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Abstract: Localisation and navigation of autonomous vehicles (AVs) in static environments are now solved1

problems, but how to control their interactions with other road users in mixed traffic environments, especially2

with pedestrians, remains an open question. Recent work has begun to apply game theory to model and control3

AV-pedestrian interactions as they compete for space on the road whilst trying to avoid collisions. But this game4

theory model has been developed only in unrealistic lab environments. To improve their realism, this study5

empirically examines pedestrian behaviour during road crossing in the presence of approaching autonomous6

vehicles in more realistic virtual reality (VR) environments. The autonomous vehicles are controlled using game7

theory, and this study seeks to find the best parameters for these controls to produce comfortable interactions8

for the pedestrians. In a first experiment, participants’ trajectories reveal a more cautious crossing behaviour in9

VR than in previous laboratory experiments. In two further experiments, a gradient descent approach is used to10

investigate participants’ preference for AV driving style. The results show that the majority of participants were11

not expecting the AV to stop in some scenarios, and there was no change in their crossing behaviour in two12

environments and with different car models suggestive of car and last-mile style vehicles. These results provide13

some initial estimates for game theoretic parameters needed by future AVs in their pedestrian interactions and14

more generally show how such parameters can be inferred from virtual reality experiments.15

Keywords: Autonomous Vehicles; Pedestrian Crossing Behaviour; Interactions; Game Theory; Human Factors.16

1. Introduction17

The widely predicted arrival of autonomous vehicles (AVs) on the roads poses several concerns regarding18

their future interaction with other road users, in particular with pedestrians. Unlike static objects in the19

environment which can be mapped and routed around by an AV, pedestrians are active and interactive agents,20

who move around to actively obtain their own goals and also interactively in response to the AV’s own actions.21

Pedestrians can now be detected and tracked quite reliably Camara et al. (2020a) but modelling and controlling22

interactions with them remains an open question Camara et al. (2020b).23

Recent trials of autonomous minibuses in European cities Madigan et al. (2019)1 has shown that pedestrians24

can easily take advantage over AVs: these autonomous minibuses were programmed to stop when any pedestrian25

stepped in front of them. After a few days observing the AV’s behaviour, some pedestrians appeared to learn this26

safety feature and started stepping intentionally in front of the AV, with instances of this behaviour occurring27

around once every three hours. Human drivers would not allow this to occur and would instead usually control28

their vehicles in ways to suggest some threat to such pedestrians, interacting with them to encourage them to29

get out of their way. This inability of current AVs to similarly control this type of interaction is one of their30

biggest problems, known as the ‘freezing robot problem’ or ‘the Big Problem with self-driving cars’ Brooks31

(2017). To make progress towards creating suitable AV interaction controllers, we thus recently proposed a game32

1 https://www.youtube.com/watch?v=PUr8ljfb2Cg
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Figure 1. Two agents negotiating for priority at an intersection

theory model, called ‘sequential chicken’ for such interactions Fox et al. (2018), where a pedestrian encounters33

an autonomous vehicle at an unsignalized intersection, as shown in Fig. 1. Game theory offers a framework to34

model decision-making between rational agents, it has been widely used, for example, in Economics Morgenstern35

and Von Neumann (1953) and for coordinating multi-robot systems Meng (2008). We do not use conventional36

statistical analyses because they rely on a separation of cause and effect, or controlled and observed variables.37

But when studying interactions between agents, we inherently have both agents taking both roles, affecting one38

another, which is a better fit to game theoretic models than statistical methods.39

After finding mathematical solutions to the model in terms of its free parameters, we then showed how40

the numerical values of its parameters can be fitted from empirical data. Unrealistic laboratory experiments41

were used to demonstrate this method. We first asked participants to simulate interactions in a board game in42

Camara et al. (2018b). Secondly, participants were asked to play the game in person moving on squares with43

a set of two speeds (SLOW, FAST) Camara et al. (2018a). Finally, participants played the game by moving44

continuously towards each other at their preferred pace Camara et al. (2020c). While providing a proof of concept45

of the method for finding parameters, these laboratory experiments showed unrealistic results, with participants46

preferring to save time rather than avoiding collisions in order to win what they perceived as games against the47

other player rather than protect their safety as they may value more in real life.48

