, and its relevance in real clinical scenarios in Sec- 

ion V, before providing concluding remarks for our work in 

ection VI. 

. Methods 

In this section, we present the generative model for interme- 

iate slice synthesis, the adversarial learning algorithm, and de- 

cribe the image synthesis pipeline. Overview of the method: First, 

 generative network takes the two consecutive, down-sampled 

mages x z±1 as conditioning input to synthesise an intermediate 

ardiac MR slice. Then, a multi-scale discriminator distinguishes 

he generated samples from the real images at different scales, 

nd simultaneously matches the features of the inferred slice with 

hose of the real slices, x z±1 and an auxiliary image ˆ x z gener- 

ted from the optical flow-based interpolation, using a hybrid fea- 

ure matching loss. During inference, all the original slices are 

aintained and we fill in the in-between slices with the newly 

ynthesised ones (using every two consecutive slices) to form 

he new image volume. Then, we repeat this up-sampling pro- 

ess on the new image volume to achieve higher resolution in 

he through-plane direction. The network architecture is illustrated 

n Fig. 3 . 

.1. Generative Adversarial Networks (GANs) 

A GAN consists of two networks: the generator G and the dis- 

riminator D ( Goodfellow et al., 2014 ). In an image synthesis, G 

uilds a mapping function that maps a random noise vector z to 

n output image x from a target distribution p ( x ) , and D outputs 

 single scalar that represents the probability that a sample s is 

rawn from p ( x ) . On the one hand, G learns to synthesise realistic- 

ooking images that cannot be distinguished from real images by 

n adversarially trained D . On the other hand, D tries to distin- 

uish real images from the generated ones. The minimax objective 
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Fig. 3. Structure of the proposed SR network for generating high-resolution, anatomically realistic images consistent with the available slices. The generative network takes 

the two consecutive, down-sampled images x z±1 as conditioning input to synthesise a cardiac MR slice G ( x z−1 , x z+1 ) at the middle position. The multi-scale discriminator 

distinguishes the generated samples from the real images at different scales, and simultaneously matches the features of the inferred slice with those of the real slices x z±1 

and an auxiliary image ˆ x z generated from the optical flow-based interpolation using different feature matching loss terms. 
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Fig. 4. Structure of the proposed generator. The generator follows a full pre- 

activation ResNet architecture that consists of residual blocks, followed by near- 

est neighbour up-sampling layers. Conditional batch normalisation (CBN) is imple- 

mented in each ResBlock so feature maps are first normalised to zero mean and 

unit deviation, followed by modulation/de-normalisation using a learned transfor- 

mation whose parameters are inferred from two input cardiac MR slices, facilitating 

that fine details are propagated throughout the network. 
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1 Here, we denote E x ∼p ( x ) as E x and E z∼p ( z ) as E z for simplicity. 
or GANs can be formulated as follows 1 : 

in 

G 
max 

D 
L GAN = min 

G 
max 

D 
E x [ log D ( x ) ] 

+ E z [ log ( 1 − D ( G ( z ) ) ) ] . (1) 

To improve network stability during training, the negative log- 

ikelihood in L GAN can be replaced by a squared loss function 

 Mao et al., 2017 ): 

 LSGAN = −E x 

[
( D ( x ) − 1 ) 

2 
]

− E z 

[
D ( G ( z ) ) 

2 
]
. (2) 

.2. Image-Conditional Generative Adversarial Networks 

Instead of learning a mapping from random noise z, ( Isola et al., 

017 ) proposed an image-to-image translation model (also known 

s the pix2pix model) that learns a mapping from statistically- 

ependent observed source images x to target images y . Such a 

ethod can be regarded as image-conditional GAN. The optimisa- 

ion of the G and D can be reformulated as: 

 cGAN = −E xy 

[
( D ( x, y ) − 1 ) 

2 
]

− E x 

[
D ( G ( x ) ) 

2 
]
. (3) 

It has been shown an effective strategy to integrate the tradi- 

ional pixel-wise loss (e.g., L1 or L2 distance between the ground 

ruth and generated images) into the GAN objective function for 

oosting image generation tasks: 

 L 1 = E xy [ ‖ 

y − G ( x ) ‖ 1 ] . (4) 

Then, the final loss function combines Eq. (3) and (4) . How- 

ver, the original pix2pix models may be unstable and prone to 

ailure for synthesising images that contain fine structural details 

nd rich quantitative information, which is essential for medical 

mages. Our generative model is inspired by recent GAN architec- 

ures to refine the previous models and aims to generate anatom- 

cally plausible cardiac MR images which preserves fine structural 

etails. The architecture of the generator and discriminator will be 

iscussed in subsequent sections. 

.3. Generator with Self-modulated Normalisation 

Our generator uses a pre-activation ResNet architecture 

 He et al., 2016 ) that was implemented in recent popular GAN 

odels ( Karras et al., 2018; Zhu et al., 2017; Isola et al., 2017; Miy-
4 
to et al., 2018; Zhang et al., 2019 ). As shown in Fig. 4 , the gen-

rator comprises of several residual blocks, and nearest neighbour 

p-sampling layers. Each residual block contains two convolutional 

ayers with the skip connection, and a learned residue of input is 

dded to the output to ensure the characteristics of original fea- 

ures are retained. 

Additionally, we were inspired by the concept of conditional 

atch normalisation (CBN) that has been recently adopted in pre- 

ious studies ( De Vries et al., 2017; Miyato and Koyama, 2018; 

hang et al., 2019; Chen et al., 2018a; Park et al., 2019 ). CBN sug-
data z 
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Fig. 5. The multi-scale discriminative network that operates at different image 

scales ( 256 × 256 and 128 × 128 ) and helps to capture both global and local spa- 

tial features. 
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L

ests an effective guidance strategy to incorporate additional con- 

itioning information (such as labels, embedding, or masks) into 

mage synthesis through batch normalisation and enables an im- 

ge to be translated from one domain into another while consis- 

ently respecting the constraints specified by conditioning infor- 

ation. Specifically, in CBN layers, the extracted features from the 

revious layers are first normalised to zero mean and unit stan- 

ard deviation. Then, the normalised features are modulated using 

 learning-based affine transformation with scale and shift param- 

ters inferred from the external conditioning data. Significant im- 

rovements in synthesised image quality have been demonstrated 

or a wide variety of settings ( Ulyanov et al., 2017; Huang and Be-

ongie, 2017; Chen et al., 2018a; Park et al., 2019 ). 

