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Abstract. This paper reviews theork of the Chemoinformatics Research Group in the
Department of Information Studies at the Umsity of Sheffield, focussing particularly
on the work carried out in the periadtP85-2002. Four major search areas are
discussed, these involving the developmenmefthods for: substructure searching in
databases of three-dimensional structures, including both rigid and flexible molecules; the
representation and searching of the Markusihicgires that occur in chemical patents;
similarity searching in dabases of both two-dimensial and three-dimensional
structures; and compound selection and the degigombinatorial libraes. An analysis

of citations to 321 publications from tl&roup shows that it aticted a total of 3725
residual citations dumg the period 1980-2002. These cdat appeared in 411 different
journals, and involved 910 diffent citing organisations frol4 different countries, thus
demonstrating the widespread impact of the Group’s work.
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1. | ntroduction

Chemoinformatics is the name that is sesingly being given tahe computational
methods that are used to support the discovery of novel biologically active chemical
molecules, most notably pharmaceuticaldd aagrochemicals; other names for this
specialism include cheminformatics, cheali information management and chemical
structure handling. Although the name is quite new, the subject is one that has existed for
very many years [1], with the first pracdible system for sutracture searchingvide

infra) being described by Ray and Kirsch aslyeas 1957 [2]. The Department of
Information Studies in the University of &field has been working in this area for
almost all of the forty years that the Depaent has been in existence and that are
celebrated in this special issue of floernal of Information Science. This long-standing
interest arose from the appointment te fDepartment in 1965 of Michael F. Lynch,
following a term as the Head of Basic Reseatc@hemical AbstrastService (CAS) at a

time when CAS was carrying out some of thistfexperiments anywhe in the world on

the use of computers for the processing batth textual and chemical structural
information (see, e.g., [3, 4]). On arrival@meffield, Lynch rapidl established research
programmes in both of these areas (see, [6,06]) and this dual fous of computational
activity has continued with great success rigihto the present dawith research in one

of the areas often providing the spur fabsequent developments in the other [7].

Early chemoinformatics research, ithe period 1965 to 1985, focused on the
development of methods for indexing datalsaskechemical reactions, for the design of
two-dimensional (2D) substructure seangh systems and for the correlation of
substructural occurrence data with physicad ahemical propertiesThis early work is
reviewed by Lynch and Willett [8] and the present paper hence focuses on research
subsequent to that period. The nexttisec describes our studies of substructure
searching on databases of three-dimensional (3D) chemical structures, and Section 3 then
discusses the techniques that were developed for representing and searching the generic
chemical structures that occur in chemical patents, Taesses highlight the long-term

nature of much of our research since the s&ts of studies reged here both extended



over more than a decade. Further studiefatdbase retrieval are summarised in Section

4, with much of the work on similarity se&ing described in this section providing a
natural starting point for the developnieof a range of techniques for compound
selection and for the design of combinatorial libraries, as summarised in Section 5. In
much the same way, our earlier studies ofsBDstructure searchirigave resulted in the
development of a range ofdimformatics methods for thepeesentation and searching of
biological macromolecules (ascently reviewed by Artymiulet al. [9]). The citation
analysis in Section 6 demonstrates the extent to which the work in Sheffield has been
taken up by other workers, both academic imdldistrial, and the paper concludes with a

brief summary of our current research activities.
2. 3D substructure searching

Substructure searching involvesarching a database of cheah structures to identify
those that contain some user-defined quettepa For example, ure 1 shows five of
the molecules that were retrieved ineaich of 117,659 molecules from the National
Cancer Institute (NCI) database (at URL Httip.nci.nih.gov/); tis search, in which
each of the constituent atoms of the query substructure could be substituted by any
number of additional atoms, resulted time retrieval of a total of 2,737 molecules
containing the diphenyl ether ey substructure shown #e top of the figure.

Figure 1 about here
Methods for searching databases of 2D clkahstructure diagramare based on the use
of graph-theoretic methods, in which the nodes and edges of a graph are used to denote
the atoms and bonds of a molecule [10]. Subsire searches can then be effected by
means of asubgraph isomorphism algorithm, which determines whether the graph
denoting the query substructure is a suplraf the graphs representing each of the
database structures. This provides a highly effective way of identifying query
substructures but is extremely demanding cofnputational resources, as subgraph
isomorphism belongs to the class of comagiohal problems that are known to be NP-
complete. Efficient searching is achieved by means of an igitieén search, where a

screen is a substructural feauthe presence of which is necessary, but not sufficient, for



a molecule to contain the query substructure. These features are typically small, atom-,
bond- or ring-centred fragment substrucsiréhe presence of which characterise a
molecule in much the same way that an ing&m characterises a textual document. The
incidences of these fragments in a molecule are encoded in a bit-strifiiggéoprint)

that can be searched extremely rapidgnd that thus eliminates from further
consideration large numberd molecules that cannot gsibly satisfy the subgraph

match.

Gund [11] was the first to suggest that sgrhph-based search methods could also be
applied to the retrieval of 3Bhemical structures, with the nodes and edges of a graph
being used to represent the atoms and inter-atomic distances, respectively, in a 3D
molecule. The resulting inter-atomic distanmatrix could then be inspected for the
presence of a quepharmacophore, or pharmacophoric pattern, i.e., the arrangement of
structural features in 3D space necessary for a molecule to bind at an active site; an
example of an anti-leukemic pharmacophore j§Zhown in Figure 2. Given that a 3D
structure can be represethitby a graph, the presence avsence of a pharmacophoric
pattern can be confirmed by means ofuaggaph isomorphism procedure in which the
edges in a databasewtture and a query substructiaee matched if they denote the
same inter-atomic distance (to within any user-specified tolerance sti6t6A3.

