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ON A CANONICAL LIFT OF ARTIN’S REPRESENTATION

TO LOOP BRAID GROUPS

CELESTE DAMIANI, JOÃO FARIA MARTINS, AND PAUL PURDON MARTIN

Abstract. Each pointed topological space has an associated π-module, obtained from action
of its first homotopy group on its second homotopy group. For the 3-ball with a trivial link
with n-components removed from its interior, its π-module Mn is of free type. In this paper
we give an injection of the (extended) loop braid group into the group of automorphisms of Mn.
We give a topological interpretation of this injection, showing that it is both an extension of
Artin’s representation for braid groups and of Dahm’s homomorphism for (extended) loop
braid groups.

1. Introduction

A recent paper [BCK+0] showed that discrete higher gauge theory (as discussed generally
and informally by many authors, see e.g. [Mar91, §10.2], and compare with continuous higher
gauge theory [Pfe03,BS07,BH11,FMP11,SW13] and several others) is well-defined. The technical
engine of the construction notably reflects the combinatorial homotopy of Whitehead, Baues,
Brown, et al. [Bau91,BHS11]. Relatively simple aspects of the construction such as loop-particle
braiding [BFMM19] yield higher generalisations of classical results, for example in low-dimensional
topology [Far09]. We discuss one such result, a lifting of Artin’s representation of the braid
group [Bir74] to the (extended) loop braid group [Lin08] (see [Dam17], for a survey).

1.1. From mapping class groups to Artin-like representations. Let X be an oriented
topological manifold with boundary ∂X, and A a possibly empty subset in the interior of X. A
self-homeomorphism of the pair (X, A) relative to the boundary, is a self-homeomorphism g of
X that fixes ∂X pointwise, A setwise (i.e. g(A) = A), and preserves the orientation of X. Two
such homeomorphisms f0 and f1 are (X, A)-isotopic if they can be included in a 1-parameter
family {ft}t∈[0,1] of self-homeomorphisms of (X, A) relative to the boundary, such that the map
X × [0, 1] → X sending (x, t) to ft(x) is continuous. The mapping class group MCG(X, A) is the
group of (X, A)-isotopy classes of self-homeomorphisms of (X, A). We write [g] for the class of g.
Our convention for the product in MCG(X, A) is: [g][g′] = [g ◦ g′].

A self-homeomorphism g : (X, A) → (X, A) relative to the boundary, takes an n-path [0, 1]n
γ
−→

X to an n-path [0, 1]n
g◦γ
−−→ X. In particular g takes a loop based at a point ∗ in ∂X to another

such loop. Furthermore a homeomorphism that fixes a set fixes its complement setwise. If γ avoids
A then so does g ◦ γ. The map g thus induces an automorphism of π1(X \ A, ∗) with ∗ ∈ ∂X,
that is: [γ] 7→ [g ◦ γ].

Passing from g to [g], this gives a well-defined group homomorphism

(1.1) τ : MCG(X, A) −→ Aut(π1(X \ A, ∗)),
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ON A CANONICAL LIFT OF ARTIN’S REPRESENTATION 2

where [g ◦ γ] = [g′ ◦ γ′], if g′ ∈ [g] and γ′ ∈ [γ]. If G is a group, our convention for the product
in Aut(G), the automorphism group of G, is fg = f ◦ g.

By considering based n-paths ([0, 1]n, ∂[0, 1]n) → (X, ∗) we can in principle use other homotopy
functors analogously in place of π1, obtaining representations of mapping class groups this way.
In this paper, we will use the homotopy functor which sends a pointed space (Y, ∗) to the triple
π(1,2)(Y, ∗) defined as (π1(Y, ∗), π2(Y, ∗), ⊲π1

), where ⊲π1
is the usual action of π1 on π2. The

underlying algebraic notion is that of a π-module, see for example [Bau91, Chapter 1, §1]. A
π-module is a triple G = (G, A, ⊲), where G is a group, A is an abelian group, and ⊲ is a left-action
by automorphisms of G on A; see Subsection 3.2. A morphism of π-modules is a pair of group
morphisms that respect the actions.

Artin’s representation of the braid group [Art47], and Dahm homomorphism for the extended
loop braid group [Dah62,Gol81] can be seen as a special case of this construction. Let us recap
here these two maps.

1.2. Artin representation and Dahm homomorphism. For m ≥ 1, let Dm be the m-
disc [0, 1]m ⊂ R

m. Fix dn = {p1, ..., pn} ⊂ D2 \ ∂D2 a set of n points in the interior of D2, and
Ln = C1 ∪ ... ∪ Cn ⊂ D3 \ ∂D3 a set made out of the union of n disjoint, unknotted, oriented
circles, that form a trivial link with n components in the interior of D3.

The braid group Bn can be defined as the mapping class group of the pair (D2, dn) (for a survey,
see for instance [BB05]). Analogously the extended loop braid group LBext

n is defined as the mapping
class group MCG(D3, Ln), meaning the group of self-homeomorphism of the pair (D3, Ln), relative
to the boundary of D3, up to (D3, Ln)-isotopy [Dam17]. Note that this definition appears also
in [Gol81], in terms of motion groups. Homeomorphisms (D3, Ln) → (D3, Ln) do not necessarily

preserve the orientation of Ln. If we consider the group MCG(D3, L̂n) of isotopy classes of
those homeomorphisms (D3, Ln) → (D3, Ln) that preserve also the orientation on Ln, the group
obtained is the loop braid group, denoted by LBn. The nomenclature “loop braid groups” is due
to Lin [Lin08].

Let Fn be the free group of rank n generated by {x1, . . . , xn}. Then we have that π1(D2 \dn, ∗)
is isomorphic to Fn. Thus, in the case of the pair (D2, dn), Equation (1.1) becomes:

θ : Bn → Aut(Fn).

Artin shows [Art47] that this is an injection.
We also have that π1(D3 \ Ln, ∗) ∼= Fn, so the map θ : MCG(D3, Ln) → Aut(π1(D3 \ Ln, ∗))

becomes:

θ : LBext
n → Aut(Fn).

This homomorphism is proven injective in [Dah62] and published in [Gol81, Theorem 5.2].

1.3. Our main result. The space D2 \ dn is aspherical, and therefore its homotopy type can be
recovered from the fundamental group. However D3 \ Ln is not aspherical, hence π1 “forgets”
more about D3 \ Ln than it does about D2 \ dn. In this paper, we work with π(1,2)(D

3 \ Ln, ∗),

in the intent of retrieving some of the lost homotopical information when passing from D3 \ Ln

to π1(D3 \ Ln, ∗). How much homotopical information is retained is discussed in Subsection 4.3.
In particular, we will prove here that π(1,2)(D

3 \ Ln, ∗) is a π-module of free type1. In practice,

with this we mean that π(1,2)(D
3 \ Ln, ∗) =

(
π1(D3 \ Ln, ∗), π2(D3 \ Ln, ∗), ⊲π1

)
, is isomorphic

to Mn = (Fn, Mn, ⊲), where Mn is the free Z[Fn]-module generated by {K1, . . . , Kn}. Given
a π-module G = (G, A, ⊲), a morphism f = (f1, f2) : Mn → G is therefore determined by the
images f1(xi) and f2(Ki); see Subsection 3.2.

In this paper we construct an inclusion Θ: LBext
n → Aut(Mn).

1The nomenclature “of free type” is borrowed from [BHS11, Definition 7.3.13].
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1.4. Structure of the paper. In Section 2 we recall some notions that will be used throughout
the paper. We also give a topological realisation of Artin’s representation for the braid group,
and a hands-on flavour of the lift we construct for the extended loop braid group. In Section 3
we present Dahm and Goldsmith’s lift of Artin’s representation for the extended loop braid
group (Theorem 3.3). Then we introduce π-modules (Definition 3.5) and describe a lift of
Artin’s representation for extended loop braid groups in the π-module π(1,2)(D

3 \ Ln, ∗) of the
3-ball with a set of n (unlinked and unknotted) circles excised from its interior (Lemma 3.11 and
Theorem 3.16). This is our first main result. In Section 4 we formalise the topological construction
of the considered representation, in the second main result of this paper (Theorem 4.5).

2. On automorphisms of free groups and beyond

Here we first recall some constructions that are standard, but which will have useful lifts to
higher dimensions later.