The present study aims to extend these experiments by applying the same parameter fitting method to new49

more realistic interaction scenarios. The new scenarios use virtual reality (VR) to enable a subject to interact50

with a game theoretic autonomous vehicle in the same road crossing scenario. VR offers the opportunity to51

experiment on human behaviour in simulated real world environments that can be dangerous or difficult to study,52

such as pedestrian road crossing, in which experiments need to explore human behaviour leading up to and53

during actual collisions between vehicles and pedestrians Deb et al. (2017); Hartmann et al. (2017). Virtual54

reality provides a much greater realism than the previous laboratory experiences, including a real sense of fear55

from being hit by the vehicle due to its apparent physical presence. These experiments are intended to show how56

more realistic game theory parameters can be recovered from VR interactions. These parameters could then be57

built into future AV software to help control their interactions with pedestrians, as well as providing interesting58

insight into pedestrian behaviour itself.59

AVs are on their way not only to roads, but also to pavements in the form of autonomous last-mile robots60

used for urban delivery tasks de Groot (2019); Hoffmann and Prause (2018). Last-mile delivery vehicles are61

usually smaller than road vehicles, share the same pavements as pedestrians, and drive at lower speeds. To better62

understand this new and important use-case for AV interaction control, we also investigate participants’ behaviour63

with these last-mile type vehicles to test if humans prefer to interact with them differently from on-road cars.64
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2. Related Work65

This section gives an overview of related studies on pedestrian crossing behaviour and pedestrian–AV66

interactions using virtual reality, showing that previous work does not yet provide the game theoretic parameters67

of interest and thus motivating the new experiments.68

2.1. Pedestrian crossing behaviour in virtual reality69

In recent years, pedestrian crossing behaviour has been studied using virtual reality environments. In70

particular, VR has been used for teaching safe crossing behaviour to child pedestrians McComas et al. (2002);71

Schwebel and McClure (2010); Simpson et al. (2003). For example, Simpson et al. (2003) studied child and72

young adults crossing behaviour in VR, and recommended the use of VR for future studies in this domain.73

Other studies have focused on hazardous crossing situations such as Meir et al. (2015) where an investigation74

was carried on child and adult pedestrians’ ability to detect dangerous situations while crossing in a virtual75

environment. The study showed that the awareness of hazardous situations increases with the age. Zito et al.76

(2015) studied older and younger adults crossing behaviour in a virtual environment. They recorded pedestrian77

behavioural data, such as their head and eye movement. Their results showed a safer crossing behaviour from78

younger adults and that older adults tend to look at the ground rather than the other side of the street. Doric79

et al. (2016) investigated pedestrian crossing behaviour and risk acceptance in a virtual environment. Their80

results suggest that VR creates realistic simulations and allows to test pre-crash events without injuries. Feldstein81

et al. (2016) studied pedestrian behaviour in critical crossing scenarios using presence questionnaires for gap82

acceptance analysis. Their results showed no significant difference between the crossing behaviour in their83

different scenarios. Schwebel et al. (2017) investigated distracted pedestrian behaviour in VR and at a real84

intersection. Their results showed that pedestrians self-reported a behavioural change but no significant difference85

has been observed in the real world. Wu et al. (2009) studied pedestrian crossing decisions at roundabouts,86

mainly evaluating pedestrian gap acceptance between moving vehicles in a virtual environment. Their results87

were consistent with real-world data. Bhagavathula et al. (2018) studied pedestrian crossing behaviour in virtual88

and real environments for different tasks. Their results showed no difference in most tasks except for the vehicle89

speed estimation and pedestrian’s presence.90

2.2. Pedestrian–AV interactions in virtual reality91

Some VR studies have also specifically begun to study autonomous vehicle interactions with pedestrians.92

Wang et al. (2005) developed five different behaviours for an autonomous vehicle. The vehicle behaviour93

was successfully tested in different simulated traffic scenarios such as at intersections and for lane changing,94

in a simulated city and highway road networks. Keferböck and Riener (2015) studied autonomous vehicles95

interactions with pedestrians in a virtual environment. In one of their experiments, participants were asked to96

cross a road in front of them while a vehicle is approaching. Their experiment differs from ours in that the AV97

stops and shows (or not) a stop intent to pedestrians. This study aimed to show the importance of substituting98

communications between pedestrians and drivers by some explicit communication forms for self-driving cars.99

