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ARTICLE OPEN

Environment-assisted bosonic quantum communications
Stefano Pirandola 1✉, Carlo Ottaviani1, Christian S. Jacobsen 2, Gaetana Spedalieri1, Samuel L. Braunstein 1,

Tobias Gehring 2 and Ulrik L. Andersen 2

We consider a quantum relay that is used by two parties to perform several continuous-variable protocols of quantum

communication, from entanglement distribution (swapping and distillation) to quantum teleportation, and quantum key

distribution. The theory of these protocols is suitably extended to a non-Markovian model of decoherence characterized by

correlated Gaussian noise in the bosonic environment. In the worst-case scenario where bipartite entanglement is completely lost

at the relay, we show that the various protocols can be reactivated by the assistance of classical (separable) correlations in the

environment. In fact, above a critical amount, these correlations are able to guarantee the distribution of a weaker form of

entanglement (quadripartite), which can be localized by the relay into a stronger form (bipartite) that is exploitable by the parties.

Our findings are confirmed by a proof-of-principle experiment where we show, for the first time, that memory effects in the

environment can drastically enhance the performance of a quantum relay, well beyond the single-repeater bound for quantum and

private communications.

npj Quantum Information            (2021) 7:77 ; https://doi.org/10.1038/s41534-021-00413-2

INTRODUCTION

The concept of a relay is at the basis of network information
theory1. Indeed the simplest network topology is composed by
three nodes: two end-users, Alice and Bob, plus a third party, the
relay, which assists their communication. This scenario is inherited
by quantum information theory2–13, where the mediation of a
quantum relay can be found in a series of fundamental protocols.
By sending quantum systems to a middle relay, Alice and Bob may
perform entanglement swapping14–17, entanglement distillation18,
quantum teleportation19–21 and quantum key distribution
(QKD)22–27.
Quantum relays are crucial elements for quantum network

architectures at any scale, from short-range implementations on
quantum chips to long-distance quantum communication. In all
cases, their working mechanism has been studied assuming
Markovian decoherence models, where the errors are indepen-
dent and identically distributed (iid). Removing this iid approx-
imation is one of the goals of modern quantum information
theory.
In a quantum chip (e.g., photonic28,29 or superconducting30),

quantum relays can distribute entanglement among registers and
teleport quantum gates. Miniaturizing this architecture, correlated
errors may come from unwanted interactions between quantum
systems. A common bath may be introduced by a variety of
imperfections, e.g., due to diffraction or slow electronics. It is
important to realize that non-Markovian dynamics31 will become
increasingly important as the size of quantum chips further
shrinks.
At long distances (in free-space or fibre), quantum relays

intervene to assist quantum communication, entanglement and
key distribution. Here, noise correlations and memory effects may
naturally arise when optical modes are employed in high-speed
communications32, or propagate through atmospheric turbu-
lence33–35 and diffraction-limited linear systems. Most importantly,
correlated errors must be considered in relay-based QKD, where
an eavesdropper (Eve) may jointly attack the two links with the

relay (random permutations and de Finetti arguments36,37 cannot
remove these residual correlations). Eve can manipulate the relay
itself as assumed in measurement-device independent QKD22–24.
Furthermore, Alice’s and Bob’s setups may also be subject to
correlated side-channel attacks.
For all these reasons, we generalize the study of quantum relays

to non-Markovian conditions, developing the theory for
continuous-variable (CV) systems10 (qubits are discussed in the
Supplementary Material). We consider an environment whose
Gaussian noise may be correlated between the two links. Our
model is formulated as a spatial non-Markovian model, where
spatially separated bosonic modes are subject to correlated errors,
but could also be connected to a time-like model where the
parties use the same channel at different times. In this scenario,
while the relay always performs the same measurement, the
parties may implement different protocols (swapping, distillation,
teleportation, or QKD) all based, directly or indirectly, on the
exploitation of bipartite entanglement.
We find a surprising behaviour in conditions of extreme

