

This is a repository copy of *Control of the aqueous solubility of cellulose by hydroxyl group substitution and its effect on processing*.

White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/172945/

Version: Supplemental Material

Article:

O'Brien, C.T., Virtanen, T., Donets, S. et al. (10 more authors) (2021) Control of the aqueous solubility of cellulose by hydroxyl group substitution and its effect on processing. Polymer, 223. 123681. ISSN 0032-3861

https://doi.org/10.1016/j.polymer.2021.123681

© 2021 Elsevier. This is an author produced version of a paper subsequently published in Polymer. Uploaded in accordance with the publisher's self-archiving policy. Article available under the terms of the CC-BY-NC-ND licence (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Control of the aqueous solubility of cellulose by hydroxyl group substitution and its effect on processing

Cate T. O'Brien^a, Tommi Virtanen^b, Sergii Donets^c, James Jennings^a, Olga Guskova^c, Anna H. Morrell^a, Matt Rymaruk^a, Leena Ruusuvirta^d, Juha Salmela^d, Harri Setala^b, Jens-Uwe Sommer^c, Anthony J. Ryan^a and Oleksandr O. Mykhaylyk^{a*}

^aDepartment of Chemistry, Dainton Building, University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, UK

^bVTT Technical Research Centre, Tekniikantie 4E, FI-02044 VTT, Espoo, Finland

^cInstitute Theory of Polymers, Leibniz-Institute of Polymer Research, Dresden, Hohe Str. 6, 01069, Dresden, Germany

^dSpinnova, Palokärjentie 2-4, 40320, Jyväskylä, Finland

*corresponding author: <u>o.mykhaylyk@sheffield.ac.uk</u>

Supplementary data

Figure S1. ¹³C NMR spectra of C_{27/0}, C_{50/0} C_{80/0} and C_{7/25}. The C1 peak (carbon with glycosidic linkage between AGU) is at 100 – 110 ppm and the carbon from the methyl group of hydroxypropyl substituent is at 20 ppm. For example, the degree of substitution by HP (DS_{HP}) for C_{80/0} and C_{27/0} was calculated by dividing (2.35/3)*100 % = 78 % and (0.77/3)*100 % = 26 %, respectively. Molar hydroxyl substitution by HP per AGU (MS_{HP}) measured from CP/MAS ¹³C NMR spectrum of hydroxypropylated celluloses: C_{27/0} with MS_{HP} (DS_{HP}) = 0.77 (26 %), C_{50/0} with MS_{HP} (DS_{HP}) = 1.41 (47 %), and C_{80/0} with MS_{HP} (DS_{HP}) = 2.35 (78 %).

Figure S2. ¹H NMR spectra for all modified cellulose samples. Peak corresponding to the protons on C1 (4.5 ppm, a), C2 – 5 (3.3 – 3.8 ppm, b-e), C6 (3.9 ppm, f), the HP group (1.3 ppm, g) and the HPTMAC group (3.1 ppm, h) are labelled. HPTMAC degree of substitution (DS_{cat}) in Table S1 was calculated from the normalised ratio between the integrals of peaks h and b-e (*I*_h and *I*_{b-e}, respectively), through the equation DS_{cat} = $\left[\left(\frac{I_{h}/9}{I_{b-e}/4}\right)/3\right] \times 100\%$. The placement of the modified groups in the AGU units is not suggestive any possible stereoselectivity in the modification.

Table S1. Elemental analysis and 1H NMR results analysing DScat values for C7/25, C27/8, C27/25, C50/8 and C50/25.

Sample	Targeted HPTMAC Modification / %	Resulting HPTMAC Modification / %			
		¹ H NMR	Elemental Analysis		
C7/25	25	16.5	24.7		
C27/8	8	13	13		
C27/25	25	34.5	28.0		
C _{50/8}	8	8.5	8		
C _{50/25}	25	22.9	18.7		

Table S2. Overview of results for all samples including targeted modification of both hydroxypropyl (HP) and (2-hydroxypropyl)trimethylammonium chloride (HPTMAC) modification groups, the percentage solid content after modification (Solid Cont.), surface zeta potential (ξ), the length of nanocrystals (as determined by TEM), and the radius of gyration of the large aggregates (R_{gc}), molecules (R_{gm}) and the excluded volume parameter (ν), determined by SAXS.

Sample Name	DS / %			Solid		Length /	SAXS		
	HP	HPTMAC (cat)	Total	Cont. / w/w %	<i>ξ /</i> mV	nm	<i>R</i> _{gc} / nm	<i>R</i> _{gm} / nm	ν
C27/0	27	0	27	52.8	- 2 ± 1	138 ± 33	40.9	14.9	0.44
C7/25	7	25	32	45.7	25 ± 1	109 ± 31	1029.4	13.4	0.47
C _{27/8}	27	8	35	29.2	22 ± 1	100 ± 29	21.2	15.4	0.48
C _{50/0}	50	0	50	0.4	0 ± 1	122 ± 28	30.6	23.5	0.52
C27/25	27	25	52	35.5	42 ± 2	101 ± 35	21.0	13.9	0.49
C50/8	50	8	58	3.2	28 ± 1	118 ± 40	31.8	19.0	0.51
C50/25	50	25	75	4.9	33 ± 4	91 ± 34	-	21.6	0.59
C80/0	80	0	80	0.5	2 ± 1	-	-	19.5	0.55

Figure S3. WAXS patterns of 1.0 w/w % modified cellulose aquesous dispersions. A broad peak can be seen in the region of $15 - 17 \text{ nm}^{-1}$, indicating the presence of amorphous cellulose. The patterns are offset for clarity. In order to minimize an effect of C_{7/25} sedimentation on the scattering pattern, the C_{7/25} WAXS pattern was recorded only for 60 s (instead of 15 min used for the others).

Figure S4. Schematic illustration of fibre spinning process. Dosing of an aqueous dispersion is performed using the syringe pump feeding the dispersion onto the rotating cylinder drum surface. In order to process $C_{50/0}$ 10 w/w % aqueous dispersion, the nozzle jet speed (v_1) and the drum surface speed (v_2) were set at 5.77 m/s (the syringe feed flow of 12 ml/min through the nozzle inner diameter of 210 μ m) and 7 m/s, respectively, providing stretching ratio v_2/v_1 more than unity (1.21). The distance between the syringe needle tip and the drum surface (L) was set at 5 mm.