If C is a concrete category, then U : C → SET is the forgetful functor. Let Grp be the
category of groups, and, given a group G, define Aut(G) ⊂ Grp(G, G) as the subset of invertible
homomorphisms. The left adjoint F a : SET → Grp takes a set to the free group on that set. We
consider sets of form xn defined to be {x1, . . . , xn}, n ∈ N0, as a skeleton in the full subcategory
FIN SET of finite sets, and define

(2.1) Fn = F a({x1, ..., xn}).

By the adjoint functor property (“freeness”) elements of Grp(Fn, G) are uniquely specified by
giving the image of each xi. For example, for σ ∈ Sym(n), the symmetric group on {1, . . . , n},
define tσ ∈ Aut(Fn) by:

(2.2) tσ : xi 7→ xσ(i).

A non-automorphism example in Grp(Fn, Fn) is given by xi 7→ x1, for i ∈ {1, . . . , n}. We use
cycle notation for elements of Sym(n), thus we have t(12) and so on; and define the translation
automorphism by t = t(1,2,...,n). We say an automorphism is Coxeter geometric (CG) if it acts
trivially on all except at most two adjacent xi, xi+1, and on these it acts to produce elements
of F a({xi, xi+1}). We say this action is local at i, i + 1.

For example, the subset of automorphisms of form (2.2) is not CG in general. In particular the
translation automorphism t is not CG. However the subset forms a subgroup and the subgroup is
generated by the CG automorphism t(12) local at 1, 2 and n − 2 translates thereof.

2.1. On automorphisms of free groups realised topologically. A topological realisation of
Fn is given by π1(D2 \ dn, ∗). In order to explicitly write down an Artin representation θ : Bn →
Aut(Fn), we specify dn and a free basis for π1(D2 \ dn, ∗). We take the points dn = {p1, . . . , pn}
to be along a horizontal line. We consider paths x̂i, i = 1, . . . , n passing clockwise around each pi,
as in Figure 1, such that their images intersect only at ∗ ∈ ∂D2. Let xi be the homotopy class
of x̂i.

Note that π1(D2 \ dn, ∗) is free on {x1, . . . , xn}. Also, x1x2 . . . xn is the homotopy class of a
path that traces the boundary of D2, clockwise, starting and finishing at ∗.

Note also that (D2 \ dn, ∗) strongly deformation retracts into the pointed subspace made
of the images of the paths, which is homeomorphic to

∨n

i=1(S1, ⋆). Combining with Seifert –
van Kampen theorem, this implies that π1(D2 \ dn, ∗) is freely generated by {x1, . . . , xn}. The
same type of argument will be used when we address the higher case in Section 4, and prove
that π(1,2)(D

3 \ Ln, ∗) is of free type.

Using Equation (1.1), elements of MCG(D2, dn) induce elements of Aut(Fn). Consider for
example the mapping class Σ1 indicated by a) - c) of Figure 2. Note that this corresponds to
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∗

x̂1 x̂2 x̂n

p1 p2 pn

Figure 1. A free basis for π1(D2 \ dn, ∗).

the 1, 2 local automorphism S1
1 : Fn → Fn given by

(2.3) x1 7→ x2, x2 7→ x−1
2 x1x2.

Define S1
i : Fn → Fn as the translate of S1

1 ; an explicit formula is in Equation (3.2). From the
topological realisation (or direct calculation) we have:

(2.4) S1
i ◦ S1

i+1 ◦ S1
i = S1

i+1 ◦ S1
i ◦ S1

i+1.

2.2. Towards automorphisms in higher dimension. Our task here is to describe automor-
phisms of a suitable lift of the free group to “higher dimension”. Here dimension refers to

c)c)

∗

x3

x
−1

2 x1x2

x2

a)

∗

x1

x2

x3

b)

∗

∗

∗

x3

x
−1

2 x1x2

x2d)

f)

Figure 2. a) - c) An exchange of the marked points inducing a homeomorphism
(D2, d3) → (D2, d3) and the corresponding automorphism of π1(D2 \ d3, ∗).
d) The new paths are expressed in the original basis: thus x1 has morphed to
x2 and x2 has morphed to x−1

2 x1x2. f) The loops following the timelines of the
braiding.
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the topological interpretation of Fn as π1(D2 \ dn, ∗), whose building blocks are paths in the
point-punctured disk D2 \ dn.

The lift involves the triple π(1,2)(D
3 \ Ln, ∗) =

(
π1(D3 \ Ln, ∗), π2(D3 \ Ln, ∗), ⊲π1

)
, where ⊲π1

denotes the usual action of π1 on π2.
In the Fn case, freeness means that an automorphism is determined by the images of a set of

free group generators. In the lift that we consider, the corresponding structure π(1,2)(D
3 \ Ln) is

not a free group, but a π-module of free type. In particular, as we will prove in Subsection 3.2,
π2(D3 \ Ln, ∗) is a free Z-module. In order to understand the basis we make some preparations.

Given a pointed topological space (X, ∗), then the action of π1(X, ∗) on π2(X, ∗), means
that π2(X, ∗), can naturally be equipped with the structure of Z[π1(X, ∗)]-module. We will give
a visual idea of this structure for the case X = D3 \ Ln.

We note that the “balloons and hoops” point of view we present in this subsection for the visual
description of π(1,2(D3 \ Ln, ∗) is essentially as in [BN15], where the term is coined. This balloons

and hoops approach for understanding π(1,2)(D
3 \ Ln, ∗) was also used in [BFMM19, §4.5.1].

Note that there is not a canonical choice of the elements considered to be generating for
example in π1(D3 \ Ln, ∗). Varying the precise choice of Ln satisfying the “unlinked circles”
characterisation affects what might be considered as a natural choice, and hence affects the
construction — albeit only up to isomorphism. Later it will be convenient to work with Ln a
row of circles confined to a plane in D3. But in this section we will instead use for Ln a stack of
circles confined to a single axis of rotational symmetry.

Note that by rotating [0, 1]2 × {0} about {0} × [0, 1] × {0} we obtain a topological D3, and this
rotation causes the points p1, . . . , pn to sweep out an Ln = C1 ∪ · · · ∪ Cn, one where the circles
are “stacked” coaxially: see Figure 3, subfigures a), b). Note that we also assume that the circles
C1, . . . , Cn are stacked on top of each others, in decreasing height.

The group π1(D3 \ Ln, ∗) ∼= Fn is freely generated by (classes of) loops xi around the circles as
illustrated in Figure 3(c). These classes have representatives that lie in the original copy of D2.
The image of the element called xi in π1(D2 \ dn, ∗), as in Figure 3(a), we again call xi.

Now let g be a homeomorphism representing a certain class in MCG(D2, dn). This g restricts
to (0, 1] × [0, 1]: the omitted edge is the rotation axis, so rotating gives a self-homomorphism
of (0, 1] × [0, 1] × S1. Topologically, (0, 1] × [0, 1] × S1 is D3 with the axis removed. The latter
homeomorphism thus extends to a self-homomorphism r(g) of D3 by inserting the constant
function on the axis. This construction lifts to a well-defined group homomorphism

r : MCG(D2, dn) → MCG(D3, Ln).

In particular, consider the mapping class Σi in MCG(D2, dn) exchanging consecutive points pi

and pi+1, as in Figure 2, which considers the case n = 3 and i = 1. Its image under r, which
we also denote Σi, corresponds to an exchange of circles, as illustrated in Figure 4, for n = 2
and i = 1. To the mapping class Σi ∈ MCG(D3, Ln) we will call elementary braid permutation.

One new aspect in the higher setting is that there are elements of MCG(D3, Ln) that do not
have representatives with the rotational symmetry, such as maps that exchange the circles by
taking them off the rotation axis. Note that these induce elements of the automorphism group
Aut(π1(D3 \ Ln)) of type t(i,i+1). Also breaking the axial symmetry in this sense, are motions
that flip a single circle Ci onto itself. One can see that this induces an automorphism local at i,
given by T 1

i : xi 7→ x−1
i .

