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The neutron-deficient gold (Z = 79) isotopes in the vicinity of the neutron mid-shell N = 104
provide prolific examples of shape coexistence and isomerism at low excitation energy. They can be
probed via a number of different experimental techniques. In this study, two new isomeric states
with half-lives of 294(7) ns and 373(9) ns have been observed in the neutron-deficient odd-odd
nuclide 178Au (N = 99) in an experiment at the RITU gas-filled separator at JYFL, Jyväskylä.
This result was achieved due to the use of a segmented planar germanium detector with a high
efficiency at low energies. By applying the recoil-decay tagging technique, they were assigned to
decay to two different long-lived α-decaying states in 178Au.

I. INTRODUCTION

The region surrounding the Z = 82 shell closure is
well known for its exhibition of shape coexistence [1].
The neutron-deficient gold (Z = 79) isotopes are one of
the earliest examples of this phenomena, and have been
studied by a variety of decay and in-beam nuclear spec-
troscopy techniques [2–10], see also the recent review [11]
and references therein. The ground state of gold nuclei
display a large increase in the mean-squared charge ra-
dius when approaching the N = 104 midshell [12, 13].
Whilst the gold isotopes with A > 186 possess weakly
oblate ground states, 183−186Au are seen to have strong,
prolate shapes. This sudden change in ground-state de-
formation has been related to the presence of πi13/2,
πh9/2 and πf7/2 intruder states at low energies, alongside
spherical πs1/2, πd3/2 and πh11/2 configurations [5, 7, 8].
Rotational bands built on top of these intruder states
have been identified in several odd-A isotopes [2, 14–16],
with an observed parabolic trend in the band-head en-
ergies as a function of neutron number (see for example,
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Fig. 1 in Ref. [5]).
Recently, a dedicated campaign of charge radii and

magnetic dipole moment measurements was performed
on the gold isotopes at ISOLDE [17]. In particular, the
magnetic moments for 177,179Au showed dominant πs1/2
configurations with presumably near-spherical ground
states [6], indicating an end to the region of strongly
deformed ground states in gold nuclei. However, for
178Au (N = 99), two α-decaying states were observed,
with their magnetic moments best described by deformed
Nilsson configurations [18]. The presence of these two
deformed states in 178Au, which is sandwiched between
the near-spherical 177,179Au nuclei, highlights the strong
competition between spherical and deformed configura-
tions in the lightest gold isotopes. One way to better
understand the nature of these states is to study the ex-
citations built on top of them.
In the ISOLDE study it was possible to identify and

separate a low-spin ground state with T1/2 = 3.4(5) s

and a high-spin isomer with T1/2 = 2.7(5) s in 178Au,

with most likely spin assignments of Iπ = (2+ 3−)
and (7+ 8−), respectively [18]. Fine-structure α-decay
schemes were constructed for both states, with the
most prominent lines appearing at Eα = 5922(5) keV,
Iα,rel = 86.49(9)% for 178Aug, and Eα = 5925(7) keV
(86.33(13)%) and 5977(10) keV (5.90(12)%) for 178Aum.
In the case of 178Aum, the 5925-keV decay was observed
in prompt coincidence with a strongly converted, 56.8-
keV M1, γ-ray transition in 174Ir.
The present work describes the first identification of

two sub-µs isomeric states in 178Au, performed in an ex-
periment at the K-130 cyclotron at the Accelerator Lab-
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oratory of the University of Jyväskylä, Finland. Apart
from providing further information on the complex de-
cay scheme of this odd-odd nuclide, the new data could
also help to clarify the so-far highly incomplete scheme
for the α decay 182Tl→178Aum,g. Indeed, the recent
laser-assisted α- and β-decay studies of 182Tl at ISOLDE
[19, 20] identified two long-lived states in this nucleus,
with several fine-structure α-decay branches and many
prompt α-γ coincidences. However, most of them were
not placed in the decay scheme of 182Tl. This is due to
complexity and multitude of closely-lying low-energy ex-
cited states in the daughter nuclide 178Au, which result
from a variety of configurations expected to co-exist in
this nucleus [18].

