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Abstract

This paper considers the computation of the greatest common divisor (GCD)

dt1,t2(x, y) of three bivariate Bernstein polynomials that are defined in a rect-

angular domain, where t1(t2) is the degree of dt1,t2(x, y) when it is written as

a polynomial in x(y) whose coefficients are polynomials in y(x). The Sylvester

resultant matrix and its subresultant matrices are used for the computation of

the degrees and coefficients of the GCD. It is shown that there are four forms

of these matrices and that they differ in their computational properties. The

most difficult part of the computation is the determination of t1 and t2, and

two methods for this computation are described. One method is simple but in-

efficient, and the other method reduces the problem to the computation of the

degree of the GCD of two univariate polynomials, which is more efficient. The

basis functions of the polynomials include binomial terms, which span many or-

ders of magnitude, even for polynomials of moderate degrees. It is shown that

the adverse effects of this wide range of magnitudes and a significant reduction

in the sensitivity of the degree of the GCD to noise are obtained when the poly-

nomials are processed by three operations before computations are performed

on them. Examples that demonstrate the theory are included in the paper.
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1. Introduction

This paper describes a robust numerical procedure for the computation of the

greatest common divisor (GCD) of three bivariate Bernstein polynomials that

are defined in a rectangular domain. This problem arises in computer-aided

design (CAD) systems, for which the determination of the points of intersection5

of curves is important [6, 15, 16]. For the curves defined by the polynomi-

als (f̂(x, y), ĝ(x, y), ĥ(x, y)), this problem reduces to the determination of the

solutions of the equations,

f̂(x, y) = 0, ĝ(x, y) = 0 and ĥ(x, y) = 0,

from which it follows that the intersections are defined by the irreducible fac-

tors of the GCD of (f̂(x, y), ĝ(x, y), ĥ(x, y)). The factorisation of multivariate10

polynomials and the computation of the GCD of two multivariate polynomi-

als are considered in [7, 8, 10, 12, 14, 17]. The polynomials in these papers are

expressed in the power basis, but the Bernstein basis is considered in this paper.

Corless et. al. [7] consider the computation of the GCD of two bivariate

power basis polynomials p(x, y) and q(x, y). In the first stage, the independent15

variable x is set equal to a random number α and the GCD of the univariate

polynomials p(α, y) and q(α, y) is computed. The independent variable y is

then set equal to a sequence of random numbers βi and the GCD of each set

of polynomials (p(x, βi), q(x, βi)) is computed. The next stage requires a series

of matrix computations that include a Vandermonde matrix, which may cause20

problems because it is ill-conditioned. Problems of instability may also occur

due to a poor choice of points in an interpolation procedure. Noda and Sasaki

[14] extend Euclid’s algorithm for the computation of the GCD from univariate

polynomials to multivariate polynomials, and the implementation is considered

in detail in order to address problems of instability. The application of resultant25
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matrices to computations on curves and surfaces is considered in [6, 15, 16]

but the power basis is used, even though the Bernstein basis is used for the

representation of curves and surfaces in CAD systems.

The computation of the GCD of two or more polynomials is ill-conditioned

and thus the algorithms must guarantee that the computed GCD is numerically30

stable. Furthermore, GCD computations on Bernstein basis polynomials require

more care than GCD computations on power basis polynomials because of the

binomial terms in the Bernstein basis functions. It follows that even if the

coefficients of the polynomials are of the same order of magnitude, the binomial

terms may cause the entries in the matrices in the computations to span many35

orders of magnitude, which may yield numerical problems. These numerical

and stability issues are minimised by processing the given polynomials by three

operations before their GCD is computed. The examples in the paper show that

the inclusion of these operations yields considerably improved results because

the degrees in x and y of the GCD of the polynomials (f(x, y), g(x, y), h(x, y))40

is much more clearly defined, and the error in the coefficients of the GCD is

smaller, than their equivalents when the preprocessing operations are omitted.

All the terms in a bivariate Bernstein polynomial f(x, y) in a triangular

domain T ,

T : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ 1− x− y ≤ 1,

are of the same degree m,45

f(x, y) =

m
∑

i+j=0

ai,j

(

m

i, j

)

(1− x− y)m−i−jxiyj,

where
(

m

i, j

)

=

(

m

j, i

)

=
m!

(m− i− j)!i!j!
,

but a bivariate Bernstein polynomial g(x, y) of degrees m and n in x and y,

respectively, in a rectangular domain R is

g(x, y) =

m
∑

i=0

n
∑

j=0

ĝi,jB
m
i (x)Bn

j (y), R : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1,
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where

Bm
i (x) =

(

m

i

)

(1− x)m−ixi and Bn
j (y) =

(

n

j

)

(1 − y)n−jyj .

The requirement to calculate two degrees, m and n, implies that GCD com-50

putations of polynomials defined in R are harder than GCD computations of

polynomials defined in T , for which only one degree need be calculated [5].

Other aspects of the GCD computation are similar for polynomials defined in

R and T , for example, the Sylvester matrix and its subresultant matrices for

three polynomials defined in each domain can be written as the product of three55

matrices DTQ, where D and Q are diagonal matrices and T is a block matrix

that includes Tœplitz matrices.

The form of a bivariate Bernstein polynomial defined in a rectangular do-

main is considered in Section 2 and it is shown in Section 3 that there are four

forms of the Sylvester matrix and its subresultant matrices of three polynomials60

(f̂(x, y), ĝ(x, y), ĥ(x, y)) defined in a rectangular domain. Significantly improved

results are obtained when these polynomials are processed by three operations

before computations are performed on their Sylvester matrices and subresultant

matrices, and these operations are considered in Section 4. Two methods for

the computation of the degree of the GCD of these three polynomials, and any65

two of these polynomials, are described in Section 5. One method is a simple ex-

tension of the method used for univariate polynomials but it is computationally

expensive because the two-dimensional nature of the problem is retained and it

therefore requires the computation of the singular value decomposition (SVD)

of a large number of Sylvester matrices and subresultant matrices of bivariate70

polynomials. The second method is more efficient because it reduces to two

problems, each of which requires the determination of the degree of the GCD of

two univariate polynomials. The complexity of the algorithms discussed in this

paper is considered in Section 6, and Section 7 contains examples that demon-

strate the theory presented in the paper. The paper is summarised in Section75

8.

The novel aspects of the paper are:
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1. The four forms of the Sylvester matrix and its subresultant matrices of

two or three polynomials defined in a rectangular domain are derived.

2. The preprocessing operations that are implemented on these polynomials,80

such that their GCD is numerically stable, are described.

3. An efficient algorithm for the computation of the degrees t1 and t2 of

the GCD dt1,t2(x, y) of these polynomials, where t1(t2) is the degree of

dt1,t2(x, y) when it is written as a polynomial in x(y) whose coefficients

are polynomials in y(x), is described.85

2. Bernstein polynomials in a rectangular domain

A Bernstein polynomial f̂(x, y) defined in a rectangular domain is

f̂(x, y) =

m1
∑

i1=0

m2
∑

i2=0

âi1,i2B
m1

i1
(x)Bm2

i2
(y)

=

m1
∑

i1=0

m2
∑

i2=0

âi1,i2

(

m1

i1

)(

m2

i2

)

(1− x)m1−i1xi1(1 − y)m2−i2yi2 , (1)

where 0 ≤ x, y ≤ 1 and (m1,m2) is the degree of f̂(x, y), degx f̂(x, y) = m1 and

degy f̂(x, y) = m2. The polynomial f̂(x, y) can be written as the product of a

coefficient matrix and two vectors of basis functions,90

f̂(x, y) =
[

Bm1

0 (x) · · · Bm1
m1

(x)
]











â0,0 . . . â0,m2

...
...

...

âm1,0 . . . âm1,m2





















Bm2

0 (y)

...

Bm2
m2

(y)











. (2)

It can also be written as a polynomial in y whose coefficients are polynomials

in x,

f̂(x, y) = f̂0(x)B
m2

0 (y) + f̂1(x)B
m2

1 (y) + · · ·+ f̂m2
(x)Bm2

m2
(y),

where each of the univariate polynomials f̂j(x), j = 0, . . . ,m2, is of degree m1,

f̂j(x) =

m1
∑

i=0

âi,jB
m1

i (x), j = 0, . . . ,m2, (3)

5



and the coefficients of f̂j(x) form the (j +1)th column of the coefficient matrix

in (2). The coefficients of f̂(x, y) are arranged to form the vector f̂,95

f̂ =
[

f̂
T

0 f̂
T

1 · · · f̂
T

m2

]T

∈ R
(m1+1)(m2+1),

where f̂j ∈ R
m1+1, j = 0, . . . ,m2, contains the coefficients of the polynomial

f̂j(x),

f̂j =
[

â0,j â1,j · · · âm1,j

]T

,

and it therefore follows from (2) that f̂(x, y) can be written as

f̂(x, y) =
[

Bm1

0 (x) · · · Bm1
m1

(x)
] [

f̂0 · · · f̂m2

]











Bm2

0 (y)

...

Bm2
m2

(y)











.