decoherence. We consider entanglement-breaking links38,39, so
that no protocol can work under Markovian conditions. We then
induce non-Markovian effects by progressively increasing the
noise correlations in the environment while keeping their nature
separable (so that there is no external reservoir of entanglement).
While these correlations are not able to re-establish bipartite
entanglement (or tripartite entanglement) we find that a critical
amount reactivates quadripartite entanglement, between the
setups and the modes transmitted. In other words, by increasing
the separable correlations above a ‘reactivation threshold’ we can
retrieve the otherwise lost quadripartite entanglement (it is in this
sense that we talk of ‘reactivated’ entanglement below). The
measurement of the relay can then localize this multipartite
entanglement into a bipartite form, shared by the two remote
parties and exploitable for the various protocols.
As a matter of fact, we find that all the quantum protocols can

be reactivated. In particular, their reactivation occurs in a
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progressive fashion, so that increasing the environmental correla-
tions first reactivates entanglement swapping and teleportation,
then entanglement distillation and finally QKD. Our theory is
confirmed by a proof-of-principle experiment which shows the
reactivation of the most nested protocol, i.e., the QKD protocol. In
particular, we show that the key rate of this environmental-
assisted protocol outperforms the single-repeater upper-bound
for private communication40, i.e., the maximum secret-key rate
that is achievable in the presence of memoryless links.

RESULTS

General scenario

As depicted in Fig. 1, we consider two parties, Alice and Bob,
whose devices are connected to a quantum relay, Charlie, with the
aim of implementing a CV protocol (swapping, distillation,
teleportation or QKD). The connection is established by sending
two modes, A and B, through a joint quantum channel EAB, whose
outputs A0 and B0 are subject to a CV Bell detection41. This means
that modes A0 and B0 are mixed at a balanced beam splitter and
then homodyned, one in the position quadrature q̂� ¼ ðq̂A0 �
q̂B0Þ=

ffiffiffi

2
p

and the other in the momentum quadrature
p̂þ ¼ ðp̂A0 þ p̂B0Þ=

ffiffiffi

2
p

. The classical outcomes q
−

and p+ can be
combined into a complex variable γ:= q

−
+ ip+, which is broad-

cast to Alice and Bob through a classical public channel.
The joint quantum channel EAB corresponds to an environment

with correlated Gaussian noise. This is modelled by two beam
splitters (with transmissivity 0 < τ < 1) mixing modes A and B with
two ancillary modes, E1 and E2, respectively (see Fig. 1). These
ancillas are taken in a zero-mean Gaussian state10ρE1E2 with
covariance matrix (CM) in the symmetric normal form

VE1E2ðω; g; g0Þ ¼
ωI G

G ωI

� �

;
I :¼ diagð1; 1Þ;
G :¼ diagðg; g0Þ:

Here ω ≥ 1 is the variance of local thermal noise, while the block G
accounts for noise correlations.
For G= 0 we retrieve the standard Markovian case, based on

two independent lossy channels15–17. For G ≠ 0, the lossy channels
become correlated and the local dynamics cannot reproduce the
global non-Markovian evolution of the system. Such a separation

becomes more evident by increasing the correlation parameters, g
and g0, whose values are bounded by the bona fide conditions ∣g∣
<ω, jg0j<ω, and ω gþ g0j j � ω2 þ gg0 � 1 (refs. 42,43). In particular,
we consider the realistic case of separable environments (ρE1E2
separable), identified by the additional constraint ω g� g0j j �
ω2 � gg0 � 1 (ref. 43). The amount of separable correlations can be
quantified by the quantum mutual information Iðg; g0Þ.
To analyse entanglement breaking, assume the asymptotic

infinite-energy scenario where Alice’s (Bob’s) device has a remote
mode a (b) which is maximally entangled with A (B). We then
study the separability properties of the global system composed
by a, b, A0 and B0. In the Markovian case (G= 0), all forms of
entanglement (bipartite, tripartite44, and quadripartite45) are
absent for ω >ωEB(τ):= (1+ τ)/(1− τ), so that no protocol can
work. In the non-Markovian case (G ≠ 0) the presence of separable
correlations does not restore bipartite or tripartite entanglement
when ω >ωEB(τ). However, a sufficient amount of these correla-
tions is able to reactivate 1 × 3 quadripartite entanglement45, in
particular, between mode a and the set of modes bA0B0. See Fig. 2.
Once quadripartite entanglement is available, the Bell detection