Another new aspect in the higher setting is that π2(D3 \ Ln, ∗) is not trivial. An example of a
non-trivial element of π2(D3 \Ln, ∗i) is the homotopy class of a wrapping square K ′

i : (D2, ∂D2) →
(D3 \ Ln, ∗i), based at ∗i (a point in the rotating axis) that wraps a single circle Ci, including
the disk of which Ci is boundary, exactly once, see Subfigures d) and e) in Figure 3 for the
i, n = 2 case. Concretely K ′

i is a positively oriented parametrisation of a balloon – i.e. a 2-sphere
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x1

x2

a) b) c)

d) e)

x2

∗1

v1 C1

C2

b1
∗1

∗

γ1

Figure 3. a), b), c) Rotating the two-punctured disk into R
3. d), e) construct-

ing a sphere (a “balloon”) b1, enclosing C1, by rotating the path v1. The element
K1 ∈ π2(D3 \ Ln, ∗) is obtained from the homotopy class K ′

1 ∈ π2(D3 \ Ln, ∗1)
of a positively oriented parametrisation (D2, ∂D2) → (b1, ∗1), of b1, made into
an element K1 ∈ π2(D3 \ Ln, ∗) by using the isomorphism π2(D3 \ Ln, ∗1) →
π2(D3 \ Ln, ∗) derived from the path γ1.

Figure 4. An “exchange” of coaxial circles, where the circle C1 is originally
on top. This is a smooth family of embeddings of S1 ⊔ S1 into D3. It induces
a diffeotopy t ∈ [0, 1] 7→ φt ∈ Homeo(D3) of D3, relative to the boundary, by
the isotopy extension theorem (either before or after applying r). The end-value
φ1 ∈ Homeo(D3) of the diffeotopy is a homeomorphism (D3, L2) → (D3, L2).
The elementary braid permutation Σ1 ∈ MCG(D3, L2) is the mapping class
of φ1.

bi containing Ci, and no other circle Cj , oriented by an exterior normal. If we connect ∗i to ∗
by a path γi that does not cross the disks spanned by the circles in Ln, and consider the usual
isomorphism π2(D3 \ Ln, ∗i) → π2(D3 \ Ln, ∗) derived from γi (see e.g. [Hat02, Page 343]), this
gives a non-trivial element Ki = [γ ⊲ K ′

i] ∈ π2(D3 \ Ln, ∗).
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We argue in Section 4, that π2(D3 \ Ln, ∗) is freely generated, as an abelian group, by the
elements p ⊲ Ki, where i ∈ {1, . . . , n} and p ∈ π1(D3 \ Ln, ∗). Each p ⊲ Ki can be visualised as a
hoop p, connecting ∗ to ∗, which is then attached to Ki. In Figure 5 we show some examples of
elements of π2(D3 \ L2, ∗).

K2

K1
x
−1

2
⊲ K1

Figure 5. Elements in π2(D3 \ L2, ∗). We number the top circle 1. Note that
the difference between the second and third figures is given by the path x−1

2

around circle C2.

A crucial property of the classes K1, . . . , Kn ∈ π2(D3 \ Ln, ∗) is that K1 + K2 + · · · + Kn can
be represented by a parametrisation (D2, ∂D2) → (∂D3, ∗). With these points in mind, we lift
consideration of the mapping class group action on the fundamental group to an action of the
mapping class group MCG(D3, Ln) on the triple:

π(1,2)(D
3 \ Ln, ∗) = (π1(D3 \ Ln, ∗), π2(D3 \ Ln, ∗), ⊲π),

where ⊲π denotes the usual action of π1(D3 \ Ln, ∗) on π2(D3 \ Ln, ∗). Since π2(D3 \ Ln, ∗) is
abelian, π(1,2)(D

3 \ Ln, ∗) is a π-module, a structure we will define in Section 3.2 .

3. The lifted Artin representation

We discussed in Subsection 1.2 that the homotopical information coming from π2(D3 \ Ln, ∗)
is not taken into account by Dahm’s lift of Artin’s representation. With this in mind, we proceed
to define a lifted Artin representation for extended loop braid groups LBext

n . The codomain for
our representation stores two levels of information, coming from the first and second homotopy
groups of D3 \ Ln, as well as the action of the first on the former. It will thus be a π-module. In
this section, we recap some results about extended loop braid groups and π-modules, which will
subsequently be used to define the lifted Artin representation.

3.1. Loop braid groups and extended loop braid groups. We recall [Art47] that the braid
group Bn = MCG(D2, dn) is isomorphic to the group defined by generators {σ1, . . . , σn−1},
subject to relations:

σiσj = σjσi, for |i − j| > 1;(3.1a)

σiσi+1σi = σi+1σiσi+1, for i = 1, . . . , n − 2.(3.1b)

(Here and in subsequent presentations of groups, note that our convention is that multiplication
is to be read from left to right.) The generator σi is the equivalence class of the mapping class Σi

in MCG(D2, dn) exchanging the ith and i + 1th point as in Figure 2.
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Passing to the automorphisms of the free group Fn of rank n, let S1
i : Fn → Fn be defined on

the generators {x1, . . . , xn} as:

(3.2) S1
i :





xi 7→ xi+1,

xi+1 7→ x−1
i+1 xi xi+1,

xj 7→ xj , if j < i or j > i + 1

.

Note from Figure 2 that Artin’s representation θ : Bn → Aut(Fn) is such that, for i =
1, . . . , n − 1, Σi 7→ S1

i , and this data determines θ.

Theorem 3.1 ([Art47], for a more recent proof see for instance [Han89, Theorem 5.1]). The
map θ : Bn → Aut(Fn) is injective, and an automorphism φ of Fn is in θ(Bn) if and only if the
following two conditions are satisfied:

(1) There exist a1, . . . , an ∈ Fn, and a permutation α of {1, . . . , n}, such that φ(xi) =
ai xα(i) a−1

i .
(2) φ(x1 x2 . . . xn) = x1 x2 . . . xn.

Note that (2) holds since x1x2 . . . xn is the homotopy class of a path that traces the boundary
of D2, clockwise, starting and finishing at ∗. Hence x1x2 . . . xn is left untouched by all elements
of MCG(D2, dn), since they are required to be the identity on ∂D2.

Let us move one dimension up, in the realm of extended loop braid groups LBext
n , defined as

the mapping class groups MCG(D3, L̂n), and loop braid groups LBn, defined as MCG(D3, Ln);
see Section 1.2. In this case we have the following result [BH13,BWC07,Dam17]:

Theorem 3.2. The group LBn is isomorphic to the abstract presented group defined by generators
{σi, ρi | i = 1, . . . , n − 1} subject to relations:

σiσj = σjσi, for |i − j| > 1;(3.3a)

σiσi+1σi = σi+1σiσi+1, for i = 1, . . . , n − 2;(3.3b)

ρiρj = ρjρi, for |i − j| > 1;(3.3c)

ρiρi+1ρi = ρi+1ρiρi+1, for i = 1, . . . , n − 2;(3.3d)

ρ2
i = id, for i = 1, . . . , n − 1;(3.3e)

ρiσj = σjρi, for |i − j| > 1;(3.3f)

ρi+1ρiσi+1 = σiρi+1ρi for i = 1, . . . , n − 2;(3.3g)

σi+1σiρi+1 = ρiσi+1σi, for i = 1, . . . , n − 2.(3.3h)

Moreover the group LBext
n is isomorphic to the abstract presented group defined by generators

{σi, ρi | i = 1, . . . , n − 1} ∪ {τj | j = 1, . . . , n} subject to relations (3.3a) to (3.3h) above, together
with:

τiτj = τjτi, for i 6= j;(3.4a)

τ2
i = id, for i = 1, . . . , n;(3.4b)

σiτj = τjσi, for j 6= i, i + 1;(3.4c)

ρiτj = τjρi, for j 6= i, i + 1;(3.4d)

τiρi = ρiτi+1, for i = 1, . . . , n − 1;(3.4e)

τiσi = σiτi+1, for i = 1, . . . , n − 1;(3.4f)

τi+1σi = ρiσ
−1
i ρiτi, for i = 1, . . . , n − 1.(3.4g)



ON A CANONICAL LIFT OF ARTIN’S REPRESENTATION 9

Let Σi denote the mapping class corresponding to the elementary braiding permutation
in MCG(D3, Ln), see Figure 6. In the coaxial configuration of Ln, n = 2, we may represent
this as in Figure 4. Similarly, let ρi denote the mapping class of the non-braiding permutation;
and τi be the mapping class corresponding to a 180 degrees flip of Ci with respect to the
vertical axis, see Figure 6. The isomorphism between LBext

n and the abstract presented group
sends Σi 7→ σi, ρi 7→ ρi, and τi 7→ τi.

i i+ 1 i

a) b) c)

i i+ 1

Figure 6. a) Pictorial idea of the mapping class Σi. b) The mapping class ρi.
c) The mapping class τi.

