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Abstract 

Information on the sorption of active pharmaceutical ingredients (APIs) in soils and 

sediments is needed for assessing the environmental risks of these substances yet these 

data are unavailable for many APIs in use. Predictive models for estimating sorption 

could provide a solution. The performance of existing models is, however, often poor 

and most models do not account for the effects of soil/sediment properties which are 

known to significantly affect API sorption. Therefore, here, we use a high-quality 

dataset on the sorption behavior of 54 APIs in 13 soils and sediments to develop new 

models for estimating sorption coefficients for APIs in soils and sediments using three 

machine learning approaches (artificial neural network, random forest and support 

vector machine) and linear regression. A random forest-based model, with chemical 

and solid descriptors as the input, was the best performing model. Evaluation of this 

model using an independent sorption dataset from the literature showed that the model 

was able to predict sorption coefficients of 90% of the test set to within a factor of 10 of 

the experimental values. This new model could be invaluable in assessing the sorption 

behavior of molecules that have yet to be tested and in landscape-level risk 

assessments.  
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1. Introduction 

Approximately 2100 different APIs are used to treat and prevent disease for humans 

and animals in the United Kingdom and new drugs are continually being developed 

(eMC, 2020; Burns et al., 2018; Boxall et al., 2003). A significant portion of APIs used 

in human medicine is discharged into wastewater treatment facilities via the excretion 

process or the disposal of unused or expired products and subsequently released into 

the environment via wastewater effluents, wastewater irrigation and sewage sludge 

application (Carter et al., 2014; Jelic et al., 2011). APIs used for veterinary purposes 

will be released to the environment by pasture animals, manure application or from 

aquaculture facilities. The occurrence of APIs in the environment has caused concerns 

throughout the world due to the potential for toxicological effects on aquatic and 

terrestrial organisms (aus der Beek et al., 2016; Boxall, 2004).  
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An understanding of the sorption behavior of API in soils and sediments is important 

for environmental exposure assessment and for characterizing the environmental risks 

of a compound (Srinivasan et al., 2014). Given the large number of APIs in use, 

modeling approaches that predict the sorption in soil and sediment are invaluable as 

they provide significant cost and time savings compared to laboratory-based methods 

(Barron et al., 2009). Conventional modelling approaches typically use statistical linear 

regression analysis to develop a specific form of mathematical equation from empirical 

data to estimate the relationship between a dependent variable and one or more 

independent variables (Wu et al., 2013). Using this traditional approach, it is hard to 

produce a universal form of equation to capture the highly non-linear relationships 

between the variables (Berthod et al., 2017). An alternative is to use machine learning 

approaches which aim to identify patterns in data and use patterns to make predictions 

without being explicitly programmed (Wu et al., 2013). Machine learning-based 

models have been reported to better map inputs and outputs efficiently in complex 

situations compared to traditional regression models (Giri et al., 2011). 

 

Over the past two decades, machine learning approaches (such as artificial neural 

networks, random forest and support vector regression etc.) have increasingly been 

used in the ecotoxicological field and applied to modelling the bioavailability or 

bioconcentration of organic compounds, where these approaches yielded good 

predictions with the overall accuracy (R2
test) ranging from 0.725 to 0.954 (Miller et al., 

2019; Strempel et al., 2013; Wu et al., 2013; Zhao et al., 2008; Liu et al., 2006). To 

date, only a few attempts have been made to develop machine learning-based models 

for estimating sorption in sludge or soils (Berthod et al., 2017; Barron et al., 2009). For 

example, Barron et al. (2009) proposed an ANN model, that used 37 molecular 

descriptors as input variables, to estimate the sorption coefficients (Kd) of APIs in soil 

and sludge. Similar ANN models were developed using three sets of molecular 

descriptors (Molecular Operating Environment, VolSurf and ParaSurf) to predict Kd 

Jo
ur

na
l P

re
-p

ro
of



values for APIs in sludge with a minimum mean unsigned error on test sets (MUEtest) 

of 0.54 (Berthod et al., 2017).  

 

The currently available machine learning-based approaches were developed for single 

sludge and soil types. However, sorption coefficients of APIs are known to vary 

significantly depending on soil and sludge properties. For example, in recent 

experimental studies on the sorption of 21 APIs covering a range of physico-chemical 

properties and classes, the results showed that sorption coefficients across five soil 

types varied on average by a factor of 19 and by a maximum factor of 75 (Li et al, 

2020). The size of training sets for some of the existing models is also limited (a 

maximum of 297 experimental Kd values) and none of the ANN-based models has 

undergone extensive evaluation against independent datasets. Work from other sectors 

shows that the availability of large datasets for model training is known to improve the 

predictive power of these approaches (Byvatov et al., 2003). In addition to ANNs, other 

machine learning algorithms such as support vector machine and random forest are 

available and particularly powerful in describing the complex and non-linear 

relationships that exist between the input and output variables (Zhang et al., 2020; 

Palmer et al., 2007; Gao et al., 1996). These approaches might offer an alternative to 

the ANN-based algorithms for modelling the sorption of APIs in soil and sediment.  