Insert Figure 2 about here
Our initial studies of 3D substructure sg@ng focused on the design of a screening
system to permit rapid searching of largéatlases [13, 14]. Gimethat pharmacophores
are normally expressed in terms of inter-atodistances, the scregthat we developed
consisted of a pair of atoms together wathassociated inter-atomic distance range. For
example, a typical screen might consistaof oxygen atom separated from a nitrogen
atom by a distance of between 6.5 and 8.2y molecule containing these two atom-
types separated by a distance waitthis range would be assighthat screen, while if the
distance was outside the rangevould be assigned ona the other oxygen-nitrogen
screens. Similar ideas have been adoptedubsequent workers [15, 16]. Once the
initial screen search has been carried out, those molecules that contain the screens

associated with the query pharmacophoee massed on for the subgraph isomorphism



search [17, 18]. Studies of several différsubgraph isomorphism algorithms [19]
demonstrated the general efficiency of tla@scribed by Ullmann [20] for chemical
applications; this algorithm now forms the basis for many operational substructure

searching systems, both 2D and 3D.

Although both effective and efficient ioperation, these screening and geometric
searching algorithms are limited in that thi&ake no account of the flexibility that
characterises many moleculds3] 21]. Specifically, early 3Bearching systems stored
only a single low-energgonformation (i.e., a particular arrangement of the atoms in a
molecule in 3D space) for each molecute a database, with the result that a
pharmacophore search is likely to miss langenbers of matching molecules that can
adopt a conformation containing the query pattaut that are represied in the database
by a low-energy conformation thdbes not contain this patter Two main approaches to
flexible 3D searching have beelescribed in the literature [21]. In the first, a flexible
molecule is represented by some smalimber of carefully selected low-energy
conformations, with a rigid-searching algorithm being applied to each of the
conformations describing a molecule. Thigproach has many advantages but it does
mean that the search algorithm cannot exptbe full conformational space available to a
flexible molecule, with the podsiity of a loss in recall. The work in Sheffield thus
focused upon the development of algorithms dath structures that could avoid such

retrieval failures.

In a rigid 3D molecule, the distance betwesath and every pair of atoms is a single,
fixed value, whereas the distance betweguaim of atoms in a flexible molecule will
depend on the conformation that is adoptede 3é&paration of a pair of atoms is hence
conveniently described bydastance range, the lowerbounds and upperbounds of which
correspond to the minimum- and maximunsgible distances. The set of distance
ranges for a molecule will contain all of the geometrically-feasible conformations which
that molecule can adopt, and thus provides an obvious way of representing a flexible

molecule. Such sets of distance rangas be generated using the bounds-smoothing



technique that forms an important component of distance-geometry approach to
structure generation [22].

The screening and graph-searching algorithiimat are used for rigid 3D searching
operate on graphs where each edge denategyke value; these gbrithms require only
minor modifications to enable them to preseraphs in which each edge contains both a
lowerbound and an upg®sund, thus allowing theetrieval of all molecules that could
possibly adopt a conformatiothat contains a query phmacophoric pattern [23].
Indeed, it is possible to view the algorithihsscribed previouslfor rigid searching as
limiting cases of the more general algorithms that are required for flexible searching.
There is, however, one major difference kesw flexible 3D and both 2D and rigid 3D
substructure searching, inaththose molecules that mhatthe query in the subgraph-
isomorphism search must then undergo a furtad, final, check that uses some form of
conformational-searchgnprocedure; this is required since bounds-smoothing is known to
over-estimate the true range of possible iateric distances. Aange of methods for
this final conformational seardmave been described [24§f which the most effective

and most efficient would seeto be a technique known disected tweak [25].

Flexible 3D pharmacophore searching is now well-established and plays an important
role in lead-discovery programmes rfaovel pharmaceutical and agrochemical
compounds (see, e.g., [26, 27]). As an exanffifgyre 3 shows some of the hits from a

3D search for the anti-leukemic pharmacophore of Figure 2 against the NCI file
mentioned previously. This search retriegabtal of 1341 hits when the molecules were
represented by just a singlendormation; five of these hire shown in Figure 3, where

it will be seen that they encompass a wide range of structural types containing the
specified three atoms at distances withm &llowed tolerances (as marked by the dotted
lines). The number of hits increased rio less than 5541 when the corresponding
flexible search was carried out (usingetlUNITY system for chemical information
management [28]), thus illustrating the muckaier level of recall that can be achieved

if account is taken of edormational flexibility.



Insert Figure 3 about here
As well as providing the basis for curreoperational systems for 3D substructure
searching, the research desadiladove also provided the peipal initial stimulus for an
extended collaboration with éhDepartment of Moleculaiology and Biotechnology in
the University of Sheffield. This work kadeveloped graph-theoretic methods for the
representation and searchiof biological macromoleculastructures, thus providing a
way of analysing biological stetures, rather than the biological sequences that lie at the
heart of most bioinformatics search. Most of our work ithis area has focused on the
representation and searchingtbé 3D protein structures in the Protein Data Bank (at
URL http://www.rcsb.org/pdb) but we havelso studied carbohydrate and RNA
structures; we will not discuss this work fugt here as a recent overview is provided by
Artymiuk et al. [9].