on modes A0 and B0 can localize it into a bipartite form for modes a
and b. For this reason, entanglement swapping and the other
protocols can be reactivated by sufficiently-strong separable
correlations. In the following, we discuss these results in detail
for each specific protocol, starting from the basic scheme of
entanglement swapping. For each protocol, we first generalize the
theory to non-Markovian decoherence, showing how the various
performances are connected. Then, we analyse the protocols
under entanglement-breaking conditions.

Entanglement swapping

The standard source of Gaussian entanglement is the two-mode
squeezed vacuum (TMSV) state, which is a realistic finite-energy
version of the ideal EPR state10. More precisely, this is a two-mode

Fig. 1 Quantum relay. Alice and Bob connect their devices (red
boxes) to a quantum relay, Charlie, for implementing a CV protocol.
On the received modes, Charlie always performs a CV Bell detection
whose outcome γ is broadcast. Separable Gaussian environment. The
travelling modes are subject to a joint Gaussian channel EAB. This is
realized by two beam splitters with tranmissivity τ which mix A and B
with two ancillary modes, E1 and E2, respectively. These ancillas
inject thermal noise with variance ω and belong to a correlated (but
separable) Gaussian state ρE1E2 . Entanglement breaking. For ω >ωEB(τ),
bipartite (and tripartite) entanglement cannot survive at the relay. In
particular, A0 is disentangled from Alice’s device, and B0 is
disentangled from Bob’s, no matter if the environment is correlated
or not. Non-Markovian reactivation. Above a critical amount of
separable correlations, quadripartite entanglement is reactivated
between Alice’s and Bob’s devices and the transmitted modes, A0

and B0. Bell detection can localize this multipartite resource into a
bipartite form and reactivate all the protocols.

Fig. 2 Non-Markovian reactivation of 1 × 3 quadripartite entan-
glement. Assuming maximally entangled states for the parties and
entanglement-breaking conditions (here τ= 0.9 and ω= 1.02 ×ωEB

= 19.38), we show how quadripartite entanglement is reactivated by
increasing the separable correlations of the environment (bits of
quantum mutual information, which are constant over the
concentric contour lines). Inside the grey region there is no
quadripartite entanglement with respect to any 1 × 3 grouping of
the four modes abA0B0. Outside the grey region all the possible 1 × 3
groupings are entangled. The external black region is excluded, as it
corresponds to entangled or unphysical environments.
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Gaussian state with zero mean value and CM

VðμÞ ¼ μI
ffiffiffiffiffiffiffiffiffiffiffiffiffi

μ2 � 1
p

Z
ffiffiffiffiffiffiffiffiffiffiffiffiffi

μ2 � 1
p

Z μI

 !

; Z :¼ diagð1;�1Þ;

where the variance μ ≥ 1 quantifies its entanglement. Indeed the
log-negativity46–48 is strictly increasing in μ: It is zero for μ= 1 and
tends to infinity for large μ.
Suppose that Alice and Bob have two identical TMSV states,

ρaA(μ) describing Alice’s modes a and A, and ρbB(μ) describing
Bob’s modes b and B, as in Fig. 3(i). They keep a and b, while
sending A and B to Charlie through the joint channel EAB of the
Gaussian environment. After the broadcast of the outcome γ, the
remote modes a and b are projected into a conditional Gaussian
state ρab∣γ, with mean value x= x(γ) and conditional CM Vab∣γ. In
the Supplementary Material, we compute

Vabjγ ¼
A C

CT B

� �

; (1)

where the 2 × 2 blocks are given by

A ¼ B ¼ diag μ� μ2 � 1

2ðμþ κÞ ; μ�
μ2 � 1

2ðμþ κ0Þ

� �

; (2)