Pillai (2017) performed an experiment with participants on their crossing behaviour using virtual reality. They100

used task analysis to divide pedestrian–vehicle interaction as a sequence of actions giving two outcomes, either101

the vehicle passes first or the pedestrian crosses. Hartmann et al. (2017) proposed a testing procedure for studying102

safety critical systems, e.g. autonomous vehicles interacting with pedestrians, using VR techniques. This test bed103

can take into account different factors that could influence pedestrian behaviour such as their understanding of104

the environment, their body movement and their personality. Schmidt et al. (2019) investigated social cues in105

pedestrian–AV interactions in a VR environment. Their study showed that VR is a powerful tool for studying106

pedestrian–AV interactions but also that social cues could be manufactured through the vehicle trajectory. Stadler107

et al. (2019) validated the use of virtual reality for pedestrian–AV interactions. Moreover, their study showed108

that explicit HMI improves the interactions between autonomous vehicles and pedestrians. Deb et al. (2018)109

investigated pedestrian preferences for external features on a fully autonomous vehicle in VR. Their results110

showed a significant change in pedestrian crossing due to the external displays. Dey and Terken (2017) showed111
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that facial communication cues such as eye contact do not play a major role in pedestrian crossing behaviour,112

and that the motion pattern and behaviour of vehicles are more important. The field study in Rothenbücher et al.113

(2016) showed similar results with an “unmanned” vehicle, suggesting that the same results could be found114

with autonomous vehicles. Risto et al. (2017) also showed that vehicle movement is sufficient for indicating115

the intention of drivers and presented some motion patterns of road users such as advancing, slowing early and116

stopping short. Chang et al. (2017) developed an AV prototype with “eyes” in a VR study. Their results showed117

that pedestrians were quicker at making their crossing decision and they feel safer knowing that the AV has seen118

them. Burns et al. (2019) studied pedestrian reactions (trust, safety) to different AV manoeuvres in a virtual119

environment. Their results showed that VR is realistic for studying pedestrian behaviour. Nuñez Velasco et al.120

(2018) studied pedestrian–vehicle interactions using recorded 360◦ videos displayed in VR. Their results showed121

that pedestrians may change their crossing behaviour based on an AV appearance. In Nuñez Velasco et al. (2019),122

the same authors studied pedestrian crossing behaviour in VR. Pedestrian trust levels were measured and they123

showed a higher crossing intention. No crossing difference was found between vehicle types. The authors used a124

mixed-model binomial logistic regression and found that the presence of a zebra crossing and large gaps between125

vehicles lead to more pedestrian crossing.126

2.3. Game theory for pedestrian–AV interactions127

Game theory has been widely used for various applications in transportation, such as vehicle to vehicle128

(V2V) communications Kim (2014); Talebpour et al. (2015); Tian et al. (2019), freight transportation Figliozzi129

et al. (2008), driver-AV interactions Flad et al. (2017); Na and Cole (2014). The few game theory models that130

focused on pedestrian–AV interactions are very recent. For example, Michieli and Badia (2018) proposed two131

variants of a game theory model for AV interactions with cyclists and pedestrians. Rahmati et al. (2020) developed132

a game theory model for pedestrian motion and walking behaviors. Rahmati and Talebpour (2018) then extended133

this model and built upon it a game theoretic framework for pedestrian–vehicle and pedestrian–pedestrian134

interactions. Li et al. (2018) proposed a level-k game theory model for autonomous vehicle controller at135

unsignalised intersections, based on a discrete time, set of actions and a reward function. The game theory model136

in this work called the sequential chicken model was proposed in Fox et al. (2018), it is based on the famous137

game of chicken. The model is detailed in Sec. 3.2.138

2.4. Summary of the contributions139

The above related work has shown that virtual reality is a reliable tool for studying human behaviour.140

Despite these numerous studies, it finds no previous study with a game theoretic vehicle interacting with human141

pedestrians in a VR environment. The present study fills this gap and uses VR to run the game theoretic model142

proposed in Fox et al. (2018) on a virtual autonomous vehicle and then evaluates the behavioural preferences of143

human participants. Thus, this paper:144

• shows the first attempt to quantitatively evaluate pedestrian behaviour during interaction scenarios with a145

game theoretic autonomous vehicle in a virtual reality environment;146

• proposes a new method sufficient to infer specific numerical values for use in AV interaction control147

software;148

• demonstrates the importance of VR for pedestrian behaviour study and for the development and testing of149

autonomous vehicle algorithms.150

3. Methods151

Our method consists in controlling an AV in VR using the game theory model, then measuring human152

subjects’ behaviour during, and their responses after road crossing interactions with the AV under varied parameter153

settings of the game theory controller. In our previous work, we inferred game theory parameters to describe154

human behaviours, but here in contrast it is the parameters of the AV which are varied and studied. We seek the155

best parameters for the AV controller, which could for example then be built into real vehicles as part of their156

control.157
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Figure 2. VR Lab

