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The chirality and helicity of a linearly polarised Laguerre-Gaussian (LG) beam are examined. Such
a type of light possesses a large longitudinal field amplitude when it is created with a sufficiently small
beam waist and so gives rise to substantial magnitudes of chirality and helicity density distributions.
In the simplest case of a doughnut beam of winding number ℓ = 1 and another identical to it but
for which ℓ = −1, we obtain different chirality and helicity distributions in the focal plane z = 0.
We also show that this chiral behaviour persists and the patterns evolve so that on planes at z < 0
and z > 0 the beam convergence phase contributes differently to the changes in the chirality and
helicity distributions.

PACS numbers: 42.25.Ja; 33.55.+b; 78.20.Ek

Recent developments in the generation of laser light
beams have highlighted the advances in the ability to fo-
cus light to sub-wavelength dimensions [1–4]. Light fields
such as Laguerre-Gaussian (LG) beams possess a new fea-
ture, namely that the longitudinal (axial) component of
the vortex electric field, which is normally regarded as
insignificant, now acquires a magnitude comparable to
the transverse components.

Some phenomena have been identified as consequences
of strongly focused light such as LG beams, including
novel field distributions [5, 6], modifications of the spin-
orbit interaction [7, 8], the creation of transverse orbital
angular momentum components [9–12] and changes in
the interaction of light with matter [13]. The recent ex-
perimental report by Wozniak et al [14] demonstrated
that this type of strongly focused light, although linearly-
polarised and so has zero optical spin, exhibits a chiral
behaviour [8] in the sense that it involves distinguish-
ing between beams with equal but different signs of the
winding number ℓ. In other words, it is not possible by
rotation alone to superimpose the chirality distribution
for ℓ on that for −ℓ. Note that in this type of strongly
focused light the LG beam itself is subject to a focus-
ing lens and in the experiment by Wozniak et al [14] the
fields arise due to vectorial diffraction processes and its
chirality was observed at the lens focal plane,

This paper is concerned with a different type of focused
light, namely that involving the electromagnetic fields
of linearly polarised LG beams created with sufficiently
small beam waists and not subject to vectorial diffrac-
tion. Our aim is to evaluate the chirality and the helic-

ity distributions of such light beams, which are linearly-
polarised and so have no optical spin, both in and in the
vicinity of the focal plane. The evaluations depend on in-
corporating two ingredients. The first ingredient involves
the inclusion of the longitudinal field component which
we show is substantial only when the beam waist is suf-
ficiently small. The second involves taking full account
of the convergence phase embodied in the Gouy and cur-
vature phases and the variations of the beam waist with
the axial coordinate. In such beams the gradients of the
convergence phases and that of the z-dependence of the
beam waist w(z) play significant roles in the chirality and
helicity distributions in the vicinity and on either sides
of the focal plane.

For simplicity we consider the first two doughnut
modes for each of which the radial index p = 0. These
have the same magnitudes but different signs of the wind-
ing number ℓ = ±1. Both are taken to be linearly-
polarised, so neither has optical spin and, without loss
of generality, we take the linear polarisation vector to lie
along the x-axis. For ℓ = ±1 the electric field can be
written in cylindrical coordinates r = (ρ, φ, z) in terms
of the amplitude function Uk10(ρ, z) for ℓ = 1. This am-
plitude function is exactly the same as Uk(−1)0(ρ, z) for
ℓ = −1. The respective phase functions differ, however.
In the paraxial approximation we have for the amplitude
functions [15, 16]

Ex
kℓ0(r) = Ukℓ0(ρ, z)e

iΘkℓ0(r) (1)

where ℓ = ±1 and the superscript x in Ex indicates wave
polarisation along the x-axis. A Laguerre-Gaussian light
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beam linearly-polarised along x is justifiable in the parax-
ial approximation [17] and has been adopted widely in
such contexts. The amplitude functions for ℓ = ±1 are
identical and are given by

Uk±10(ρ, z) = U0
1

(1 + z2/z2R)
1/2

( ρ
√
2

w(z)