C ¼ diag
μ2 � 1

2ðμþ κÞ ;�
μ2 � 1

2ðμþ κ0Þ

� �

; (3)

and the κ’s contain all the environmental parameters

κ :¼ ðτ�1 � 1Þðω� gÞ; κ0 :¼ ðτ�1 � 1Þðωþ g0Þ: (4)

From Vab∣γ we compute the log-negativity N ¼ maxf0;�log2εg
of the swapped state, in terms of the smallest partially transposed
symplectic eigenvalue ε10. In the Supplementary Material, we
derive

ε ¼ ð1þ μκÞð1þ μκ0Þ
ðμþ κÞðμþ κ0Þ

� �1=2

: (5)

For any input entanglement (μ > 1), swapping is successful (ε < 1)
whenever the environment has enough correlations to satisfy the
condition κκ0 < 1. The actual amount of swapped entanglement N
increases in μ, reaching its asymptotic optimum for large μ, where

ε ’ εopt :¼
ffiffiffiffiffiffi

κκ0
p

:

Quantum teleportation

As depicted in Fig. 3(ii), we consider Charlie acting as a teleporter
of a coherent state νj i from Alice to Bob. Alice’s state and part of
Bob’s TMSV state are transmitted to Charlie through the joint
channel EAB. After detection, the outcome γ is communicated to
Bob, who performs a conditional quantum operation2 Qγ on
mode b to retrieve the teleported state ρoutðνÞ ’ νj i νh j. In the
Supplementary Material, we find a formula for the teleportation
fidelity F ¼ Fðμ; κ; κ0Þ, which becomes asymptotically optimal for
large μ, where

F ’ Fopt :¼ ð1þ κÞð1þ κ0Þ½ ��1=2 � ð1þ εoptÞ�1: (6)

Thus, there is a direct connection between the asymptotic
protocols of teleportation and swapping: If swapping fails (εopt ≥
1), teleportation is classical (Fopt ≤ 1/2 (ref. 10)). We retrieve the
relation Fopt ¼ ð1þ εoptÞ�1

in environments with antisymmetric
correlations gþ g0 ¼ 0.

Entanglement distillation

Entanglement distillation can be operated on top of entanglement
swapping as depicted in Fig. 3(iii). After the parties have run the
swapping protocol many times and stored their remote modes in
quantum memories, they can perform a one-way entanglement
distillation protocol on the whole set of swapped states ρab∣γ. This
consists of Alice locally applying an optimal quantum instrument49

A on her modes a, whose quantum outcome α is a distilled
system while the classical outcome k is communicated. Upon

Fig. 3 Relay-based quantum protocols in a correlated Gaussian environment. i Entanglement swapping. Alice and Bob possess two TMSV
states with variance μ. Modes A and B are sent through the joint channel EAB and received by Charlie. After the outcome γ is broadcast, the
remote modes, a and b, are projected into a conditional state ρab∣γ. ii Quantum teleportation. Alice’s coherent state νj i is teleported into Bob’s
state ρout(ν), after the communication of γ and the action of a conditional quantum operation Qγ . iii Entanglement/key distillation. In the limit of
many uses of the relay, Alice performs a quantum instrument on her modes a, communicating a classical variable k to Bob, who performs a
conditional quantum operation on his modes b. This is a non-Gaussian quantum repeater where entanglement swapping is followed by
optimal one-way distillation. iv Practical QKD. Alice and Bob prepare Gaussian-modulated coherent states to be sent to Charlie. The
communication of the outcome γ creates remote classical correlations which are used to extract a secret key. Here the role of Charlie could be
played by Eve, so that the relay becomes an MDI-QKD node.
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receipt of k, Bob performs a conditional quantum operation Bk

transforming his modes b into a distilled system β.
The process can be designed in such a way that the distilled

systems are collapsed into entanglement bits (ebits), i.e., Bell state
pairs2. The optimal distillation rate (ebits per relay use) is lower-
bounded49 by the coherent information IC

50,51 computed on the
single copy state ρab∣γ. In the Supplementary Material, we find a
closed expression IC ¼ ICðμ; κ; κ0Þ which is maximized for large μ,
where IC ’ �log2ðeεoptÞ. Asymptotically, entanglement can be
distilled for εopt < e−1≃ 0.367.