Figure 3. Sequential Chicken Model

3.1. VR Setup158

The study was conducted using an HTC Vice Pro head mounted display (HMD). Participants did not use159

the HTC Vice controllers, as no interactions other than walking were required. The HMD was used with the HTC160

wireless adapter in order to facilitate easier movement during the simulation. We used an area of approximately 6161

m by 3 m to conduct the simulation (as shown in Fig. 2), which was mapped using the usual HTC Vive room162

mapping system. The size of this area slightly exceeds that recommended by the manufacturer; however, we163

experienced no technical problem with tracking or system performance. The start position on the floor was164

marked with an “X” using floor tape, so that participants knew where to stand at the start of each simulation,165

prior to placing the HMD on their head. The simulation was created using the Unity 3D engine2, and was run166

under Windows 10 on a PC based on an Intel Core i7-7700K CPU, with 32GB of RAM, and an Nvidia GeForce167

GTX 1080 GPU.168

3.2. Game-theoretic AV behaviour model169

The virtual AV was designed to drive using the sequential chicken model Fox et al. (2018). In this model,170

two agents (e.g., pedestrian and/or human or autonomous driver) called Y and X are moving towards each other171

at an unmarked intersection. This process occurs over a discrete space (the path is formed of squares) as in Fig. 3172

and discrete times (‘turns’) during which the agents can adjust their discrete speeds. Here a turn corresponds to173

one discrete time step, i.e. the time offered to the agents to make a new decision. They simultaneously select their174

speed of either 1 square per turn (SLOW) or 2 squares per turn (FAST), at each turn. Space and time are discrete175

2 https://unity.com/
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to keep the model simple and computationally tractable. Both agents want to pass the intersection as soon as176

possible to avoid travel delays, but if they collide, they are both bigger losers as they both receive a negative177

utility, Ucrash. Otherwise if the players pass the intersection, each receives a time delay penalty, −TUtime, where178

T is the time from the start of the game and Utime represents the value of saving one turn of travel time.179

The model assumes that the two players choose their actions (speeds) aY ,aX ∈ {1,2} simultaneously then180

implement them simultaneously, at each of several discrete-time turns. There is no lateral motion (positioning181

within the lanes of the roads) or communication between the agents other than via their visible positions. The182

game is symmetric, as both players are assumed to know that they have the same utility functions (Ucrash,Utime),183

hence they both have the same optimal strategies. These optimal strategies are derivable from game theory184

together with meta-strategy convergence, via recursion. Sequential chicken can be viewed as a sequence of185

one-shot sub-games, whose payoffs are the expected values of new games resulting from the actions, and are186

solvable by standard game theory.187

The (discretised) locations of the players can be represented by (y,x, t) at turn t and their actions aY ,aX ∈

{1,2} for speed selection. The new state at turn t + 1 is given by (y+ aY ,x+ aX , t + 1). We define vy,x,t =

(vY
y,x,t ,v

X
y,x,t) as the value (expected utility, assuming all players play optimally) of the game for state (y,x, t). As

in standard game theory, the value of each 2×2 payoff matrix can then be written as,

vy,x,t = v(

[

v(y−1,x−1, t + 1) v(y−1,x−2, t + 1)

v(y−2,x−1, t + 1) v(y−2,x−2, t + 1)

]

), (1)

which can be solved using dynamic programming assuming meta-strategy convergence equilibrium selection.188

Under some approximations based on the temporal gauge invariance described in Fox et al. (2018), we may189

remove the dependencies on the time t in our implementation so that only the locations (y,x) are required in190

computation of vy,x and optimal strategy selection.191

The virtual car model was imported from Unity Asset Store. The AV began driving 40 meters away from192

the intersection. The vehicle moved and adapted its behaviour to participants’ motion. Every time step, the AV193

observed the current position of the pedestrian and made its decision based on the game theory model. The194