Dahm [Dah62] generalised Artin’s representation to general manifolds with a compact subman-
ifold in its interior. Goldsmith published his result for the case of the pair (R3, Ln), which gives
the same group as the pair (D3, Ln). Let us recall it:

Theorem 3.3 ([Gol81, Theorem 5.3]). For n ≥ 1, the map

θ : LBext
n −→ Aut(Fn).

is injective. Its image is the subgroup of Aut(Fn) consisting of automorphisms of the form
xi 7→ a−1

i x±1
α(i)ai where α is a permutation of {1, . . . , n} and ai ∈ Fn. Moreover, this subgroup of

Aut(Fn) is generated by the automorphisms {S1
i | i = 1, . . . , n − 1}, {R1

i | i = 1, . . . , n − 1} and
{T 1

i | i = 1, . . . , n}, where S1
i is as in Equation (3.2), and:

R1
i :





xi 7→ xi+1;

xi+1 7→ xi;

xj 7→ xj , for j 6= i, i + 1.

(3.5)

T 1
i :

{
xi 7→ x−1

i ;

xj 7→ xj , for j 6= i.
(3.6)

This case of the map θ is known in the literature as Dahm’s homomorphism. The generators of
LBext

n of type σi, ρi and τi are respectively sent by Dahm’s homomorphisms to automorphisms S1
i ,

R1
i and T 1

i .

Remark 3.4. A consequence of Theorem 3.3 is that LBn injects into Aut(Fn) and its image is
isomorphic to the group of automorphisms of the form xi 7→ a−1

i xα(i)ai, where α is a permutation
and ai ∈ Fn. This group is called the group of basis conjugating automorphisms of Aut(Fn), and
is generated by the automorphisms {S1

i | i = 1, . . . , n − 1} and {R1
i | i = 1, . . . , n − 1}.

From now on we will focus on the extended loop braid group, keeping in mind that through
Remark 3.4 consequences of this work can be drawn on loop braid groups.

Dahm’s homomorphism can be constructed with the same classical construction of Artin’s
representation in terms of mapping classes. Briefly, choose a base-point ∗ in the boundary of D3.
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Isotopies of maps f : (D3, Ln) → (D3, Ln) do not move the base-point. If [f ] ∈ LBext
n then [f ]

yields a pointed-homotopy class Θ([f ]) : (D3 \ Ln, ∗) → (D3 \ Ln, ∗). Let

(3.7) θ′([f ]) : π1(D3 \ Ln, ∗) −→ π1(D3 \ Ln, ∗)

be the induced map on fundamental groups. Algebraic topological considerations give that θ([f ])
coincides with θ′([f ]).

3.2. The category of π-modules.

Definition 3.5. A π-module is given by a triple G = (G, A, ⊲), where G is a group, A is an abelian
group, and ⊲ is a left-action by automorphisms of G on A. Given two π-modules G = (G, A, ⊲)
and G′ = (G′, A′, ⊲′), a morphism f = (f1, f2) : G → G′ is a pair (f1 : G → G′, f2 : A → A′) of
homomorphisms that preserve actions: for each g ∈ G and a ∈ A, we have f2(g⊲a) = f1(g)⊲′f2(a).

Our convention for the composition of π-module morphisms is (f1, f2)(h1, h2) = (f1◦h1, f2◦h2).
It is easy to see that the class of π-modules and their morphisms form a category. We write Agg

for the category of π-modules, since π-modules are (abelian group)–group pairs. The category of
π-modules was also used in [Bau91, Chapter I, §1 (1.7)]. Confer also for example [M.A74, §8],
and [Sie93] where they are termed “second homotopy modules”.

Consider the forgetful functor U : Agg → SET × SET that takes G = (G, A, ⊲) to the
pair (G, A), made from the underlying sets of the groups G and A. Recall Fn = F a({1, 2, ..., n})
from (2.1): the left adjoint Fa takes ({1, 2, ..., n}, {1, 2, ..., n}) to a π-module that we construct
next.

Lemma 3.6. A morphism f = (f1, f2) : G → G′ of π-modules is invertible if and only if both f1

and f2 are invertible homomorphisms.

Proof. It follows from the definition of a morphism of π-modules. �

We denote the group of invertible morphisms G → G by Aut(G).

Definition 3.7. Let Z[G] denote the group ring of group G. Let MG
n be the free Z[G]-module

on the symbols {K1, . . . , Kn}, hence

MG
n = Z[G]{K1, . . . , Kn} ∼=

n⊕

i=1

Z[G]Ki
∼=

⊕

g∈G

n⊕

i=1

Z(g, Ki)

equipped with the diagonal action of Z[G]. We define MG
n to be the π-module (G, MG

n , ⊲). The
action of G on MG

n is induced by the Z[G]-module structure. Define

Mn = MFn

n , M(m)
n = MFm

n , and therefore Mn = M(n)
n .

The following proposition describes how morphisms Mn → G can be uniquely specified by
their value on the generators xi and Ki, for i = 1, . . . , n. This result is also used, implicitly,
in [BFMM19, §4.5.1].

Proposition 3.8. Let G = (G, A,◮) be a π-module. There is a canonical one-to-one corre-

spondence between morphisms f = (f1, f2) : M
(m)
n → G and pairs of tuples (g1, . . . , gm) ∈ Gm

and (a1, . . . , an) ∈ An. The correspondence is such that: gi = f1(xi) and ai = f2(Ki).

Proof. Let us consider a pair of tuples (g1, . . . , gm) ∈ Gm and (a1, . . . , an) ∈ An. We associate
to this pair a morphism f = (f1, f2) as follows. We take f1 to be the unique homomorphism
Fm → G such that f1(xi) = gi. As an abelian group, Mm

n is free on the set of pairs (g, Ki),
where g ∈ Fm and i = 1, . . . , n. We define f2 : Mm

n → A to be the unique homomorphism such
that f2(g, Ki) = f1(g) ◮ ai. Compatibility with group actions is preserved by construction. �
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Remark 3.9. Because of Proposition 3.8, we say that M
(m)
n , and in particular Mn, is a π-

module of free type. Indeed consider the forgetful functor U : Agg → SET × SET that takes
G = (G, A, ⊲) to (G, A). This functor has a left adjoint Fa, where given a pair (X, Y ) of
sets, Fa(X, Y ) = (F (X),Z[F (X)]Y, ⊲), where F (X) is the free group on X, and Z[F (X)]Y is the
free Z[F (X)]-module on Y , with the obvious action of F (X). Hence:

M(m)
n

∼= Fa
(
{1, . . . , m}, {1, . . . , n}

)
.

Remark 3.10. There exists a ‘forgetful’ functor Agg → Grp, sending each π-module G = (G, A, ⊲)
to the semidirect product G ⋉⊲ A. This functor is not full: given π-modules G = (G, A, ⊲) and
G′ = (G′, A′, ⊲), in general there exist group homomorphisms G⋉⊲ A → G′

⋉⊲ A′ that do not arise
from π-module morphisms G → G′. Moreover, this forgetful functor does not send π-modules of
free type to free groups. Such freeness properties of π-modules, lost when we pass to semidirect
products, are essential for our main theorem later on (see Theorem 3.16), when we construct a
lifted Artin representation by giving its value on free generators.

As we will see in Section 4.3, maps between fundamental π-modules model pointed homotopy
classes of maps between bouquets of 1- and 2-spheres. This connection to homotopy theory is
lost once we pass to the underlying semidirect product of the fundamental π-modules.

We observed in Section 2.2 that π1(D2 \ dn, ∗) is a free group F a({x1, ..., xn}). As we
will establish in Lemma 4.2 et seq., we have π(1,2)(D

3 \ L2, ∗) ∼= Fa
(
{1, 2}, {1, 2}

)
. Then the

automorphism of the π-module induced by a homeomorphism of (D3, L2), relative to the boundary,
is prescribed by giving:

(i) the effect on the xi generators of π1(D3 \ L2, ∗);
(ii) the effect on the Ki generators of π2(D3 \ L2, ∗) as a Z[π1]-module.

In particular we have the following.

Lemma 3.11. Recall the elementary braid permutation Σ1 ∈ MCG(D3, L2) illustrated in Figure 4
for n = 2. The image Σ of Σ1 ∈ MCG(D3, L2) in Aut(π(1,2)(D

3 \ L2, ∗)) is given by:

Σ(x2) = x−1
2 x1x2, Σ(x1) = x2,

(3.8) Σ(K2) = x−1
2 ⊲ K1

The image of K1 is determined by these since Σ fixes K1 + K2.