3.  Searching generic chemical structures

Patents form one of the most important sources of chemical information. For many
years, however, computer-based access to staldhformation in the patent literature
had to be based on fragmentation codeswhich the structural information was
characterised by a series of substructui@rfrtents, manually encoded by skilled patent
analysts. A 1978 report by the British Library Research and Development Department
[29] highlighted the need for improved mearisaccess to this information, in particular
to the generic, or Markush, structures that occur veryefjuently in patents and that
encode many, or even an infinite numiody different specific molecules in a single
representation. A typical genestructure is shown in Figure 4.

Insert Figure 4 about here
There are four principal sourcestructural variation that odbe encoded in a patent (as
discussed by Dethlefseat al. [30, 31]). Substituent variat relates to the variety of
possible substituents at a fixed position on a partial structure, e.g., “phenyl substituted in
para position by F, Cl or Br’ Position variation relates to the choice of attachment
position of a substituent, e.g., “monochlorophenyFrequency variation relates to the

frequency of occurrence of substructures, e.g., “CH3-(CH2)n —CI; n=1-3" (denoting the



ethyl, propyl and n-butyl groups)domology variation relate® substructures described
in terms of chemical families by termsuch as “cycloalkyl” or “six-membered
heterocycle containing one nitrogen, oxygen dplsur atom”. Further features are often
superimposed on the overall structure, sucheasing in which one substituent may itself
contain further structural variation. Tleembinatorial complexities produced by these
variation types results in a document that rdaegcribe a large, possibly infinite, number

of individual compounds in single patent claim.

These complexities were the starting pofior a programme of research in the
Department that started in 1979 and extendedl seme 15 years. These studies resulted
in a body of algorithms and data structutieat provided much of the theoretical and
practical basis for the soticated MARPAT [32, 33]rad Markush DARC [34] systems
that are the current methods of choice $tnucture-based access to generic chemical
structures. The Sheffield work involved vesybstantial modificatins to the connection-
table, screening and atom-by-atom proceduof conventional substructure searching
systems: the historical development oé ttesearch has been reviewed by Lynch and

Holliday [35] so we present here just a brief summary of the major findings.

Lynch and Holliday identified six major scientific achievements of the work. These
were: GENSAL, a formal and unambiguous language used to describe generic structures
for computer input; theGENSAL Interpreter, enabling translation of the GENSAL
language into an internal eputer representation; ti®CTR (Extended Connection Table
Representation), the internal computer espntation of the generic structure; the
derivation of substructural fragment and ringd#tors used in the initial bit-screening
search stagereduced chemical graphs, an intermediate screening stage based on a
generalised represtation of the structure; and thefined search, the final atom-by-atom

search component.

GENSAL [36] was designed take full account of the mechanisms used to describe the
structural diversity inherent in chemicglatents, and was based on a context-free
grammar, similar to many modern day programming languages. The GENSAL



interpreter [37] translatethe GENSAL language into thieaternal representation, the
ECTR [38], which is completely unanghious and encodes aif the logical and
structural features described by GENSAhus providing an accurate and complete

machine-readable description of the specif@ecules implied by a generic structure.

The ECTR comprises structural information, positional information, frequency
information and logical information in amverted tree-structuregraph representation,
the root of which is the invariant part of thlecule. Nodes of the graph describe either
the partial structures themselves or thegital relationship to eaabther. Nodes which
represent specific partial structures cors@ripartial connection tables, while nodes
representing homologous seridsntifiers describe the type$ homology present using a
list of pre-defined parameters such as tthtal number of atoms, the number of carbon
atoms, etc. Linking these partial strueturodes are the nodes which represent their
logical relationship to eachlwgr. They may be OR nodetgscribing partial structures
which are alternatives to eadther, or they may be AND nodes, describing partial
structures which are in combination. Bogpds of node also contain much of the variant
and invariant inter-component information, swdhranges of frequey or positions of
attachment.

The ECTR is the representation from whichsalbsequent representations, fragment and
ring bit-screens and reduced graphs, are derivihe Sheffield screening system used a
selection of Augmented Atom, Atom Sequaerand Bond Sequence descriptors from the
CAS Online dictionary [39] as a test set, tibge with a set of ringlescriptors defined by
Downs et al. [40]. The generation of the fragise41] starts from the terminal nodes of
the ECTR and rises up through the tree cétme, passing up through every partial
structure node to the root node, until all af ttonstituent fragments have been generated.
The fragments need to reflect the enmiments from which they are generated,
particularly as regards whether they are camno all structuredescribed by the generic
structure, or whether theyeaoptional. This idacilitated by the ‘bubble-up’ procedure
[42], which ensures that the aggregationfeditures accurately maintains the logical
relationships as it moves up the tree.



Fragments are generated from generic pastiactures [43] by ssigning specific derived
parameters to each descriptor in the fraginbctionary, and comparing these with the
parameter lists of the respective ECTR regnéstion. The result ahe bubble-up is two
sets of fragments, one set being commoraltespecific structures represented by the
generic structure, the othéeing those that are found at least once, but that may be
optional. These two sets &fagments are encoded in twopaeate bit-strings that are
searched in much the same way as the bit-string stage of a conventional 2D or 3D
substructure search. Subsequent, made¢ailed searching makeused of reduced
chemical graphs [44]. These graphs are produced by fragmethi structure into
distinct components which represent grogpsatoms and whose relationship to each
other can be maintained: these componengscgclic and acyclic systems, the latter
being sub-divided into groups of carbomwras and groups of non-carbon atoms. These
components become nodes in the reducedhgaap are further annotated by parameters
similar to those used to reggent homologous series idemrs in the ECTR, yielding a
generalised graph in which the nodes acdbed using a commaepresentation. The
application of a graph matching algorithm ttwe reduced graphs produced, for each
successful query/database mapping, a lispafs of matching reduced graph nodes.
These nodes relate to parts thie ECTR which are repreisted by real atoms, by
parameter lists, or, in some cases, by a mixiitee two. The finalrefined search [45]
matches the ECTR representations of epalr of nodes at the atom-atom, atom-
parameter, or parameter-parameter level gsogpiate, using a sofgticated adaptation

of the Ullmann subgraph isomorphism algorithm [20].