 

The aim of this study was therefore to develop new machine learning-based models for 

estimating the sorption of ionisable (cationic, anionic and zwitterionic) and neutral 

APIs in both soil and sediments with varying properties. The specific objectives of the 

study were to: 1) develop a unique, large and high-quality dataset on the sorption 

coefficients of a diverse set of APIs in a range of soil and sediment types; 2) use the 

resulting data alongside a range of machine learning methods to develop new models 

for estimating sorption of APIs; and 3) evaluate the predictive ability of the developed 

models using two external validation datasets resampled from the literature. 
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2. Material and methods 

2.1 Chemicals and Solvents 

 

Fifty-eight APIs and deuterated forms of 28 of the APIs were purchased from 

Sigma-Aldrich (Gillingham, UK) (purity ≥95%). The APIs were selected based on their 

high usage, detection frequency in wastewater effluent, potential environmental 

concern and physicochemical properties. The study APIs covered 23 therapeutic 

classes including 35 bases, 8 acids, 7 neutral and 8 zwitterionic compounds at 

environmentally relevant pH values and covered wide hydrophobicity range (-1.6 < 

Log Kow < 5.72). The CAS number, therapeutic class, and key physicochemical 

properties of the 58 APIs and associated deuterated compounds are provided in Table 

S1 (Appendix 1). Solvents including methanol, acetonitrile, dimethyl sulfoxide 

(DMSO) and water were LC-MS grade and were obtained from Fisher Scientific 

(Loughborough, UK). Ammonium formate (≥97%) and formic acid (≥95%) were 

purchased from Sigma-Aldrich (Gillingham, UK).  

 

2.2 Soil and Sediment Samples 

 

Previous studies have revealed that the sorption behavior of APIs is largely dependent 

on the sorbent physicochemical properties (Li et al., 2020; Kodešová et al., 2015). 

Therefore, in the present study, thirteen soils and sediments were selected to cover the 

variation in solid properties in the natural environment that may influence API sorption 

in soils and sediments in order to develop models that are broadly applicable across the 

landscape.  

Five soils were obtained from LandLook (Midlands, UK) with three additional soils 

obtained from LUFA (Speyer, Germany). Five sediment samples were collected from 

the top 5cm sediment layer at five river and stream sites in North Yorkshire (UK, 

information on sample sites are provided in Table S2) using a sediment grab. All the 
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samples were air-dried and sieved through a 2-mm mesh to ensure homogeneity and 

then stored in sterile sampling bags at 4 C̊ until use. To minimize biological activity, all 

the samples were sterilized by heating at 105 C̊ for 3 hours prior to use in the 

experiments. The characteristics of the soils and sediments were analyzed by Forest 

Research Company (Surrey, UK), and are summarized in Table S2. Further 

information on the measurement procedures for soil attributes are described by Li et al. 

(2020). 

The soils and sediments represented general soil/sediment characteristics of European 

agricultural systems in terms of their pH (3.19-7.43), organic carbon content 

(1.34-5.90%), clay content (10-45%), and cation exchange capacity (4.42-25.11 

cmol/kg). The key properties of the study soils and sediments were in good agreement 

with typical pH (3-8) and mean organic carbon content (<5%) ranges observed in the 

natural environment (Stockmann et al., 2015; Ravisangar et al., 2001; UK Soil 

Observatory Soils Map View). 

 

2.3 Batch Sorption Experiments 

 

Batch sorption experiments were based on the method described in OECD guideline 

106 (OECD, 2000). A stock solution containing a mixture of 58 APIs at 20 mg/L was 

prepared in methanol and stored in the dark at -18 ̊C prior to the experiments. 

Preliminary experiments were performed to determine the equilibrium time and 

optimum solid-to-solution ratios for each soil and sediment (Table S3).  

 

In the definitive sorption experiments, either 1 or 5 g soil or sediment was weighed into 

a Duran bottle (either 25, 50, 250 or 500 ml) and mixed with 0.01 M CaCl2 solution 

(ranging from 10 to 400 ml) and shaken for 12 h to pre-equilibrate. Aliquots of the 

stock solution of the mixture of APIs were then spiked into the aqueous phase to yield 

initial concentrations of 10, 20, 30, and 40 μg/L. Triplicate samples were prepared for 
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each solid-to-solution ratio and concentration. Control samples containing APIs in 0.01 

M CaCl2 solution (without soil or sediment) and blank samples containing soil or 

sediment mixed with CaCl2 (without APIs) were prepared for each soil or sediment 

type. All the samples were agitated in the dark at 4 ̊C at 220 rpm for 24 h to reach 

equilibrium. Soil suspensions were centrifuged at 2000 rpm for 15 min and the 

supernatant was then taken and filtered through 0.45 μm glass fiber filters (Whatman). 

An aliquot of 0.2 mL of supernatant was then transferred into amber glass vials and 

diluted with 0.75 mL LC-MS grade water and 0.05 mL internal standard solution 

(containing 200 µg/L of each of the deuterated APIs in methanol) for determination of 

API concentrations by HPLC-MS/MS. A five times dilution was used to minimize the 

potential for CaCl2 to damage the spectrometer and to reduce matrix effects. 