Secret-key distillation

The scheme of Fig. 3(iii) can be modified into a key distillation
protocol, where Charlie (or Eve22) distributes secret correlations to
Alice and Bob, while the environment is the effect of a Gaussian
attack. Alice’s quantum instrument is here a measurement with
classical outputs α (the secret key) and k (data for Bob). Bob’s
operation is a measurement conditioned on k, which provides the
classical output β (key estimate). This is an ideal key-distribution
protocol52 whose rate is lower-bounded by the coherent
information, i.e., K ≥ IC (see Supplementary Material).

Practical QKD

The previous key-distribution protocol can be simplified by
removing quantum memories and using single-mode measure-
ments, in particular, heterodyne detections. This is equivalent to a
run-by-run preparation of coherent states, αj i on Alice’s mode A,
and βj i on Bob’s mode B, whose amplitudes are Gaussianly
modulated with variance μ− 1. As shown in Fig. 3(iv), these states
are transmitted to Charlie (or Eve22) who measures and broadcasts
γ≃ α− β*.
Assuming ideal reconciliation10, the secret key rate R ¼

Rðμ; κ; κ0Þ increases in μ. Modulation variances μ≳ 50 are
experimentally achievable and well approximate the asymptotic
limit for μ≫ 1, where the key rate is optimal and satisfies (see
Supplementary Material)

Ropt\ log2
Fopt

e2εopt

� �

þ hð1þ 2εoptÞ; (7)

with hðxÞ :¼ xþ1
2
log2

xþ1
2

� x�1
2
log2

x�1
2
. Using Eq. (6), we see that

the right-hand side of Eq. (7) can be positive only for εopt≲ 0.192.

Thus the practical QKD protocol is the most difficult to reactivate:
Its reactivation implies that of entanglement/key distillation and
that of entanglement swapping. This is true not only asymptoti-
cally but also at finite μ as we show below.

Reactivation from entanglement breaking

Once the theory of the previous protocols has been extended to
non-Markovian decoherence, we can study their reactivation from
entanglement-breaking conditions. Consider an environment with
transmissivity τ and entanglement-breaking thermal noise ω >
ωEB(τ), so that no protocol can work for G= 0. By increasing the
separable correlations in the environment, not only can quad-
ripartite entanglement be reactivated but, above a certain
threshold, it can also be localized into a bipartite form by the
relay’s Bell detection. Once entanglement swapping is reactivated,
all other protocols can progressively be reactivated. As shown in
Fig. 4, there are regions of the correlation plane where
entanglement can be swapped (N > 0), teleportation is quantum
(F > 1/2), entanglement and keys can be distilled (IC , K > 0), and
practical QKD can be performed (R > 0). This occurs both for large
and experimentally achievable values of μ.
Note that the reactivation is asymmetric in the plane only

because of the specific Bell detection adopted, which generates
correlations of the type g > 0 and g0 < 0. Using another Bell
detection (projecting onto q̂þ and p̂�), the performances would
be inverted with respect to the origin of the plane. Furthermore,
the entanglement localization (i.e., the reactivation of entangle-
ment swapping) is triggered for correlations higher than those
required for restoring quadripartite entanglement, suggesting that
there might exist a better quantum measurement for this task. The
performances of the various protocols improve by increasing the
separable correlations of the environment, with the fastest
reactivation being achieved along the diagonal gþ g0 ¼ 0, where
swapping and teleportation are first recovered, then entangle-
ment/key distillation and practical QKD, which is the most nested
region.