AV was designed not to stop completely for any pedestrian, rather it was designed only to slow to a lower but195

nonzero speed if necessary to yield to them. This was because a complete stop could potentially last forever,196

while ensuring a positive speed at all times guarantees a finite length interaction, which is required by the finite197

mathematics of the game theory model. In fact, in the sequential chicken model, if the two players play optimally,198

then there must exist a non-zero probability for a collision to occur. Intuitively, if we consider an AV to be one199

player that always yields, it will make no progress as the other player will always take advantage over it, hence200

there must be some threat of collision.201

3.3. Human experiment202

We invited members of staff and students from the University of Lincoln to take part in our study203

composed of three experiments, under the University of Lincoln Research Ethics. A few participants did204

the three experiments at different moments, some did two experiments and some others did only one experiment.205

Participants were not informed about the virtual vehicle behaviour, so they did not know that it was an autonomous206

vehicle nor that it had a game theoretic behaviour.207

3.3.1. Experiment 1208

We had 11 participants, 10 males and 1 female aged between 19 and 37 years old, who took part in this first209

experiment, seven of them had previous experience with VR. Participants were asked to cross a road in front of210

them as they would do in everyday life. They should stop moving on the other side of the road, when they reach211

a yellow cube used as a VR obstacle which people would avoid. The cube was located there for safety reasons,212

so the participants do not walk into a wall in real life, as shown in Fig. 2. A vehicle approaches from their right213

hand side. The AV’s full speed was 30km/h, its lowest speed was 15km/h and it updated its decision every 0.02s.214

Participants began walking about 4 meters away from the intersection. Prior to the experiment, participants were215
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(a) Top view of the scene used for Experiments 1 and 2

(b) Virtual Autonomous Vehicle (c) Participant taking part in the study

Figure 4. VR Experiment
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(a) Top view of the scene (b) Small virtual vehicle

Figure 5. Experiment 3

introduced to the experimental setup and trained on walking within the VR environment with the VR headset.216

There were 6 trials per participants in the virtual environment with the first trials considered as practice runs in217

order to get the subjects comfortable with the setup before the actual data collection.218

3.3.2. Experiment 2219

Nine participants, 7 males and 2 females, aged from 21 to 39 years old took part in the study. Seven220

participants had previous experience with VR. Participants were given the same instructions as in Experiment 1,221

the environment and the AV’s speed were also the same. The particularity here is that participants were asked,222

after each interaction, whether they preferred their last interaction with the vehicle or the previous one, in the223

sense of whether they found the vehicle behaviour more “natural” and more “realistic”. Note that this is different224

from asking for a preference based on their own utility such as whether they managed to cross quickly. At each225

new interaction, the parameters were adjusted by the experimenter using a manual gradient descent, to seek226

parameters for the autonomous vehicle that were the most preferred by the participant. Two parameters were227

changed, the first one being about the spatial motion i.e. the number of discrete cells used in the sequential228

chicken model and the second parameter was about the time delay i.e. the amount of time that would elapse229

between two decisions made by the AV. There were 8 proposed parameters in the spatial axis {3 cells, 5 cells,230

10 cells, 15 cells, 20 cells, 25 cells, 30 cells, 40 cells} and 3 proposed in the temporal axis {0.02s, 0.5s,1.0s}.231

The experimenter would ideally move one step along each axis per interaction, but the experimenter’s subjective232

intuition was also allowed to hypothesize other parameter changes to try to speed up the gradient descent. This233

is an acceptable use of experimenter subjectivity because the aim of gradient descent is only to find the best234

parameters, so any form of proposal is acceptable if it gives better results than previous ones.235

3.3.3. Experiment 3236

This experiment investigated pedestrian interactions with a last-mile type delivery vehicle. The protocol237

was exactly the same as in Experiment 2, except that here, the environment was designed to look more like a park238

or a garden, by replacing the wide tarmac road with a narrower pathway without markings as shown in Fig. 5a.239

This was to test whether this type of environment alters pedestrian behaviour. The type of vehicle used was also240

different, it was smaller, with a different colour and looked like a single person podcar, as shown in Fig. 5b, and241

for this reason, the AV’s lowest speed was set to 4km/h, to show a significant deceleration. The 3D car model242

was imported from Unity Asset Store. Six participants, 5 males and 1 female, aged from 21 to 39 years old took243

part in the study, with 5 participants having had previous experience with VR.244
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3.4. Gaussian process parameter posterior analysis245