Our CBN scheme is close to the self-modulated normalisa- 

ion ( Chen et al., 2018a ) and the spatially-adaptive normalisation 

 Park et al., 2019 ) that was used for style transfer. However, our

ethod differs from the previous methods in application-specific 

esign: we aim to produce image reconstruction that effectively in- 

orporates visual properties and quantitative information from the 

djacent input slices by consistently encoding them into the im- 

ge generation pathway through the normalisation layers, to cap- 

ure spatial features from all relevant regions near the synthe- 

ised position. By doing so, we can generate a slice that closely 

esembles the appearance of the input reference slices. Specifically, 

n the batch normalisation setting, input feature batch h b,w,h,c ∈ 

 

B ×W ×H×C ( b ∈ B, w ∈ W, h ∈ H, and c ∈ C denote the batch size,

idth, height, and channel of the feature map, respectively) is nor- 

alised in a channel-wise manner: 

 

′ 
b,w,h,c, = γw,h,c ( x z−1 , x z+1 ) ×

h b,w,h,c − μc 

σc + ε

+ βw,h,c ( x z−1 , x z+1 ) , (5) 

ith 

c = 

1 

N 

∑ 

b,w,h 

h b,w,h,c , σ 2 
c = 

1 

N 

∑ 

b,w,h 

(
h b,w,h,c − μc 

)2 
, (6) 

here N = B × W × H, ε is a small number to avoid division by 

ero, x z±1 denotes two consecutive input slices, γ ( ·) and β( ·) are 

patial dimension-dependent functions that can be formulated as 

 simple CNN model. The modulation parameters of all CBN lay- 

rs within the generator were learned simultaneously through the 

AN training. 

.4. Multi-scale Discriminator 

In this work, we employed a multi-scale discriminator 

 Durugkar et al., 2017; Nguyen et al., 2017; Wang et al., 2018 ) that

perates at two scale levels, as shown in Fig. 5 . All the input im-

ges to the first discriminator are down-sampled by a factor of 2 

or the second discriminator, and the network is trained in a multi- 

ask fashion. The rationale for applying this two-scale image pyra- 

id structure is: the discriminator with the larger receptive field 
5 
ields a global view of the image and can guide the generator to 

ynthesise globally coherent images, whilst the discriminator with 

 smaller scale can encourage the generator to capture local finer 

etails. Batch normalisation and LeakyReLU with slope 0.2 are ap- 

lied for all the layers in the discriminator. 

.5. Depth-Aware Optical Flow Interpolation 

A conventional conditional GAN can synthesise an image that 

esembles the appearance of the two input images, but it is hard to 

ontrol the movement patterns to ensure that the synthesised im- 

ge lies precisely between and central to the neighbouring slices. 

o overcome this issue, we were inspired by the recent advances 

n video frame interpolation in ( Jiang et al., 2018; Bao et al., 2019a;

019b ) and adapted a depth-aware flow-based interpolation ap- 

roach ( Bao et al., 2019a ) to generate an auxiliary image to guide 

dversarial learning. 

Specifically, we first computed the bi-directional optical flows 

etween two consecutive input images using a state-of-the-art 

ptical flow model. Let F z+1 → z−1 and F z−1 → z+1 denote the bi- 

irectional optical flow from x z+1 to x z−1 and from x z−1 to x z+1 , re-

pectively. Then, the input images can be warped by the estimated 

ntermediate optical flows to synthesise the intermediate image x̆ z 
s: 

˘
 z = 

1 

2 

g ( x z−1 , F z→ z−1 ) + 

1 

2 

g ( x z+1 , F z→ z+1 ) , (7) 

ith the approximated intermediate optical flows: 

 z→ z−1 
∼= 

−1 

2 

F z−1 → z+1 F z→ z+1 
∼= 

−1 

2 

F z+1 → z−1 , (8) 

here g ( ·, ·) is a backward warping function, which can be imple- 

ented using bilinear interpolation ( Zhou et al., 2016 ). As there 

ay exist multiple flow vectors projected to the same location in 

he intermediate frame, a depth-aware flow interpolation was pro- 

osed in ( Bao et al., 2019a ) and Eq. (8) can be reformulated as:

 ̄z→ z−1 
∼= 

−W z−1 · F z−1 → z+1 

2 ‖ 

W z−1 ‖ 

F̄ z→ z+1 
∼= 

−W z+1 · F z+1 → z−1 

2 ‖ 

W z+1 ‖ 

, (9) 

here the weights W z−1 and W z+1 are the reciprocal of the corre- 

ponding depth maps for x z−1 and x z+1 , respectively. Eq. (9) im- 

lies the projected flows tend to sample the closer objects and re- 

uce the contribution of the pixels yielding larger depth values. 

nserting F̄ z→ z−1 and F̄ z→ z+1 into Eq. (7) , we can obtain x̄ z . To re- 

uce artefacts around motion boundaries that cause poor image 

ynthesis, the initial approximation x̄ z is refined through the cas- 

aded CNN architecture as adopted in ( Jiang et al., 2018; Bao et al., 

019a ) to obtain the intermediate guidance image ˆ x z for our model. 

.6. Optimisation 

In this section, we present a new loss function to train the net- 

ork adversarially, in an unsupervised transfer learning manner. 

y adopting the squared loss function and the multi-scale discrim- 

nator, our GAN training loss can be formulated as: 

 GAN ( G, D k ) = min 

G 
max 
D 1 ,D 2 

∑ 

k =1 , 2 

−E x 

[
( D k ( x z−1 ) − 1 ) 

2 
]

−E x 

[
( D k ( x z+1 ) − 1 ) 

2 
]

− E x 

[
D k ( G ( x z−1 , x z+1 ) ) 

2 
]
. (10) 

Instead of using pixel-wise loss in Eq. (4) and minimising the 

1 distance to the ground truth, a feature matching loss was em- 

loyed to optimise the GAN to match the statistics of feature rep- 

esentations between the two input slices and synthesised slice, in 

ultiple intermediate layers of D k : 

 F M 1 
( G, D k ) = E x 

T ∑ 

i =1 

1 

N i 

[‖ D 

i 
k ( x z−1 ) − D 

i 
k ( G ( x z−1 , x z+1 ) ) ‖ 1 

]
, (11) 
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 F M 2 
( G, D k ) = E x 

T ∑ 

i =1 

1 

N i 

[‖ D 

i 
k ( x z+1 ) − D 

i 
k ( G ( x z−1 , x z+1 ) ) ‖ 1 

]
, (12) 

here i means the i th layer features in D, N i is the number of fea-

ures in each layer, T is the total number of layers. 

Then, we introduced another feature matching term that com- 

ares the synthesised image with a guidance image ˆ x z estimated 

rom the depth-aware optical flow interpolation in the sparse rep- 

esentation: 

 F M 3 
( G, D k ) = E x 

T ∑ 

i =1 

1 

N i 

[‖ D 

i 
k 

(
ˆ x z 
)

− D 

i 
k ( G ( x z−1 , x z+1 ) ∗ B ) ‖ 1 

]
, (13) 

here B represents a Gaussian smoothing operation with a learn- 

ble standard deviation σ . 