Correlated additive noise

The phenomenon can also be found in other types of non-
Markovian Gaussian environments. Consider the limit for τ→ 1
and ω→+∞, while keeping constant n := (1− τ)ω, c := g(ω− 1)−1

Fig. 4 Non-Markovian reactivation of quantum protocols from entanglement-breaking (here τ= 0.9 and ω= 1.02 ×ωEB= 19.38). Each
point of the correlation plane corresponds to a Gaussian environment with separable correlations. In the left panel we consider the optimal
scenario of large μ (asymptotic protocols). Once quadripartite 1 × 3 entanglement has been reactivated (outside the grey ring), we have the
progressive reactivation of entanglement swapping (N > 0, yellow region), quantum teleportation of coherent states (F > 1/2, green region),
entanglement/key distillation (IC , K > 0, blue region) and practical QKD (R > 0, red region). The right panel refers to a realistic scenario with
experimentally achievable values of μ. We consider μ≃ 6.5 (refs. 54,55) as input entanglement for the entanglement-based protocols, and μ≃
50 as modulation for the practical QKD protocol. The reactivation phenomenon persists and can be explored with current technology. Apart
from teleportation, the other thresholds undergo small modifications.
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and c0 :¼ g0ðω� 1Þ�1
. This is an asymptotic environment which

adds correlated classical noise to modes A and B, so that their
quadratures undergo the transformations

q̂A; p̂A; q̂B; p̂Bð Þ ! q̂A; p̂A; q̂B; p̂Bð Þ þ ðξ1; ξ2; ξ3; ξ4Þ:

Here the ξi’s are zero-mean Gaussian variables whose covariances
ξ iξ j
� �

are specified by the classical CM

V n; c; c0ð Þ ¼ n Idiagðc; c0Þdiagðc; c0ÞIÞ;ð (8)

where n ≥ 0 is the variance of the additive noise, and �1 � c; c0 �
1 quantify the classical correlations. The entanglement-breaking
condition becomes n > 2.
To show non-Markovian effects, we consider the protocol which

is the most difficult to reactivate, the practical QKD protocol. We
can specify its key rate Rðμ; n; c; c0Þ for c ¼ c0 ¼ 1 and assume a
realistic modulation μ≃ 52. We then plot R as a function of the
additive noise n in Fig. 5. As we can see, the rate decreases in n
but remains positive in the region 2 < n ≤ 4 where the links with
the relay become entanglement-breaking. As we show below, this
behaviour persists in the presence of loss, as typically introduced
by experimental imperfections.
Recall that, for an additive Gaussian channel with added noise n,

the secret-key capacity (and any other two-way assisted quantum
capacity) is upper-bounded by

ΦðnÞ :¼ ðn=2Þ � 1

ln2
� log2ðn=2Þ; (9)

for n ≤ 2 and zero otherwise. The bound Φ(n) in Eq. (9) has been
proven in ref. 53 [see Eq. (29)] and here reported in our different
vacuum units. In the presence of a relay/repeater, where each link
is described by an independent bosonic Gaussian channel, ref. 40

established that the secret-key capacity assisted by the repeater K1
−rep is upper-bounded by the minimum secret-key capacity of the
links. In the present setting, we therefore have the single-repeater
bound K1−rep ≤Φ(n). As we show in Fig. 5, the presence of classical
(separable) correlations in the Gaussian environment lead to the
violation of the bound Φ(n) when n≳ 0.369 (for the theoretical
curve) and n≳ 0.4 (for the experimental results).

Experimental results

Our theoretical results are confirmed by a proof-of-principle
experiment, whose setup is schematically depicted in Fig. 6. We
consider Alice and Bob generating Gaussianly modulated
coherent states by means of independent electro-optical mod-
ulators, applied to a common local oscillator. Simultaneously, the
modulators are subject to a side-channel attack: Additional
electrical inputs are introduced by Eve, whose effect is to generate
additional and unknown phase-space displacements. In particular,
Eve’s electrical inputs are correlated so that the resulting optical
displacements introduce a correlated additive Gaussian environ-
ment described by Eq. (8) with c≃ 1 and c0 ’ 1. The optical modes
then reach the midway relay, where they are mixed at a balanced
beam splitter and the output ports photo-detected. Although the
measurement is highly efficient, it introduces a small loss (≃2%)
which is assumed to be exploited by Eve in the worst-case
scenario.
From the point of view of Alice and Bob, the side-channel attack