)

e
−

ρ2

w(z)2 . (2)

In the above U0 is a normalisation factor such that the
total power of the beam is a constant which is specified
below; w(z) is the beam waist at axial coordinate z such
that w2(z) = 2(z2 + z2R)/kzR, where zR is the Rayleigh
range, w0 = w(0) is the beam waist at the focal plane z =
0. The phase functions of the doughnut modes including
the convergence phases are as follows

Θk±10(r) = kz ± φ+ θGouy + θcurve (3)

where θGouy and θcurve are given by

θGouy = −2 tan−1(z/zR); θcurve =
kρ2z

2(z2 + z2R)
, (4)

Note that these convergence phases vanish at the focal
plane, but have different variations in the planes z > 0
and z < 0 on either side of the focal plane. The above
electric field functions of a linearly-polarised paraxial
doughnut mode of winding number ℓ arises directly from
the non-paraxial theory [18] on taking the parxial limit.
In addition to the transverse component of the electric

field given in Eq.(1) there must also exist a longitudi-
nal (or axial) component Ez. This is because the to-
tal electric field vector E must satisfy the transversality
condition∇ ·E = 0 where

E = Exx̂+ Ezẑ (5)

Here carets indicate unit vectors. The axial component
Ez follows formally from the transversality condition and
is in a closed analytical form as follows

Ez
k10(r) =− iU0

(

4ρ2 cosφ− w(z)2e−iφ

Qkw(z)4

)

× e
−

ρ2

w(z)2
+iΘk10

(6)

where Q =
√

k/4zR. The overall normalisation factor U0

appearing in Eqs.(2) and (6) is such that the power of
the beam P is conserved. We have

U2
0 =

P
1
2ǫ0c

∫ 2π

0

∫∞

0
Ẽk10 · Ẽ∗

k10ρdρdφ
(7)

where the components of Ẽk10 are Ẽx
k10 and Ẽz

k10.

∫ 2π

0

∫ ∞

0

Ẽk10 · Ẽ∗

k10ρdρdφ =
πw2

0

(

6 + k2w(z)2
)

2k2w(z)2
(8)

From Eq.(6) it is easy to see that Ẽz
k10 is given by

Ẽz
k10 = −i

(

4ρ2 cosφ− w(z)2e−iφ

Qkw(z)4

)

e
−

ρ2

w(z)2
+iΘk10 (9)

The expression for Ẽx
k10 is obtainable in the same man-

ner from Eqs. (1) and (2). Note that in the deriva-
tion leading to the closed analytical expression Eq.(6)
for the longitudinal electric field we have kept the full
z-dependence residing in w(z) using the substitution
w(z) =

√

2(z2 + z2R)/kzR where zR = πw2
0/λ = kw2

0/2
with λ the wavelength of the light. We have also taken
full account of the convergence phases θGouy and θcurve.
Similar evaluations for the case ℓ = −1 have then been
carried out straightforwardly, leading to the correspond-
ing formalism for the doughnut beam with ℓ = −1 for
which the longitudinal electric field is Ez

k(−1)0.
It is interesting to consider the magnitude of the longi-

tudinal field component Ez relative to that of the trans-
verse component for the case ℓ = 1 doughnut mode and
make the comparison for different values of w0 as shown
in Fig. 1. The variations are evaluated in the focal plane
for two sets of beam waists, w0 large and w0 small. It
is clear from the plots that the longitudinal field is very
small for larger w0 relative to the corresponding trans-
verse component, as in Fig.1(b). It becomes comparable
to the transverse field for smaller w0, as in Fig.1(a). It
is also easy to deduce from the analytical expression for
Ez in Eq.(6) on expanding the cosφ in terms of expo-
nentials we immediately see that this longitudinal field
component is a superposition of the ℓ = 0 mode and the
ℓ = 2 mode. It is clear then that it is the ℓ = 0 mode
that accounts for the central peak in Figs.1 (a) and (b).