 

Determination of the concentrations of APIs in the supernatant samples was achieved 

using a Thermo Scientific Dionex UltiMate 3000 HPLC coupled with a Thermo 

Scientific Endura TSQ triple-quadrupole mass spectrometer. The analytical method 

applied to determine the concentration of a mixture of 58 APIs was adapted from two 

existing methods (Wilkinson et al., 2019; Furlong et al., 2014). Details of the analytical 

method and method validation are provided in the Supporting Information.  

 

2.4 Derivation of sorption coefficients 

 

Linear, Freundlich and Langmuir isotherm models were fitted the batch sorption data. 

All the model parameters were evaluated by regression analysis using GraphPad Prism 

(version 7.00). The significance of the regressions and the correlation coefficient (R2) 

were used to determine the best-fitting isotherm to the batch sorption data. The Linear, 

Freundlich and Langmuir isotherms were represented by Equations (2), (3), (4):  

(1)                                                           𝐶௦= ൫ିೌ൯∗ெ  

Jo
ur

na
l P

re
-p

ro
of



                                                                (2)                                                                   

                                                                (3)                  

 

                                                                (4)                      

 

Where 𝐶 and 𝐶 are the initial and equilibrium concentration of the compound in 

aqueous solution (ng/L), 𝑉 is the solution volume in the suspension (mL); 𝑀 is the 

mass of soil (g); 𝐶௦  is the concentration of API adsorbed in the sorbent phase at 

equilibrium (ng/kg). 𝐾ௗ , 𝐾  and 𝐾  are the Linear, Freundlich and Langmuir 

isotherm constants. n and 𝑄 are the Freundlich exponent and maximum Langmuir 

sorption capacity, respectively. 

 

2.5 External Data Collection 

 

Two external datasets (A and B) consisting of 583 linear sorption coefficients (Kd 

values) for 91 APIs (36 bases, 24 acids, 19 neutrals and 12 zwitterions) in soil or 

sediment, resampled from 30 published sorption studies, were collated to develop an 

independent dataset for testing the predictive capability and generalizability of the 

developed models (Table S11). The obtained sorption data were experimentally 

determined using the standard batch equilibrium sorption approach (OECD, 2000). 

These independent datasets comprise a broad range of API properties and solid 

characteristics representing the property space of APIs more generally and 

soil/sediment characteristics of global agricultural systems, with the associated 

sorption coefficients varying by seven orders of magnitude (0.05 < Kd < 1277873.9 

L/kg). Dataset A contained 121 Kd values for 22 APIs with a complete record of soil or 

𝐶௦ = 𝐾ௗ ∙  𝐶  

Log 𝐶௦ = Log 𝐾 + 1𝑛 Log 𝐶 

𝐶 𝐶௦൘ = 1 (𝑄𝐾)ൗ + 𝐶 𝑄൘  
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sediment characteristics including pH, TOC, texture, CEC as well as composition of 

exchangeable cations. The remaining data (462 Kd values) only provided standard soil 

or sediment properties (pH and TOC). The dataset B containing all 583 Kd values was 

applied to evaluate the performance of the models proposed based only on molecular 

descriptors.  

 

2.6 Modelling Approaches 

 

Artificial neural network (ANN), random forest (RF) and support vector machine 

(SVM) models as well as multiple linear regression model were developed, using the 

training sorption dataset (see Table S12) for estimating Kd values of pharmaceuticals 

from pharmaceutical descriptors and solid properties. ANNs usually comprise one 

input layer, one output layer as well as one or more hidden layers consisting of 

connected neurons to calculate the sum of input weights and produce the outcome 

through non-linear activation function (Gao et al., 1996). RF is an ensemble learning 

method to achieve the final prediction by voting the prediction from decision trees 

using bootstrap aggregating algorithm (Han et al., 2018). SVM is another non-linear 

algorithm that aims to find the optimal hyperplane that could separate the classes of 

data with the largest margin in a high-dimensional feature space (Souissi and Cherif, 

2016).  

 

Multilayer perceptrons (MLP, 3-5 layers) conducted in Python (python 3.7.3) with the 

MXNet Python package (version 1.5.0) were used to develop the ANN models. RF, 

SVM as well as linear regression were implemented in Python with the Scikit-learn 

package (version 0.21.2). The parameters of MLP including learning rate, epoch, the 

number of hidden layers and additional neurons as well as RF (Max-depth, 

min_sample_leaf, min_samle_split and N_estimators) and SVM (C and gamma) were 

set with an initial range and optimized by iteratively changing each parameter and 
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repeatedly training in every iteration (the setting range of each parameter is shown in 

Table S9). Models of each machine learning approach were retrained more than 1000 

times for parameter optimization. In order to avoid overfitting of the model, the 

internal prediction accuracy of each retrained model was evaluated using 10-fold 

cross-validation by resampling of the training subset. The root mean square error 

(RMSE) and coefficient of determination (R2) were used to assess the prediction 

accuracy of the developed models. The parameters of optimal model with maximize 

accuracy (highest R2 and lowest RMSE) were generated through the tree-structured 

parzen estimator approach (TPE) using Hyperopt package (version 0.1.2) in Python 

(Bergstra et al., 2011).  