The motivation of this hybrid feature matching loss is: The con- 

guration of Eq. (11) and (12) aims to generate anatomically plau- 

ible images resembling the appearance of the two input images, 

hilst Eq. (13) encourages the generated intermediate image to 

ield motion consistency and smooth transition to the neighbour- 

ng slices. Our final joint objective combined both GAN loss and 

eature matching loss: 

 SR = min 

G 

( ( 

max 
D 1 ,D 2 

∑ 

k =1 , 2 

L GAN ( G, D k ) 

) 

+ λ1 

∑ 

k =1 , 2 

L F M 1 
( G, D k ) 

+ λ2 

∑ 

k =1 , 2 

L F M 2 
( G, D k ) + λ3 

∑ 

k =1 , 2 

L F M 3 
( G, D k ) 

) 

, (14) 

here λ1 , λ2 and λ3 control the weighting of the feature matching 

oss to GAN loss. 

. Experimental Setup 

.1. Dataset 

Cardiac MR images from the UK Biobank (UKBB) were used 

o train and validate the proposed method. Images were acquired 

sing a clinical wide bore 1.5T MR system (MAGNETOM Aera, 

yngo Platform VD13A, Siemens Healthcare, Erlangen, Germany) 

quipped with an 18 channel anterior body surface coil (45 mT/m 

nd 200 T/m/s gradient system). 2D cine b-SSFP SAX image stacks 

ere acquired with the following acquisition protocol: in-plane 

patial resolution 1 . 8 × 1 . 8 mm, slice thickness 8 mm, slice gap

 mm, image size 198 × 208 . The number of slices in the SAX 

tack typically ranges between 8 and 12. Each slice was acquired 

t 50 cardiac phases. Further acquisition details can be found in 

 Petersen et al., 2015 ). In this work, we focused on the cardiac SAX

-SSFP cine MR datasets for which the ground-truth intermediate 

lices that correspond to the desired high-resolution 3D isotropic 

mages, were not available. 

.2. Network Training 

Our approach adopted a least-squares GAN (refer to Eq. (2) ), 

nd was trained on 3,0 0 0 pairs of two consecutive slices (each 

air taken from a different subject at a random slice position) from 

parsely-sampled UKBB cardiac MR images within a single cardiac 

hase (end-diastolic) for 50 epochs. The aim was to synthesise the 

nseen intermediate slice. The training uses the Adam optimiser 

ith an initial learning rate of 2 × 10 −4 , for both the generator 

nd discriminator. The decay rates of the first and the second mo- 

entum of the gradient estimates were set to 0.5 and 0.999, re- 

pectively. All the 2D image slices were resized to 256 × 256 . The 
6 
ethod requires no HR scans or intermediate ground-truth im- 

ges and can be trained in an unsupervised transfer learning fash- 

on. The relative weighting factors of the feature matching loss 

o GAN loss in Eq. (14) were initialised as λ1 = 0 . 33 , λ2 = 0 . 33

nd λ3 = 0 . 33 and adjusted to λ1 = 0 . 2 , λ2 = 0 . 2 and λ3 = 0 . 6 af-

er 15 epochs. Instead of performing standard batch normalisa- 

ion, in the generator we first normalised all intermediate fea- 

ure maps to zero mean and unit standard deviation, followed by 

e-normalising/modulating features using a learned transformation 

hose parameters are inferred from the input cardiac MR slices. 

or intermediate slice synthesis, we utilised the two adjacent slices 

s input (see Eq. (5) ) to ensure the normalisation is spatially de- 

endent. 

To synthesise an intermediate, auxiliary image to guide image 

eneration and used by the third featuring match loss term in 

q. (13) , we fine-tuned the depth-aware flow interpolation model 

hat was pre-trained on 51,312 Vimeo90K datasets ( Xue et al., 

019 ) using 3,0 0 0 UKBB cardiac MR image triplets at the original 

ow slice resolution (10 mm) for 30 epochs. The guidance image 

s only utilised for the training stage. For the inference, we do not 

eed the computation of the bi-directional optical flows and depth 

aps as the intermediate slice can be directly synthesised from 

wo input images through the generative model. 

.3. Competing Methods 

To demonstrate the advantages of the proposed method, we 

ompared it to two conventional intensity-based and registration- 

ased interpolation methods. The intensity-based method sim- 

ly computes the weighted average of adjacent slices using bicu- 

ic interpolation in the slice direction to obtain isotropic voxels. 

he registration-based slice interpolation approach ( Horváth et al., 

017 ) first uses a symmetric similarity measure to perform struc- 

ure registration, to calculate displacement fields between neigh- 

ouring slices. Then, along every correspondence point trajectory, 

he displacement fields are utilised to calculate a high order inten- 

ity interpolating spline for structural motion. The algorithm was 

xecuted using the recommended parameter settings described in 

heir work. 

We also compared our method to a state-of-the-art optical flow 

nterpolation approach ( Jiang et al., 2018 ) and the depth-aware 

ow interpolation approach ( Bao et al., 2019a ). The optical flow- 

ased model was pre-trained using two datasets comprising of 

,132 video clips and 376K individual video frames from a great 

ariety of scenes. We fine-tuned both models with 3,0 0 0 UKBB car- 

iac MR image triplets at the current through-plane resolution (10 

m spacing) for 30 epochs, to predict the middle slice from pairs 

f the first and third slices. 

.4. Evaluation Design 

We conducted several experiments to assess the accuracy and 

obustness of the proposed SR method. First, images generated us- 

ng the proposed method, from UKBB data comprising subjects at 

oth the end-diastolic (ED) and end-systolic (ES) cardiac phase, 

ere qualitatively assessed. We analysed our method’s perfor- 

ance at synthesising slices across different resolution levels, i.e. 

rom the original resolution with the slice spacing of 10 mm to 

6x up-sampled HR image stacks where the slice thickness eventu- 

lly reduces to 0.625 mm. We also investigated the case where one 

lice is removed from original sparsely-sampled SAX images, before 

sing the proposed method to synthesise the missing slices. Note 

hat, only in this scenario, the ground-truth images were available 

or comparison. All the results obtained using our approach were 

ompared with those of the other approaches investigated. 
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Fig. 6. Qualitative comparison of the reference slice and the synthesised slices between the linear interpolation, registration-based interpolation, optical flow based frame 

interpolation, depth-aware flow interpolation and the proposed SR approach for two cardiac MR datasets at the original slice resolution 10 mm. The comparison is augmented 

by the computed correlation coefficients (CC) and PSNR shown below each figure. 
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We investigated the impact of the proposed SR approach on 

ypical cardiac MR image analyses, including biventricular segmen- 

ation, cardiac quantification and temporal non-rigid registration 

cross the full cardiac cycle. In these study groups, we adopted 

he bicubic interpolation method as the baseline for comparison 

ince it has been commonly used to produce near isotropic car- 

iac MR images in these applications. First, for automated segmen- 

ation, we adopted a state-of-the-art, 2D CNN-based method pro- 

osed in ( Bai et al., 2018 ) that can take a SAX image and predict a

ixel-wise image segmentation through fully convolutional layers. 