We used Gaussian process (GP) regression Rasmussen and Williams (2005) to fit the posterior belief over

the behavioural parameters of interest, θ = (Ucrash,Utime) from the observed data, D. Under the sequential

chicken model, M, these are,

P(θ |M,D) =
P(D|θ ,M)P(θ |M)

∑θ ′ P(D|θ ′,M)P(θ ′|M)
. (2)

We assume a flat prior over θ so that,

P(θ |M,D) ∝ P(D|θ ,M), (3)

which is the data likelihood, given by,

P(D|θ ,M) = ∏
game

∏
turn

P(dgame,turn
X |y,x,θ ,M′), (4)

where d
game,turn
player are the observed action choices, and y and x are the observed player locations at each turn246

of each game. Here M′ is a noisy version of the optimal sequential chicken model M, which plays actions from247

M with probability (1− s) and maximum entropy random actions (0.5 probability of each speed) with probability248

s. This modification is necessary to allow the model to fit data where human players have made deviations from249

optimal strategies which would otherwise occur in the data with probability zero. Real humans are unlikely to be250

perfectly optimal at any time as they may make mistakes of perception and decision making. This is a common251

method to weaken psychological models to allow non-zero probabilities for such mistakes if present Camara252

et al. (2018a,b); Lu et al. (2016).253

For a given value of θ , we may compute the optimal strategy for the game by dynamic programming as254

shown in Algorithm 1. Optimal strategies are in general probabilistic, and prescribe the P(dgame,turn
X |y,x,θ ,M)255

terms to compute the above data likelihood. We then use a Gaussian process with a Radial Basis Function256

(RBF) kernel to smooth the likelihood function over all values of θ beyond a sample whose values are computed257

explicitly. In practice, this is performed in the log domain to avoid numerical computation problems with small258

probabilities. The resulting Gaussian process is then read as the (un-normalized, log) posterior belief over the259

behavioural parameters θ = {Utime,Ucrash} of interest.260

To fit parameters of the discrete sequential chicken model to the continuous pedestrian trajectory data, it261

was discretised assuming an average speed of 1m/s and sampled every 3 time steps; a similar approach was used262

in Camara et al. (2020c).263

Algorithm 1 Optimal solution computation

for Ucrash in range(Ucrashmin
, Ucrashmax

) do
2:

for Utime in range(Utimemin
, Utimemax ) do

4:
S← strategy matrix(NY ×NX×2) for P(player X chooses speed 2|y,x)

6:
loglik = 0

8:
for each game in data do

10:
for each turn in game do

12:

loglik = ∏
game

∏
turn

(1− s)P(dgame,turn
X |y,x,θ ,M)+ s(

1

2
)

14:
end for

16:
end for

18:
Store loglik(Ucrash, Utime)

20:
end for

22:
end for

24:
maxloglik← max of loglik(Ucrash, Utime)



Accepted by Transportation Research Part F: Traffic Psychology and Behaviour, DOI: 10.1016/j.trf.2021.02.017 10 of 17

Table 1. Statistics about pedestrian crossing choices

Pedestrian Action Experiment 1 Experiment 2 Experiment 3

Crossing 6 12 30

Stopping 49 118 58

Total 55 130 88

(a) Pedestrian–AV trajectories: stopping (b) Pedestrian–AV trajectories: crossing (c) Pedestrian behavioural preference

Figure 6. Results Experiment 1

4. Results264

4.1. Statistics265

Table 1 shows some statistics about pedestrian crossing choices in the three experiments. We observe266

that very few pedestrians decided to cross in Experiments 1 and 2, about 10% crossings in each, whereas267

in Experiment 3, participants were more assertive and crossed in 34% of the interactions. This result is not268

surprising, in fact, this can be easily explained by the difference in the AV’s slow speed, 15km/h (Experiments269

1and 2) versus 4km/h (Experiment 3), showing that pedestrians adapt their behaviour to the vehicle’s behaviour270

rather than on its appearance, as found in Dey and Terken (2017); Risto et al. (2017).271