 

Previous studies have assessed the importance of descriptors in the neural network 

models either by calculating the shift of model precision caused by removing one 

descriptor (Miller et al., 2019; Miller et al., 2016; Barron et al., 2009) or through 

automatic relevance determination (Berthod et al., 2017) or Pearson correlation 

analysis (Shi et al., 2017). However, both ANN and SVM are regarded as the typical 

“black box” approaches that could produce fluctuating results in interpreting the 

contributions of individual variables in the model (Palmer et al., 2007; Olden and 

Jackson, 2002). The reliability and stability of descriptor importance analysis of ANN 

and SVM approaches become limited when the model contains a large number of input 

variables, or where some variables display multicollinearity (Miller et al., 2016; 

Burden et al., 2000). The RF approach used in this study, on the other hand, provides a 

straightforward method for feature ranking by averaging the decrease of the weighted 

impurity of each feature (Nguyen et al., 2015). The descriptor importance was 

determined in the RF approach using the Feature Importance algorithm implemented in 

Python with Scikit-Learn package (version 0.20.3). The predictive ability of the 

optimum models against the external datasets was further confirmed by 

Nash−Sutcliffe Efficiency (NSE). The approach for calculation of RMSE, NSE are 
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described in our previous study (Li et al, 2020). To enable application of the developed 

models by end users, the Python code for the models is provided in GitHub repositories 

(https://github.com/Jun-Li-York/Sorption-model-code). 

 

2.7 Feature Selection 

 

Each machine leaning and linear regression approach was used to build two optimum 

models. One model was derived only from the molecular descriptors while the other 

model was developed also incorporating soil and sediment properties. 

 

Two separate sets of input variables including 25 molecular and 13 solid descriptors 

that potentially influenced the API sorption were initially selected for the model 

development (Table S6). Molecular descriptors covering topological, constitutional, 

geometrical, physico-chemical properties as well as ionisation fraction were calculated 

using ACD-Labs (v5.0.0.184) and alvaDesc (v1.0.8) software using the canonical 

SMILES of the APIs as the input. These descriptors were then down-selected to reduce 

descriptor redundancy depending on the coefficient of variation (ratio of the standard 

deviation to the mean) and correlation coefficient of each variable with the other 

variables. A coefficient of variation (CV) of < 0.05 was used as cutoff value used to 

remove the variables with small variance (Table S7). The intercorrelation assessment 

of initial input variables is provided in Table S8. Strong intercorrelation (r > 0.9) was 

observed among a number of the variables (e.g., the significant correlation among 

molecular refractivity, molar volume, molecular weight and Ghose-Crippen molar 

refractivity; correlation between CEC and exchangeable Ca2+, etc.), which may lead to 

unstable estimates of the model so only one variable was selected from each 

intercorrelated pair. The remaining descriptors, containing nineteen molecular and 

eight solid variables were generated into two optimal sets for the development of RF 

and ANN models (See Table S7). SVM initially did not perform well with the optimal 
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sets and tend to overfit the training data. The input variables of SVM were then further 

down-selected using forward stepwise selection algorithms to remove redundant 

descriptors and minimize collinearity, which resulted in the selection of fourteen 

molecular and five solid variables (Table 1). Furthermore, collinearity diagnostics was 

performed to avoid multicollinearity in the linear regression model. The number of 

input variables was further reduced according to their variable inflation factor (VIF < 

5), resulting in an optimum set of 6 molecular and 2 solid independent variables (Table 

S10). 

 

3. Results and discussion 

3.1 Sorption Behavior of Study Compounds  

 

It was possible to develop sorption isotherm for 54 out of 58 study APIs in soil and 

sediment. For the other four compounds it was not possible to derive isotherms from 

the data due to either instability during the chemical analysis (cloxacillin), extensive 

adsorptive losses (> 80%) during the filtration process (miconazole) or an extremely 

high sorption affinity resulting in concentrations in the supernatant lower than limits of 

quantification (ketoconazole and itraconazole). The linear isotherm best described the 

sorption behaviour of the majority of the study compounds with 689 of the isotherms 

showing a statistically significant (p < 0.05) correlation between soil and water API 

concentrations, this was followed by the Freundlich isotherm (N = 596, p < 0.05) and 

then the Langmuir isotherm (N = 54, p < 0.05) (see Table S13). Therefore, the linear 

sorption coefficients were used for subsequent model development and are discussed 

below. 

 

The Kd values of study APIs varied by five orders of magnitude across the different 

solid types with the lowest Kd (0.20 L/kg) being obtained for gabapentin and the 
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highest Kd (35503 L/kg) being obtained for verapamil (Figure 1 and Table S13). 

Across the different classes of APIs, sorption coefficients for the basic and zwitterionic 

molecules varied by five orders of magnitude while sorption coefficients of the neutral 

and acidic molecules varied by three orders of magnitude suggesting that the sorption 

behavior of basic and zwitterionic APIs are more susceptible to differences in the 

properties of the solid matrices than acidic and neutral APIs. The sorption affinities of 

zwitterionic APIs (mean Kd of 2700 L/kg) and basic APIs (mean Kd of 657 L/kg) were 

generally higher than neutral (mean Kd of 30.4 L/kg) and acidic (mean Kd of 15.1 

L/kg) APIs, suggesting charge forms and degree of ionisation at typical environmental 

pH of different classes of APIs are likely to drive the sorption of APIs in soil and 

sediment. 