II. EXPERIMENT

These data come from the same experiment in which
a new 6.58(15)-µs isomeric state in 175Ir was observed
by our collaboration [21], therefore we refer the reader
there for a detailed description of the experiment and
the analysis techniques. A short description of the ex-
periment will still be given here for the consistency of
the discussion.
A complete-fusion evaporation reaction 88Sr + 92Mo

→ 180Hg∗ was exploited, in which 178Au nuclei were
produced in the 1p, 1n evaporation channel. A 381
MeV beam of 88Sr impinged on a 600 µg/cm2-thick self-
supporting enriched 92Mo target of 98 % isotopic enrich-
ment. Evaporation residues (ER) were separated from
the primary beam and fission products using the gas-
filled separator RITU [22] and implanted into one of two
Double Sided Silicon Detectors (DSSD) placed side by
side, of the GREAT spectrometer [23]. Each DSSD has
a thickness of 300 µm and consists of 60 × 40, 1 mm
strips. In order to improve the overall energy resolution
of the α-decay spectra, only strips with a resolution of ≤
30 keV were considered in this analysis.
A segmented planar germanium detector (PGD), in-

stalled directly behind the DSSD, was used to detect x
rays and low-energy γ rays at the focal plane of RITU.
Energy calibration of the PGD was performed using stan-
dard calibration sources, 133Ba, 152Eu and 241Am. The
data were collected and time-stamped using a Total Data
Readout data acquisition system [24] and sorted with the
GRAIN software [25].

III. DATA AND ANALYSIS

A. α-decay spectrum of the 88Sr + 92Mo →
180Hg∗

reaction

Fig. 1(a) shows a part of the energy spectrum of α
decays, registered in the same pixel of the DSSD after
an ER’s implantation. A time window of ∆T (ER-α)=
7 s was used, which comprises ≈2 half-lives of 178Aum,g.

The observed α-decay peaks originate from a multitude
of nuclei directly produced in different xn, pxn and α,xn
channels of the measured reaction, and also from their
daughter nuclides. Calibration of the DSSD was per-
formed using known decays of 178Pt (5446(3)-keV), 177Pt
(5517(4)-keV), 174Pt (6039(3)-keV) and 178Hg (6430(6)-
keV), whose energies were taken from ENSDF [26]. The
remaining peak energies seen in Fig. 1(a) are in good
agreement with the known values with the exception of
the decay of 176Pt. We measure an energy of 5743(8)-
keV compared to the evaluated value of 5753(3)-keV [26].
We note however that our value agrees within one sigma
to the two most recent measurements, 5748(4) [27] and
5741(8) [28], included within the evaluated energy.

In contrast to the ISOLDE study of 178Aum,g [18],
the separation of α decays from the isomeric and ground
states is not possible in our study, if one relies only on
the ER-α correlations in Fig. 1(a). This limitation is be-
cause their α-decay energies and half-lives are quite sim-
ilar. Furthermore, in Fig. 1(a), the strongest α decays
of 178Au partially overlap with the dominant 5950(5)-
keV α decay of 175Pt (tabulated value 5948(4) keV [26]).
The latter was proven based on the observation of α(5950
keV)-γ(76.8 keV) coincidence events belonging to the de-
cay of this nuclide [26], this analysis will be discussed
elsewhere [29].
Nevertheless, anticipating the follow-up discussion in

Sec. III B 2, the strongest α decays of both states in 178Au
at 5928(10), 5926(8) and 5976(8)-keV could be distin-
guished via coincidences with γ transition [Figs. 1(b),(c)],
which match well to the decays attributed to two α-
decaying states in 178Au [18].