Remark 3.12. This result, and proof, is also used in [BFMM19, §4.5.1], where a dual form of the
lifted Artin representation was treated, in the context of biracks derived from π-modules.

Proof. (Sketch) A proof can be deduced from the observation of Figures 5 and 6. It only remains
to verify the last claim. Consider the representatives of K1 + K2 sketched in Figure 7. The last
one is evidently not moved by Σ1. We will go back to these ideas later in Section 4. �

Let us now treat this construction from a more algebraic viewpoint.

Definition 3.13. Define M as the monoidal category with object class N0 and M(n, n) =
Agg(Mn, Mn) with category composition as in Agg, and M(n, m) empty otherwise; and monoidal
composition given by a ⊗ b = a + b on objects, and on morphisms as induced by the map
{1, . . . , n} ⊔ {1, . . . m} 7→ {1, . . . , n, 1 + n, . . . , m + n} applied “diagonally” to the indices on
pairs xi, Ki. Note that the permutation (12) on {1, 2} extends to make this a symmetric monoidal
category.
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Figure 7. Representatives of the element K1 + K2.

Definition 3.14. Recall Proposition 3.8. Define S, R ∈ Agg(M2, M2) and T ∈ Agg(M1, M1)
to be the uniquely defined morphisms of π-modules such that:

S1(xj) =

{
x2, if j = 1,

x−1
2 x1x2, if j = 2,

(3.9a)

S2(Kj) =

{
K1 + K2 − x−1

2 ⊲ K1, if j = 1,

x−1
2 ⊲ K1, if j = 2,

(3.9b)

R1(xj) =

{
x2, if j = 1,

x1, if j = 2,
(3.10a)

R2(Kj) =

{
K2, if j = 1,

K1, if j = 2,
(3.10b)

T 1(x1) = x−1
1 , T 2(Kj) = Kj .(3.11a)

Define Si, Ti ∈ Agg(Mn, Mn), for each i = 1, . . . , n − 1, and Ri ∈ Agg(Mn, Mn), for each
i = 1, . . . , n, as:

Si = 1i−1 ⊗ S ⊗ 1n−i−1, Ri = 1i−1 ⊗ R ⊗ 1n−i−1, Ti = 1i−1 ⊗ T ⊗ 1n−i.

Explicitly:

S1
i (xj) =





xj , if j < i or j > i + 1,

xi+1, if j = i,

x−1
i+1xixi+1, if j = i + 1,

(3.12a)

S2
i (Kj) =





Kj , if j < i or j > i + 1,

Ki + Ki+1 − x−1
i+1 ⊲ Ki, if j = i,

x−1
i+1 ⊲ Ki, if j = i + 1;

(3.12b)

R1
i (xj) =





xj , if j < i or j > i + 1,

xi+1, if j = i,

xi, if j = i + 1,

(3.13a)
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R2
i (Kj) =





Kj , if j < i or j > i + 1,

Ki+1, if j = i,

Ki, if j = i + 1;

(3.13b)

T 1
i (xj) =

{
xj , if j 6= i,

x−1
i , if j = i,

and T 2
i (Kj) = Kj .(3.14a)

We remark that T 2
i : Mn → Mn is not the identity. For example T 2

i (xi ⊲ Kj) = x−1
i ⊲ Kj , for

each j ∈ {1, . . . , n}.

Lemma 3.15. These homomorphisms of π-modules are invertible.

Proof. The claim is true for Ri and the Tj , because R2
i = id and T 2

j = id. Explicit calculation

shows that the inverse of Si is given by Si = (Si
1
, Si

2
) below:

S
1

i (xj) =





xixi+1x−1
i , if j = i,

xi, if j = i + 1,

xj , if j 6= i, i + 1,

(3.15a)

S
2

i (Kj) =





xi ⊲ Ki+1, if j = i,

Ki + Ki+1 − xi ⊲ Ki+1, if j = i + 1,

Kj , if j 6= i, i + 1.

(3.15b)

For the geometrical idea behind these calculations, see Lemma 3.11. �

The following is the first main result of this paper.

Theorem 3.16. There exists a unique group homomorphism Θ: LBext
n → Aut(Mn), such that:

Σi 7→ Si, ρi 7→ Ri, τj 7→ Tj ,

where i = 1, . . . , n − 1, j = 1, . . . , n, and Σi, ρi and τj are the generators of LBext
n as a mapping

class group, as in Figure 6 . Furthermore, Θ: LBext
n → Aut(Mn) is injective.

To Θ: LBext
n → Aut(Mn), we call the lifted Artin representation.

Proof. These images are sufficient to determine a homomorphism by Theorem 3.2, and the
comments just after. In Appendix A we check relations by explicit calculations.

Let G = (G, A, ⊲) be a π-module. Then we have a morphism F 1 : Aut(G) → Aut(G), such
that F 1(f1, f2) = f1. The injectivity of Θ follows from the fact that F 1 ◦ Θ coincides with
Dahm’s homomorphism LBext

n → Aut(Fn), see Theorem 3.3. �

A feature of Artin’s representation, is that it provides a characterisation of braid automorphisms
of Fn, as recalled in Theorem 3.1. Also in the case of extended loop braid groups, Goldsmith
gives a characterisation elements of Aut(Fn) that are images of elements of LBext

n , Theorem 3.3.
It is thus natural to ask the following question.

Open Problem 3.17. Determine the image of Θ: LBext
n → Aut(Mn).

Remark 3.18. Note that for any (f1, f2) ∈ Θ(LBext
n ) it holds that:

(3.16) f2(K1+K2 + · · · + Kn) = K1+K2 + · · · + Kn.

This is an analogue for condition (2) in Theorem 3.1. As we will see in Remark 4.7, Equation (3.16)
holds since K1 + K2 + · · · + Kn can be represented by a parametrisation (D2, ∂D2) → (∂D3, ∗),
and hence is left untouched by all elements of MCG(D3, Ln), given that these mapping classes
are the identity in ∂D2.
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Remark 3.19. A dual version of the lifted Artin representation, which considers finite dimensional
representations of the loop braid group defined from biracks derived from π-modules, appeared
in [BFMM19]. The underlying invariants of welded knots were initially defined in [KF08].

4. A topological interpretation of the lifted Artin representation

Let X be a path-connected space. A path γ : [0, 1] → X canonically induces isomor-
phisms π2(X, γ(1)) → π2(X, γ(0)), and also π1(X, γ(1)) → π1(X, γ(0)); see e.g. [Hat02, Page
341]. Let ∗ ∈ X be a base-point. If we consider closed paths, starting and ending in ∗, this
descends to an action of π1(X, ∗) on π2(X, ∗), by automorphisms; see e.g. [Hat02, page 342]. We
denote by π(1,2)(X, ∗) the π-module obtained from π1(X, ∗) acting on π2(X, ∗) in this way. We
call π(1,2)(X, ∗) the fundamental π-module of (X, ∗) (confer with [Bau91, Chapter I, §1]). We let
TOP∗ be the category of pointed topological spaces, and pointed maps. Define also TOP∗/∼= as
the category with object the pointed spaces, and morphisms (X, ∗) → (Y, ∗) to be pointed maps
(X, ∗) → (Y, ∗), considered up to pointed homotopy. The fundamental π-module extends to func-
tors π(1,2) : TOP∗ → Agg and π(1,2) : TOP∗/∼= → Agg. Given a pointed map f : (X, ∗) → (Y, ∗),
the induced map of π-modules is denoted by π(1,2)(f) : π(1,2)(X, ∗) → π(1,2)(Y, ∗). This is
independent of the representative of the pointed homotopy class of f . Given a pointed homo-
topy class of pointed maps [f ] : (X, ∗) → (Y, ∗), the induced morphism in Agg is also denoted
by π(1,2)([f ]) : π(1,2)(X, ∗) → π(1,2)(Y, ∗). Note that π(1,2)([f ]) = π(1,2)(f).

4.1. Some bouquets and their fundamental π-modules.

Definition 4.1. Fix, from now on, base points ⋆ ∈ S1 and ⋆ ∈ S2, hence (S1, ⋆) and (S2, ⋆)
will be well-pointed. Let n be a positive integer. For i = 1, . . . , n, let S1

i be a copy of the
circle S1 ⊂ R

2, oriented counterclockwise, and S2
i a copy of the 2-sphere S2 ⊂ R

3, oriented by
the exterior normal. We define the following pointed spaces, with the CW-decompositions where
⋆ is the unique 0-cell, each S1

i has a unique 1-cell, and each S2
i has a unique 2-cell:

(Hn, ⋆) =
n∨

i=1

(
(S1

i , ⋆) ∨ (S2
i , ⋆)), (Fn, ⋆) =

n∨

i=1

(S1
i , ⋆), (Jn, ⋆) =

n∨

i=1

(S2
i , ⋆).