 

The sorption behaviour of APIs also displayed large variability within each study soil 

and sediment (Table S13). APIs exhibited higher sorption affinities to soil 8 and 

sediment 3 with the mean Kd values of 1358 and 1660 L/kg, respectively. Whereas 

lower sorption affinities of APIs were observed in soil 4 and sediment 4 with the mean 

Kd values of 219 and 486 L/kg being obtained, respectively. This observation revealed 

that the solid properties are also important in determining the API sorption in soil and 

sediment.  

 

The present study used a high throughput approach to derive experimental Kd values 

involving testing 58 APIs in a multi-sorbate system over a narrow, but 

environmentally-relevant concentration range. We previously assessed 21 of the APIs 

in single sorbate studies at higher concentration levels (mg/L) in five of the test soils (Li 

et al., 2020). Comparison of the Kd values measured in this study with values from our 

previous study showed very good agreement (R = 0.94, p < 0.05) indicating that our 

approach is robust. Sorption data are also available from the literature for many of the 

APIs with 27 and 23 out of 54 study APIs have been investigated in terms of their 
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sorption behaviours in soil and sediment, respectively (Table S14). Comparison of our 

data with previous studies showed that the Kd values of APIs measured in test soils for 

bases (amitriptyline, atenolol, citalopram, erythromycin, fluoxetine, metformin, 

propranolol, tramadol, cimetidine, diazepam, metronidazole, trimethoprim and 

tylosin), acids (naproxen, sulfadiazine, sulfamethoxazole and warfarin), neutrals 

(caffeine, carbamazepine, paracetamol and temazepam) and zwitterions (ciprofloxacin 

and enrofloxacin) as well as the Kd values of APIs measured in test sediments for bases 

(atenolol, fluoxetine, propranolol, sitagliptin, tramadol, venlafaxine, cimetidine, 

diltiazem, lidocaine and trimethoprim), acids (naproxen, phenytoin and 

sulfamethoxazole), neutrals (fluconazole, paracetamol) and zwitterions (gabapentin, 

pregabalin) were in a similar range to sorption coefficients previously reported in the 

literature. However, our Kd values of ranitidine, phenytoin, oxytetracycline and 

tetracycline, measured in soils, and Kd values of amitriptyline, clarithromycin, 

metformin, verapamil, caffeine and carbamazepine, measured in sediments, were 

towards the higher end of the ranges previously reported (Table S14). This suggested 

that sorption coefficients of the majority of the study APIs generated from the 

multi-sorbate system used in the present study are generally consistent with previous 

research findings where studies have been done using single compounds and using 

different concentration ranges.

Jo
ur

na
l P

re
-p

ro
of



 
Figure 1 Overview of linear sorption coefficients for 54 study pharmaceuticals in 8 
soils and 5 sediments. X markers=mean values; line through the box=median values; 
box=area between the 25th and the 75th percentile; whiskers=minimum and maximum 
values. 
 

3.2 Overall Results of Proposed Models 

 

The details of input variables, parameter optimization and statistical results of 

developed charge-specific models are shown in Table 1. Following parameter 

optimization, the six non-linear models developed using the RF, ANN and SVM 

approaches were well fitted to the measured Log Kd values with high precision (R2
train 

> 0.889, RMSEtrain < 0.368). The machine learning-based models were superior to the 

two linear regression models (R2
train < 0.583, RMSEtrain > 0.714) in capturing the 

sorption variance of APIs in soil and sediment by using corresponding shortlisted 

molecular and solid descriptors. All the proposed machine learning models exhibited 

higher R2
train than those trained by Barron et al. (2009) (R2

train =0.887) and Berthod et 

al. (2017) (R2
train < 0.760), even though our experimental Log Kd values were 

measured in a diverse range of environmental solids. These results not only revealed 

that the measured sorption data generated from our standardized measurement 

procedure for training are highly reliable and consistent but also confirmed the 
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appropriate selection of input variables for the model development and the advantage 

of TPE approach used in parameter optimization.  

 

Based upon the 10-fold cross-validation results, the highest internal prediction 

accuracy (RMSECV of 0.301) was obtained from the RF model using a combination of 

molecular descriptors and solid properties as input variables followed by ANN 

(RMSECV of 0.380), SVN (RMSECV of 0.471) and then linear regression (RMSECV of 

0.723). As expected, models incorporating solid descriptors and molecular descriptors 

generated from each approach consistently outperformed the corresponding model 

only relying on molecular descriptors. The significant improvements in R2
cv by 

incorporating solid descriptors were observed for RF, ANN and linear regression 

models where the R2
cv increased from 0.881 to 0.924, 0.820 to 0.878 and 0.521 to 

0.562, respectively (Table 1). Whereas, inclusion of solid descriptors as SVM model 

inputs produced only a marginal improvement in the R2
cv values (from 0.814 to 0.816). 