Following initial funding by the British Librarythe work was carried out in collaboration
with, and with funding from, groups at Chemiédistracts ServiceDerwent Publications
Ltd., and International Documentation in €histry (IDC). All three of these groups
subsequently implemented operational systémat drew upon the Sheffield work, CAS
and Derwent developing the public MARP and Markush DARC systems described
previously, and IDC developing an in-housdatdb@ase registration system. The studies
summarised here thus provide textbook example of how mething that started as

10



publicly-funded basic academic research caith \@ppropriate private-sector support,
lead to fully functional, widely wsd, operational information systems.

4.  Similarity searching

For many years, substructure searching provided the principal means of access to
databases of 2D (and latterly 3D) chemical&ures. It does have several inherent
limitations and chemicadimilarity searching has arisen as a complementary means of
database access that can overcome, or dt adlagiate, these limitations (in much the
same way as best-match text retrieval I@sn developed as a way of overcoming some
of the inherent limitations of Boolean seangh[46, 47]). Thus, @&ubstructure search
requires the user to specify pregly the substructural constits that must be obeyed if a
molecule is to be retrieved, and it may acowgty be difficult to define an appropriate
guery substructure ig.g., only a single active structure hasen identified thus far in a
synthetic programme. It is also generally diffi to control the size of the output that is
produced, and it is not normally possible to rémé output in order of decreasing utility,

even if an output of an apgpriate size has been achieved.

Similarity searching involves the user submitting an entire query molecule, normally
referred to as théarget structure, this typically being a mektule that has previously
exhibited activity in a biologidascreening experiment. The similarity search calculates a
measure of similarity between the targeusture and each of the molecules in the
database, and then ranks the database i ofdéecreasing similarity with the target
structure. The Similar Property Principle [48&tes that molecules that are structurally
similar are likely to have similar properties (in much the same way as the Cluster
Hypothesis states that similar documents deelylito be relevant to the same queries
[49]). Thus, if a biactive target structure searched for, then the top-ranked molecules,
which are normally referred to awarest neighbours, are also likely to possess that
activity: these molecuteare hence prime candidates lbavlogical testing, as compared

to other molecules that occfurther down the ranking. Thigrtual screening approach

provides an attractive way @irioritising the time-consumg and expensive biological
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testing that characterises much pharmaceautnd agrochemical research. It does,
however, require that the similgrimeasure that is used kfective, i.e., a similarity

measure for which high computed structugiatilarities do, indeed, correspond to similar
bioactivity characteristics, andfficient, i.e., enable the measure to be calculated
sufficiently rapidly for interactive access targe structure databases. The Sheffield
group has devoted considerable time durirggghriod under review to the development

of similarity measugs that exhibit thestwo, sometimes confling, characteristics.

A similarity measure has three macomponents: the structuredpresentation that is

used to characterise the molesutkat are being compared; theighting scheme that is

used to differentiate more important features from less important features; and the
similarity coefficient that is used to quantify the degrof similarity between pairs of
molecules. Of these, the first is probablg thost important since the representation that

is chosen will control the operations that can be carried out when determining the
similarity between a pair of molecules. Mughthe early work in Sheffield focused on
one particular representationz the fragment substructuresathwere first developed for

the screening stage of 2D strosture searches. The baglea underlying the use of this
representation is very simple: a databasectira is assumed to be similar to a target
structure if they have manfragment substructures icommon. This idea was first
suggested by Adamson and Bush as eadyl1973 [50] but only in the context of
processing small numbers of molecules, angas not till the mid-Eighties that it was
developed for database seanthin two papers #t appeared within a few months of
each other: one from Lederle Laboratoriesh@ USA [51] and the other from Sheffield
[52]. These early studies demonstrated ¢femeral utility of this approach to the
calculation of inter-molecular structural similarities, and despite the many other measures
that have been described since th@8, 53, 54] the combination of fragment
substructures and one specifassociation coefficientthe Tanimoto Coefficient,
continues to be the method of choice fanifarity searching in operational chemical
information systems of all sorts. An exalm of the nearest neighbours obtained in a
Tanimoto-based similarity search is showrrigure 5, where the close relationship to the

target structure is clearly evident.

12



Figure 5 about here
Similarity searching involves comparing one stwie (the target structure) with all of the
structures in a database, and it was naturebbsider the extension of these ideas to the
clustering of chemical structures, where many of the moremon methods for cluster
analysis involve matching all of the membefsa database with eadther. Structure-
based approaches to the clustering of chensitattures were first suggested in the late
Sixties [55, 56] but it was till the Eightiesatihthe Sheffield group began an extended
evaluation of the effectiveness of over 30 d#f& types of clustering method when used
for the grouping of chemical structures. Twisrk, which is summarised in [57], resulted
in the recommendation of the clustering hoet due to Jarvis and Patrick [58] (when
used with fragment substructures and Tenimoto Coefficient) as being the most
suitable for applications such as the sibecof compounds for biological testing and the
analysis of large substructusearch outputs [59], a conslan that was rapidly taken up
in operational chemical information systenisee, e.g., [60]). Later work, both in
Sheffield [61] and elsewhere [62], has suggested that Ward’s hierarchic agglomerative
method [63] may be more effective for chealiclustering, given agfficient algorithm

for its implementation.