and the additional (small) loss at the relay are jointly perceived as
a global coherent Gaussian attack of the optical modes. Analysing
the statistics of the shared classical data and assuming that Eve
controls the entire environmental purification compatible with
this data, the two parties may compute the experimental secret-
key rate (see details in the Supplementary Material). As we can see
from Fig. 5, the experimental points are slightly below the
theoretical curve associated with the correlated additive environ-
ment, reflecting the fact that the additional loss at the relay tends
to degrade the performance of the protocol. The experimental
rate is able to beat the single-repeater bound for additive-noise
Gaussian links40 and remains positive after the entanglement-
breaking threshold, so that the non-Markovian reactivation of QKD
is experimentally confirmed.

DISCUSSION

We have theoretically and experimentally demonstrated that the
most important protocols operated by quantum relays can work in
conditions of extreme decoherence thanks to the presence of
non-Markovian memory effects in the environment. Assuming
high Gaussian noise in the links, we have considered a regime
where any form of entanglement (bipartite, tripartite, or quad-
ripartite) is broken under Markovian memoryless conditions. By
allowing for a suitable amount of correlations in the environment,
we have proven that we can reactivate the distribution of 1 × 3
quadripartite entanglement, and this resource can successfully be
localized into a bipartite form exploitable by Alice and Bob. As a
result, all the basic protocols for quantum and private commu-
nication can be progressively reactivated by the action of
the relay.
Surprisingly, this reactivation is possible without the need of

any injection of entanglement from the environment, but just
because of the presence of weaker classical correlations
(described by a separable state for the environment). In
particular, we have shown that these correlations lead to the
violation of the single-repeater bound for quantum and private
communications.
Our results might open new perspectives for all quantum

systems where correlated errors and memory effects are typical
forms of decoherence. This may involve both short-distance
implementations (e.g., chip-based) and long-distance ones, as is
the case of relay-based QKD. Non-Markovian memory effects
should therefore be regarded as a potential physical resource to
be exploited in various settings of quantum communication.

METHODS

Theoretical and experimental methods are given in the Supplementary
Material. Theoretical methods contain details about the following points: (i)

Fig. 5 Plot the secret-key rate R (bits per relay use) as a function
of the additive noise n. The solid black curve is the theoretical rate
computed for a correlated additive environment (c ¼ c0 ¼ 1) and
realistic signal modulation (μ≃ 52). This rate is positive after
entanglement breaking (n > 2) and beats the single-repeater
bound40 (based on memoryless links). Points are experimental data:
blue circles refer to ideal reconciliation and purple squares to
achievable reconcilation efficiency (≃0.97). Error bars on the x-axis
are smaller than the point size. Due to loss at the untrusted relay, the
experimental key rate is slightly below the theoretical curve
(associated with the correlated side-channel attack).
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Study of the Gaussian environment with correlated thermal noise,
including a full analysis of its correlations. (ii) Study of the various forms
of entanglement available before the Bell detection of the relay. (iii) Study
of the entanglement swapping protocol, i.e., the computation of the CM
Vab∣γ in Eq. (1) and the derivation of the eigenvalue ε in Eq. (5). (iv)
Generalization of the teleportation protocol with details on Bob’s quantum
operation Qγ and the analytical formula for the fidelity Fðμ; κ; κ0Þ. (v)
Details of the distillation protocol with the analytical formula of ICðμ; κ; κ0Þ.
(vi) Details of the ideal key-distillation protocol, discussion on MDI-security,
and proof of the lower-bound K � IC . (vii) Derivation of the general secret-
key rate Rðξ; μ; κ; κ0Þ of the practical QKD protocol, assuming arbitrary
reconciliation efficiency ξ and modulation variance μ. (viii) Explicit
derivation of the optimal rate Ropt and the proof of the tight lower bound
in Eq. (7). (ix) Derivation of the correlated additive environment as a limit of
the correlated thermal one. (x) Study of entanglement swapping and
practical QKD in the correlated additive environment, providing the
formula of the secret-key rate Rðξ; μ; n; c; c0Þ.

DATA AVAILABILITY

The data that support the findings of this study are available from the corresponding
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