This result is in agreement with our previous finding that sorption models which take 

into account soil properties (such as exchangeable cations, TOC, clay content) yielded 

an improvement in the prediction of sorption for ionisable APIs in comparison to the 

models based only on physico-chemical properties of chemicals (Li et al, 2020). 
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Table 1 Results of parameter optimization and statistical analysis of the models developed to 
estimate the sorption of pharmaceuticals in soil and sediment (Ntraining = 689). 

Model Descriptor 
Parameter Statistical result 

Max_depth Min_sample_ 
leaf Min_sample_split N_etimators R2

train R2
cv RMSEtrain RMSEcv 

RF 

Molecular (MV, UI, 
Charge 1+, Log Sw, Log 
Dow, RB, Log Kow, 
Charge 1-, TPSA, pKa, 
Charge 0, HBA, HF, 
MlogP, DB, NR, Charge 
1+1-, NSA, Nai), Solid 
(TOC, pH, ExK, ExNa, 
Silt, ExMg, CEC, Clay) 

None 1 3 100 0.988 0.924 0.119 0.301 

Molecular (MV, UI, 
Charge 1+, Log Sw, Log 
Dow,RB, Log Kow, 
Charge 1-, TPSA, pKa, 
Charge 0, HBA, HF, 
MlogP, DB, NR, Charge 
1+1-, NSA, Nai) 

None 1 6 100 0.959 0.881 0.225 0.378 

          

 Descriptors Epoch Learning 
rate 

Additional 
neurons  

Hidden 
layers R2

train R2
cv RMSEtrain RMSEcv 

ANN 

Molecular (MV, UI, 
Charge 1+, Log Sw, Log 
Dow, RB, Log Kow, 
Charge 1-, TPSA, pKa, 
Charge 0, HBA, HF, 
MlogP, DB, NR, Charge 
1+1-, NSA, Nai), Solid 
(TOC, pH, ExK, ExNa, 
Silt, ExMg, CEC, Clay) 

1000 0.0400970 12 3 0.980 0.878 0.156 0.380 

Molecular (MV, UI, 
Charge 1+, Log Sw, Log 
Dow,RB, Log Kow, 
Charge 1-, TPSA, pKa, 
Charge 0, HBA, HF, 
MlogP, DB, NR, Charge 
1+1-, NSA, Nai) 

1000 0.0329548 15 3 0.911 0.820 0.329 0.463 

          
 Descriptors C Gamma   R2

train R2
cv RMSEtrain RMSEcv 

SVM 

Molecular (UI, Charge 
1+, Log Sw, Log Dow, 
Charge 1-, TPSA, pKa, 
HBA, MlogP, DB, NR, 
Charge 1+1-, NSA, Nai), 
Solid (TOC, pH, ExK, 
ExNa, Silt) 

19.6757274 0.0010360 NA NA 0.935 0.816 0.281 0.471 

Molecular (UI, Charge 
1+, Log Sw, Log Dow, 
Charge 1-, TPSA, pKa, 
HBA, MlogP, DB, NR, 
Charge 1+1-, NSA, Nai) 

20.2757274 0.0010160 NA NA 0.889 0.814 0.368 0.475 

          
 Descriptors     R2

train R2
cv RMSEtrain RMSEcv 

Linear 
regression 

Molecular (UI, Charge 
1+, Log Sw, Charge 1-, 
DB, Charge 1+1-), Solid 
(TOC, pH) 

NA NA NA NA 0.583 0.562 0.714 0.723 

Molecular (UI, Charge NA NA NA NA 0.539 0.521 0.750 0.756 
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1+, Log Sw, Charge 1-, 
DB, Charge 1+1-) 

Acronyms: MV, Molar volume; UI, Unsaturation index ; Charge 1+, Charge fraction of plus 1; Log Sw, Aqueous 
solubility; Log Dow, Octanol/water partition coefficient corrected by soil/sediment pH; RB, Rotatable bonds; Log 
Kow, Octanol/water partition coefficient; Charge 1-, Charge fraction of minus 1; TPSA, Fragment-based polar surface 
area from N, O, S, P polar coefficients; pKa, Acid/base dissociation constant; Charge 0, Charge fraction of neutral; 
HBA, Number of hydrogen Bond acceptors; HF, Hydrophilic factor; MlogP, Moriguchi log P; DB, Double bonds; 
NR, Number of rings; Charge 1+1-, Fraction of zwitterionic species; NSA, Number of sulfur atoms; Nai; number of 
hydrogens bound by the charged nitrogen; TOC, Total organic carbon content (%); pH, Soil or sediment pH; ExK, 
Exchangeable potassium (cmol/kg); ExNa, Exchangeable sodium (cmol/kg); Silt, Silt content (%); ExMg, 
Exchangeable magnesium (cmol/kg); CEC, Cation-exchange capacity (cmol/kg); Clay, Clay content (%).  
Max_depth, N_etimators are the maximum depth of each tree and the number of trees in a random forest model, 
respectively. 
Min_sample_leaf, Min_sample_split are the minimum number of samples required to be at a leaf node and the 
minimum number of samples required to split an internal leaf node, respectively. 
C and Gamma are the regularization parameter and the relative weight of the regression error, respectively. 
R2

train, R2
cv are R2 on training set and cross-validated R2, respectively. 