The coefficients can also be ordered by considering f̂(x, y) a polynomial in x

whose m1 + 1 coefficients are polynomials in y.100

2.1. Vector representation and multiplication

This section considers the multiplication of the polynomial f̂(x, y) that is

defined in (1), and the polynomial

ĝ(x, y) =

n1
∑

i1=0

n2
∑

i2=0

b̂i1,i2B
n1

i1
(x)Bn2

i2
(y)

=

n1
∑

i1=0

n2
∑

i2=0

b̂i1,i2

(

n1

i1

)(

n2

i2

)

(1− x)n1−i1xi1 (1− y)n2−i2yi2 . (4)

The polynomial ĝ(x, y) can be written as a polynomial in y whose n2 + 1 coef-

ficients are polynomials in x, each of degree n1,105

ĝ(x, y) = ĝ0(x)B
n2

0 (y) + ĝ1(x)B
n2

1 (y) + · · ·+ ĝn2
(x)Bn2

n2
(y),

where

ĝj(x) =

n1
∑

i=0

b̂i,jB
n1

i (x), j = 0, . . . , n2.
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The product of f̂(x, y) and ĝ(x, y) is the polynomial ĥ(x, y),

ĥ(x, y) = f̂(x, y)ĝ(x, y) =

m1+n1
∑

i1=0

m2+n2
∑

i2=0

ĉi1,i2B
m1+n1

i1
(x)Bm2+n2

i2
(y),

which can be considered a polynomial in y of degree m2 + n2, where each

polynomial in the set of coefficients {ĥi(x), i = 0, . . . ,m2 + n2} is a polynomial

in x of degree m1 + n1,110

ĥ(x, y) = ĥ0(x)B
m2+n2

0 (y) + ĥ1(x)B
m2+n2

1 (y) + · · ·+ ĥm2+n2
(x)Bm2+n2

m2+n2
(y).

The polynomial ĥ(x, y) can also be expressed in the form

ĥ(x, y) = f̂0(x)ĝ0(x)B
m2

0 (y)Bn2

0 (y) +
(

f̂0(x)ĝ1(x)B
m2

0 (y)Bn2

1 (y) + f̂1(x)ĝ0(x)B
m2

1 (y)Bn2

0 (y)
)

+
(

f̂0(x)ĝ2(x)B
m2

0 (y)Bn2

2 (y) + f̂1(x)ĝ1(x)B
m2

1 (y)Bn2

1 (y) +

f̂2(x)ĝ0(x)B
m2

2 (y)Bn2

0 (y)
)

+ · · ·+ f̂m2
(x)ĝn2

(x)Bm2

m2
(y)Bn2

n2
(y),

(5)

and the general expression for each term in this sum is

f̂s(x)ĝt(x)B
m2

s (y)Bn2

t (y) =

(

m2

s

)(

n2

t

)

(

m2+n2

s+t

) Bm2+n2

s+t (y)f̂s(x)ĝt(x).

The expression (5) is therefore equal to

ĥ(x, y) = B
m2+n2

0 (y)

(

f̂0(x)ĝ0(x)

(

m2

0

)(

n2

0

)

(

m2+n2

0

)

)

+

B
m2+n2

1 (y)

(

f̂0(x)ĝ1(x)

(

m2

0

)(

n2

1

)

(

m2+n2

1

) + f̂1(x)ĝ0(x)

(

m2

1

)(

n2

0

)

(

m2+n2

1

)

)

+

B
m2+n2

2 (y)

(

f̂0(x)ĝ2(x)

(

m2

0

)(

n2

2

)

(

m2+n2

2

) + f̂1(x)ĝ1(x)

(

m2

1

)(

n2

1

)

(

m2+n2

2

) +

f̂2(x)ĝ0(x)

(

m2

2

)(

n2

0

)

(

m2+n2

2

)

)

+ · · ·+B
m2+n2

m2+n2
(y)

(

f̂m2
(x)ĝn2

(x)

(

m2

m2

)(

n2

n2

)

(

m2+n2

m2+n2

)

)

,

where each polynomial p(x) in the term Bm2+n2

i (y)p(x),i = 0, . . . ,m2 + n2,

is proportional to the product of two univariate Bernstein polynomials. This115
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product can be written as a matrix-vector product, and thus the vector of the

coefficients of ĥ(x, y) can be written as a block matrix-vector product,

ĥ = Cn1,n2
(f̂(x, y))ĝ =

(

D−1
m1+n1,m2+n2

Tn1,n2
(f̂(x, y))Qn1,n2

)

ĝ, (6)

where Cn1,n2
(f̂(x, y)) is of order (m1 + n1 +1)(m2 +n2 +1)× (n1 +1)(n2 +1).

The partitioned structure of Cn1,n2
(f̂(x, y)) is

























































Cn1(f̂0(x))(
m2
0 )(n2

0 )
(m2+n2

0 )
Cn1(f̂1(x))(

m2
1 )(n2

0 )
(m2+n2

1 )
Cn1(f̂0(x))(

m2
0 )(n2

1 )
(m2+n2

1 )
...

Cn1(f̂1(x))(
m2
1 )(n2

1 )
(m2+n2

2 )

. . .

...
...

. . .
Cn1(f̂0(x))(

m2
0 )(n2

n2
)

(m2+n2
n2

)

Cn1(f̂m2
(x))(m2

m2
)(n2

0 )

(m2+n2
m2

)

...
. . .

Cn1(f̂1(x))(
m2
1 )(n2

n2
)

(m2+n2
n2+1 )

Cn1(f̂m2
(x))(m2

m2
)(n2

1 )

(m2+n2
m2+1 )

. . .
...

. . .
...

Cn1(f̂m2
(x))(m2

m2
)(n2

n2
)

(m2+n2
m2+n2

)

























































,

where each matrix Cn1
(f̂j(x)) is the convolution matrix of a univariate Bernstein

polynomial f̂j(x) of degree m1 that is multiplied by a univariate Bernstein

polynomial of degree n1. These matrices are therefore of order (m1 + n1 +1)×120

(n1+1) and they have the same structure as the univariate convolution matrix.

It follows from (6) that Cn1,n2
(f̂(x, y)) is equal to the product of three

matrices, whereD−1
m1+n1,m2+n2

is diagonal and of order (m1+n1+1)(m2+n2+1),

D−1
m1+n1,m2+n2

= diag

[

D
−1

m1+n1

(m2+n2
0 )

D
−1

m1+n1

(m2+n2
1 )

· · ·
D

−1

m1+n1

(m2+n2
m2+n2

)

]

, (7)

and the diagonal matrix

D−1
m1+n1

= diag

[

1

(m1+n1
0 )

1

(m1+n1
1 )

· · · 1

(m1+n1
m1+n1

)

]

,

arises from the multiplication of f̂i(x), i = 0, . . . ,m2, of degree m1 by ĝj(x),125

j = 0, . . . , n2, of degree n1.
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The block Tœplitz matrix Tn1,n2
(f̂(x, y)) of the bivariate polynomial f̂(x, y)

is of order (m1 + n1 + 1)(m2 + n2 + 1)× (n1 + 1)(n2 + 2) and given by












































Tn1
(f̂0(x))

(

m2

0

)

Tn1
(f̂1(x))

(

m2

1

)

Tn1
(f̂0(x))

(

m2

0

)

... Tn1
(f̂1(x))

(

m2

1

) . . .

...
...

. . . Tn1
(f̂0(x))

(

m2

0

)

Tn1
(f̂m2

(x))
(

m2

m2

) ...
. . . Tn1

(f̂1(x))
(

m2

1

)

Tn1
(f̂m2

(x))
(

m2

m2

) . . .
...

. . .
...

Tn1
(f̂m2

(x))
(

m2

m2

)













































, (8)

where Tn1
(f̂j(x)) is a Tœplitz matrix of order (m1 + n1 + 1)× (n1 + 1),

Tn1
(f̂j(x)) =













































â0,j
(

m1

0

)

â1,j
(

m1

1

)

â0,j
(

m1

0

)

... â1,j
(

m1

1

) . . .

...
...

. . . â0,j
(

m1

0

)

âm1,j

(

m1

m1

) ...
. . . â1,j

(

m1

1

)

âm1,j

(

m1

m1

) . . .
...

. . .
...

âm1,j

(

m1

m1

)













































,

for j = 0, . . . ,m2, and f̂j(x) is defined in (3). The diagonal matrix Qn1,n2
is of130

order (n1 + 1)(n2 + 1),

Qn1,n2
= diag

[

Qn1

(

n2

0

)

Qn1

(

n2

1

)

· · · Qn1

(

n2

n2

)

]

, (9)

where Qn1
is a diagonal matrix of order n1 + 1,

Qn1
= diag

[

(

n1

0

) (

n1

1

)

· · ·
(

n1

n1

)

]

.

The vectors ĝ and ĥ in (6) are vectors of the coefficients of the polynomials

ĝ(x, y) and ĥ(x, y),

ĝ =
[

ĝT
0 ĝT

1 · · · ĝT
n2

]T

∈ R
(n1+1)(n2+1),

9



where ĝj contains the coefficients of the polynomial ĝj(x), which is of degree135

n1,

ĝj =
[

b̂0,j b̂1,j · · · b̂n1,j

]T

∈ R
n1+1, j = 0, . . . , n2,

and

ĥ =
[

ĥ
T

0 ĥ
T

1 · · · ĥ
T

m2+n2

]T

∈ R
(m1+n1+1)(m2+n2+1),

where ĥi contains the coefficients of the polynomial ĥi(x), which is of degree

m1 + n1,

ĥi =
[

ĉ0,i ĉ1,i · · · ĉm1+n1,i

]T

∈ R
m1+n1+1, i = 0, . . . ,m2 + n2.