The general definitions of the chirality and the helicity
of a light field require, in addition to the usual electro-
magnetic fields, the introduction of dual fields. Accounts
of optical chirality and helicity can be found in [19, 20]
along with the recent literature on this subject. In the
Coulomb gauge we have for the chirality

χ =
1

2

(

−ǫ0E · Ḃ+B · Ḋ
)

(10)

and for the helicity

η =
1

2

(
√

ǫ0
µ0

A ·B−
√

µ0

ǫ0
C ·D

)

(11)

where D = ǫ0E is the displacement field while C is a
second vector potential dual to the usual vector potential
A such that ∇ × C = −D and Ċ = −B/µ0. However,
we will assume that we are dealing with cycle-averaged
monochromatic fields in which case the cycle-averaged
chirality χ̄ and the helicity η̄ are given by

χ̄ = −ωǫ0
2

ℑ[E∗ ·B]

=
ω2

c
η̄ (12)
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(a) w0 = 0.5 λ
(b) w0 = 2 λ

FIG. 1: The in-plane variations of the modulus squared of the electric field components for the ℓ = 1, p = 0
Laguerre-Gaussian (doughnut) mode in the focal plane z = 0. The sub-figures compare the corresponding variations
of the longitudinal field Ez (dotted red curve) with the transverse component Ex (solid black curve). (a) the case of
a beam with a small beam waist w0 = 0.5λ where Ez is comparable with Ex and (b) the case of a relatively large

beam waist w0 = 2λ where Ez appears negligibly small in comparison with Ex. These results also apply for the case
ℓ = −1, p = 0.

where ℑ stands for ‘the imaginary part’. Thus in order
to evaluate the helicity and the chirality we need to de-
termine the magnetic field components using Maxwell’s
equation ∇ × E = iωB. There are three components of

the magnetic field, given by

B =
1

iω
{∂yEzx̂+ (∂zE

x − ∂xE
z)ŷ − ∂yE

xẑ} (13)

However, since Ey = 0, then as far as the evaluation of
the dot product in Eq.(12) is concerned only the x and z
components of the magnetic field are relevant and these
are given by

Bx
k10 =− U0

2ρzR
(

sin 2φ
(

(3zR − iz)w(z)2 + 4iρ2 (z + izR)
)

+ (z + 3izR)w(z)
2 cos 2φ− (z − izR)w(z)

2
)

ωw(z)6 (kzR) 3/2

× e
−

ρ2

w(z)2
+iΘk10

(14)

Bz
k10 = −U0e

−
ρ2

w(z)2 eiΘk10
−2izRw(z)

2 sin(φ) + 2zRw(z)
2 cos(φ) + 4ρ2 (z + izR) sin(φ)

ωw(z)4
√
kzR

(15)

Similar evaluations have been carried out straightfor-
wardly for the magnetic field components in the case of
ℓ = −1. The results for the chirality distribution in the
focal plane are shown in Fig.2 in which the two doughnut
beams have the same waist w0 = 0.5λ and differ only in
the sign of the winding number. Figure 2(a) concerns
the doughnut beam with winding number ℓ = 1 and 2(b)
with negative winding number ℓ = −1. The differences
are clear in that regions of the focal plane where the chi-
rality is high (bright red) in 2(b) are replaced by regions
of low chirality density (in blue) in 2(a) and vise versa.

The distributions cannot be described as mirror images
of each other. These results confirm the chiral character
of light carrying orbital angular momentum that is lin-
early polarised and so has no spin angular momentum.
Figures 2(c) and 2(d) display the chirality distributions
for the doughnut beams with much larger beam waist
w0 = 5λ evaluated using the same paraxial formalism as
for Figs 2(a) and 2(b). It is clear that the distributions
are very similar to the small w0 case in Figs. 2(a) and
2(b), with the only difference being that the magnitudes
are much smaller. Thus we may infer that the preserva-
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tion of the general features of the chirality and helicity
for different w0 is due to the topological nature of the
doughnut beams.
Note that the assumption that we are dealing with