RMSEtrain, RMSECV are root mean square error on training set and cross-validated root mean square error, 
respectively. 

3.3 Relative Importance of Descriptors for Estimating Sorption Coefficients  

 

Understanding the relative importance of individual descriptors to the models not only offers new 

insights into the mechanisms that drive the sorption of APIs in soil and sediment but also gives 

guidance on the selection of variables for future model development.  

 

In the present study, molar volume (MV) was observed as the most important descriptors for 

estimating the sorption of APIs in soil and sediment (Figure 2). MV is defined as the molecular 

weight of a substance divided by its density, which is highly correlated to the molecular 

refractivity, molecular weight and, to some extent reflects the degree of hydrophobicity (see Table 

S8 for details on intercorrelation assessment). Previous research has shown that MV is an effective 

predictor employed in QSAR models for describing the sorption of negatively charged and 

uncharged APIs (Sathyamoorthy and Ramsburg, 2013). In addition to hydrophobic properties 

(MV, Log Sw, Log Dow, Log Kow) and unsaturation index, molecular charge fraction (Charge 1+ 

and Charge 1-) and dissociation constant (pKa) were top contributing descriptors in the RF model 

for estimating the sorption of APIs in soil and sediment, which supports the fact that the sorption 

behaviour of APIs to soils and sediment is charge-dependent (Li et al, 2020; Berthod et al., 2017; 

Schaffer and Licha, 2015; Franco and Trapp, 2008). In comparison, the number of sulfur atoms, 

followed by the soil clay content and amine type of basic APIs make less of a contribution to the 

model (Figure 2).  
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Molecular and solid descriptors

Although previous studies have indicated that solid properties are important in driving the sorption 

behaviour of APIs (Li et al, 2020; Al-Khazrajy and Boxall, 2016; Kodešová et al., 2015), in this 

study solid descriptors generally showed less influence on Log Kd prediction than molecular 

descriptors in the RF model. This could possibly be explained by the fact that the differences in 

sorption observed across APIs is much greater than that observed for a single API in a range of 

solid types. The most highly contributing solid descriptor was the TOC, suggesting that organic 

carbon might offer the principal sorption sites for hydrophobic sorption (van der Waals forces) as 

well as electrostatic sorption (ionic exchange, cation bridging, ligand exchange, and electron 

donor–acceptor interaction) of APIs in soil and sediment (Zhang et al., 2017; Kodešová et al., 

2015). Soil/sediment pH also appears to play a role in driving the sorption behaviour of APIs due 

to the importance of the pH-adjusted lipophilicity (Log Dow) and molecular charge fraction as the 

model inputs. The diversity of the top contributing descriptors identified from descriptor 

importance analysis reflects the complexity of the interactions between APIs and soil/sediment. 

 

Figure 2 
Relative 

importance of molecular (in blue) and solid (in red) descriptors to Random Forest model for 
estimating the sorption coefficient (Log Kd). Error bars represent standard error. 
 

3.4 Model Performance Evaluation Based on External Datasets 

 

The capability of the developed charge-specific models was assessed against two independent test 

datasets obtained from the literature (details in Table 2). The external datasets contained a diverse 
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range of APIs and more than 63 % of these molecules had not been used to train our developed 

models. Comparison of predictions for these models with the experimentally-derived data showed 

that all of the developed models generated reasonable predictions of sorption behaviour (NSE > 

0.302, RMSEtest < SD). In the external dataset A, the RF model using molecular and solid 

descriptors achieved the best predictive performance (RMSEtest of 0.636, Table 2), followed by 

ANN (RMSEtest of 0.733), SVM (RMSEtest of 0.772) and then linear regression (RMSEtest of 

0.774). Specifically, as shown in Table S15, the RF model was able to accurately describe the 

variability in sorption of APIs in both soil and sediment (RMSEsoil of 0.598 and RMSEsediment of 

0.697), with more than 90% of predicted Log Kd values being within a factor of 10 of the 

experimental values (Ntest =121, see Figure 3A). The remaining three models also performed well 

at estimating sorption coefficients measured in soil (RMSEsoil < 0.735, SD of 1.010), while these 

models appeared to slightly overestimate the sorption of basic APIs (e.g. amitriptyline, cimetidine, 

diltiazem and atenolol) over one order of magnitude in sediment (RMSEsediment > 0.815, SD of 

0.750, Table S15). It should be noted that our solid descriptor set contained several soil/sediment 

properties (e.g. ExK, ExNa, ExMg, CEC), which are not commonly reported in literature studies, 

potentially limiting the broader applicability of the developed models. In the future, we 

recommend that researchers, investigating the sorption of ionisable compounds in soil, 

characterize test soils more extensively to aid in future model development.  

 

In the external dataset B, according to their RMSEtest values (Table 2), the three machine learning 

models achieved similar predictions and outperformed the linear regression models. The predicted 

data generated from the machine learning models derived only from molecular descriptors all 

generally agreed with the published sorption coefficients determined in soil and sediment, with 

more than 78% of the predictions estimated to be within 1 a factor of 10 of the corresponding 

observed values (Ntest =583, RMSEtest < 0.815, SD of 1.324 and NSE > 0.620, see Table 2). 