140

Example 2.1. Consider the polynomial f̂(x, y) of degree (m1,m2) = (2, 2),

f̂(x, y) = 7B2
0(x)B

2
0 (y) + 4B2

1(x)B
2
0 (y) +B2

0(x)B
2
1(y) +

6B2
2(x)B

2
0 (y) + 5B2

1(x)B
2
1 (y) + 2B2

0(x)B
2
2 (y) +

3B2
2(x)B

2
1 (y) + 8B2

1(x)B
2
2 (y) + 9B2

2(x)B
2
2 (y)

=
[

B2
0(x) B2

1(x) B2
2(x)

]











7 1 2

4 5 8

6 3 9





















B2
0(y)

B2
1(y)

B2
2(y)











,

and the polynomial ĝ(x, y) of degree (n1, n2) = (1, 1),

ĝ(x, y) = 2B1
0(x)B

1
0 (y) + 3B1

1(x)B
1
0 (y) + 4B1

0(x)B
1
1 (y) + 7B1

1(x)B
1
1 (y)

=
[

B1
0(x) B1

1(x)
]





2 4

3 7









B1
0(y)

B1
1(y)



 .

The polynomial f̂(x, y) can be written as the sum of three polynomials, f̂0(x),

f̂1(x) and f̂2(x),

f̂(x, y) = f̂0(x)B
2
0 (y) + f̂1(x)B

2
1 (y) + f̂2(x)B

2
2 (y),
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where145

f̂0(x) = 7B2
0(x) + 4B2

1(x) + 6B2
2(x),

f̂1(x) = B2
0(x) + 5B2

1(x) + 3B2
2(x),

f̂2(x) = 2B2
0(x) + 8B2

1(x) + 9B2
2(x).

The polynomial ĝ(x, y) is the sum of the polynomials ĝ0(x) and ĝ1(x),

ĝ(x, y) = ĝ0(x)B
1
0(y) + ĝ1(x)B

1
1(y),

where

ĝ0(x) = 2B1
0(x) + 3B1

1(x) and ĝ1(x) = 4B1
0(x) + 7B1

1(x).

The product ĥ(x, y), which is a polynomial of degree (3, 3), is the weighted

sum of four polynomials ĥ0(x), . . . , ĥ3(x), where the weights are the univariate

Bernstein basis functions in y,150

ĥ(x, y) = ĥ0(x)B
3
0 (y) + ĥ1(x)B

3
1 (y) + ĥ2(x)B

3
2(y) + ĥ3(x)B

3
3(y).

The coefficients of ĥ(x, y) are computed from (6) with n1 = n2 = 1,





















C1(f̂0(x))(20)(
1

0)
(30)

C1(f̂1(x))(21)(
1

0)
(31)

C1(f̂0(x))(20)(
1

1)
(31)

C1(f̂2(x))(22)(
1

0)
(32)

C1(f̂1(x))(21)(
1

1)
(32)

C1(f̂2(x))(22)(
1

1)
(33)

























ĝ0

ĝ1



 =

















ĥ0

ĥ1

ĥ2

ĥ3

















.

Each of the block matrices in the coefficient matrix is of order 4 × 2, ĝ ∈ R
4

and ĥ ∈ R
16. �

3. The Sylvester matrices of three polynomials that are defined in a

rectangular domain155

This section considers the forms of the Sylvester matrices and their subre-

sultant matrices for the polynomials (f̂(x, y), ĝ(x, y), ĥ(x, y)) that are defined in
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a rectangular domain,

f̂(x, y) =

m1
∑

i1=0

m2
∑

i2=0

âi1,i2B
m1

i1
(x)Bm2

i2
(y), (10)

ĝ(x, y) =

n1
∑

i1=0

n2
∑

i2=0

b̂i1,i2B
n1

i1
(x)Bn2

i2
(y), (11)

ĥ(x, y) =

p1
∑

i1=0

p2
∑

i2=0

ĉi1,i2B
p1

i1
(x)Bp2

i2
(y). (12)

If the polynomials have a GCD d̂t1,t2(x, y) of degree (t1, t2),

d̂t1,t2(x, y) =

t1
∑

i1=0

t2
∑

i2=0

êi1,i2B
t1
i1
(x)Bt2

i2
(y),

then there exist common divisors d̂k1,k2
(x, y) of degree (k1, k2), k1 = 0, . . . , t1,160

and k2 = 0, . . . , t2, such that

f̂(x, y) = ûk1,k2
(x, y)d̂k1,k2

(x, y), (13)

ĝ(x, y) = v̂k1,k2
(x, y)d̂k1,k2

(x, y), (14)

ĥ(x, y) = ŵk1,k2
(x, y)d̂k1,k2

(x, y), (15)

where

ûk1,k2
(x, y) =

m1−k1
∑

i1=0

m2−k2
∑

i2=0

ûi1,i2B
m1−k1

i1
(x)Bm2−k2

i2
(y),

v̂k1,k2
(x, y) =

n1−k1
∑

i1=0

n2−k2
∑

i2=0

v̂i1,i2B
n1−k1

i1
(x)Bn2−k2

i2
(y),

ŵk1,k2
(x, y) =

p1−k1
∑

i1=0

p2−k2
∑

i2=0

ŵi1,i2B
p1−k1

i1
(x)Bp2−k2

i2
(y).

The elimination of d̂k1,k2
(x, y) between (13), (14) and (15) yields

f̂(x, y)v̂k1,k2
(x, y)− ĝ(x, y)ûk1,k2

(x, y) = 0, (16)

f̂(x, y)ŵk1,k2
(x, y)− ĥ(x, y)ûk1,k2

(x, y) = 0, (17)

ĥ(x, y)v̂k1,k2
(x, y)− ĝ(x, y)ŵk1,k2

(x, y) = 0, (18)

and these three equations can be written in matrix form,

S̃k1,k2
(f̂ , ĝ, ĥ)xk1,k2

= 0, (19)
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where f̂ = f̂(x, y), ĝ = ĝ(x, y), ĥ = ĥ(x, y) and S̃k1,k2
(f̂ , ĝ, ĥ) is their (k1, k2)th165

3×3 block subresultant matrix. Each non-zero entry in this matrix-vector prod-

uct represents the product of two bivariate polynomials and it is therefore equal

to the product of three matrices, as shown in (6). It follows that S̃k1,k2
(f̂ , ĝ, ĥ)

can be written as

S̃k1,k2
(f̂ , ĝ, ĥ) = D̃−1

k1,k2
T̃k1,k2

(f̂ , ĝ, ĥ)Q̃k1,k2
, (20)

where D̃−1
k1,k2

is equal to170

diag
[

D−1
m1+n1−k1,m2+n2−k2

D−1
m1+p1−k1,m2+p2−k2

D−1
n1+p1−k1,n2+p2−k2

]

,

andD−1
m1+n1−k1,m2+n2−k2

, which is of order (m1+n1−k1+1)(m2+n2−k2+1), is

defined in (7). The matrices D−1
m1+p1−k1,m2+p2−k2

and D−1
n1+p1−k1,n2+p2−k2

are

defined similarly.

The block matrix T̃k1,k2
(f̂ , ĝ, ĥ) is equal to











Tn1−k1,n2−k2
(f̂) Tm1−k1,m2−k2

(ĝ)

Tp1−k1,p2−k2
(f̂) Tm1−k1,m2−k2

(ĥ)

Tn1−k1,n2−k2
(ĥ) −Tp1−k1,p2−k2

(ĝ)











,

where each block has the form (8), and the diagonal matrix Q̃k1,k2
is equal to175

Q̃k1,k2
= diag

[

Qn1−k1,n2−k2
Qp1−k1,p2−k2

Qm1−k1,m2−k2

]

,

where Qn1,n2
is defined in (9).

Equation (19) has a non-trivial solution for k1 = 0, . . . , t1, and k2 = 0, . . . , t2,

xk1,k2
=

[

v̂T
k1,k2

ŵT
k1,k2

−ûT
k1,k2

]T

, (21)

where ûk1,k2
, v̂k1,k2

and ŵk1,k2
are the vectors of the coefficients of the polyno-

mials ûk1,k2
(x, y), v̂k1,k2

(x, y) and ŵk1,k2
(x, y), respectively.

The matrix S̃k1,k2
(f̂ , ĝ, ĥ) can be defined in terms of its row partitions,180

S̃k1,k2
(f̂ , ĝ, ĥ) =











Ra,k1,k2

Rb,k1,k2

Rc,k1,k2











, (22)
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where

Ra,k1,k2
=

[

Cn1−k1,n2−k2
(f̂) 0a Cm1−k1,m2−k2

(ĝ)
]

,

(23)

Rb,k1,k2
=

[

0b Cp1−k1,p2−k2
(f̂) Cm1−k1,m2−k2

(ĥ)
]

,

(24)

Rc,k1,k2
=

[

Cn1−k1,n2−k2
(ĥ) −Cp1−k1,p2−k2

(ĝ) 0c

]

,

(25)

and 0a, 0b and 0c are zero matrices of orders

0a : (m1 + n1 − k1 + 1)(m2 + n2 − k2 + 1)× (p1 − k1 + 1)(p2 − k2 + 1),

0b : (m1 + p1 − k1 + 1)(m2 + p2 − k2 + 1)× (n1 − k1 + 1)(n2 − k2 + 1),

0c : (n1 + p1 − k1 + 1)(n2 + p2 − k2 + 1)× (m1 − k1 + 1)(m2 − k2 + 1).