cycle averaged fields meant that the helicity density is
directly proportional to the chirality density, as described
by Eq. (12).
The consideration so far have been concerned with the

properties of the beams in the focal plane z = 0. It
is, however, of interest to explore what changes occur in
planes to the left z < 0 and to the right z > 0 of the
focal plane to ascertain that the chirality features con-
tinue beyond the focal plane. The general expressions
displayed above for the electric and magnetic fields show
explicit spatial dependence on the axial and radial coor-
dinates in both their amplitudes and phases, including
those arising from the presence of the longitudinal field
component. The convergence phase comprising the Gouy
phase θGouy and curvature phase θcurv are both opera-
tive as displayed in Fig. 3 as well as the variations of
w(z). These phase functions can have relatively large
gradients in the case of small beam waists in all planes
in the vicinity of the focal plane.

Direct evaluations of the chirality distributions on the
planes z > 0 = +2w0 and z < 0 = −2w0 (as done for the
focal plane in Fig.2 a and b) leads to the rather different
distributions shown in Fig.4. These results demonstrate
that the topological chirality features exhibited in the
focal plane still exist on both sides of the focal plane,
but the distributions have evolved from their forms in the
focal plane. In Figs.4 (a and b), which concern the plane
z = +2w0, the same chirality feature persists between the
case ℓ = 1 and the case ℓ = −1 but both distributions
are twisted by equal and opposite angles in comparison
with the case in the focal plane in Figs.2(a) and 2(b).
Figures 4( c and d) display the chirality distributions in
the plane z = −2w0 to the left of the focal plane and,
once again, for ℓ = 1 and ℓ = −1. As before, there
is a twist of the patterns relative to those in the focal
plane, but the twisting is opposite to those for the same
ℓ but on equidistant planes on different sides of the focal
plane. In fact Fig. 4(a) and 4(d) show the same twist but
reciprocal intensity distributions and the same features
are displayed between Figs.4(b) and 4(c).

The chirality and the helicity of the LG beam we have
focused on here are two of its main properties. We have
shown that in the regime where the beams have small
beam waist w0, the longitudinal component of the elec-
tric field and its associated magnetic field become of the
same order of magnitude as those of the corresponding
transverse components. Such longitudinal components
are very small and are normally discarded for beams with
relatively large beam waist w0. Our work has confirmed
that light in the form of doughnut beams exhibits chiral-
ity in the sense that a change of the sign of the winding
number ℓ produces a different chirality distribution. We

have also shown that the convergence phases give rise to
features additional to chirality in the vicinity of the focal
plane in the form of a rotation of patterns and changes
in equidistant planes on either sides of the focal plane.

The chiral nature of the LG light has been investigated
experimentally by Wozniak et al [14] and their experi-
mental findings were shown to conform with the results
arising from the vectorial diffraction theory (see also [7]
and references therein). The Wozniak et al’s work had
involved passing each doughnut beam through a lens and
the chirality they measured was due to the fields observed
in the back focal plane of this lens. With this arrange-
ment they, too, confirmed the chiral character in the case
of the two linearly polarized LG beams subject to focus-
ing by the lens, one with winding number ℓ = 1 and
another with winding number ℓ = −1 with neither beam
possessing spin angular momentum. However, their chi-
rality distribution in the back focal plane of the lens dif-
fers from our results which have been produced in the
absence of a lens as shown in Figs. 2 and 4. We sug-
gest that the differences lie in the manner in which the
doughnut beams responded to the focusing lens in [14].
The changes could be related to the effect of the focusing
of the linearly polarised vortex light, as pointed out in
[2] and it has also been suggested that linearly polarised
light falling onto the back focal plane of the lens becomes
uniformly polarized [21]. These scenarios are not appli-
cable to what we have been concerned with in this paper
in which we have dealt with linearly-polarised doughnut
beams with small w0 and the chirality and helicity fea-
tures we have confirmed are applicable to such beams
subject to no further focusing by a lens as was the case
investigated in [14].