B. Identification of sub-microsecond isomeric

states in 178Au

1. Recoil-PGD Singles

The µs isomeric transitions on top of both α-decaying
states in 178Au were identified based on the analysis of
recoil-gated γ-ray spectra measured in the PGD. As the
time of flight of recoils through RITU is ≈400 ns, only
isomeric states of nuclei with half-lives comparable to
(or longer than) this value can survive until the implan-
tation in the DSSD. Their subsequent γ decay can then
be measured by the PGD, within a specific time inter-
val, ∆T (ER-PGD), following the implantation of an ER
in the DSSD. In this work, such γ-ray events are called
“recoil-gated isomeric decays” and denoted as ER-PGD.
Fig. 2(a) shows the recoil-gated isomeric γ-ray PGD

spectrum with the requirement that events occur within
the time interval of ∆T (ER-PGD)=0–1 µs. The 27.1(2),
62.4(2) and 89.5(2) keV transitions are known decays of
the 89.5-keV 328(2)-ns isomeric state in 179Au [16]. The
45.2(2)-keV transition originates from a 6.58-µs isomeric
state in 175Ir [21]. The 147.4(4)-keV decay belongs to
177Pt [30], its improved half-life of 2.35(4) µs was re-
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FIG. 1. (color online) (a): Energy spectrum of α decays, observed within 7 s of ER implantation in the DSSD. Peaks are
labelled with their energies, in keV, and with the isotope, they originate from. An asterisk marks the peaks used to calibrate
the DSSD; (b) Same as (a), but a 56.7 (±1.0-keV energy window) γ decay must also be detected in the PGD within the time
of ∆T (ER-PGD)=0–1 µs; (c) Same time gates as (b), but with an energy gate on the 50.2 (±1.0-keV energy window) keV
transition in the PGD.

ported in [21]. The remaining peaks at 50.2(2)-, 56.7(2)-
and 113.4(4) are due to decays from two new sub-µs iso-
meric states in 178Au, as discussed below.
We deduced the half-lives of the known and new iso-

meric transitions from the fits of the time distributions
between an ER implantation in the DSSD and the de-
tection of the isomeric γ-ray transitions in the PGD, see
Fig. 3. The fit function consists of an exponential func-
tion and a constant background, used to account for γ
rays not correlated to an ER and which have a flat time
distribution. The method was first confirmed by mea-
suring the half life of the known 89.5 keV isomeric state
in 179Au [16]. From the combined statistics of the 62.4-
and 89.5-keV transitions, as shown in Fig. 3(a), a value of
T1/2(89.5-keV state)= 322(9) ns was determined, which
is consistent with the previous value of 328(2) ns. As will
be proven in Sec. III B 3, the peak denoted as ‘62.4/63.4’
in Fig. 2(a) is a convolution of the dominant 62.4-keV
from 179Au and a much weaker 63.4(2)-keV transition
from 178Au. Therefore, to further minimize a small pos-
sible lower-energy tail from the 63.4-keV decay to the
62.4-keV transition in the the half-life determination pro-
cedure, an energy gate of 61.4-62.6 keV was applied for
the latter decay.
Using the same procedure for the newly-observed

strong 56.7-keV transition, a half-life value of T1/2(56.7
keV)= 373(9) ns was deduced [Fig. 3(b)]. Similarly,

values of T1/2(50.2-keV)= 285(18) ns and T1/2(113.4-
keV)= 319(20) ns were determined, as shown in
Figs. 3(c),(d), respectively. The two values are consis-
tent to each other within their uncertainties, and as will
be shown in Sec. III B 3, both transitions will be assigned
as originating from the same isomer. Therefore, we com-
bined their respective statistics to a single fit, which re-
sulted in a value of T1/2(50.2/113.4)= 294(7) ns.