The Sylvester subresultant matrix S̃k1,k2
(f̂ , ĝ, ĥ) in (22) is one of four forms of

this matrix for three polynomials [4, §4],[5, §3]. The other three forms follow

because any two of the three equations (16), (17) and (18) allow the third185

equation to be derived. For example, (16) and (17) can be written in matrix

form,

Ŝk1,k2
(f̂ , ĝ, ĥ)xk1,k2

= 0,

where xk1,k2
is defined in (21). The matrix Ŝk1,k2

(f̂ , ĝ, ĥ) is the 2 × 3 block

subresultant matrix and it is given by

Ŝk1,k2
(f̂ , ĝ, ĥ) = D̂−1

k1,k2
T̂k1,k2

(f̂ , ĝ, ĥ)Q̂k1,k2
=





Ra,k1,k2

Rb,k1,k2



 , (26)

where D̂−1
k1,k2

,T̂k1,k2
(f̂ , ĝ, ĥ) and Q̂k1,k2

are similar to D̃−1
k1,k2

,T̃k1,k2
(f̂ , ĝ, ĥ) and190

Q̃k1,k2
, and Ra,k1,k2

and Rb,k1,k2
are defined in (23) and (24), respectively.

The other pairs of equations from (16), (17) and (18) yield Sylvester matrices

and subresultant matrices that are defined in terms of (Ra,k1,k2
,Rc,k1,k2

) and

(Rb,k1,k2
,Rc,k1,k2

), where Rc,k1,k2
is defined in (25). It follows that there are
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four forms of the Sylvester matrix and its subresultant matrices, one 3×3 block195

matrix and three 2× 3 block matrices.

Theorem 3.1 considers the computation of the degrees t1 and t2 of the GCD

of (f̂(x, y), ĝ(x, y), ĥ(x, y)) from S̃k1,k2
(f̂ , ĝ, ĥ) and Ŝk1,k2

(f̂∗, ĝ∗, ĥ∗), where

k1 = 1, . . . ,min(m1, n1, p1) and k2 = 1, . . . ,min(m2, n2, p2), (27)

and Ŝk1,k2
(f̂∗, ĝ∗, ĥ∗) denotes that the polynomials (f̂(x, y), ĝ(x, y), ĥ(x, y)) can

be considered in any order. Each ordering yields one of the three variants of the200

2 × 3 block subresultant matrices discussed above. The proof of the theorem

follows from the same result for univariate polynomials [1, 2, 4].

Theorem 3.1. The degrees t1 and t2 of the GCD of (f̂(x, y), ĝ(x, y), ĥ(x, y))

are equal to, respectively, the largest indices k1 and k2 that are defined in

(27), such that the subresultant matrices S̃k1,k2
(f̂ , ĝ, ĥ) and Ŝk1,k2

(f̂∗, ĝ∗, ĥ∗)205

are rank deficient, where t1(t2) is the degree of the GCD when it is written as

a polynomial in x(y) whose coefficients are polynomials in y(x).

The four forms of the Sylvester matrix and its subresultant matrices are of the

form D−1TQ where D−1 and Q are diagonal matrices and T is a matrix whose

entries include binomial terms and the coefficients of the polynomials, as shown210

in (20). The matrices D−1 and Q are non-singular and thus

rank D−1TQ = rank D−1T = rank TQ = rank T,

from which it follows that the degree of the GCD of (f̂(x, y), ĝ(x, y), ĥ(x, y)) can

be calculated from the rank loss of each of the matrices D−1TQ,D−1T, TQ and

T .

Theorem 3.1 considers the GCD of three polynomials, but the coefficients215

of the polynomials are corrupted by noise in practical problems. It is there-

fore assumed that the given polynomials are coprime, but that they possess an

approximate greatest common divisor (AGCD) that is near the GCD of the

exact forms of the polynomials. An AGCD of three polynomials is defined in

Definition 3.1.220
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Definition 3.1 (An AGCD). A polynomial d(x, y) of degree (t1, t2) is an

AGCD of (f̂(x, y), ĝ(x, y), ĥ(x, y)) if it is the polynomial of maximum degree

that is an exact divisor of (f̂(x, y) + f̃(x, y), ĝ(x, y) + g̃(x, y), ĥ(x, y) + h̃(x, y))

for perturbations
∥

∥

∥
f̃
∥

∥

∥
≤ εf , ‖g̃‖ ≤ εg and

∥

∥

∥
h̃
∥

∥

∥
≤ εh, and

∥

∥

∥
f̃
∥

∥

∥

2

+ ‖g̃‖2 +
∥

∥

∥
h̃
∥

∥

∥

2

is

minimised over all polynomials of degree (t1, t2).225

Example 3.1. Consider the Bernstein forms of the exact polynomials f̂(x, y),

ĝ(x, y) and ĥ(x, y) of degrees (m1 = 17,m2 = 13), (n1 = 20, n2 = 19) and

(p1 = 10, p2 = 13) respectively, and whose factorised forms are

f̂(x, y) = (x− 0.554687987932164654)3(x + 0.21657951321)×

(x+ y − 0.46578784351654)3(x + y + 0.0124)6 ×

(x2 + y2 + 0.5679814324687)2,

ĝ(x, y) = (x+ 0.21657951321)(x+ y − 0.46578784351654)3×

(x+ y + 0.4512)6(x2 + y2 − 0.00104751807)3×

(x2 + y2 + 0.5679814324687)2,

ĥ(x, y) = (x+ 0.21657951321)(y− 0.2465879841351465498)4×

(x+ y − 0.46578784351654)3(12x2 + y2 − 0.348798)×

(x2 + y2 + 0.5679814324687)2.

The polynomials (f̂(x, y), ĝ(x, y), ĥ(x, y)) have a GCD d̂t1,t2(x, y) of degree (8, 7),

d̂(x, y) = (x+ 0.21657951321)(x2 + y2 + 0.5679814324687)2×

(x+ y − 0.46578784351654)3.

Noise was added to the coefficients of (f̂(x, y), ĝ(x, y), ĥ(x, y)) such that the230

coefficients of the inexact polynomials (f(x, y), g(x, y), h(x, y)) are

ai1,i2 = âi1,i2 + ǫf,i1,i2 âi1,i2rf,i1,i2 , i1 = 0, . . . ,m1; i2 = 0, . . . ,m2,

bj1,j2 = b̂j1,j2 + ǫg,j1,j2 b̂j1,j2rg,j1,j2 , j1 = 0, . . . , n1; j2 = 0, . . . , n2,

ck1,k2
= ĉk1,k2

+ ǫh,k1,k2
ĉk1,k2

rh,k1,k2
, k1 = 0, . . . , p1; k2 = 0, . . . , p2,

(28)

where {ǫf,i1,i2}, {ǫg,j1,j2} and {ǫh,k1,k2
} are uniformly distributed random vari-

ables in the interval [10−12, 10−10], and {rf,i1,i2}, {rg,j1,j2} and {rh,k1,k2
} are
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uniformly distributed random variables in the interval [−1, 1]. The coefficients

of (f(x, y), g(x, y), h(x, y)) are plotted in Figure 1, and it is seen that the co-235

efficients of f(x, y) and g(x, y) span many more orders of magnitude than the

coefficients of h(x, y).

Heat maps of the binomial terms in the four variants of the 2 × 3 block

matrix (26) for k1 = k2 = 1 are plotted in Figure 2 and it is seen that the

binomial terms in the four non-zero block matrices in
{

D̂−1
1,1T̂1,1(f, g, h)Q̂1,1

}

240

span the smallest range. Figure 3 shows the minimum singular values of these

variants and it is seen that {D̂−1
k1,k2

T̂k1,k2
(f, g, h)Q̂k1,k2

} is the optimal set of

subresultant matrices for the computation of the degree of an AGCD because

the separation between their numerically zero and non-zero minimum singular

values is most clearly defined. This result is consistent with other results that245

require AGCD computations on Bernstein polynomials [3, 4, 5]. �

0 50 100 150 200 250 300 350 400
-15

-10

-5

0

5

Figure 1: The coefficients of (f(x, y), g(x, y), h(x, y)), on a logarithmic scale, in Example 3.1.