To summarise, in this paper we have derived analyti-
cal expressions for the longitudinal electric field compo-
nent and the corresponding magnetic field components
for doughnut modes and shown that these are compa-
rable in magnitude to the transverse components, but
only for small w0. We have also shown that substan-
tial magnitudes of the chirality and helicity exist due to
substantial longitudinal components and demonstrated
explicitly the chirality distributions in the focal plane.
Although the chirality density distributions are substan-
tial for small beam waists, we have shown that the main
features are independent of the beam waist, but the mag-
nitudes become much smaller for larger beam waists. We
have attributed this charcteritic feature to the topolog-
ical nature of chirality. We have also explored the role
of the Gouy and curvature phase gradients in the shape
of the chirality density distributions on different sides
of the focal plane. We have concentrated on generating
figures mainly on cycle-averaged chirality density. This
is because under such conditions, apart from a constant
factor, the helicity distribution plots would look exactly
the same as the chirality distributions. We have high-
lighted the interesting dual symmetry roles of the sign of
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(a) ℓ = 1; w0 = 0.5 λ (b) ℓ = −1; w0 = 0.5 λ

(c) ℓ = 1; w0 = 5 λ (d) ℓ = −1; w0 = 5 λ

FIG. 2: The chirality distribution in the focal plane z = 0 for doughnut beams (a) and (b) which both have the
same beam waist w0 = 0.5λ, but in (a) the winding number is ℓ = 1 while in (b) the winding number is ℓ = −1.
Figures 2(c) and (d) are as for (a) and (b), respectively, but in these the beam waist for both has the much larger
value w0 = 5λ. Thus increasing the beam waist makes no difference to the structure and appearance of the chirality
density distribution, but the magnitudes are much smaller. This distinctive feature is attributable to the topological

nature of the chirality.

the winding number and the sign of the plane side (to the
left and right of the focal plane). We have explained the
meaning of chirality in relation to Fig. 2 evaluated in the
focal plane z = 0 where the Gouy and curvature phases
vanish and so have no role to play as regards the chirality
on the focal plane. We interpreted the interesting chiral-
ity shapes in Fig. 4 where z 6= 0 and emphasised the role
played by the curvature and Gouy phases in the chiral-
ity distributions on planes to the left and to the right of
the focal plane. We explained how changing the sign of
the winding number and the signs of the left and right
planes relative to the focal plane give rise to similarities
and differences in the chirality distributions

We have been guided by the realisation that helicity
and chirality are essentially topological properties of a
light beam, which preserve their characters for beams
with a given winding number, but different states of fo-
cusing. The paraxial formalism we have adopted in the
paper stems directly from the fully non-paraxial formal-
ism when the paraxial limit is taken. It is significant that
the results of the chirality distributions in the case of
large w0 mirror those for the small w0 case, but the mag-
nitudes for the larger w0 are very small, as expected. The
paraxial regime does indeed describe, albeit largely qual-
itatively, the chirality and helicity of Laguerre-Gaussian
beams. For larger w0 the paraxial regime gives a reli-



6

FIG. 3: Variations in the xz-plane of the Gouy phase
θGouy and the curvature phase θcurve of the doughnut
beam for which w0 = 0.5λ. Note the sign change across

the plane z = 0.

able indication of magnitudes as well, but the small w0

case highlights both the appearance of a substantial lon-
gitudinal component and substantial magnitudes of the
chirality and helicity distributions.
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(a) ℓ = 1 and z = 2w0 (b) ℓ = −1 and z = 2w0

(c) ℓ = 1 and z = −2w0 (d) ℓ = −1 and z = −2w0

FIG. 4: The chirality distribution in the plane z = +2w0 and z = −2w0 in the vicinity of the focal plane for two
doughnut beams for which the waist is w0 = 0.5λ: Left panel (a and c): the case of a doughnut beam with winding
number ℓ = 1 (a) plane z == +2w0 and (b) plane z = −2w0. The right panel (b and d) is the same as the left panel,

but for negative winding number ℓ = −1.