Later work in Sheffield [64] evaluated theen-atomic distance screens that are used for
3D substructure searching whapplied to the calculation &D structural similarities,

and this occasioned several seipgent discussions of theeusf both distance-based and
angle-based methods for 3D similarity searghsee, e.g., [65-67]). However, most of
the research, both in Sheffiedshd elsewhere, of 3D similarity measures has focused on
two alternative approaches: the use ofrtteximum common substructure (MCS) and of
molecular field overlaps. Both of these are exampldsaal similarity measures [68],

where a local similarity measure is one that not only provides a single numeric value
describing the extent of the similarity betwesvo molecules, but that also provides an
alignment of one molecule with anothere., a mapping of features the target structure

to features in a database structure sufitio superimpose one upon the other [69].

13



The MCS is the largest set tdatures (atoms, bonds otanatomic distances) from a
target structure that can be superimposedtxémr within user-defined tolerances) onto
the database structure. Once the MCS kas liound, the numbef matching atoms can

be substituted into a Tanimoto-like coeffidi¢a obtain the global similarity between the
target structure and each of the databasetstes, with the local similarity here being
the alignment that gave rise to that global similarity value.

The maximum overlay of one molecule ontaother is an appealing, and intuitively
acceptable, measure of structural similarithére “maximum” is defined in terms of the
number of matching atoms and/or bonds indhage of 2D moleculemnd of atoms and/or
inter-atomic distances in the easf 3D molecules). Howekgit does require the use of

an MCS algorithm to identify the matching features in the two molecules that are to be
compared. MCS detection belongs to thesslof NP-complete computational problems,
for which no efficient, deterministic algorithms exist and much of the Sheffield work has
focused on the identification of algorithms that are sufficiently rapid to allow their use on
a routine basis [70-72]; thestudies have identified theron-Kerbosch algorithm [73],

in particular, as being the most generally agatile to 3D MCS detection in chemical and
biological structures. However, the very diffat natures of 2D and 3D chemical graphs
have meant that it is only very recently that we have been able to identify an algorithm
that is sufficiently fast to enable MCS-bdssimilarity searching in 2D databases (as

discussed in the finalection of the paper).

While common patterns of atorase clearly of importance in relating pairs of structures,

it is generally believed thatig the electrostaticsteric and hydrophobic characteristics of
molecules that are of most importance irtedmining their biological activities; in
particular, 3D QSAR (for Quantitative Stture-Activity Relationship) is now a well-
established approach to predicting the activities of molecules on the basis of the
electrostatic, steric and hyaprhobic fields surrounding a 3D tecule [74]. Field-based
similarity measures quantityhe degree of resemblance beém a pair of molecules by a
similarity coefficient based on the overlayy molecular 3D properties, such as the
molecular electrostatic potential. A molecigepositioned at the centre of a 3D grid, the

14



potential calculated at each point in thad, and then the similarity between two
molecules is estimated by comparing the pmdéhat each grid point and summing over
the entire grid (seeg.g., [75, 76]). Efficiencies imperation are obtained using the
Gaussian approximation procedure of Gebdl. [77] but there is still a need to search
for the best alignment of the two molecules thi@ being compared, so as to ensure that
analogous grid points are matched. This haeant that while field-based similarity
measures are becoming widely used in Q38ée, e.qg., [78, 79]) they have traditionally
been far too slow for similarity searching, evh the target structeimeeds to be aligned
with each of the database structures im.tu The need for an appropriate alignment
procedure spurred a series of studies ohodt for field-based similarity searching, and
resulted in the development of a genetic algorithm (GA) to identify a set of translations
and rotations of the target structure, relativethe database structure, required for the
alignment that maximises the field-basethikrity between théwo molecules. The
algorithm is sufficiently rapid in executioto permit the field-based searching of
databases of non-trivial size [8&8hd has been shown to resalsets of bioactive nearest
neighbours that are different imature from those found by fragment-based 2D similarity

searching [81].

The fact that we have investigated severtiéknt types of similarity measure highlights
the fact that there is no single “best” way of carrying out similarity searching; instead,
there is now much interest in the usedafa fusion, where one combines the rankings
resulting from several different scoring furmets to give a single, combined ranking as
the output of a similarity search. Data fusion (which is also referred ¢onaensus
scoring when used in the context of ligand-protein docking) is now well established in
textual information retrieval, where one mighktr example, use enge of index term
weighting schemes and then combine the rankings resulting fronoetdwm [82]. We

[83], and others [84, 85], have used the same idea to combine different measures of
structural similarity for chemical similéy searching, and haviund that this often
results in a level of search effectiveness (hawehis is measured [86]) that is better than

that resulting from any single similey measure (see, e.g., [81, 87]).
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5. Compound selection and library design

The widespread adoption by the pharmaceuir@histry of combinatorial chemistry and
high-throughput screemy (HTS) from the mid-Ninetge onwards has resulted in a
massive increase in the numbers of compouhds can be synthesd and tested for
biological activity. However, despite the ierase in throughput it was quickly realised
that there are many more cpaunds that could potentially be made than can be handled
in practice (chemistry space has been estimated to contain as marf} esnifounds
[88]). Although, compound seléah techniques had been used for many years for the
selection of sets of compounds from corperepllections for bialgical screening, the
advances in the automation of the experiraetechniques led to a renewed interest in
computational methods for selecting subs#gtsompounds. In particular, recent efforts
have focused on novel methods for designicmmbinatorial libraries, where a
combinatorial library is a $eof compounds thatan be synthesised parallel using
robotics techniques that are far fast#wan conventional, one-compound-at-a-time
synthetic procedures. It is, however, impottthat an appropriate set of compounds is
synthesised, antholecular diversity analysis is the name given to attempts to identify
sets of compounds that are digerse (or heterogeneous, dissimilar, widely-spaced etc.)

as possible.