Example 3.1 shows that the ratio r of the entry of maximum magnitude to

the entry of minimum magnitude assumes its minimum value for the set of sub-

resultant matrices {D̂−1
k1,k2

T̂k1,k2
(f̂ , ĝ, ĥ)Q̂k1,k2

}. The ratio r may be large, even

for this optimal form of the Sylvester matrix and its subresultant matrices, and250

it is desirable to minimise r further because a large value may cause numerical

problems. This minimisation is achieved by processing (f̂(x, y), ĝ(x, y), ĥ(x, y))
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(a) T̂k1,k2
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(b) D̂−1
k1,k2

T̂k1,k2
(f, g, h)

0

2

4

6
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16

(c) T̂k1,k2
(f, g, h)Q̂k1,k2

-16

-14

-12

-10

-8

-6

-4

-2

0

(d) D̂−1
k1,k2

T̂k1,k2
(f, g, h)Q̂k1,k2

Figure 2: Heat maps of the binomial terms, on a logarithmic scale, in the four variants of

the 2 × 3 block subresultant matrix (26) for k1 = k2 = 1, where f = f(x, y), g = g(x, y) and

h = h(x, y), in Example 3.1.

by three operations before computations are performed on their Sylvester ma-

trices and subresultant matrices. These operations are considered in [3, 4, 5] for

GCD computations on univariate and bivariate Bernstein polynomials, and it255

is shown that the inclusion of these operations yields considerably improved re-

sults. These operations for polynomials that are defined in a rectangular domain

are considered in the next section.
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(a) T̂k1,k2
(f, g, h) (b) D̂−1

k1,k2
T̂k1,k2

(f, g, h)

(c) T̂k1,k2
(f, g, h)Q̂k1,k2

(d) D̂−1
k1,k2

T̂k1,k2
(f, g, h)Q̂k1,k2

Figure 3: The minimum singular values σ̇k1,k2
for the four variants of the 2× 3 block subre-

sultant matrix (26), where f = f(x, y), g = g(x, y) and h = h(x, y), in Example 3.1.

4. Preprocessing operations

The preprocessing operations performed on bivariate polynomials are exten-260

sions of their forms for univariate polynomials. The first preprocessing oper-

ation requires the normalisation of the coefficients of each of the polynomials

(f̂(x, y), ĝ(x, y), ĥ(x, y)) by the geometric mean of its coefficients [5, §5]. This

operation guarantees that each block matrix in the Sylvester matrices and their

subresultant matrices is better balanced. The second preprocessing operation265

requires a change in the independent variables from (x, y) to (ω1, ω2),

ω1 = θ1,k1,k2
x and ω2 = θ2,k1,k2

y, (29)

where θ1,k1,k2
and θ2,k1,k2

are constants and the orders k1 and k2 of the sub-

resultant matrices are included in the notation because these constants must

be determined for each subresultant matrix. The third preprocessing operation

follows because the GCD of (f̂(x, y), ĝ(x, y), ĥ(x, y)) is defined to within two270
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arbitrary non-zero constants λk1,k2
and ρk1,k2

,

GCD (f̂ , ĝ, ĥ) ∼ GCD(λk1,k2
f̂ , ĝ, ρk1,k2

ĥ),

where ∼ denotes equivalence to within a non-zero constant. As in (29), the

orders k1 and k2 of the subresultant matrices are included because the con-

stants λk1,k2
and ρk1,k2

must be computed for each subresultant matrix. These

constants, θ1,k1,k2
and θ2,k1,k2

are obtained from the solution of a linear pro-275

gramming (LP) problem [5, §5].

These operations yield the polynomials,

λk1,k2
f̃k1,k2

(ω1, ω2) = λk1,k2

m1
∑

i1=0

m2
∑

i2=0

āi1,i2θ
i1
1,k1,k2

θi22,k1,k2

(

m1

i1

)(

m2

i2

)

×

(1− θ1,k1,k2
ω1)

m1−i1(1− θ2,k1,k2
ω2)

m2−i2ωi1
1 ωi2

2 ,

(30)

g̃k1,k2
(ω1, ω2) =

n1
∑

i1=0

n2
∑

i2=0

b̄i1,i2θ
i1
1,k1,k2

θi22,k1,k2

(

n1

i1

)(

n2

i2

)

×

(1− θ1,k1,k2
ω1)

n1−i1(1− θ2,k1,k2
ω2)

n2−i2ωi1
1 ωi2

2 ,

(31)

ρk1,k2
h̃k1,k2

(ω1, ω2) = ρk1,k2

p1
∑

i1=0

p2
∑

i2=0

c̄i1,i2θ
i1
1,k1,k2

θi22,k1,k2

(

p1

i1

)(

p2

i2

)

×

(1− θ1,k1,k2
ω1)

p1−i1(1− θ2,k1,k2
ω2)

p2−i2ωi1
1 ωi2

2 ,

(32)

whose coefficients āi1,i2 , b̄i1,i2 and c̄i1,i2 are the normalised forms of the given co-

efficients âi1,i2 , b̂i1,i2 and ĉi1,i2 , or their noisy forms, and they must be computed

for each subresultant matrix. It is assumed in the sequel that the preprocessing280

operations have been implemented, such that all computations are performed

on the polynomials (30), (31) and (32).

5. The computation of the degree of the GCD

Two methods for the computation of the degree of the GCD of the polyno-

mials (f̂(x, y), ĝ(x, y), ĥ(x, y)), and any two of these polynomials, are described285

20



in this section. The first method, called BiVariate Greatest Common Divisor

(BVGCD), is an extension of the method for univariate polynomials and is com-

putationally expensive. The second method, called BiVariate Degree Reducing

Greatest Common Divisor (BVDRGCD), is much more efficient and uses de-

gree elevated polynomials. These methods are described in Sections 5.1 and 5.2290

respectively.

5.1. The BiVariate Greatest Common Divisor (BVGCD) method

The set of subresultant matrices of the bivariate polynomials f̂(x, y) and

ĝ(x, y) forms the two-dimensional array,

Sk1,k2
(f̂ , ĝ), k1 = 1, . . . ,min(m1, n1); k2 = 1, . . . ,min(m2, n2).

The rank of the (k1, k2)th subresultant matrix is defined by ρ̇k1,k2
= log10 σ̇k1,k2

,295

where σ̇k1,k2
is its minimum (numerically) non-zero singular value. The degree

of the GCD is therefore given by the maximum value of the difference δρ̇k1,k2

in ρ̇k1,k2
,

δρ̇k1,k2
= ρ̇k1+1,k2+1 − ρ̇k1,k2

= log10
σ̇k1+1,k2+1

σ̇k1,k2

,

and thus the degree of the GCD is given by

(t1, t2) = argmax
k1,k2

{δρ̇k1,k2
}.

This method for the computation of the degree of the GCD of two bivariate300

polynomials is computationally expensive because it is necessary to construct,

preprocess and compute the singular values of (min(m1, n1)−1)×(min(m2, n2)−

1) matrices. A more efficient method that reduces the bivariate GCD problem

to two univariate GCD problems is considered in the next section.

5.2. The BiVariate Degree Reducing Greatest Common Divisor (BVDRGCD)305

method

The BVDRGCD method reduces the computation of the degrees t1 and t2

of the GCD of f̂(x, y) and ĝ(x, y) from a two-dimensional problem to a one-

dimensional problem that has two stages. The first stage determines a value
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t∗ such that either t1 or t2 can be deduced. Then, given either t1 or t2, the310

value of t2 or t1 is computed from the set of subresultant matrices {St1,k2
, k2 =

1, . . . ,min(m2, n2)} or {Sk1,t2 , k1 = 1, . . . ,min(m1, n1)}. The first stage of the

algorithm requires the degree elevation of f̂(x, y) and ĝ(x, y) [9].

Consider the polynomials f̂(x, y) and ĝ(x, y) of degrees (m1,m2) and (n1, n2),

which are defined in (1) and (4) respectively, that have a GCD d̂t1,t2(x, y) of315

degree (t1, t2). Let f̂(x, y) and ĝ(x, y) be degree elevated by (p1, p2) and (q1, q2)

respectively, such that their degree elevated forms are f̂∗(x, y) and ĝ∗(x, y).2

The polynomial f̂∗(x, y) can be written as

f̂∗(x, y) = ût1,t2,i1,i2(x, y)d̂t1,t2,p1−i1,p2−i2(x, y),

where i1 = 0, . . . , p1, i2 = 0, . . . , p2, and the polynomial ût1,t2,i1,i2(x, y) is the

form of ût1,t2(x, y) that has been degree elevated by (i1, i2), and the polynomial320

d̂t1,t2,p1−i1,p2−i2(x, y) is the form of d̂t1,t2(x, y) that has been degree elevated by

(p1 − i1, p2 − i2),

deg ût1,t2,i1,i2(x, y) = (m1 − t1 + i1,m2 − t2 + i2) ,

deg d̂t1,t2,p1−i1,p2−i2(x, y) = (t1 + p1 − i1, t2 + p2 − i2) .

The polynomial f̂∗(x, y) has a divisor of degree (t1 + p1, t2 + p2), which is the

degree elevated form of d̂t1,t2(x, y) defined by i1 = i2 = 0, that is, the degree of

the degree elevated form of d̂t1,t2(x, y) is its maximum possible value. Similarly,325

the polynomial ĝ∗(x, y) can be written as

ĝ∗(x, y) = v̂t1,t2,i1,i2(x, y)d̂t1,t2,q1−i1,q2−i2(x, y),

where i1 = 0, . . . , q1, i2 = 0, . . . , q2,

deg v̂t1,t2,i1,i2(x, y) = (n1 − t1 + i1, n2 − t2 + i2) ,

deg d̂t1,t2,q1−i1,q2−i2(x, y) = (t1 + q1 − i1, t2 + q2 − i2) ,

2The degree elevation (p1, p2) of f̂(x, y) must not be confused with the degree (p1, p2) of

ĥ(x, y) in (12).
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and ĝ∗(x, y) has a divisor of degree (t1 + q1, t2 + q2). The GCD of f̂(x, y) and

ĝ(x, y) is therefore given by d̂t1,t2,min(p1,q1),min(p2,q2)(x, y), which is of degree

(t1 +min(p1, q1), t2 +min(p2, q2)), and is a degree elevated form of d̂t1,t2(x, y).