e retrained this CNN model on 4,0 0 0 cardiac MR datasets in total

plit into three subsets of 310 0, 50 0 and 40 0 for training, valida-

ion and testing, respectively. Manual image annotations of LV en- 

ocardium, LV myocardium, and RV endocardium were taken from 

 Petersen et al., 2017 ). All the 2D slice images were cropped to a

92 × 192 matrix and intensity normalised to the range of [0,1]. 

o quantify segmentation accuracy, three common metrics were 

sed, namely Dice similarity coefficient (DSC), mean contour dis- 

ance (MCD) and Hausdorff distance (HD). The DSC computes the 

verlap between two segmentations A and B as: 

SC = 

2 | A ∩ B | 
| A | + | B | . (15) 

DSC is in the range between 0 and 1, with a higher value indi-

ating a better match in two segmentation results. The MCD and 

D metrics evaluate the mean and maximum distance between 

egmentation contours ∂A and ∂B as: 

CD = 

1 

2 | ∂A | 
∑ 

p∈ ∂A 

d(p, ∂ B ) + 

1 

2 | ∂ B | 
∑ 

q ∈ ∂B 

d(q, ∂ A ) , (16) 

D = max 

(
max 
p∈ ∂A 

d(p, ∂B ) , max 
q ∈ ∂B 

d(q, ∂A ) 

)
, (17) 

here d(p, ∂) denotes the minimal distance from point p to con- 

our ∂ . Lower distance metric values indicate a better agreement. 

We also evaluated the accuracy of clinical measures such as 

entricular volume, mass and wall thickness derived from the au- 

omated segmentations. The LV and RV volumes (ml) indicate the 

olume of blood in the LV and RV, and are computed by summing 

p the number of voxels in the segmentation results and multiply- 

ng by the pixel spacing. The LV mass was calculated by multiply- 

ng the LV myocardial volume by the known density of 1.05 g/mL. 
7 
all thickness is expressed in mm and measures the distance be- 

ween the endocardial and epicardial walls and is often used as a 

iomarker for quantifying regional dysfunction. 

To investigate the impact of the SR method on non-rigid reg- 

stration and motion tracking, we used a diffeomorphic non-linear 

egistration algorithm ( Vercauteren et al., 2007 ) that finds an in- 

ertible one-to-one mapping between two images. Estimation was 

erformed by co-registering the 3D heart region throughout the 

hole cardiac sequence with 50 time phases on 100 test sets (i.e., 

,0 0 0 image stacks). A recursive strategy was adopted to assess 

ccumulated errors during registration: First, pair-wise, frame-to- 

rame spatial transformations ϕ v t → v t−1 
( v t denotes the image stack 

t the time point t) were computed by aligning two consecu- 

ive frames in a forward, temporal direction, followed by estimat- 

ng the frame-to-reference transformation ϕ v t → v 0 through compo- 

itions ϕ v t → v t−1 
◦ ϕ v t−1 → v t−2 

· · ·ϕ v 1 → v 0 . Similarly, the backward pass 

as estimated in reverse order. Then, both deformations were 

ombined using a weighting function, according to the distance 

etween each frame and the reference frame. Finally, we used the 

ombined frame-to-reference transformation to warp segmentation 

asks at different cardiac time points t ∈ [ 1 , 49 ] to the ED phase 

 = 0 and estimated the accuracy using the DSC, MCD and HD met- 

ics. 

. Results 

.1. Image Quality Assessment 

First, a qualitative comparison of the synthesised slices can be 

een in Fig. 6 including, linear interpolation, registration-based in- 

erpolation, optical flow based interpolation, depth-aware flow in- 

erpolation and the proposed SR approach for two examples of 

he UKBB dataset at the original 10 mm slice thickness. Here, the 

orresponding ground-truth images were available. The compari- 

on is also augmented by the computed correlation coefficients 

CC) and peak signal-to-noise ratio (PSNR) shown below each fig- 

re. We can see that the simple linear interpolation yields uncer- 

ain and highly overlapping shapes in the interpolated slices. Re- 

ults of the registration-based method are similar to that of the 

inear interpolation. This is because considerable dissimilarity be- 

ween adjacent cardiac MR slices yields false correspondence maps 

uring registration, and leads to incorrect interpolation results. Al- 
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Fig. 7. Qualitative comparison of the synthesised slices between the linear interpolation, registration-based interpolation, optical flow-based frame interpolation, depth-aware 

flow interpolation and the proposed SR approach for two cardiac MR datasets at the slice resolution 5 mm. The ground-truth images are not available at this resolution level. 

Intensity line profiles drawn across the LV (indicated by the green line) are shown on the right column, demonstrating the resolution improvement in the results of the 

proposed SR method. 
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Fig. 8. Illustration of progressive improvement of the resolution from long-axis 

view, where the original, sparsely-sampled cardiac MR image stack was up-sampled 

with the scale factor of 2, 4, 8 and 16 by recursively employing the proposed SR 

method. 
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hough the optical flow-based method outperforms the traditional 

nterpolation method, it could not eliminate the ghost effect due 

o large motion variations. The depth-aware flow interpolation re- 

uces artefacts around motion boundaries that cause inadequate 

mage synthesis, but produces blurred images, which is a trade-off

or the refinement around motion boundaries. In contrast, our ap- 

roach preserves fine structural details and realistic textures and is 

ost comparable in terms of visual quality to the ground-truth im- 

ge. Besides qualitative improvements, the CC and PSNR values of 

he proposed method are also improvements over traditional and 

tate-of-the-art interpolation methods. 

Fig. 7 shows the synthesised intermediate slice from neighbour- 

ng slices with 5 mm spacing (versus 1.8 mm in-plane). Similar to 

he previous experiment, the proposed SR method exhibits better 

isual image quality, recovers more details and enhanced edges, 

uch as fat, papillary muscles and small vessels. Note that the 

round-truth images were not available at this resolution. Inten- 

ity line profiles drawn across the LV (indicated by the green line) 

emonstrate the resolution improvement in the results of the pro- 

osed method, with anatomical structures such as the myocardial 

all and papillary muscles appearing sharper. 