Let Ai ∈ π2(Hn, ⋆) be given by the homotopy class of a positively oriented characteristic
map (D2, ∂D2) → (S2

i , ⋆) ⊂ (Hn, ⋆), of the 2-cell S1
i of Hn, for i = 1, . . . , n. Let xi ∈ π1(Hn, ⋆) be

given by the homotopy class of a positively oriented characteristic map ([0, 1], {0, 1}) → (S1
i , ⋆) ⊂

(Hn, ⋆) of the 1-cell S1
i of Hn, for i = 1, . . . , n.

By the Seifert – van Kampen theorem, the group π1(Hn, ⋆) is free on the x1, . . . , xn ∈ π1(Hn, ⋆).
Hence π1(Hn, ⋆) ∼= Fn in Section 2.1, canonically. This is because, since spaces are well-pointed,
we have canonical isomorphisms of groups (see e.g. [Hat02, Theorem 1.20 and Example 1.21]):

π1(Hn, ∗) = π1

( n∨

i=1

(
(S1

i , ⋆) ∨ (S2
i , ⋆)

))
∼=

n∨

i=1

π1

(
(S1

i , ⋆) ∨ (S2
i , ⋆)

)

∼=

n∨

i=1

(
π1

(
S1

i , ⋆) ∨ π1(S2
i , ⋆)

)
∼=

n∨

i=1

π1

(
S1

i , ⋆) ∼=

n∨

i=1

Fa({xi}) ∼= Fn.

In particular, the inclusion (Fn, ⋆) → (Hn, ⋆) canonically induces an isomorphism of groups

Fn
∼= π1(Fn, ⋆)

∼=
→ π1(Hn, ⋆) ∼= Fn.

We now determine π2(Hn, ⋆) as a π1(Hn, ⋆)-module.

Lemma 4.2. As an abelian group, π2(Hn, ∗) is freely generated by the g ⊲ Ai, where g ∈
π1(Hn, ⋆) ∼= π1(Fn, ⋆) ∼= Fn, and i = 1, . . . , n. We have an isomorphism sending g ⊲ Ai to (g, Ki):

π2(Hn, ∗) → Mn,
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where we recall from Definition 3.7 that:

Mn = Z[Fn]{K1, . . . , Kn} ∼=

n⊕

i=1

Z[Fn]Ki
∼=

⊕

g∈Fn

n⊕

i=1

Z(g, Ki).

In particular, we have a canonical isomorphism of π-modules:

π(1,2)(Hn, ∗) ∼= Mn.

Proof. We extend [Hat02, Example 4.27], which deals with case n = 1. The crucial ideas of the
following argument are also in [BFMM19, §4.5.1].

Let q : (Ĥn, ⋆̂) → (Hn, ⋆) be the universal cover of Hn, where we fixed a ⋆̂ ∈ q−1(⋆). Lifting

elements of π2(Hn, ⋆) to elements of π2(Ĥn, ⋆̂) yields an isomorphism:

Ψ: π2(Hn, ⋆) → π2(Ĥn, ⋆̂),

see e.g. [Hat02, Proposition 4.1]. Let q : (F̂n, ⋆̂) → (Fn, ⋆) be the universal cover of Fn, where we

fixed ⋆̂ ∈ q−1(⋆). The crucial observation, as in [Hat02, Example 4.27], is that that Ĥn is obtained

from F̂n by attaching a copy of (Jn, ⋆) =
∨n

i=1(S2
i , ⋆), along ⋆, to each element of q−1(⋆).

Covering space theory gives a one-to-one correspondence π1(Hn, ⋆) → q−1(⋆) = q−1(⋆). We
choose the convention sending g ∈ π1(Hn, ⋆) to ⋆̂ ⊳ g, where on the right-hand-side we considered
the monodromy right-action of π1(Hn, ⋆) ∼= π1(Fn, ⋆) on q−1(⋆) = q−1(⋆).

For each g ∈ π1(Hn, ⋆), consider a copy of (Jn,g, ⋆g) of (Jn, ⋆). We have a pushout diagram:

⊔

g∈π1(Hn,⋆)

{⋆̂ ⊳ g}

��

//
⊔

g∈π1(Hn,⋆)

Jn,g

��

F̂n
ιn

// Ĥn

in the category of topological spaces. Here the top horizontal arrow is induced by ⋆̂ ⊳ g 7→ ⋆g. In

particular, the top horizontal arrow is a cofibration. Consequently ιn : F̂n → Ĥn is a cofibration;

see e.g. [May99, Page 44]. Since F̂n is contractible, we hence have a homotopy equivalence Ĥn →

Ĥn/F̂n, obtained by collapsing F̂n to a point: call it ⋆; see e.g. [Hat02, Proposition 0.17]. Now

note that (Ĥn/F̂n, ⋆) is canonically homeomorphic to
∨

g∈π1(Hn,⋆)

∨n

i=1(S2
g,i, ⋆), where S2

g,i = S2.

Therefore we have a canonical isomorphism π2(Ĥn, ⋆) ∼= π2

( ∨
g∈π1(Hn,⋆)

∨n

i=1(S2
g,i, ⋆)

)
.

By [Hat02, Example 4.26], π2

( ∨
g∈π1(Hn,⋆)

∨n

i=1(S2
g,i, ⋆)

)
is the free abelian group on the

homotopy classes Ag,i yielded by the inclusions (S2, ⋆)
∼=
→ (S2

g,i, ⋆) →
∨

g∈π1(Hn,⋆)

∨n

i=1(S2
g,i, ⋆).

Therefore we have:

π2(Ĥn, ⋆̂) ∼=
⊕

g∈π1(Hn,⋆)

n⊕

i=1

Z(g, Ki)

canonically, where Z(g, Ki) ∼= Z, and its positive generator is identified with

Ag,i ∈ π2

( ∨

g∈π1(Hn,⋆)

n∨

i=1

(S2
g,i, ⋆)

)
∼= π2(Ĥn, ⋆).

With our conventions, the positive generator of Z(g, Ki) corresponds to Ψ(g ⊲ Ai) ∈ π2(Ĥn, ⋆),

for each g ∈ π1(Hn, ⋆) and each i ∈ {1, . . . , n}. Given that Ψ: π2(Hn, ⋆) → π2(Ĥn, ⋆̂) is an
isomorphism, and that π1(Hn, ⋆) ∼= Fn, this completes the proof. �
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Remark 4.3. Confer with [BH82, Chapter 5] and also [Hue12, Section 3]. Let Π2(X) denote
the fundamental crossed module of a reduced 2-dimensional CW-complex X, with its skeletal
filtration (X, X1, {⋆}), where the base-point ⋆ coincides with the unique 0-cell. Explicitly,
Π2(X) = (∂ : π2(X, X1, ⋆) → π1(X1, ⋆), ⊲), where ∂ is the map appearing in the penultimate
stage of the homotopy long exact sequence of the pointed pair (X, X1, ⋆), and ⊲ is the usual
action of π1 on relative π2. Another proof of Lemma 4.2 can be obtained in the following way:

First of all note that Π2(Hn) ∼=
∨n

i=1(Π2(S1
i ) ∨ Π2(S2

i )), since the fundamental crossed module
functor sends wedge products of well-pointed pairs of spaces to wedge products of crossed modules:
see for example [Bro99, Theorem 4.1]. By checking that the associated universal properties hold,
one can conclude that the boundary map ∂ in the crossed module Π2(Hn) is trivial, and also:

π1(Hn, ⋆) ∼= π1(H1
n, ⋆) = π1(Fn, ⋆) ∼= Fn

and
π2(Hn, H1

n, ⋆) = π2(Hn, Fn, ⋆) ∼= Mn.

Now since Fn is aspherical, it then follows, by applying the homotopy long exact sequence of
(Hn, Fn, ⋆), that π2(Hn, ⋆) ∼= ker(∂) = π2(Hn, H1

n, ⋆) ∼= Mn. By construction this homomorphism
preserves the action of π1(Fn, ⋆) ∼= Fn.