The third and fourth subscripts, (min(p1, q1),min(p2, q2)), denote the number

of degree elevations of d̂t1,t2(x, y), and thus

Sk1,k2
(f̂∗, ĝ∗)xk1,k2

= 0,

has non-zero solutions for

k1 = 1, . . . , t1 +min(p1, q1), k2 = 1, . . . , t2 +min(p2, q2),

and only zero solutions for

k1 = t1 +min(p1, q1) + 1, . . . ,min(m∗, n∗),

k2 = t2 +min(p2, q2) + 1, . . . ,min(m∗, n∗),

where330

m∗ = min (m1 + p1, n1 + q1) and n∗ = min (m2 + p2, n2 + q2).

If Sk,k(f̂
∗, ĝ∗) is rank deficient, then the inequalities

k ≤ t1 +min(p1, q1) and k ≤ t2 +min(p2, q2),

are satisfied, and if Sk+1,k+1(f̂
∗, ĝ∗) has full rank, then one or both of the

inequalities

k + 1 > t1 +min(p1, q1) and k + 1 > t2 +min(p2, q2),

are satisfied.

Theorem 5.1. Let (f̂(x, y), ĝ(x, y), ĥ(x, y)), which are defined in (10), (11) and335

(12) respectively, be degree elevated by (p1, p2), (q1, q2) and (r1, r2) respectively,

thereby yielding the polynomials (f̂∗(x, y), ĝ∗(x, y), ĥ∗(x, y)) respectively, such

that f̂∗(x, y) is of degree (m∗,m∗), ĝ∗(x, y) is of degree (n∗, n∗) and ĥ∗(x, y)

is of degree (p∗, p∗), where m∗ = max(m1,m2), n
∗ = max(n1, n2) and p∗ =
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max(p1, p2). Let the integer t be such that Ṡt,t(f̂
∗, ĝ∗, ĥ∗) is rank deficient and340

Ṡt+1,t+1(f̂
∗, ĝ∗, ĥ∗) has full rank, where Ṡk1,k2

(f̂∗, ĝ∗, ĥ∗) is the Sylvester matrix

or (k1, k2)th subresultant matrix of one of its 2 × 3 block matrix forms or its

3× 3 block matrix form. Then either

t = t1 +min(p1, q1, r1), (33)

holds, or

t = t2 +min(p2, q2, r2), (34)

holds, or345

t = t1 +min(p1, q1, r1) and t = t2 +min(p2, q2, r2). (35)

hold.

Proof It follows from the rank deficiency of Ṡt,t(f̂
∗, ĝ∗, ĥ∗) that

t ≤ t1 +min(p1, q1, r1) and t ≤ t2 +min(p2, q2, r2), (36)

and it follows from the full rank property of Ṡt+1,t+1(f̂
∗, ĝ∗, ĥ∗) that one of the

situations S1, S2 and S3 holds:

S1: t+ 1 > t1 +min(p1, q1, r1) and no constraint between t and t2

S2: t+ 1 > t2 +min(p2, q2, r2) and no constraint between t and t1

S3: t+ 1 > t1 +min(p1, q1, r1) and t+ 1 > t2 +min(p2, q2, r2).

Equation (33) follows from the first inequality in (36) and the inequality in350

S1. Equation (34) follows similarly from the second inequality in (36) and the

inequality in S2, and (35) follows from (36) and S3.

The three situations (33), (34) and (35) must be considered.

1. If (33) is satisfied, then t2 is determined from the equations

Ṡt1,k2
(f̂ , ĝ, ĥ)xt1,k2

= 0, k2 = 1, . . . ,min(m2, n2, p2).

These equations have non-trivial solutions for k2 = 1, . . . , t2, and only

trivial solutions for k2 = t2 + 1, . . . ,min(m2, n2, p2). The degree t2 is355

therefore determined from the change from rank deficiency to full rank of

the matrices Ṡt1,k2
(f̂ , ĝ, ĥ), k2 = 1, . . . ,min(m2, n2, p2).
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2. If (34) is satisfied, then following item 1 above, t1 is determined from the

change from rank deficiency to full rank of the matrices Ṡk1,t2(f̂ , ĝ, ĥ),

k1 = 1, . . . ,min(m1, n1, p1).360

3. If (35) is satisfied, then

t1 = t−min(p1, q1, r1) and t2 = t−min(p2, q2, r2).

�

For a given value of t, it is necessary to determine the equation, either (33) or

(34), that is satisfied. The subresultant matrices Ṡt1,k2
(f̂ , ĝ, ĥ) and Ṡk1,t2(f̂ , ĝ, ĥ)

are constructed and two candidate pairs (t1, t2) are computed. The degree of365

the GCD of (f̂(x, y), ĝ(x, y), ĥ(x, y)) is the maximum of these candidate pairs.

Example 5.1. Let the degrees of the Bernstein polynomials f̂(x, y) and ĝ(x, y)

be, respectively, (m1,m2) = (16, 12) and (n1, n2) = (14, 10),

f̂(x, y) = (x+ y + 0.0124)5(x+ 0.56)4(x2 + y2 + 0.51)2(x+ y + 1.12)3,

ĝ(x, y) = (x+ y + 0.4512)3(x+ 0.56)4(x2 + y2 + 0.51)2(x+ y + 1.12)3.

The factorised form of their GCD is

d̂(x, y) = (x+ 0.56)4(x2 + y2 + 0.51)2(x+ y + 1.12)3.

Noise was added to the coefficients of f̂(x, y) and ĝ(x, y) such that the coefficients370

of the inexact polynomials f(x, y) and g(x, y) are

ai1,i2 = âi1,i2 + ǫf,i1,i2 âi1,i2rf,i1,i2 , i1 = 0, . . . ,m1; i2 = 0, . . . ,m2,

bj1,j2 = b̂j1,j2 + ǫg,j1,j2 b̂j1,j2rg,j1,j2 , j1 = 0, . . . , n1; j2 = 0, . . . , n2,

where {ǫf,i1,i2} = {ǫg,j1,j2} = 10−8, and {rf,i1,i2} and {rg,j1,j2} are uniformly

distributed random variables in the interval [−1, 1].

The BVGCD method proceeds by preprocessing f(x, y) and g(x, y) for each

subresultant matrix Sk1,k2
(λk1,k2

f̃k1,k2
, g̃k1,k2

), k1 = 1, . . . , 14, k2 = 1, . . . , 10,375

where f̃k1,k2
= f̃k1,k2

(ω1, ω2) and g̃k1,k2
= g̃k1,k2

(ω1, ω2) are defined in (30) and

(31) respectively, and computing the minimum singular value of each subresul-

tant matrix. These singular values σ̇k1,k2
are plotted in Figure 4, and the degree

of an AGCD is (11, 7) since the maximum entry in the set {δρ̇k1,k2
} is δρ̇11,7.
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Figure 4: The minimum singular values σ̇k1,k2
of the preprocessed subresultant matrices

Sk1,k2
(λk1,k2

f̃k1,k2
, g̃k1,k2

) in Example 5.1.

Consider now the BVDRGCD method, the first stage of which requires that380

f(x, y) and g(x, y) be degree elevated to (m∗,m∗) = (16, 16) and (n∗, n∗) =

(14, 14) respectively, that is, f(x, y) and g(x, y) are degree elevated by (p1, p2) =

(0, 4) and (q1, q2) = (0, 4), respectively. The minimum singular values of the sub-

resultant matrices Sk,k(λk,k f̃
∗

k,k, g̃
∗

k,k), k = 1, . . . ,min(m∗, n∗), were computed,

where λk,k f̃
∗

k,k(ω1, ω2) and g̃∗k,k(ω1, ω2) are the degree elevated polynomials af-385

ter preprocessing. These singular values are plotted in Figure 5(i) and it is seen

that t = 11, and thus

either t1 = t−min(p1, q1) = 11− 0 = 11,

or t2 = t−min(p2, q2) = 11− 4 = 7.

Both t1 and t2 are correct, but assume that only t2 is determined correctly. In

this situation, the degree t1 of an AGCD with respect to x is computed from

the minimum singular values of the matrices Sk1,t2(λk1,t2 f̃k1,t2 , g̃k1,t2), k1 =390

1, . . . , 14. They are plotted in Figure 5(ii) and it is seen that t1 = 11.

The BVGCD method required the evaluation of 140 subresultant matrices,

but the BVDRGCD method required the preprocessing and evaluation of only

28 subresultant matrices. �
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Figure 5: The minimum singular values of the preprocessed subresultant matrices using the

BVDRGCD method in Example 5.1.

5.3. The coefficients of an AGCD395

The coefficients of an AGCD of (f̃(ω1, ω2), g̃(ω1, ω2), h̃(ω1, ω2)) are com-

puted from one of the 2 × 3 block subresultant matrices, or the 3 × 3 block

subresultant matrix S̃t1,t2(λt1,t2 f̃t1,t2 , g̃t1,t2 , ρt1,t2 h̃t1,t2), using the method de-

scribed in [5] for bivariate Bernstein polynomials defined in a triangular domain.

These coefficients are defined in the variables (ω1, ω2) and the transformation400

to the variables (x, y) follows from (29).