The rationale for diversity analysis liesthre Similar Property Principle, which has been
discussed in the previous section. Given fndi®n of chemistry space that is relevant
to biological activity, if structures that areosk in the space are likely to exhibit similar
bioactivity then they are likely to be dendant in terms of a biological screening
experiment, as they will be unable toowide any additional information about the
relationship between chemical structure dndlogical activity. Tlus, a library that

maximises coverage of structural spa¢t®utd also provide maximum coverage of
biological activity with minmum redundancy. The maiechniques that have been
developed to select diversebsets of compounds includeistering, dissimilarity-based

compound selection (DBCS), partitioning oell-based approaches, and optimisation-
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based methods [89]. These methods are roytumed to select compounds for biological

testing and also to select subsets of reagentbe synthesis of combinatorial libraries.

The clustering of chemical databases has lteoduced in Seadin 4. Once a dataset
has been clustered, a representative sudasebe chosen by taking one compound from
each cluster. Cluster-based compound seledtidhus a two-stage process: in DBCS,
conversely, a subset is selattdirectly. The basic DBC&lgorithm was first described

by Bawden[90] and Lajiness [91], and involveslaeting the first compound at random
and then iteratively choosing the next compound as the one that is most dissimilar to
those that have already been selected.e BaAwden-Lajiness algorithm is simple in
concept but has an expected time complexity of o@erN) for selecting ann-
compound subset from aftcompound dataset, which makesmpractical for use with
large chemical databases. The selection stegach iteration involves calculating the
dissimilarity of every compound remaining ithe database tthe compounds already
selected in the subset, and the dissimilaciyn be measured in different ways. For
example, in the MaxSum method, it is measuas the sum of the average pairwise
dissimilarities to all compounds in the subsetd in the MaxMin method it is measured
as the dissimilarity of the nsbsimilar compound in the subset to the database compound
[92].

The clustering of document databases was studied intensively in Sheffield in the early
Eighties [8] and we were hence aware of ¢fhegant work of Vodrees [93], who had
developed an efficient way afalculating the inter-clustesimilarities in the group-
average method hierarchical clusteringtmoe. In this mdtod, the inter-cluster
similarity is the average of all of the pavise object similarities, where one document is

in one of the two selected clusters ané tither document is in the other cluster.
Voorhees demonstrated that the similartiyuld be obtained from a procedure that
involved just a single simildy calculation using the weighted centroids of the two
clusters. We realised that this equivaleoar be applied more generally to any situation
where sums of similarities, rather than indual similarities, are required, providing

that: the cosine coefficient is used to meagte similarity between pairs of objects; and
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that the objects that are being comparedchegacterised by vector representations (such
as fragment bit-strings). It hence provedsble to adapt Voorhees' algorithm to give a
fast,O(nN), implementation of the selection stefpthe Bawden-Lapess algorithm using
the MaxSum method [94], thimplementation providing one of the first tools for large-
scale DBCS.

Although we, and others, later showed thditeotselection algorithenare superior, [92,
95, 96] the MaxSum algorithm provided tharsihg point for our work on comparing
reagent-based and product-basggbroaches to combinaialr library design. Reagent-
based selection involves choosing subsetsreaigents without consideration of the
product molecules that will result, whereasduct-based selection involves enumerating
the virtual product library from all availabteagents and then choosing a combinatorial
subset directly from product space. Reagent-based selection is much less
computationally demanding than product-basekction, but there iso guarantee that
optimised subsets of reagents will lead toirafsed products; in particular, we felt that
reagent-based selection mighsul in combinatorial libraries that were less than ideally
diverse. We developed a GA-based apprdaghroduct-based selection that makes use
of the efficient MaxSum method for quantifig molecular diversity, and were hence able
to show that product-based approaches do ¢h riesult in more dierse libraries than
reagent-based methods [97, 98], a result thatsmbsequently confirmed in other studies
[99].

Recent work in compound selection and coratonal library design has focused on the
design of libraries optimised @anumber of properties simultanesly. This is due to the
poor performance of early HTS experiments wehioraries either fiied to deliver the
improved hit rates (in terms @fumbers of bioactive molecules) that were expected or
resulted in hits with characteristics thaiade them undesirable as potential drugs.
Consequently, the focus in library design Bhdted towards designing libraries that are
optimised on multiple properties simultaneously, for example, diversity and drug-like
physicochemical properties. Mioapproaches to multi-obgaee library design are based

on traditional optimisation nilkods such as GAs or sitated annealing that handle
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multiple objectives via a weighted-sum &8s function, which effectively reduces the
multiple objectives to a single value thatshbe maximised or minimised [100-103]. At
Sheffield, we adapted our product-based aggpn to library design to handle multiple
objectives using the weighted-sum approatipical objectives handled in this program,
called SELECT, include diversifpr similarity to a known biactive target structure), the

cost of synthesising thebliary, and drug-like physichemical properties.