2. Recoil Decay Tagging

The assignment of the new transitions to 178Au was
performed with the Recoil Decay Tagging (RDT) method
by searching for events of the type [ER-PGD]-α. Here,
the ER-PGD event, with an energy gate on a spe-
cific isomeric γ-ray transition, should be observed within
∆T (ER-PGD)=0–1 µs and be correlated to the α decay
in the DSSD within ∆T (ER-α)=7 s.
Fig. 1(b) shows the same α-decay spectrum as

Fig. 1(a), but with an additional energy gate of ±1 keV
on the 56.7-keV isomeric decay. Two α-decay peaks
with energies of 5926(8) and 5976(8) keV are seen, which
match well to the strongest decays of 178Aum [18]. There-
fore we assign the 373-ns, 56.7-keV transition as feed-
ing to the high-spin α-decaying isomer of 178Au, see
Fig. 4(b).
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FIG. 2. (a) Recoil-gated singles γ-ray spectrum, observed in the PGD within the time of ∆T (ER-PGD)=0–1 µs of the ER
implantation in the DSSD. The centroids of the peaks are obtained from fits and labelled with their energies in keV. Note the
change of the Y-axis scale from 80-keV on; (b) Projection of a recoil-gated PGD(γγ) matrix for events with the prompt time
condition ∆t(γ-γ) ≤ 70 ns; (c) same as (b), but with an energy gate of ±1 keV applied on the 50.2-keV transition; (d) same
time gates as (c), but with an energy gate of ±1 keV on the 60.0-keV transition. The inset to (c) shows the time distribution
for the 50.2–63.4-keV coincident events.

We note however, that the intensity ratio of the two
α decays in Fig. 1(b) is different from that measured at
ISOLDE, the latter values are given Fig. 4(b). This dif-
ference may be explained by the fact that in the RITU
experiment, the ERs are implanted directly in the DSSD
at a depth of several microns. Prompt and strongly
converted γ-ray transitions, following α decay, this will
lead to a α+e− summing effect, where both α parti-
cle and coincident conversion electron are registered in
the same strip of the DSSD. This is the case for the
prompt α(5926)–γ(56.8) coincidences, whereby the M1
56.8-keV has a large total theoretical conversion coeffi-
cient of αtot,th =6.78 [31], with a dominant L- and M -
shell internal conversion. The latter produces 42.5- and
53.4-keV conversion electrons, respectively, whose sum-
ming in the DSSD with the energy of the 5926-keV decay
results in the depletion of its intensity and the enhance-
ment of the summing peak at ≈5976 keV. A similar effect
also happens in the ISOLDE experiment [18], but with a

much reduced summing efficiency. This is because, at
ISOLDE, 178Au nuclei are implanted in a carbon foil
placed in front of the silicon detector, thus the α+e−

summing is strongly reduced, see the GEANT simula-
tions presented in [18].

By applying a ±1-keV energy gate on the 50.2-keV de-
cay, the spectrum shown in Fig. 1(c) was obtained, in
which a single peak at 5928(10)-keV is seen. As this en-
ergy corresponds to the 5922-keV decay of 178Aug [18],
we establish that the 50.2-keV decay originates from the
294-ns isomeric state, whose decay eventually proceeds to
the ground state of 178Au. However, we note already here
that the decay of the 294-ns state involves several tran-
sitions in a cascade, with 50.2-keV being one of them,
see discussion in Sec. III B 3 and the decay scheme in
Fig. 4(a). The statistics for the 113.4-keV transition are
too low to perform the RDT analysis, but its placement
in the decay scheme can be done based on the γ-γ coin-
cidence analysis in the PGD in Sec. III B 3.
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The weak 5446(8)-keV peak in Fig. 1(b) is from the
decay of 178Pt, which originates from the β+/EC decay
of 178Aum,g (bβ ≈84% in both cases [18], see Fig. 4).

3. Recoil-γγ analysis

Further analysis of the newly-observed isomeric transi-
tions was performed by searching for recoil-gated prompt
γ-γ coincident events in the PGD, which are denoted as
ER-PGD(γγ) through the text, see Figs. 2(b), (c) and
(d). The time condition of ∆T (ER-PGD)=0–1 µs and
a prompt time gate of ∆T(γ-γ) ≤70 ns were applied to
produce all three spectra. Fig. 2(b) shows the total pro-
jection of this γ-γ matrix.
The presence of the γγ(27.1–62.4) coincident pairs in