6. Complexity

The algorithms described in this paper involve computations on large ma-

trices that have a block structure, where each block is of the form D−1TQ. It

is adequate to consider one of the four forms of the Sylvester matrix and its405

subresultant matrices because the determination of the complexity of the com-

putations for the other three forms follows identically. Consider therefore the

matrices S̃k1,k2
(f̂ , ĝ, ĥ), which are defined in (20) and of order p× q where

p = (m1 + n1 − k1 + 1)(m2 + n2 − k2 + 1) +

(m1 + p1 − k1 + 1)(m2 + p2 − k2 + 1) +

(n1 + p1 − k1 + 1)(n2 + p2 − k2 + 1),
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and

q = (m1 − k1 + 1)(m2 − k2 + 1) + (n1 − k1 + 1)(n2 − k2 + 1) +

(p1 − k1 + 1)(p2 − k2 + 1),

and thus the order of S̃k1,k2
(f̂ , ĝ, ĥ) is a quadratic function of the degrees410

(m1,m2, n1, n2, p1, p2) and the subresultant indices (k1, k2).

The complexity of the computation of an AGCD is governed by the complex-

ity of the preprocessing operations and the SVD of the matrices S̃k1,k2
(f̂ , ĝ, ĥ).

The preprocessing operations require the solution of the LP problem,

min cTx subject to Ax ≥ b,

where A ∈ R
r×s, r is the number of constraints,415

r = 2 ((m1 + 1) (m2 + 1) + (n1 + 1) (n2 + 1) + (p1 + 1) (p2 + 1)) ,

and s = 6 is the number of variables. All the operations in the simplex method

for the solution of the LP problem are simple matrix and vector calculations, the

total cost of which is O(rs) arithmetic operations if full pricing is used. The cost

of refactorisation of the basis matrix in the simplex method is O(r3) operations

and thus if O(r) iterations are performed, the total cost of the simplex method420

is O(r4 + r2s) ≈ O(r4) arithmetic operations if r ≫ s [13, pp. 222, 270].

The degree and coefficients of an AGCD are calculated using the SVD of

the matrices S̃k1,k2
(f̂ , ĝ, ĥ) after the preprocessing operations have been imple-

mented. This decomposition requires O(4p2q + 8pq2 + 9q3) arithmetic opera-

tions [11, p. 493], and the BVDRGCD method for the calculation of the degree425

of an AGCD requires that the SVD for two univariate AGCD computations be

computed for each subresultant matrix, after (f̂(x, y), ĝ(x, y), ĥ(x, y)) have been

degree elevated. It follows that the total complexity of the SVD computations is

significant, and the combination of this result and the complexity of the simplex

method for the solution of the LP problem shows that the method described in430

this paper is computationally expensive.
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7. Examples

This section contains two examples that demonstrate an approximate fac-

torisation of two or three Bernstein polynomials defined in a rectangular domain.

Example 7.1. Consider the polynomials in Example 3.1. Noise was added435

to their coefficients such that the inexact coefficients are given by (28), where

{rf,i1,i2}, {rg,j1,j2} and {rh,k1,k2
} are uniformly distributed random variables

in the interval [−1, 1], and {ǫf,i1,i2}, {ǫg,j1,j2} and {ǫh,k1,k2
} are uniformly dis-

tributed random variables in the interval [10−10, 10−8].

Consider initially the BVGCD method for the determination of the degree440

of an AGCD of the perturbed polynomials. The minimum singular value σ̇k1,k2

of each matrix in the set {S̃k1,k2
(f, g, h)} before the preprocessing operations

are implemented is plotted in Figure 6(i) and the minimum singular value of

each matrix in the set {S̃k1,k2
(λk1,k2

f̃k1,k2
, g̃k1,k2

, ρk1,k2
h̃k1,k2

)} after the prepro-

cessing operations are implemented is plotted in Figure 6(ii). There does not445

exist a significant separation between the numerically zero and non-zero singu-

lar values of the unprocessed subresultant matrices (Figure 6(i)) and thus the

degree of an AGCD cannot be determined reliably. There is, however, a distinct

separation between the numerically zero and non-zero minimum singular values

of the preprocessed subresultant matrices (Figure 6(ii)) and the degree of an450

AGCD is determined correctly and given by (t1, t2) = (8, 7).

The BVDRGCD method was then applied, and (f(x, y), g(x, y), h(x, y)),

which are of degrees (17, 13), (20, 19) and (10, 13) respectively, were degree

elevated such that (f∗(x, y), g∗(x, y), h∗(x, y)) are of degrees m∗ = 17, n∗ = 20

and p∗ = 13. The number of degree elevations of (f(x, y), g(x, y), h(x, y)) are455

(p1, p2) = (0, 4), (q1, q2) = (0, 1) and (r1, r2) = (3, 0). The minimum singular

values of the set of subresultant matrices after the implementation of the pre-

processing operations, {S̃k,k(λk,k f̃
∗

k,k, g̃
∗

k,k, ρk,kh̃
∗

k,k)}, are plotted in Figure 7. It

is seen that t = 7 and thus

either t1 = t−min(p1, q1, r1) = 7 or t2 = t−min(p2, q2, r2) = 7.
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(i) (ii)

Figure 6: The minimum singular values σ̇k1,k2
of the subresultant matrices (i) before and (ii)

after the implementation of the preprocessing operations, in Example 7.1.

Assume that the candidate degree t1 = 7 is correct, and thus the degree t2 of460

an AGCD with respect to y is equal to the index of the last numerically rank

deficient matrix in the set {S̃t1,k2
(λt1,k2

f̃∗

t1,k2
, g̃∗t1,k2

, ρt1,k2
h̃∗

t1,k2
)} of subresul-

tant matrices. The minimum singular values of these subresultant matrices are

plotted in Figure 8(i) and it is seen that the degree of an AGCD with respect

to y is t2 = 7.465

Alternatively, assume that the candidate degree t2 = 7 is correct, and thus

the degree t1 of an AGCD with respect to x is equal to the index of the last nu-

merically rank deficient matrix in the set {S̃k1,t2(λk1,t2 f̃
∗

k1,t2
, g̃∗k1,t2

, ρk1,t2 h̃
∗

k1,t2
)}

of subresultant matrices. The minimum singular values of these matrices are

plotted in Figure 8(ii), from which the degree of an AGCD with respect to x is470

t1 = 8. The two candidate pairs are (t1, t2) = (7, 7) and (t1, t2) = (8, 7), and

thus the degree of an AGCD is (8, 7).

The BVGCD method required the evaluation of 150 subresultant matrices

but the BVDRGCD method required the evaluation of only 36 subresultant

matrices, which represents a significant reduction in computation time. �475

Example 7.2. Consider the Bernstein forms of the exact polynomials f̂(x, y)

and ĝ(x, y) of degrees (29, 15) and (20, 17) respectively, and whose factorisations
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Figure 8: BVDRGCD Stage 2: The minimum singular values in the second stage of the

BVDRGCD method in Example 7.1.

are

f̂(x, y) = (x− 0.8365498798)3(x− 0.145487821)10 ×

(x− 0.126479841321)5(x + y − 0.16546978321)2×

(x+ y + 0.5679814354)3(x + y2 − 0.2564878)4 ×

(x2 + y2 − 0.46549871232156),

ĝ(x, y) = (x− 0.8365498798)3(x− 0.126479841321)5×

(y − 0.45489789123123)5(x+ y − 0.35648979126321)3×

(x+ y − 0.16546978321)2(x+ y + 0.5679814354)3 ×

(x2 + y2 − 0.46549871232156)(x2 + y2 − 0.45489789123123).

31



The polynomials f̂(x, y) and ĝ(x, y) have a GCD d̂t1,t2(x, y) of degree (t1, t2) =

(15, 7),480

d̂t1,t2(x, y) = (x − 0.8365498798)3(x− 0.126479841321)5×

(x + y − 0.16546978321)2(x+ y + 0.5679814354)3 ×

(x2 + y2 − 0.46549871232156).

Noise was added to the coefficients of f̂(x, y) and ĝ(x, y), such that the coeffi-

cients of the inexact polynomials f(x, y) and g(x, y) are

ai1,i2 = âi1,i2 + ǫf,i1,i2 âi1,i2rf,i1,i2 and bj1,j2 = b̂j1,j2 + ǫg,j1,j2 b̂j1,j2rg,j1,j2 ,

where {ǫf,i1,i2} and {ǫg,j1,j2} are uniformly distributed random variables in the

interval [10−11, 10−10], and {rf,i1,i2} and {rg,j1,j2} are uniformly distributed

random variables in the interval [−1, 1].485

The preprocessing operations were applied to the inexact polynomials f(x, y)

and g(x, y), thus yielding the polynomials λ1,1f̃(ω1, ω2) and g̃(ω1, ω2). The coef-

ficients of the polynomials f(x, y) and g(x, y) spanned approximately 18 orders

of magnitude, but the coefficients of the preprocessed polynomials λ1,1f̃(ω1, ω2)

and g̃(ω1, ω2) spanned approximately 6 orders of magnitude.490

The degree of an AGCD of f(x, y) and g(x, y) was computed using the

methods BVGCD and BVDRGCD. Consider initially the BVGCD method, for

which the minimum singular values σ̇k1,k2
of the subresultant matrices before

and after the application of the preprocessing operations are plotted in Figure 9.