Although effective in operatiofi00], the weighted-sum apgach to optimising multiple
objectives has several limitations; for example, it is usually difficult to assign appropriate
weights, especially for different types of ebjives such as diversity and cost, and the
end result is a single compromise solution with the exact solution being determined by
the relative weights. We have tackled thisblem in a collaborain with colleagues in
Sheffield’s Department of Anomatic Control and Systent&ngineering on the use of a
multiple objective genetic algorithm (MOGA)rfdibrary design. Tis provides a more
effective way of combining théoften conflicting) charactesiics that help to make a
molecule a potential drug, and has resuite@ program, called MoSELECT, that has
been designed to overcome the limitatiohsonventional library-design programs [104,
105]. MOSELECT is based on a MOGA which multiple objectives are handled
independently without the need to assigeights. The MOGA searches for multiple
solutions in parallel and yields a family sdlutions where each solution is equally valid
and represents a different compromise solution to the set of constraints that are being
optimised. MoSELECT thus alls the relationships betweelifferent objectives to be
explored, with competing objectives being easilentified and with the user being able

to make an informed choice on which solution(s) to explore.

6. Citation analysis of Sheffield chemoinformaticsresearch

Citation analysis is widely used for assig the influence ofesearch groups or
individuals, by consideration dhe numbers of citations tbeir publications [106-109].
There have been, and there continue to beyrodticisms of its uséor this purpose, but

it does provide a relatively sifgpway of obtaining quantitae data on the extent to
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which published work has been taken up lbypsequent researchers in the field of
interest. Previous studies have looked atghblications of, andtations to, members of
the academic staff [110] and research studdris] in the Department. Here, we report
a citation analysis of the publications of fnee members of the full-time academic staff
who have carried out chenmformatics research here: George Adamson, Michael Lynch
and three of the authors of this paper (VJBH and PW). Completeibliographies were
available for the five individuals; after tmemoval of duplicate puldations (i.e., those
involving more than one of the authors)tosal of 321 publicationsvas identified and
searched for across all three of the Véélscience databases (SCI-Expanded, SSCI and
A&HCI) for the entire period for which citatiodata are availablel980 to date). The
resulting citations were dowsdded into a bibliographic management program (EndNote

version 6) with subsequent analysembearried out with Microsoft Excel.

A total of 4845 unique citations was identifiezi321 publications by the five members of
the Group. The figure of 4845 includes many se#tions, i.e., citations by an author to
another publication by that individual: reméwaf these gave a tal of 3725 residual
citations. We wish to make three points althese figures. First, it should be noted that
the figure of 3725 includes a total of 704 dtaons within the Group; thus while the
residual citations do indeed quiythe extent to which the Sheffield work has influenced
subsequent research, it coub@ argued that it over-estitea the degree of external
recognition. Second, the 321 publications ude non-chemoinformatics articles from the
bibliographies that were searched for ie MWeb of Science; howeyx, these have been
included because of the close relationshipt tbxists between chemical and textual
information retrieval. This is especially trire the case of the Sfieeld research [7], as
exemplified by the link betweedocument clustering and nealular diversity analysis
noted in Section 4. Third, the figure of 3@dblications includes 35 publications that did
not attract a single citation. However, thispi®bably an artefact as they had all been
published prior to 1980 and thus may well have tigations in the lgrature pre-dating the
start-of-coverage of the Webf Science databases; themee also, of course, almost
certainly other pre-1980 citations that are mufluded in the tolaof 4845 for the same
reason. It is thus possible ¢onclude that each of the 321ppas received, on average, at
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least 15.1 citations (or at leakt.6 residual citations). Asomld be expected, there is a
highly skewed distribution of nuipers of citations:dur of the pubtations received at least
100 residual citations, as listed listed in Table 1, and ére were another four that
received at least 75 residual citations. Gf thur publications in Table 1, the first and
third have already been discussed and cite8eictions 4 and 5, respectively. The second
discusses an algorithm for ligapdetein docking that has si@ been implemented in many
of the major pharmaceutical and agrochemumainpanies, and the fourth was the first
detailed review for many years on chemigafy perception, an important graph-theoretic

building block for many applications in chemoinformatics.

The journals in which the citatns appeared were noted: ih ao less than 411 different
journals had cited at least one of the fiveefibld authors at leagince. Nine of these
provided at least 100 cttans but the figures e are dominated by théournal of
Chemical Information and Computer Sciences. This is published by the American
Chemical Society and is the core journaltfee field of chemoinformatics: it provided no
less than 1346 citations, overesguarter of all of the unige citations to the Group’s
work. Adopting Cronin and Davenport’s dafion of a core journal for a group of
authors as being those journtiat cite all members oféhgroup at least once [112] then
it is possible to identify the following eightymals as being the core for the Sheffield
chemoinformatics group (they are arrangedeareasing number of citations provided):
Journal of Chemical Information and Computer Sciences, Journal of Computer-Aided
Molecular Design, Journal of Molecular Graphics and Modelling, Annual Review of
Information Science and Technology, Journal of Documentation, Drug Discovery Today,
Combinatorial Chemistry and High Throughput Screening and Analytica Chimica Acta.
These are hardly surprising, covering asytldo most of the major journals where
chemoinformatics articles appear; the two information science journals appear in this core
as they both contained review articles withnmaitations to work at Sheffield. What is,
perhaps, more surprising is the sheer range of titles included in the 411 journals:
considering just those 166 that providediagle citation, these atude not only the
expected chemical, chemoinformatics,olbgical, bioinformatics, computing and
information science journals but exampkesm across the physical, life and medical
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sciences, e.gActa Alimentaria, Astronomy and Astrophysics, British Dental Journal,
Clinical Radiology, Earth Surface Processes and Landforms, Geological Magazine,
Journal of Immunology, Journal of Nutrition, Journal of Receptor and Sgnal
Transduction Research, Nephrology Dialysis Transplantation, Powder Diffraction, and

Water Environment Resear ch.