Fig. 2(b), originating from a known isomeric cascade in
179Au [16], confirms the validity of our analysis. Apart
from the 50.2- and a weak 113.4-keV transition, a new
decay at 60.0(2)-keV can also be seen.
Fig. 2(c) shows a projection from the PGD(γγ) matrix

with an energy gate of ±1 keV on the 50.2-keV transi-
tion, whereby the above-mentioned 60.0-keV and a new
63.4(2)-keV decays are observed. Similarly, by applying
a ±1-keV gate on the 60.0-keV transition, the spectrum
seen in Fig. 2(d) was produced, which shows the 50.2 and
63.4 keV transitions. The analysis of the time distribu-
tions between any two of the three transitions proved the
prompt character of these coincidence pairs. As an ex-
ample, the inset to Fig. 2(c) shows the time distribution
for a pair of γγ(50.2–63.4-keV) coincidences, in which
only a symmetric narrow peak is seen. Similarly narrow

and symmetric time spectra were also obtained for the
50.2–60.0 and 60.0-63.4 keV pairs, proving their prompt
character. Based on the above analysis we conclude that
the 50.2-, 60.0- and 63.4-keV decays establish a cascade
of mutually-coincident prompt transitions.
Importantly, a weak peak at 113.4 keV is also seen in

Fig. 2(d), which is absent in Fig. 2(c). The latter suggests
that the 50.2-keV transition is not in coincidence with
the 113.4-keV decay. On the other hand, the sum of the
50.2- and 63.4- transitions is 113.6(4) keV. We therefore
placed the 113.4-keV transition parallel to the 50.2-63.4
cascade.

IV. DISCUSSION

A. Proposed Level Scheme

Based on the analysis presented in the previous sec-
tions, the decay schemes of the new sub-µs isomeric states
in 178Au were deduced, as shown in Fig. 4.
From the RDT analysis we determined that the 373-ns

isomeric state de-excites via the 56.7-keV transition to
the Iπ =(7+,8−) high-spin isomer in 178Au, as shown in
Fig. 4(b). The decay of the 294-ns isomeric state towards
the Iπ =(2+,3−) ground state in 178Au is more compli-
cated due to the presence of multiple transitions. Several
possible relative orderings within the 50.2–60.2–63.4-keV
cascade and of the 113.4-keV decay were considered, but
based on the arguments presented below our preferred
decay scheme is shown in Fig. 4(a).

B. Multipolarities of the 50.2-, 60.0-, 63.4- and

113.4-keV transitions

Multipolarities of the 50.2-, 60.0- and 63.4-keV tran-
sitions were deduced by measuring their total internal
conversion coefficients (ICC), αtot,exp. For the 60.0-keV
transition the ICC was calculated by comparing the num-
ber of 50.2-keV events in the ER-PGD singles spectrum
(Nγ(50.2), Fig. 2(a)), and the number of 50.2 – 60.0-keV
coincidences in the ER-PGD(γγ) spectrum (Nγγ(50.2-
60.2), Fig. 2(c)). The ICC of the 60.0-keV transition is
calculated using the following equation:

αtot,exp(60.0) =
Nγ(50.2)× ǫ(60.0)

Nγγ(50.2− 60.0)
− 1, (1)

where ǫ(60.0) is the efficiency of the planar detector
at 60.0 keV, taken from simulations [32]. For the ef-
ficiency we assume a 10% uncertainty, which also jus-
tifies to approximate the efficiency for the detection of
the coincident pair at 50.2- and 60.0 keV by the prod-
uct of the respective single detection efficiencies. Using
Eq. 1, a value of αtot,exp(60.0) = 10.4(12) was deduced.
Similarly using this equation but for the 50.2-63.4-keV
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coincidences in Fig. 2(c), we obtain αtot,exp(63.4) =
21.3(27). A comparison of αtot,exp values with the theo-
retical conversion coefficients shown in Table I suggests
a relatively weakly-mixed M 1/E2 assignment for the
60.0-keV transition [δ(E2/M 1)=0.34(5)] and a strongly
mixed M 1/E2 assignment for the 63.4-keV transition
[δ(E2/M 1)=0.95(14)].