4.2. Pedestrian behaviour in Experiment 1272

In total, 55 pedestrian–vehicle interactions were recorded. Among those interactions, pedestrians managed273

to cross the road before the AV reached the intersection only 6 times. These crossings usually happened after the274

first trials, by pedestrians who felt more confident after evaluating/gauging the AV driving style. Most interactions275

looked similar to Figs. 6a (pedestrian stopping) and 6b (pedestrian crossing), which show the trajectories of the276

human participant and the virtual autonomous vehicle. In particular, the trajectory profile in Fig. 6a shows that277

pedestrians were slowing down very quickly after seeing the AV, they were not playing optimally the game of278

chicken, so that the AV could cross most of the time.279

Using Algorithm 1 for Experiment 1 trajectories, we obtain a behavioural parameter θ = Ucrash/UT =280

−330/0, for participants, as shown in Fig. 6c. This reveals that pedestrians valued the avoidance of a crash 330281

times more than a 0.02s time saving per turn, resulting in pedestrians being less assertive in crossing the road.282

In comparison, previous laboratory experiments found that participants valued time saving more than collision283

avoidance Camara et al. (2018a,b). Thus, the use of virtual reality has made the interactions much more realistic.284

4.3. Pedestrians’ evaluation of the virtual AV behaviour using gradient descent (Experiments 2 and 3)285

Fig. 7 shows examples of pedestrian–AV trajectories from Experiments 2 and 3. Examples are presented in286

Fig. 8 from four participants’ interactions with the virtual AV for finding their most preferred AV parameters287

using the gradient descent approach. The results for pedestrians’ most preferred parameters are summarized288

in Fi.g. 9a for Experiment 2 and in Fig. 9b for Experiment 3. The mean parameter values for the experiments289
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(a) AV parameters = (5 cells, 1s) (b) AV parameters = (25 cells, 0.02s) (c) AV parameters = (10 cells, 0.5s)

(d) AV parameters = (15 cells, 0.5s) (e) AV parameters = (30 cells, 0.02s) (f) AV parameters = (10 cells, 1s)

(g) AV parameters = (5 cells, 0.02s) (h) AV parameters = (15 cells, 0.5s) (i) AV parameters = (25 cells, 1s)

Figure 7. Examples of pedestrian–AV trajectories from Experiments 2 and 3
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{mean_exp2 = (16 cells, 0.34s), mean_exp3 = (19 cells, 0.35s)}, are found to be quite similar. That suggests that290

pedestrians had similar preferences for the AV behaviour in both environments but also that they behaved in the291

same way.292

(a) Preferred AV parameters = (3 cells, 0.02s) (b) Preferred AV parameters = (5 cells, 0.02s)

(c) Preferred AV parameters = (10 cells, 0.02s) (d) Preferred AV parameters = (25 cells, 1s)

Figure 8. Examples of gradient descent approach for pedestrian most preferred AV parameters selection

(a) Experiment 2 (b) Experiment 3

Figure 9. Results of pedestrian most preferred AV parameters using gradient descent

4.4. Evaluation of pedestrian crossing behaviour using Gaussian process regression (Experiments 2 and 3)293

After applying Gaussian process regression and optimising s to maximise the likelihood at the Maximum A294

Posteriori (MAP) point of θ , the posterior distribution over θ = {Ucrash,Utime} are shown in Figs. 10a and 10b.295

The MAP estimate of the parameters is found to be the same for Experiments 2 and 3, it is around Ucrash =−330,296

Utime = 0, at s2 = 0.32, and s3 = 0.2057, respectively. Unsurprisingly, the same parameter estimate was found297

in Experiment 1. The 330 : 0 ratio in the utilities means that assuming the noisy model M′ the subjects valued298

the avoidance of a crash 330 times than saving any time. And the si value , i ∈ {2,3}, means that the subjects299
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(a) Gaussian process regression for Experiment 2 (b) Gaussian process regression for Experiment 3

(c) GP slice for Experiment 2 (d) GP slice for Experiment 3

Figure 10. Pedestrian behavioural preferences for Experiments 2 and 3: Figs. 10a and 10b show the Gaussian

process log-posterior over behavioural parameters. Figs. 10c and 10d show the slices through the Gaussian

process showing standard deviation log-posterior confidence.

make mistakes from optimal behaviour in 32% and 20.57% of actions in Experiments 2 and 3, respectively.300

Significance of the results can be seen by inspection of the thin standard deviation widths of 1D slices through301

the 2D posterior as shown in Figs. 10c and 10d. The finding of the same MAP estimate for both experiments302

shows that participants behaved similarly within the two environments and with the different car models.303