The citations were sub-divided on the baxfishe type of organisation that published a
citing paper, using the first named corporaterse given in the address section of the ISl
records. The largest retng sub-division was, of cose, the Department itself,
accounting for all of the self-citations. The remaining unique citations were sub-divided
into the following three classes: Commerciatademic; and Other. Commercial sources
were identified by the appearance of termshsas “Co.”, “Ltd.” and “Inc.” within the
address details. Academic sources weretifieth by the appearance of terms such as
“University”, “Institute” or “Academy”; individual departments within the same
academic source were regarded as distinthe “Other” group contained a range of
independent and governmentasearch laboratoriespgether with th sources from 32
papers that did not provide sufficient immation to identify the organisations that
undertook the research. A totdl910 different organisationsxcluding the Department,
cited the set of Sheffield plitations, the distribution being as shown in Table 2, which
also listsk, the mean citation count ppeorporate source. lroansidering these figures it
should be remembered that it is not unomon, in the case of academic and company
collaborations, for the academic partner tpesp first in the list; the “Academic” figures

may thus have been boosted, and the “@encial” figures reduced, for this reason.

Considering first the “Commercial” sourcébe most frequently citing organisation was
Barnard Chemical Information Limited, a specialist chemical software company that
employs several past researthff and researchigtents from the Grqy other frequent
citers include Chemical Abstracts, Protédslecular Design Limited (another chemical
software company), and many of the mgpharmaceutical companies (including such
multi-nationals as Bristol Myers Squibb, @&bWellcome, Novartis and Pfizer).

Although there are many less commerciarnthnon-commercial organisations, tke
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values in the right-hand konn of Table 2 demonstratihat the former make very
extensive use of the Sheffield researcihe most frequently citing “Academic”
organisation was the Cambriddgerystallographic Data Cemt at the University of
Cambridge, with which we have had seVesaccessful collaboratns (see, e.g., [65,
113]); other frequent citers include the chemoinformatics groups at the Universities of
California at San Franciscd,eeds and Paris. The most frequently citing “Other”
organisation was the National Cancer Institueet(pf the National Institutes of Health in

the USA); other frequent citers included the European Molecular Biology Laboratory, the
Biomolecular Modelling Laboratory of themperial Cancer Research Fund, and the
Institute for Algorithms and Scientific @qputing of the German National Research
Centre for Information Technology. We alsoted the countries of origin of the first-
named citing organisation. As might be expdc¢the bulk of theitations came from the

UK and from the USA, these providing 868idual citations and 1550 residual citations,
respectively, with the remaining 1308 reside#ations coming fom a total of 52
different countries. This again demonstgthe breadth of influence of the Group’s

research.

7. Conclusions

In this paper, we have provided a brief mwew of the chemoinformatics research that
has been carried out in tHeepartment of Information Stlies at the University of
Sheffield, focusing principally on researsimce 1985. The work summarised here has
involved the development andsteg of algorithms for aange of aplcations in
chemoinformatics, including 3D substructwearching, Markush pent searching, 2D
and 3D similarity searchingand molecular diversity analgs However, it must be
emphasised that there have been several atkas that have attracted serious attention
during the period under review: for examplwe have not mentioned work on
pharmacophore mapping, ligand docking and@BAR, for all of which there is now

widely used commercial software that dea@n the Sheffield work (see, e.g., [113-115]).
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Of the work discussed here, that on 3D sularsure searchingra on Markush searching

IS now complete, but extensive studies carmdinn other areas. For example, in the
similarity area, we have recently describedesv algorithm [116] that is sufficiently fast

to allow MCS-based searching of large 2Datbases, something thiads not previously
been possible; our initial results suggesitt tthe rankings resulting from this algorithm
are very different from conventional fragmdiatsed similarity seahes, with the best
results being obtained by fusing the twgpds of search output [117]. In the
bioinformatics area, we hawtarted to apply our graph-theoretic methods for searching
3D proteins [10] to the representationdasearching of RNA sictures; this work
provides the first systematigproach to the retrieval of user-defined patterns of bases
and has already been shown to identify fmesly unknown occurrences of such patterns
[118]. Finally, in thecompound selection area, we are lingkat ways in which we can
apply the reduced graph concept that iest developed for the representation and
searching of generic chemical structures [4Beduced graphs are being used to encode
the potential pharmacophore points in molesuleut using the molecule’s topology
rather than its geometry (as in the watkscribed in Section 2 on 3D substructure
searching). Our initial resul®iggest that, given an appriape level of graph reduction,
this may provide a simple and effective waypobbing the biological activities of sets of
compounds [119].
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Captionsfor figures

Figure1l. Example of a 2D substructure query and @¥¢he hits resulting from a search of the
NCI database.

Figure 2. Example of a 3D substructure search query.

Figure 3. Five of the hits resulting from a rigid 32arch of the NCI database. The matched
atoms are linked by dotted lines.

Figure4. Example of a generic chemical structure.

Figure5. Example of a 2D similarity search, shagia query molecule and five of its nearest
neighbours. The similarity measure is lthea fragment bit-strings and the Tanimoto
coefficient.
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