Specifically, these three models were able to predict Log Kd values relatively well for basic and 

neutral APIs in soil and sediment, while they all showed an underestimation of Log Kd values for 

zwitterionic APIs (e.g. norfloxacin, ciprofloxacin, danofloxacin and irbesartan) and 

overestimation for acidic APIs (e.g. gemfibrozil, bezafibrate, salicylic acid, sulfamethazine and 

indomethacin) by up to two orders of magnitude (Figure 3E, F and G). This suggests that solid 

properties play an important role in driving the sorption models for zwitterionic and acidic APIs as 
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they could be contributing to additional sorption mechanisms including hydrophobic partitioning 

to soil organic carbon and electrostatic interactions among the charged species, electronegative 

solid surfaces (clay or organic matter) and soil exchangeable cations (Klement et al., 2018; 

Kodešová et al., 2015; Estevez et al., 2014). Moreover, the relatively small size of the sorption 

data for model training was obtained for zwitterions (N=91) and acids (N=89) compared to bases 

(N=411) due to analytical limitations and the experimental conditions, which might result in 

poorer generalizability to unknown molecules. A large and high-quality sorption data for 

zwitterionic and acidic APIs obtained from the standardization of experimental procedures and 

analytical methods is highly warranted, which might improve the predictive performance of future 

models. A poorer performance was observed with the linear regression model, with a larger 

average error (RMSEtest of 0.935, Table 2). This suggests that complex interactions involved in 

multiple mechanisms (such as hydrophobic forces as well as electrostatic interactions) exist 

between the sorbent and sorbate, linear regression modelling is less suited than machine learning 

approaches to dealing with this type of complexity.  

Table 2 Comparison of model performance against the external sorption data. 
Model External 

data set Descriptor N SD R2
test RMSEtest NSEtest 

RF 
A 19 Molecular + 8 

Solid  121 0.931 0.695 0.636 0.529 

B 
 19 Molecular  583 1.324 0.644 0.815 0.620 

ANN 
A 19 Molecular + 8 

Solid  121 0.931 0.607 0.733 0.375 

B 
 19 Molecular  583 1.324 0.680 0.787 0.646 

SVM 
A 13 Molecular + 5 

Solid  121 0.931 0.521 0.772 0.307 

B 
 13 Molecular  583 1.324 0.635 0.812 0.623 

Linear 
regression 

A 6 Molecular + 2 
Solid  121 0.931 0.624 0.774 0.302 

B 
 6 Molecular 583 1.324 0.514 0.935 0.500 

N is the number of the observations. SD is the standard deviation of the observations. RMSE is the root 
mean square error. NSE is the Nash−Sutcliffe Efficiency value.   
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Figure 3 Comparison of predictive performance of (A) random forest, (B) artificial neural 
networks, (C) support vector machine and (D) linear regression models against the external 
sorption dataset A (N=121) and predictive performance of (E) random forest, (F) artificial neural 
networks, (G) support vector machine and (H) linear regression models against the external 
sorption dataset B (N=583). The dashed lines correspond to the predicted sorption coefficients ± 1 
units against the measured values collected from literature. Open triangles and circles represent the 
Log Kd values observed in soil and sediment environments, respectively.  
 

4. Conclusion 
 

Our results demonstrate the power of using non-linear approaches for estimating the Log Kd from 

molecular and solid descriptors. Among the three-machine learning and regression approaches, the 

random forest method was found to be superior to other methods in both qualitative (in that it 

offered some mechanistic understanding from its feature-ranking function) and quantitative 

performance. In addition to the satisfactory general predictive performance, random forest offered 

many attractive advantages over the other methods as it: is immune to overfitting, generates an 

internal assessment of descriptor importance, has high learning speed, is insensitive to scaling of 

features and has good stability (Han et al., 2018; Palmer et al., 2007). Therefore, the random forest 

method could be used as a rapid and powerful tool for predicting the sorption of APIs in both soil 

and sediment for use in risk assessment of APIs and has the greatest potential to be applied to other 

endpoints relevant to environmental risk assessment or to modelling these endpoints for other 
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environmental contaminants such as pesticides, polycyclic aromatic hydrocarbons (PAHs), 

polychlorinated biphenyls (PCBs) and aliphatic hydrocarbons. For practical purposes, such an 

approach could considerably improve and harmonize the current risk assessment practices for 

estimating soil/sediment sorption in the REACH (European Commission, 2006) and EMEA 

(European Medicines Agency, 2006) guidelines for environmental risk assessment, and provide a 

rapid solution for regulators to support environmental decision making. 

 

Supporting Information Description 

Detailed information on study APIs, soils and sediments, preliminary sorption experiments, 

analytical methods, feature selection and parameter optimization, sorption isotherms as well as 

details of training and external evaluation data sets and model evaluation results.  
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Highlights 
 

1. Linear sorption coefficients were generated for 689 pharmaceutical/substrate 

combinations. 

 

2. A random forest model achieved excellent performance for estimating sorption of 

pharmaceuticals. 

 
3. The new model provides a valuable tool for environmental risk assessment of 

pharmaceuticals 
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