Important differences are also observed in the through-plane 

irection, i.e. in the long-axis (LAX) orientations, as depicted in 

igs. 8 , 9 and 10 . Fig. 8 illustrates the progressive resolution im-

rovement from the LAX view, where the native cardiac MR images 

ere up-sampled with the scale factor of 2, 4, 8 and 16 by employ-

ng the proposed method in a recursive manner. The right column 

hows the zoomed-in, cropped ROI region in the LV at different 

p-sampling levels. We can see that the anatomical structures and 

dges are not visible in the original resolution due to severe stair- 

asing effects but are smoothly reconstructed by the proposed SR 

pproach (see noticeable differences near the basal, apical region 

nd myocardial wall). Also, the proposed SR approach ensures good 

onsistency in the slice direction using no heart shape priors. 

The visual comparison of an 8x up-sampled, SAX image by 

he different methods is presented in Fig. 9 . Images are shown 

t both ED and ES phases. As expected, the bicubic interpolation 

nd registration-based interpolation produce blurred images with 

esidual staircasing effects at the border of the ventricles. Although 

he optical flow interpolation method reasonably restores anatom- 

cal structures, results still lack fine details and contain some tex- 

ure artefacts. On the other hand, the interleaving of the origi- 

al sharp slices and synthesised, smoothed slices from the depth- 

ware flow interpolation leads to an inconsistent resolution in the 

lice direction, which is pronounced in the LAX orientations. The 
a

8 
roposed method is superior over all other state-of-the-art in- 

erpolation methods in terms of well-preserved structures, edges, 

mage sharpness and consistency. Another patient case shown in 

ig. 10 with the comparison of a zoomed-in ROI region highlights 

he resolution enhancement of the proposed method, such as fine 

tructure restoration of the myocardial wall and papillary muscles. 

.2. Segmentation Accuracy 

In the second experiment, we evaluated the ventricle segmen- 

ation as subsequent image analysis to super-resolved SAX cardiac 

R images. First, the intermediate slices synthesised from 10 mm 

esolution data with different up-sampling methods were auto- 

atically segmented to the LV cavity and myocardium using the 

egmentation method in ( Bai et al., 2018 ). The ground-truth slices 

vailable at this resolution were also segmented with the same al- 
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Fig. 9. Visual comparison of an 8x up-sampled, SAX image by the different competing methods from long-axis view. Results are shown at both ED and ES phases. From left 

to right: the linear interpolation, registration-based interpolation, optical flow based frame interpolation, depth-aware flow interpolation, the proposed SR approach and the 

original, clinically-acquired image. 

Fig. 10. Visual comparison of an 8x up-sampled, SAX image by the different competing methods from long-axis view. From left to right: the linear interpolation, registration- 

based interpolation, optical flow based frame interpolation, depth-aware flow interpolation, the proposed SR approach and the original, clinically-acquired image. The second 

row shows the corresponding zoomed-in ROI region, which highlights the resolution enhancement of the proposed approach. 
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orithm. Then, the DSC, MCD and HD metrics were computed to 

ssess the segmentation accuracy by comparing those automated 

egmentation results between ground truth and synthesised inter- 

ediate slice. The evaluation was performed on 200 test subjects 

nd shown in Table 1 . We can see that our method consistently 

utperforms the other methods in terms of all metrics. The mean 

nd standard deviations of DSC and MCD for the LV cavity and my- 

cardium are 0.95 ± 0.07, 1.12 ± 1.05 mm, 0.81 ± 0.14, and 1.06 

0.75 mm, respectively, indicating better agreement between real 

nd synthesised slice segmentations. Also, it is expected that all 

etric measures for myocardium are worse than that of the LV 

avity, as its annular shape has both endocardial and epicardial 

dges that may cause equal overlap shifts to produce greater er- 

or. 
9 
Fig. 11 shows the automated segmentation of the LV and RV 

n the synthesised slices at different locations (i.e. apical, mid 

nd basal regions), illustrating the excellent quality for automated 

egmentations on the synthesised slices with the proposed SR 

ethod. Images are shown at both ED and ES time frames for 

ide-to-side comparison. Also, to assess the segmentation consis- 

ency in the slice direction, automatically delineated epicardial and 

ndocardial contour stacks are shown in Fig. 12 , for the original 

parsely-sampled cardiac MR image, up-sampled isotropic image 

rom the bicubic interpolation and our proposed method. We ob- 

erved that there was excellent consistency in the segmentation of 

he synthesised intermediate slices, using the proposed method, as 

ndicated by the smooth transition at the epicardium and endo- 

ardium boundaries. 
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Table 1 

Quantitative assessment of the segmentation accuracy by comparing the automated segmented results between the reference slice and synthesised intermediate slices 

between different competing methods on 200 test sets. The DSC, MCD and HD are used as the metrics. All values are shown as mean ± standard deviation. 

LV Cavity LV Myocardium 

DSC MCD [mm] HD [mm] DSC MCD [mm] HD [mm] 

n = 200 n = 200 n = 200 n = 200 n = 200 n = 200 

Linear Interp 0 . 915 ± 0 . 117 1 . 81 ± 2 . 01 5 . 36 ± 3 . 45 0 . 742 ± 0 . 185 1 . 79 ± 2 . 49 7 . 88 ± 2 . 97 

Regist-based 0 . 918 ± 0 . 101 1 . 73 ± 1 . 94 5 . 09 ± 2 . 95 0 . 745 ± 0 . 188 1 . 68 ± 2 . 32 7 . 72 ± 2 . 93 

Flow-based 0 . 932 ± 0 . 088 1 . 43 ± 1 . 24 4 . 54 ± 2 . 32 0 . 774 ± 0 . 166 1 . 32 ± 1 . 16 7 . 14 ± 2 . 79 

Depth-aware 0 . 932 ± 0 . 085 1 . 43 ± 1 . 20 4 . 52 ± 2 . 30 0 . 788 ± 0 . 160 1 . 26 ± 1 . 05 6 . 98 ± 2 . 59 

Proposed 0 . 949 ± 0 . 068 1 . 12 ± 1 . 05 4 . 01 ± 1 . 83 0 . 814 ± 0 . 141 1 . 06 ± 0 . 75 6 . 39 ± 2 . 14 

Fig. 11. Examples of the segmentation results at the ED and ES phases illustrating the quality for automated segmentations on the synthesised slices with the proposed SR 

method. Different slice positions from apex to base are chosen and shown. Automated segmentations of LV endocardium, LV myocardium and RV endocardium are delineated 

in blue, purple and green colour, respectively. 