Comparing the intensities of the 50.2-keV and 63.4-
keV transitions in Fig. 2(e) and accounting for the
measured conversion coefficient of the 63.4-keV transi-
tion, we calculate αtot,exp(50.2) = 19.3(25). This value
establishes its weakly mixed M 1/E2 character, with
δ(E2/M 1)≈0.30(4).

The multipolarity of the 113.4-keV transition was es-
tablished via the following procedure. Based on the level
scheme shown in Fig. 4(a), the 113.4-keV transition must
conserve parity, as it is parallel to the cascade of 50.2-
and 63.4-keV transitions, which are both of the mixed
M 1/E2 character. This fact rules out an E1 multipo-
larity assignment for the 113.4-keV decay. Furthermore,
Fig. 2(d) shows the presence of weak Au Kα,β x rays,
which can only originate from the conversion of the 113.4-
keV transition, due to specific gating conditions used to
produce this spectrum. If the 113.4-keV transition had
an M1 multipolarity, the expected amount of Au K x

rays should have been at least ≈4 times larger than of
the 113.4-keV transition itself in Fig. 2(d). This ratio
is due to a rather large theoretical ICCs, αK,th(113.4,
M1) = 4.16(2), and also accounting for a slightly larger
PGD detection efficiency at x-ray energies in compari-
son to 113.4 keV. On the other hand, αK,th(113.4, E2)
= 0.573(3), would explain the low number of Au Kα,β

x rays in Fig. 2(d). Therefore, we assigned a pure E2
character to the 113.4-keV decay.

The intensity ratio of the two parallel paths (50.2-
63.0 keV and 113.4 keV), shown in Fig. 4(a) was deter-
mined by using the intensities of the 50.2- and 113.4-keV
peaks from Fig. 2(a), corrected for their respective γ-
ray detection efficiencies, internal conversion coefficients
and mixing (in case of the 50-keV decay). The inter-
nal conversion was included by using theoretical total
ICC of αtot,th(113.4, E2) = 3.11(4) and αtot,exp(50.2) =
19.3(25).

C. Multipolarity of the 56.7-keV transition

The ICC for the 56.7-keV transition, feeding to
178Aum, was deduced based on the comparison of the
respective numbers of 5926/5976-keV decays in the ER-
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PGD(56.7)-α spectrum in Fig. 1(b) and the ER-α spec-
trum in Fig. 1(a). Apart from the internal conversion of
the 56.7-keV transition itself, the difference between the
two numbers is due to three effects:

• The decay loss of the 56.7-keV isomeric state during
flight time through RITU, which is easily accounted
for based on reaction kinematics;

• The PGD detection efficiency of the 56.7-keV,
which was taken from the simulations [32];

• The amount of de-excitation which by-passes the
56.7-keV isomeric state directly to the α-decaying
178Aum. This by-pass does not contribute to the
ER-PGD(56.7)-α spectrum in Fig. 1(b), but respec-
tive α decays in the DSSD are seen in the ER-α
spectrum Fig. 1(a). The latter will lead to a cor-
rection of the deduced conversion coefficient, as the
higher the by-passing path, the smaller the “true”
ICC will become. The possible implications from
the latter effect will be further discussed below.

For the simplicity of the present discussion, a detailed
description of the whole procedure will be given elsewhere
[29], here we will only provide the most relevant details.
The main difficulty of the applied method was the estima-
tion of the number of 5926/5976-keV decays of 178Aum

in the complex ER-α spectrum in Fig. 1(a), also by ac-
counting for the α+e− summing effect mentioned earlier.
This step involved a procedure to account for the contam-
ination from the α decay of 175Pt, mentioned above, in
particular its ‘main’ 5950-keV decay with strongly con-
tributes to this region. This procedure also considered
the relative production of 178Aug,m, deduced via the com-
parison of the relative production of a number of α-γ
coincident pairs of 178Aug,m, which are known from [18].
Based on the above procedure, a value of αtot,exp(56.7)