4.2. Fundamental π-module for (D3 \Ln, ∗). Recall that Ln = ∪n
i=1Ci is an unlinked union of

unlinked circles in the interior of D3. It is now convenient to consider that all circles are confined
to the vertical plane {y = 1/2}. We take each Ci to be a circle centred at (i/(n + 1), 1/2, 1/2),
with radius 1/2n, and oriented clockwise, for the point of view of an observer sitting in the y = 0
plane. Furthermore, we consider a base-point located in the {z = 0} plane. Analogously to the
2-dimensional case in Subsection 2.1, we have:

Proposition 4.4. Let ∗ be a base point for D3 \ Ln contained in ∂D3 ∩ {z = 0}. The spaces
(D3 \ Ln, ∗) and (Hn, ⋆) are pointed homotopic. Moreover, we have a deformation retraction from
(D3 \ Ln, ∗) onto a certain homeomorphic image of (Hn, ⋆). Here (Hn, ⋆) embeds in (D3 \ Ln, ∗)
in a way where each oriented circle S1

i encircles the oriented circle Ci ⊂ D3, forming a Hopf link,
with positive linking number, and each oriented S2

i embeds as a positively oriented “balloon” (i.e.
a 2-sphere, oriented by the exterior normal ~ni) containing Ci, and no other circle, see Figure 8.

S2
i

S1
i

Ci

∗

~ni

x

y
z

Figure 8. Embedding of (S1
i , ⋆) ∨ (S2

i , ⋆) inside (D3 \ Ln, ∗).

From the previous lemma, it follows that the inclusion (Hn, ⋆) inside π2(D3 \ Ln, ∗) induces
an isomorphism of π-modules π(1,2)(Hn, ⋆) ∼= π(1,2)(D

3 \ Ln, ∗). Hence π(1,2)(D
3 \ Ln, ∗) ∼= Mn.

Let f be a self-homeomorphism of the pair (D3, Ln), relative to the boundary. Isotopies of
such homeomorphisms are also considered to be relative to the boundary. Hence each element
[f ] ∈ MCG(D3, Ln) = LBext

n yields, by restricting to D3 \ Ln, a pointed homotopy class of
pointed maps Υ([f ]) : (D3 \ Ln, ∗) → (D3 \ Ln, ∗); here recall that we imposed ∗ ∈ ∂D3. The
induced map of fundamental π-modules:

π(1,2)

(
Υ([f ])

)
: π(1,2)(D

3 \ Ln, ∗) ∼= Mn −→ π(1,2)(D
3 \ Ln, ∗) ∼= Mn
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is denoted Θ′([f ]) : Mn −→ Mn. The functoriality of π(1,2) : TOP∗/∼= → Agg gives that

Θ′([f ][g]) = Θ′([f ◦ g]) = Θ′([f ]) ◦ Θ′([g]), for each [f ], [g] ∈ MCG(D3, Ln). We thus have
a group homomorphism Θ′ : LBext

n = MCG(D3, Ln) → Aut(Mn). The following theorem gives
the topological interpretation of the lifted Artin representation.

Theorem 4.5. The homomorphism Θ′ : LBext
n → Aut(Mn) coincides with the homomorphism

Θ: LBext
n → Aut(Mn) in Theorem 3.16. In particular Θ′ is injective.

The main ideas of the following proof are also in [BFMM19, §4.5.1].

Proof. (Sketch) We recall what each generator g of the extended loop braid group in Theorem
3.2 incarnates geometrically. Let Homeo(D3) be the group of homeomorphisms D3 → D3, relative
to the boundary. Consider an ambient isotopy t ∈ [0, 1] 7→ φg

t ∈ Homeo(D3) of D3, for each
generator g of LBext

n , as in Figure 9. Concretely t 7→ φg
t is obtained by applying the isotopy

extension theorem, as in [Hir76, Chapter 8. 1.3 Theorem], to the smooth isotopies outlined in
Figure 9. Each ambient isotopy t 7→ φg

t is relative to the boundary of D3, and satisfies φg
0 = idD3 .

Moreover, note that φg
1 is a homeomorphism (D3, Ln) → (D3, Ln). The elements of MCG(D3, Ln)

corresponding to each of the generators g of LBext
n in Theorem 3.2 are obtained by evaluating

the ambient isotopies φg
t at t = 1. Our motions are the ones in [Dam17, §3], with the interval

[0, 1] taken with reversed extremes due to different conventions for the product in MCG(D3, Ln).

t 7→ φσi

t

Ci Ci+1 Ci Ci+1

t 7→ φ
ρi
t

Cj

t 7→ φ
τj
t

Figure 9. Our conventions for the elements Σi, ρi and τj in MCG(D3, Ln),
obtained by evaluating (respectively) the shown ambient isotopies at t = 1.

Recall π(1,2)(D
3, Ln) ∼= Mn = (Fn, Mn, ⊲), where Mn is the free Z[Fn]-module generated

by {K1, . . . , Kn}; see Definition 3.7. Our conventions for the generators xj ∈ π1(D3 \ Ln, ∗)
and Kj ∈ π2(D3 \ Ln, ∗), where j = 1, . . . , n, are depicted on the left-hand side of Figure 10. In
particular, Kj is obtained from a positively oriented parametrisation (D2, ∂D2) → (D3 \Ln, ∗j) of
a “balloon” (i.e. a 2-sphere, oriented by an exterior normal), based in ∗j , as shown, containing the
circle Cj only; acted on by the path γj , a straight line connecting ∗ and ∗j , in order to obtain an
element of π2(D3 \Ln, ∗). This point of view is as in [BN15], [BFMM19, §4.5.1] and [Far09, §2.1.3].
Also, xj is given by the loop in Figure 10, which is then conjugated by the path γj , in order to
yield an element of π1(D3 \ Ln, ∗). By applying the deformation retration in Proposition 4.4, we
hence obtain the generators of π(1,2)(Hn, ⋆) as in Lemma 4.2.

Let us see how the generators of MCG(D3, Ln) in Theorem 3.2 act on the xis and the Kjs.
We use the same notation to denote g ∈ LBext

n and the map Θ′(g) : Mn → Mn.
Whenever |i − j| > 1, nothing happens when we apply Σi and ρi to xj and to Kj . Also, ρi is

such that:

ρi : xi 7→ xi+1, xi+1 7→ xi, Ki 7→ Ki+1, Ki+1 7→ Ki.

Hence ρi coincides with Ri in (3.10a) and (3.10b).
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xj

Cj

Kj

xj+1

Cj+1

Kj+1

∗ ∗

∗j ∗j+1

γj γj+1

Ci Ci+1

Figure 10. On the left of the figure: our conventions for the generators xj ∈
π1(D3 \ Ln, ∗) and Kj ∈ π2(D3 \ Ln, ∗), in the vicinity of the circle Cj . On the
right of the figure: the result of acting with Σi on xi+1 and on Ki+1.

If we apply Σi to xi we get xi+1. The right-hand-side of Figure 10 indicates what happens to
xi+1 and Ki+1 when we apply Σi. Hence:

Σi : xi+1 7→ x−1
i+1 xi xi+1, Ki+1 7→ x−1

i+1 ⊲ Ki.

Let us now determine Σi(Ki+1). Note that when the circle Ci+1 goes inside the circle Ci it
“drags” the balloon representing the class Ki ∈ π2(D3\Ln, ∗). However Σi(Ki+Ki+1) = Ki+Ki+1.
This is because Ki + Ki+1 ∈ π2(D3 \ Ln, ∗) can be seen as being represented by a bigger balloon
Ki,i+1 containing Ci ∪ Ci+1, see Figure 11. Moreover, the ambient isotopy t ∈ [0, 1] 7→ φσi

t from
which we define Σi = φσi

1 can be chosen to happen inside the bigger balloon Ki,i+1, hence not
moving Ki,i+1. In more precise terms, we choose an ambient isotopy t ∈ [0, 1] 7→ φσi

t supported
in a compact set contained in the region bounded by Ki,i+1.

Ci Ci+1

Ki,i+1

∗

Figure 11. The balloon Ki,i+1 representing Ki + Ki+1 ∈ π2(D3 \ Ln, ∗).

We obtain Σi(Ki,i+1) = Ki,i+1. Therefore:

Σi(Ki) + Σi(Ki+1) = Σi(Ki + Ki+1) = Ki + Ki+1,

and
Σi(Ki) = Ki + Ki+1 − Σi(Ki+1) = Ki + Ki+1 − x−1

i+1 ⊲ Ki+1.