Fig. 12. Automatically delineated epicardial and endocardial contour stacks are shown for the original sparsely-sampled cardiac MR image as well as the up-sampled isotropic 

images by the bicubic interpolation and proposed SR method. The proposed method yields excellent consistency in the segmentation results, highlighted by the smooth, 

continuous epicardium and endocardium boundaries. 
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.3. Cardiac Quantification Evaluation 

In this section, we show the impact of our SR method on 

he accuracy of cardiac measures important to evaluate clinical 

utcomes. Fig. 13 and Table 2 compare several key clinical pa- 

ameters including the LV end-diastolic volume (LVEDV) and end- 

ystolic volume (LVESV), LV stroke volume (LVSV), LV ejection 

raction (LVEF), LV myocardial mass (LVM), RV end-diastolic vol- 
10 
me (RVEDV) and end-systolic volume (RVESV), RV stroke volume 

RVSV) and RV ejection fraction (RVEF) computed from 400 auto- 

ated segmentation results, between the original resolution image 

tacks (10 mm), down-sampled image stacks (20 mm), three lev- 

ls of up-sampled image stacks by the proposed method (5 mm, 

.5 mm and 1.25 mm). As illustrated in Fig. 13 , we can see that

he traditional Simpson’s rule of volume approximation differs re- 

arding the input image through-plane resolutions, but the pro- 
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Fig. 13. Illustration of the variation in clinical measures (i.e., LVEDV, LVESV, LVM, RVEDV and RVESV) derived from automated segmentation of 400 cardiac MR image stacks 

with different through-plane resolutions, demonstrating more accurate and stable volume calculation obtained by the high-resolution, isotropic image stacks. 

Table 2 

Mean and standard deviation of the clinical measures derived from 400 automated segmentation results, between the different resolution images. LVEDV and LVESV represent 

LV end-diastolic volume and end-systolic volume, LVSV and LVEF represent LV stroke volume and ejection fraction, LVM represents LV myocardial mass, RVEDV and RVESV 

represent RV end-diastolic volume and end-systolic volume, RVSV and LVEF represent RV stroke volume and ejection fraction. 

Slice Resolution 20 mm ( R 1 ) 10 mm ( R 2 ) 5 mm ( R 3 ) 2.5 mm ( R 4 ) 1.25 mm ( R 5 ) R 1 vs R 2 R 2 vs R 3 R 3 vs R 4 R 4 vs R 5 

Mean ± Std. Mean ± Std. Mean ± Std. Mean ± Std. Mean ± Std. p-value p-value p-value p-value 

(n = 400) (n = 400) (n = 400) (n = 400) (n = 400) 

LVEDV (mL) 145.0 ± 38.2 151.9 ± 36.5 157.5 ± 37.6 160.0 ± 38.1 161.1 ± 38.3 < 0.05 < 0.05 0.28 0.63 

LVESV (mL) 66.6 ± 25.0 68.6 ± 24.3 72.6 ± 25.1 74.5 ± 25.5 75.3 ± 25.7 0.17 < 0.05 0.23 0.61 

LVSV (mL) 78.4 ± 22.1 83.3 ± 19.0 84.9 ± 18.9 85.5 ± 19.2 85.8 ± 19.4 < 0.05 0.16 0.258 0.77 

LVEF (%) 54.5 ± 9.0 55.4 ± 7.0 54.5 ± 6.5 54.0 ± 6.5 53.8 ± 6.5 0.05 < 0.05 0.28 0.67 

LVM (g) 83.8 ± 24.5 88.0 ± 24.6 91.2 ± 25.2 93.1 ± 25.8 93.7 ± 26.0 < 0.05 < 0.05 0.22 0.70 

RVEDV (mL) 152.6 ± 40.8 159.3 ± 38.8 166.9 ± 40.1 170.2 ± 40.6 171.7 ± 40.9 < 0.05 < 0.05 0.17 0.55 

RVESV (mL) 70.0 ± 24.8 74.7 ± 23.6 79.2 ± 24.5 81.2 ± 25.0 82.0 ± 25.2 < 0.05 < 0.05 0.178 0.59 

RVSV (mL) 82.5 ± 22.8 84.5 ± 21.1 87.8 ± 21.5 89.0 ± 21.8 89.7 ± 22.0 0.12 < 0.05 0.32 0.63 

RVEF (%) 54.6 ± 8.0 53.5 ± 6.9 53.0 ± 6.8 52.7 ± 6.8 52.6 ± 6.8 < 0.05 0.21 0.51 0.86 
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osed SR method reduces the variability of ventricular volumet- 

ic assessment by providing high-resolution, 3D isotropic image 

tacks that enable more accurate and reliable volume calculations; 

ee the small variations between resolutions of 2.5 mm and 1.25 

m in LVEDV, LVESV, LVM, RVEDV and RVESV, which are reflected 

y the gentle slopes of the mean value curves in Fig. 13 . For im-

ge volumes with through-plane resolution higher than 5 mm, we 

id not observe any significant change in the derived morpholog- 

cal and functional indices. When the through-plane resolution is 

igher than 1.25 mm, the derived morphological and functional in- 

ices are primarily determined by the in-plane resolution and seg- 

entation accuracy. Statistical significance of the results was veri- 

ed by performing the Student’s t-test between the derived cardiac 

ndices from different resolutions (cf. Table 2 ). It is worth mention- 

ng that there were statistically significant differences in all cardiac 

ndices, when comparing the two lowest resolutions (20 mm and 

0 mm) with respect to the two highest resolutions (2.5 mm and 

.25 mm). 

We also evaluated the myocardial wall thickness at the cardiac 

D and ES phases. A comparison of wall thickness maps derived 

rom manual delineations and automated segmentations with dif- 

erent methods is shown in Fig. 14 . Wall thickness was computed 

y estimating the minimum distance between epicardium and en- 

ocardium in the subject space, and then mapped and represented 
11 
nto an atlas surface mesh provided in ( Bai et al., 2015 ). We can

ee that the SR method facilitated a smooth, continuous distribu- 

ion in the analysis of myocardial wall thickness, which yielded 

ore anatomically plausible and precise results. Fig. 15 shows the 

ulls-eye plots of the regional wall thickness analysis in 400 test 

ubjects based on the AHA 17-segment model. We observed that 

he SR method provided better agreement with the results derived 

rom the manual delineations, particularly near the apical (regions 

3-17) and basal regions (regions 1-6), where the ventricular con- 

ours are more complex and thus more difficult to segment. 

.4. Non-rigid Registration Accuracy 

3D non-rigid registration was tested on 100 cardiac MR cine im- 

ges within the full cardiac cycle using 50 time points (i.e., 5,0 0 0 

olumes for each method) for the original clinically-acquired im- 

ges and super-resolved, 3D isotropic images to verify the accuracy 

f the HR registration compared to the native LR registration. 