5. Discussion304

The results provide new estimates for specific numerical parameters which AV controller software could305

use in the sequential chicken model to control interactions with pedestrians.306

The result in study 1 is important as it shows that virtual reality makes pedestrian crossing behaviour more307

realistic than in the previous laboratory experiments Camara et al. (2018a,b). Pedestrians had a higher preference308

for avoiding collisions in VR, which gives confidence that the VR environment is more realistic than the previous309

laboratory experiments and therefore that the numerical parameters found next are good.310

The other two experiments then showed that when interacting with an autonomous vehicle, pedestrians311

care more about the vehicle behaviour than its appearance, i.e. whether it should slow down, keep driving or312

completely stop for them, as found with the gradient descent method and in Dey and Terken (2017); Risto et al.313

(2017); Rothenbücher et al. (2016). An interesting point to raise here is that the gradient descent method provided314

numerical results that could be inserted into future experiments or even practical vehicles.315

The results from the Gaussian process regression also showed that participants behave similarly in different316

environments and with different car models, similar to the results in Nuñez Velasco et al. (2019). In particular,317

in Experiment 3, it appeared that the smaller car and the park environment did not make much difference in318

pedestrian crossing behaviour. These VR studies also confirm that pedestrian behaviour can be represented by319

one parameter θ and that there is a linear mapping between Ucrash and Utime, a similar result was found in Camara320

et al. (2018a,b).321

There are some limitations with these experiments. The gradient descent takes a long time to run and it was322

hard for the experimenter to hypothesise which direction to follow, because after several interactions, participants323

sometimes rejected a set of preferred parameters that they approved several times before. It was also confusing324

and confounding to infer parameters for both pedestrians’ own behaviour and their preferred AV behaviour.325
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Hence, other methods of learning the best behavioural parameters for the autonomous vehicle will be explored in326

future studies. At first, we plan to simplify the protocol by replacing the virtual game theoretic AV by a human327

participant driving a virtual vehicle, so that to learn the behavioural parameters of participant drivers and used328

them for the game theoretic AV. Future work will also further investigate pedestrian crossing behaviour with329

different car models and within different environments with a larger number of participants.330

The GP results from a previous laboratory experiment showed that Utime = 45 was bigger than Ucrash =−30331

Camara et al. (2018a), which is unrealistic, here instead we obtain an absolute measure of Ucrash = −330 that is332

much bigger than Utime = 0, meaning that participants valued collision avoidance much more than saving time.333

However, the statistics may not be powerful enough to distinguish between values of Ucrash→− inf and Ucrash =334

-330, this is shown in Figs. 10c and 10d with the curve becoming more and more horizontal for Ucrash <−300. We335

believe that collecting larger data would help make the distinction and measure the parameters more accurately.336

The results of these experiments should be consistent if moved from the VR lab to the real world (UK),337

because subjects were asked to behave as in real life and they are not incentivised to do otherwise. However,338

moving from one country to another, the numbers may vary because of different cultural norms Lee et al.339

(2020). The statistically implied values of travel times and human lives, and risk appetites, are well-known340

to vary between cultures and the sequential chicken analysis might help to better model and understand these341

relationships from data in the future.342

Previous work Fricker and Zhang (2019) has shown that pedestrian–driver interactions at semi-crosswalks343

are different when the road changes from one way to a two-way street. For instance, it was observed that drivers344

tend to decelerate or stop more on the two-way setting. Thus, future work should investigate the effects of road345

settings on pedestrian–AV interactions.346

Potential policy implications of this work include better understanding and regulating autonomous vehicle347

interactions with pedestrians. The sequential chicken model shows that unless AVs are able to inflict some kind348

of negative utility onto pedestrians, then pedestrians can always push in front of them to win interactions and349

impede the AV’s progress. A collision is an obvious but extreme form of negative utility which policy obviously350

wishes to avoid. By understanding and quantifying how the tradeoff between time saved and risk of collision351

works, as in the present study, the game theory mathematics could then be used to replace the rare but extreme352

risk of collision with some other, more common but less extreme negative utility. One possible solution, proposed353

in Camara and Fox (2020), is to use humans’ sense of psychological discomfort when their personal space is354

invaded by other agents (proxemics) as such a negative utility. Without this replacement, policy would either355

have to tolerate occasional actual, deliberate collisions by AVs, or risk them making no progress. With the356

replacement, AVs can operate safely and efficiently but within existing regulations which prevent collisions.357
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