Hence Σi coincides with Si in (3.9a) and (3.9b). That τi’s coincide with Ti’s in (3.11a) can be
seen in a similar way. Note that τi(Ki) = Ki, since the ambient isotopy yielding Ki can be chosen
to happen inside the balloon representing Ki. �

Remark 4.6. The restriction of the representation Θ: LBext
n → Aut(Mn) to the loop braid

group LBn, as well as its topological interpretation, are also discussed in [BFMM19, §4.5.1].

Remark 4.7. In Remark 3.18, we promised an interpretation of the property Θ(g)2(K1+· · ·+Kn) =
K1+· · ·+Kn, for each g ∈ MCG(D3, Ln). Observe that, given our conventions, M = K1+· · ·+Kn

is homotopic to the element of π2(D3\Ln, ∗) yielded by the inclusion of (∂D3, ∗) inside (D3\Ln, ∗).
Since all elements of MCG(D3, Ln) restrict to the identity over ∂D3, it follows that Θ(g)2(M) = M ,
for all g ∈ MCG(D3, Ln) = LBext

n .
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4.3. Remarks on connections to Baues’ combinatorial homotopy. Given a pointed space
(X, ∗), we denote by E(X, ∗) the group of pointed homotopy equivalences (X, ∗) → (X, ∗), up
to pointed homotopy. Note that E(D3 \ Ln, ∗) ∼= E(Hn, ⋆). If ∗ ∈ ∂D3, we have a group ho-
momorphism Υ: LBext

n → E(D3 \ Ln, ∗), obtained by restricting f : (D3, Ln) → (D3, Ln) to
D3 \Ln. The fundamental π-module functor TOP∗/∼= → Agg gives another group homomorphism
E(D3 \ Ln, ∗) → Aut(π(1,2)(D

3 \ Ln, ∗)) ∼= Aut(Mn). Composing with Υ, this yields a group ho-
momorphism Θ′ : LBn → Aut(Mn), which by Theorem 4.5, coincides with Θ: LBn → Aut(Mn).

Note that taking into account our results, it follows from elementary algebraic topological
techniques, or as a particular case of [Bau91, Theorem III(7.1)] or [Bau08, Corollary VI(3.5)],
that E(D3 \ Ln, ∗) ∼= E(Hn, ⋆) ∼= Aut(Mn). This follows since the construction in loc cit implies
that pointed homotopy classes of pointed maps between bouquets of 1- and 2-spheres are in
one-to-one correspondence with maps between their fundamental crossed modules, which is this
case reduce to π-modules (meaning that they have a trivial boundary map ∂). This result is
a generalisation of the well known fact that E(D2 \ dn, ∗) ∼= E(Fn, ∗) ∼= Aut(Fn). Hence in
this (D3 \ Ln, ∗) case, π-modules retain all of the homotopy theoretical information necessary
to combinatorially model the group E(D3 \ Ln, ∗). Therefore, the lifted Artin representation
Θ: MCG(D3, Ln) → Aut(Mn) models the pointed homotopy type of the restriction of a mapping
class in MCG(D3, Ln) to (D3 \ Ln, ∗).

Appendix A. Calculations

In this Appendix we explicitly verify that relations from Theorem 3.16 hold. It will be enough
to consider the case n = 3. In order to reduce indices, with respect to Theorem 3.16 we replace
{x1, x2, x3} with {x, y, z} and {K1, K2, K3} with {K, L, M}. We will only show computation for
generators {K, L, M}, since on {x, y, z} our representation coincides with Dahm’s homomorphism.
Note that the way the generators x, y, z change by applying Artin representation is fundamental
for the lifted Artin representation to work at the level of π2(D3 \ Ln, ∗). For instance note that
in the first calculation below, y−1 ⊲ K is sent by S2 to z−1 ⊲ K, since y is sent to z.

• S1 ◦ S2 ◦ S1 = S2 ◦ S1 ◦ S2.
Applying S1 ◦ S2 ◦ S1 one obtains:





K 7−→ K + L − y−1 ⊲ K 7−→ K + L + M − z−1 ⊲ L − z−1 ⊲ K 7−→
K + L − y−1 ⊲ K + y−1 ⊲ K + M − z−1 ⊲ y−1 ⊲ K − z−1 ⊲ (K + L − y−1 ⊲ K)
= K + L + M − z−1 ⊲ (K + L),

L 7−→ y−1 ⊲ K 7−→ z−1 ⊲ K 7−→ z−1 ⊲ (K + L − y−1 ⊲ K),
M 7−→ M 7−→ z−1 ⊲ L 7−→ z−1 ⊲ y−1 ⊲ K

while applying S2 ◦ S1 ◦ S2 one obtains:




K 7−→ K 7−→ K + L − y−1 ⊲ K 7−→ K + L + M − z−1 ⊲ L − z−1 ⊲ K,
L 7−→ L + M − z−1 ⊲ L 7−→ y−1 ⊲ K + M − z−1 ⊲ y−1 ⊲ K

7−→ z−1 ⊲ K + z−1 ⊲ L − (z−1y−1z) ⊲ z−1 ⊲ K
M 7−→ z−1 ⊲ L 7→ z−1 ⊲ y−1 ⊲ K 7→ (z−1y−1z) ⊲ z−1 ⊲ K.

• R2 ◦ R1 ◦ S2 = S1 ◦ R2 ◦ R1.
Applying R2 ◦ R1 ◦ S2 one obtains:





K 7−→ K 7−→ L 7−→ M
L 7−→ L + M − z−1 ⊲ L 7−→ K + M − z−1 ⊲ K 7−→ K + L − y−1 ⊲ K
M 7−→ z−1 ⊲ L 7→ z−1 ⊲ K 7→ y−1 ⊲ K
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while applying S1 ◦ R2 ◦ R1 one obtains:



K 7−→ L 7−→ M 7−→ M
L 7−→ K 7−→ K 7−→ K + L − y−1 ⊲ K
M 7−→ M 7−→ L 7−→ y−1 ⊲ K.

• S2 ◦ S1 ◦ R2 = R1 ◦ S2 ◦ S1.
Applying S2 ◦ S1 ◦ R2 one obtains:





K 7−→ K 7−→ K + L − y−1 ⊲ K 7−→ K + L + M − z−1 ⊲ L − z−1 ⊲ K
L 7−→ M 7−→ M 7−→ z−1 ⊲ L
M 7−→ L 7−→ y−1 ⊲ K 7−→ z−1 ⊲ K

while applying R1 ◦ S2 ◦ S1 one obtains:



K 7−→ K + L − y−1 ⊲ K 7−→ K + L + M − z−1 ⊲ L − z−1 ⊲ K
7−→ L + K + M − z−1 ⊲ K − z−1 ⊲ L

L 7−→ y−1 ⊲ K 7−→ z−1 ⊲ K 7−→ z−1 ⊲ L
M 7−→ M 7−→ z−1 ⊲ L 7−→ z−1 ⊲ K.

• T1 ◦ R1 = R1 ◦ T2.
Applying T1 ◦ R1 one obtains:





K 7−→ L 7−→ L
L 7−→ K 7−→ K
M 7−→ M 7−→ M

while applying R1 ◦ T2 one obtains:





K 7−→ K 7−→ L
L 7−→ L 7−→ K
M 7−→ M 7−→ M.

• T1 ◦ S1 = S1 ◦ T2.
Applying T1 ◦ S1 one obtains:





K 7−→ K + L − y−1 ⊲ K 7−→ K + L + y−1 ⊲ K
L 7−→ y−1 ⊲ K 7−→ y−1 ⊲ K
M 7−→ M 7−→ M

while applying S1 ◦ T2 one obtains:





K 7−→ K + L − y−1 ⊲ K 7−→ K + L + y−1 ⊲ K
L 7−→ y−1 ⊲ K 7−→ y−1 ⊲ K
M 7−→ M 7−→ M.

• T2 ◦ S1 = R1 ◦ S−1
1 ◦ R1 ◦ T1.

Applying T2 ◦ S1 one obtains:





K 7−→ K + L − y−1 ⊲ K 7−→ K + L − y ⊲ K
L 7−→ y−1 ⊲ K 7→ y ⊲ K
M 7−→ M 7−→ M

while applying R1 ◦ S−1
1 ◦ R1 ◦ T1 one obtains:





K 7−→ K 7−→ L 7−→ K + L − x ⊲ L 7−→ L + K − y ⊲ K
L 7−→ L 7−→ K 7−→ x ⊲ L 7−→ y ⊲ K
M 7−→ M 7−→ M 7−→ M 7−→ M.
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