Fig. 16 shows the displacement field (overlaid on the SAX slices) 

t the forward pass (ED to ES) and backward pass (ES to ED) for 

oth the LV and RV. With HR registration, the displacement vec- 

ors (represented by arrows) clearly indicate that during the con- 

raction the ventricles are moving inwards, whilst they are moving 

utwards at the period of relaxation. 
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Fig. 14. Myocardial wall thickness map derived from manual delineations on the 

original image, automated segmentation on the original image and the up-sampled 

isotropic images by the bicubic interpolation and proposed SR method. Wall thick- 

ness was obtained by estimating the minimum distance between epicardium and 

endocardium in the subject space and then mapped onto a template surface mesh 

for visual comparison. 
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Fig. 16. Visualisation of the displacement field obtained in the frame-to-frame reg- 

istration from ED to ES phase and from ES to ED phase. 
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We quantitatively evaluated the performance of up-sampled, 

sotropic image stacks for the non-rigid registration in the cardiac 

equence. As described in Section 3.4 , we warped segmentation 

asks at different cardiac phases t ∈ [ 1 , 49 ] to the ED phase t= 0 

sing the computed frame-to-reference transformation ϕ v t → v 0 and 

hen estimated the DSC, MCD and HD metrics between the ED seg- 

entation and warped segmentation. Fig. 17 shows the mean and 

tandard deviation of all metrics in these 49 cardiac phases for the 

00 subjects. As expected, we found an error accumulation during 

he cardiac contraction until the ES phase for the frame to ED ref- 

rence registration. Both the up-sampling methods outperform the 

ative LR registration by a large margin in most time points, par- 

icularly during the maximum contraction. Also, further improve- 
ig. 15. Bulls-eye plots of the regional wall thickness analysis (AHA 17-segment model) o

ith manual delineations on the original images, automated segmentations on the origin

12 
ent using the proposed method is demonstrated by the mean 

nd standard deviation of DSC, MCD and HD over all time points: 

.86 ± 0.03 vs. 0.83 ± 0.03, 0.99 ± 0.18 mm vs. 1.24 ± 0.21 mm, 

nd 2.46 ± 0.28 mm vs. 2.87 ± 0.37 mm by comparing with the 

icubic interpolation for myocardium registration, respectively. 

.5. Ablation Study 

This section presents the ablation study results assessing the 

ontribution of the adopted components in the generative model. 

hree variants, namely w/o CBN, w/o CBN + FM and w/o CBN + 

M + MD, corresponding to replacing the CBN layers with standard 

atch normalisation, replacing feature matching loss with pixel- 

ise loss and using a single discriminator for the proposed model 

espectively, were investigated and compared with the standard 

ull version. For fair comparison, we retrained these variant net- 
btained by averaging results of 400 subjects. The proposed method was compared 

al images as well as the up-sampled isotropic images by the bicubic interpolation. 
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Fig. 17. Summary of the frame-to-reference registration error throughout 49 time points in the cardiac sequence on 100 test sets. The results of the super-resolved images 

from the proposed method was compared with those of the original LR images and the up-sampled isotropic volumes by the bicubic interpolation. DSC, MCD and HD are 

used as the metrics. 

Fig. 18. Visual inspection of the ablation study results on the generated images. The second row shows the corresponding myocardial segmentation of each variant (shown 

in light blue colour) overlaid with the myocardial segmentation of the ground-truth image (shown in pink colour). 
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i

orks using the same hyperparameters and training epochs as the 

roposed method. 

Fig. 18 shows the visual inspection of the ablation study on 

he generated images and the corresponding myocardial segmen- 

ations. The proposed method with all the components integrated 

ields results not only visually comparable to that of the refer- 

nce, but also can retain the accuracy of myocardial segmenta- 

ion that many subsequent image analyses rely on. Table 3 shows 

he quantitative results of the ablation study, indicating that the 

BN and discriminator-based feature matching loss produce better 

esults than the conventional batch normalisation and pixel-wise 
13 
oss term. Removing or replacing them results in a considerable 

erformance decrease (e.g., a PSNR of 21 . 53 ± 1 . 78 to 19 . 76 ± 1 . 19

or image synthesis). We can see that the multi-scale discriminator 

urther boosts to the synthesis performance, which is reflected by 

n average reduction of 2.68 mm and 2.36 mm in Hausdorff dis- 

ance for the LV cavity and myocardium segmentation, respectively. 

. Discussions 

In this work, we aim to address the problem of generating HR 

mages from single LR cardiac MR stacks acquired in typical clin- 
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Table 3 

Summary of the ablation study results evaluated on the generated images and the corresponding automated segmentations on 200 test sets. 

Generated Image Segmentation (Endo) Segmentation (Myo) 

Metrics CC PSNR [dB] DSC HD [mm] DSC HD [mm] 

n = 200 n = 200 n = 200 n = 200 n = 200 n = 200 

Proposed 0 . 884 ± 0 . 058 21 . 53 ± 1 . 78 0 . 949 ± 0 . 068 4 . 01 ± 1 . 83 0 . 814 ± 0 . 140 6 . 39 ± 2 . 14 

w/o CBN 0 . 847 ± 0 . 038 19 . 96 ± 1 . 15 0 . 899 ± 0 . 128 5 . 06 ± 2 . 29 0 . 718 ± 0 . 199 7 . 44 ± 2 . 20 

w/o CBN + FM 0 . 825 ± 0 . 043 19 . 76 ± 1 . 19 0 . 893 ± 0 . 126 5 . 63 ± 2 . 79 0 . 659 ± 0 . 190 8 . 52 ± 2 . 49 

w/o CBN + FM+MD 0 . 843 ± 0 . 035 19 . 34 ± 0 . 98 0 . 880 ± 0 . 149 8 . 31 ± 6 . 76 0 . 591 ± 0 . 183 10 . 88 ± 4 . 27 

Fig. 19. Visual assessment of the proposed generative model trained on the UKBB dataset and tested on the ACDC dataset. Two subject examples are shown at both ED and 

ES phases. 
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cal settings that is not yet completely solved to the best of our 

nowledge. Typical SR techniques require either paired HR and LR 

mages or multiple 2D LR stacks from different orientations, often 

ot available in real-world clinical settings. Natural video frame in- 

erpolation methods that can synthesise an intermediate frame for 

nseen data do not perform well in this scenario since the slice 

ampling in cardiac MR image stacks is much lower than temporal 

ampling of neural video frames, and visual differences and quan- 

itative information in medical images are more complex and non- 

rivial than natural scene videos. For these reasons, up-sampling 

f cardiac images via intensity-based interpolation schemes, such 

s B-spline or bicubic, is still most frequently used in cardiac im- 

ge analysis, although several artefacts remain such as blurring and 

oss in soft tissue contrast, among others. To tackle these issues, 

e proposed a novel, robust adversarial learning algorithm based 

n conditional GAN and employed a state-of-the-art optical flow 

ethod to generate an auxiliary image to train the network end- 

o-end in an unsupervised transfer learning fashion. The proposed 

ramework effectively incorporates visual properties and relevant 

extures of input images and can synthesise HR anatomically plau- 

ible cardiac MR images consistent with the available slices. To 

ynthesise visually appealing images and facilitate the estimation 

f accurate quantitative measurements, we employed a dedicated 

enerator, discriminator and optimisation procedure that led to a 

etter SR model in this work. 