It is clear that the degree of an AGCD cannot be determined from the minimum495

singular values of the subresultant matrices that have not been preprocessed, but

it can be determined from these singular values of the subresultant matrices that

have been preprocessed. The maximum change is between ρ̇15,7 = log10 σ̇15,7

and ρ̇16,8 = log10 σ̇16,8, and thus the degree of an AGCD is (t1, t2) = (15, 7).

The BVDRGCD method was also used to compute the degree of an AGCD.500

The polynomials f(x, y) and g(x, y) were degree elevated by (p1, p2) = (0, 14)

and (q1, q2) = (0, 3) respectively, such that the degree elevated forms f∗(x, y)

and g∗(x, y) are of degrees m∗ = 29 and n∗ = 20, respectively. The minimum
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singular values of the set of subresultant matrices {Sk,k(λk,k f̃
∗

k,k, g̃
∗

k,k)} after

the application of the preprocessing operations are plotted in Figure 10, and it505

is seen that the degree of an AGCD is t = 10. It follows that

either t1 = t−min(p1, q1) = 10 or t2 = t−min(p2, q2) = 7.

Assume that the degree t1 = 10 is correct, in which case t2 is equal to the

index of the last numerically rank deficient subresultant matrix in the set

{St1,k2
(λt1,k2

f̃∗

t1,k2
, g̃∗t1,k2

)}. The minimum singular values of these subresul-

tant matrices are plotted in Figure 11(i) and it is seen that the degree of an510

AGCD with respect to y is t2 = 7. Alternatively, if the degree t2 = 7 is correct,

then t1 is equal to the index of the last numerically rank deficient subresultant

matrix in the set {Sk1,t2(λk1,t2 f̃
∗

k1,t2
, g̃∗k1,t2

)}. The minimum singular values of

these subresultant matrices are plotted in Figure 11(ii) and it is seen that the

degree of an AGCD with respect to x is t1 = 15. The degree of an AGCD is515

therefore equal to either (10, 7) or (15, 7), and thus (t1, t2) = (15, 7).

The coefficients of the coprime polynomials ut1,t2(x, y) and vt1,t2(x, y), and

AGCD dt1,t2(x, y), were computed using the method described in Section 5.3

and the errors are shown in Table 1. The coprime polynomials and AGCD could

not be computed if the preprocessing operations were not implemented because520

the degree of an AGCD was not defined. �

Error ut1,t2(x, y) 1.455132e-06

Error vt1,t2(x, y) 5.197778e-06

Error dt1,t2(x, y) 2.548405e-06

Table 1: Errors in the approximate coprime polynomials ut1,t2(x, y) and vt1,t2(x, y), and

AGCD dt1,t2(x, y), after the preprocessing operations are implemented in Example 7.2.

The examples show that the Sylvester matrix and its subresultant matrices

can be used to calculate an AGCD of bivariate Bernstein polynomials, which

arises in intersection problems in CAD systems. Specifically, consider cubic

curves and bicubic patches, which are frequently used in CAD systems. The525
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(i) The minimum singular values

σ̇k1,k2
of Sk1,k2

(f, g) before

preprocessing

(ii) The minimum singular values

σ̇k1,k2
of Sk1,k2

(λk1,k2
f̃k1,k2

, g̃k1,k2
)

after preprocessing

Figure 9: The minimum singular values σ̇k1,k2
of the subresultant matrices (i) before and (ii)

after the implementation of the preprocessing operations, in Example 7.2.
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Figure 10: BVDRGCD Stage 1: The minimum singular values σ̇k,k of the subresultant

matrices Sk,k(λk,k f̃
∗

k,k
, g̃∗

k,k
) in Example 7.2.

implicit form of a parametric cubic curve is a polynomial of degree three and

thus the intersection points of two planar parametric cubic curves are equal to

the roots of a polynomial of degree nine. A general bicubic patch is an algebraic

surface of degree 18, the implicit equation of which has 1330 coefficients, and

thus a ray intersects a bicubic patch at a maximum of 18 points. Also, a bicubic530

patch intersects a quadric surface in a curve of degree 36, and it is noted that an

intersection curve of degree t may be formed by a collection of several distinct

curves whose degrees sum to t. The degrees of the curves in the examples in

Sections 3, 5 and 7 are approximately equal to the degrees of these curves of
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(i) BVDRGCD Stage 2a: The

minimum singular values σ̇t1,k2
of the

matrices St1,k2
(λt1,k2

f̃∗

t1,k2
, g̃∗t1,k2

)
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(ii) BVDRGCD Stage 2b: The

minimum singular values σ̇k1,t2 of the

matrices Sk1,t2(λk1,t2 f̃
∗

k1,t2
, g̃∗k1,t2

)

Figure 11: The minimum singular values of the subresultant matrices in the second stage of

the BVDRGCD method in Example 7.2.

intersection that arise in CAD systems, and thus the examples are representative535

of these curves of intersection.

8. Summary

This paper has considered an approximate factorisation of two or three poly-

nomials defined in a rectangular domain. The Sylvester matrix and its subre-

sultant matrices of the polynomials were formed and it was shown that the540

polynomials must be processed before computations are performed on these

matrices in order to mitigate the adverse effects of the large range of the mag-

nitudes of their entries. It was shown that there are four forms of the Sylvester

matrix and its subresultant matrices. One of these forms is a 3 × 3 block ma-

trix and the three other forms are 2 × 3 block matrices. Two methods for the545

computation of the degree of an AGCD of the polynomials were presented and

it was shown that one method is efficient because it reduces the problem from

one AGCD computation on bivariate polynomials to two AGCD computations

on two univariate polynomials.

References550

[1] M. Bourne, J. R. Winkler and Y. Su, The computation of the degree

35



of an approximate greatest common divisor of two Bernstein polynomials,

Applied Numerical Mathematics, 111 (2017), pp. 17–35.

[2] M. Bourne, J. R. Winkler and Y. Su, A non-linear structure-

preserving matrix method for the computation of the coefficients of an ap-555

proximate greatest common divisor of two Bernstein polynomials, Journal

of Computational and Applied Mathematics, 320 (2017), pp. 221–241.

[3] M. Bourne, J. R. Winkler and Y. Su, The computation of multiple

roots of a Bernstein basis polynomial, SIAM J. Scientific Computing, 42(1)

2020, pp. 452–476.560

[4] M. Bourne, J. R. Winkler and Y. Su, The computation of the degree

of the greatest common divisor three Bernstein basis polynomials, J. Comp.

Appl. Math. (373) 112373, 2020.

[5] M. Bourne, J. R. Winkler and Y. Su, An approximate factorisation of

three bivariate Bernstein basis polynomials defined in a triangular domain,565

J. Comp. Appl. Math. (390) 113381, 2021.

[6] E. Chionh, R. Goldman and J. Miller, Using multivariate resultants

to find the intersection of three quadric surfaces, ACM Trans. Graphics, 10

(1991), pp. 378–400.

[7] R. M. Corless, P. M. Gianni, B. M. Trager and S. M. Watt,570

The singular value decomposition for polynomial systems, in Proc. Int.

Symp. Symbolic and Algebraic Computation, ACM Press, New York, 1995,

pp. 195–207.

[8] R. M. Corless, M. W. Giesbrecht, M. van Hoeij, I. S. Kotsireas

and S. M. Watt, Towards factoring bivariate approximate polynomials, in575

Proc. Int. Symp. Symbolic and Algebraic Computation, ACM Press, New

York, 2001, pp. 85–92.

[9] R. T. Farouki and V. T. Rajan, Algorithms for polynomials in Bern-

stein form, Computer Aided Geometric Design, 5 (1988), pp. 1–26.

36



[10] S. Gao, Factoring multivariate polynomials via partial differential equa-580

tions, Mathematics of Computation, 72 (2003), pp. 801–822.

[11] G. H. Golub and C. F. Van Loan, Matrix Computations, John Hopkins

University Press, 2013.

[12] E. Kaltofen, J. May, Z. Yang and L. Zhi, Approximate factorization

of multivariate polynomials using singular value decomposition, Journal of585

Symbolic Computation, 43 (2008), pp. 359–376.

[13] S. G. Nash and A. Sofer, Linear and Nonlinear Programming, McGraw-

Hill, 1996.

[14] M. T. Noda and T. Sasaki, Approximate GCD and its application to

ill-conditioned equations, J. Comp. Appl. Math., 38 (1991), pp. 335–351.590

[15] C. E. Wee and R. Goldman, Elimination and resultants Part 1: Elim-

ination and bivariate resultants, IEEE Computer Graphics and Applica-

tions, 15 (1) (1995), pp. 69–77.

[16] C. E. Wee and R. Goldman, Elimination and resultants Part 2: Mul-

tivariate resultants, IEEE Computer Graphics and Applications, 15 (2)595

(1995), pp. 60–69.

[17] L. Zhi and Z. Yang, Computing approximate GCD of multivariate poly-

nomials by structured total least norm, tech. report, Institute of Systems

Science, AMSS, Academia Sinica, Beijing, China, 2004.

37


	Introduction
	Bernstein polynomials in a rectangular domain
	Vector representation and multiplication

	The Sylvester matrices of three polynomials that are defined in a rectangular domain
	Preprocessing operations
	The computation of the degree of the GCD
	The BiVariate Greatest Common Divisor (BVGCD) method
	The BiVariate Degree Reducing Greatest Common Divisor (BVDRGCD) method
	The coefficients of an AGCD

	Complexity
	Examples
	Summary