First, rather than using a deeper network that would increase 

he network capacity and cause overfitting, a multi-scale discrim- 

nator was employed to operate on different receptive fields that 

ould simultaneously encourage the generator to synthesise glob- 
14 
lly coherent images and capture finer structural details. Second, 

eplacing the traditional pixel-wise loss functions with feature 

atching loss facilitated better recovery of high-frequency image 

nformation and stabilised the adversarial training. Finally, several 

tudies have demonstrated that CBN-based generators are highly 

ffective in a wide variety of contexts ( Ulyanov et al., 2017; Huang 

nd Belongie, 2017; Chen et al., 2018a; Park et al., 2019 ). The 

ode of action behind CBNs is to incorporate the additional auxil- 

ary data or guidance image into the conditional generative model 

hrough normalisation layers, to guide the image generation con- 

itioned on certain constraints. In our case, it is intuitive to use 

wo adjacent slices as guidance to capture spatial features from 

egions near the synthesised, intermediate slice position. The ab- 

ation study in Section 4.5 showed these architectural adaptations 

elp boost overall model performance. 

Through comprehensive experiments, we have shown that our 

pproach outperformed the state-of-the-art baselines both qualita- 

ively and quantitatively. Also, we demonstrated the added value 

f super-resolved images on subsequent image analysis, including 

entricle segmentation, cardiac quantification and non-rigid regis- 

ration. Intuitively, isotropic cardiac MR images would be useful 

or understanding complex anatomy and function in heart diseases 

nd visualisation and analysis of small cardiac structures such as 

he atrium or the valves. It also helps to reduce the variability 

f ventricular volumetric assessment, which is generally high with 

he 2D image stacks due to 1) the variation in the conventional 

olume calculation (e.g. via the Simpson’s rule) from low through- 

lane resolution and 2) the difficulty of automatically segmenting 

he myocardium near the apical and basal regions of the ventricles 
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Fig. 20. Visual assessment of the proposed generative model trained on the UKBB dataset and tested on the ADSB dataset. Two subject examples are shown at both ED and 

ES phases. 
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n LR images, as illustrated in Figs. 13 and 15 . Also, conventional 

ata augmentation for training segmentation models only involves 

ncreasing training samples by using simple transformations such 

s rotation, flipping, scaling etc. With the proposed SR algorithm, 

ne can augment the training data by generating intermediate im- 

ges and the corresponding segmentation labels. 

Another aspect is that the highly non-rigid heart motion 

resent in cardiac imaging, with the low through-plane resolution, 

hich makes accurate non-rigid registration challenging to achieve 

n cardiac cine images. Many studies suggested that the perfor- 

ance of non-rigid registration may differ regarding the input im- 

ge resolution, and the ratio between in-plane and through-plane 

esolutions ( ur Rahman and Wesarg, 2010; Van Reeth et al., 2012 ). 

he proposed method enabled the generation of isotropic image 

tacks and facilitates HR cardiac image registration and analysis in 

 sub-pixel accuracy, compared with original LR images. As shown 

n Fig. 17 , the SR method yielded more stable and accurate frame- 

o-reference registration results, particularly for the time frames far 

way from the ED phase. We further demonstrated that the pro- 

osed method outperformed the traditional bicubic interpolation, 

hich is commonly utilised in practice. 

Although analysing heart motion provides crucial insights to 

ardiac function, estimating myocardial strain in cardiac cine MR 

maging is still challenging: 1) The diffeomorphic image registra- 

ion inability to accurately estimate the heart deformation in LR 

mages; 2) Low through-plane resolution leads to an underesti- 

ation of longitudinal strains; 3) Highly anisotropic volumes may 

ause inaccurate ventricle/myocardium parcellation that negatively 

nfluences motion data dimensionality reduction. It would be in- 

eresting to systemically investigate how the SR method improves 

D strain analysis in future work. 

The optical flow method used to generate the auxiliary image 

n this work was initially developed for interpolating intermedi- 

te frames for large object motion in dynamic sequences. This is 

eneficial for cardiac cine MR imaging as the method can still fill 

n in-between slices that lie precisely between and central to the 

eighbouring slices, even in the presence of slice misalignment and 

nter-slice motion artefacts. However, the proposed method cannot 

liminate such slice misalignment and inter-slice motion artefacts. 

o address this problem, instead of explicitly employing a quality 
15 
ontrol or motion compensation algorithm, it would also be inter- 

sting to incorporate additional physical constraints or shape pri- 

rs into the generative model, which may help synthesise more 

eliable, shape-consistent images for analyses and visualisation. 

. Conclusion 

In this work, we proposed a conditional GAN-based method for 

enerating HR, 3D isotropic cardiac MR cine images. The approach 

onsiders the real clinical scenario and requires neither the cor- 

esponding HR scans nor multiple LR scans with different orien- 

ations for training. The proposed approach can be trained in an 

nsupervised transfer learning manner using an adversarial learn- 

ng strategy, to synthesise anatomically plausible images consis- 

ent with the available slices. Experimental results showed that 

he proposed SR method outperformed traditional interpolation 

ethods and video frame interpolations qualitatively and quantita- 

ively. Importantly, we demonstrated that subsequent image analy- 

es such as ventricle segmentation, cardiac quantification and non- 

igid registration benefit from the proposed SR method by gen- 

rating super-resolved, 3D isotropic cardiac MR images, producing 

ore accurate quantitative results, without requiring a long acqui- 

ition time. Although in this work we only addressed the SR prob- 

em in cardiac MR images, our approach is generic and could be 

pplied to other anatomical regions or modalities, promising to fa- 

ilitate more accurate clinical analyses. 
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ppendix A 

We tested the trained generative model on two additional, pub- 

icly accessible cardiac MR cine datasets: Automatic Cardiac Diag- 

osis Challenge (ACDC) dataset 2 and Kaggle Second Annual Data 

cience Bowl (ADSB) dataset 3 . Cine MR images of the ACDC 

ataset were acquired with a conventional SSFP sequence from two 

RI scanners of different magnetic strengths (1.5 T - Siemens Area, 

iemens Medical Solutions, Germany and 3.0 T - Siemens Trio Tim, 

iemens Medical Solutions, Germany), with slice thickness ranging 

rom 5 mm to 10 mm. The in-plane spatial resolution varies from 

.34 to 1.68 mm. Each sequence contains 28-40 cardiac phases cov- 

ring completely or partially one cardiac cycle. The ADSB dataset 

as compiled by the National Institutes of Health and Children’s 

ational Medical Center. The slice thickness ranges from 6 mm 

o 8 mm and the in-plane spatial resolution varies from 0.61 to 

.75 mm. Each subject contains 30 cardiac phases and the num- 

er of slices in the SAX stack typically ranges between 8 and 14. 

ualitative results of these two additional datasets are shown in 

igs. 19 and 20 . 
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