= 6(2) was deduced, which conservatively includes an
uncertainty due to the estimation of the number of
5926/5976-keV events in Fig. 1(a), mentioned above.
Two possible scenarios have to be considered to interpret
this value, depending on the assumption on the amount
of de-excitation which by-passes the 56.7-keV isomeric
state directly to the α-decaying isomeric state in 178Au,
as mentioned earlier.
In the first scenario (Sc.1 in Table I), the mea-

sured αtot,exp(56.7) = 6(2) is considered to repre-
sent the “true” ICC. Its comparison to the theo-
retical ICC values of αtot,th(56.7,M 1)=6.81(11) and
αtot,th(56.7,E2)=68.1(12) in Table I would establish a
pure M1 character for the 56.7-keV decay. In turn, this
will require that most (if not all) of the de-excitation from
the higher-lying excited states towards the α-decaying
178Aum state must proceed via the isomeric 56.7-keV de-
cay.
In the alternative scenario (Sc.2 in Table I), we con-

sider a possible de-excitation by-pass of the 56.7-keV
state, which will necessitate an E1 character for the
56.7-keV decay with a theoretical ICC of αtot,th(56.7,

E1)=0.386(6). The large difference between the experi-
mental and the theoretical values will then require that
most of the de-excitation path by-passes the 56.7-keV
isomeric state directly towards the α-decaying 178Aum

state. In this case, the amount of the by-pass can be
estimated from the expression;

100%−
1 + αtot,th

1 + αtot,exp
(56.7)) ≈ 80%. (2)

To conclude the discussion of the ICC values, we note
that we also applied the same method to the 50-keV
transition, by comparing the respective numbers of 5928-
keV events in the ER-PGD(50.2)-α spectrum in Fig. 1(c)
and in the ER-α spectrum in Fig. 1(a). A value of
αtot,exp(50.2)= 26(8) was deduced, which is consistent,
within the uncertainty, to the αtot,exp(50.2)= 19.3(25)
deduced via the ER-PGD(γγ) method in Sec. IVB. This
would suggest that most (or all) of the de-excitation to-
wards the α-decaying 178Aug state passes via the 294-ns
isomeric state decaying by the 63.4-50.2-60.0-keV cas-
cade.

V. INTERPRETATION OF THE NEW

ISOMERIC STATES IN 178Au

A. 373-ns state

The above-mentioned scenarios Sc.1 and Sc.2 [see Ta-
ble I] are further considered with an attempt to interpret
the 56.7-keV isomeric transition.
In Sc.2, we assume an E1 character, which would natu-

rally explain its isomeric character, as the reduced transi-
tion probability is B(E1, 56.7)=2.3(1)×10−6, see Sc.2 in
Table I. This would be a typical hindered low-energy E1
decay, which often happens in this region of nuclei, with
B(E1) values in the range of 1×10−7 to 1×10−6 W.u.
[34]. For example, the 62.4-keV and 89.5-keV E1 transi-
tions are known to proceed from the 89.5-keV 328(2)-ns
excited state in neighbouring odd-A 179Au [16]. Their re-
spective reduced transition probabilities are B(E1, 62.4)
= 1.88(1) ×10−6 and B(E1, 89.5) = 5.3(2)×10−8 W.u.,
see Table 1 of [16]. Another example of such hindered E1
decays is the 45.2-keV transition from the 6.58-µs state
in 175Ir, where a value of B(E1, 45.2) = 2.12×10−7 W.u.
was recently deduced [21].
On the other hand, an assumption of a pure M 1 mul-

tipolarity for the 56.7-keV decay would lead to its strong
hindrance B(M 1) = 4.6(15)×10−5 W.u, see Sc.1 in Ta-
ble I. Several strongly-hindered 11/2−→9/2− M 1-decays
are known in the odd-A isotopes 185,187,189Au, with a
comparable hindrances of B(M 1)≈10−5 W.u., see Fig. 1
of [35].
With the present data, we cannot chose between the

two scenarios and provide a unique interpretation of the
nature of this isomeric state. As mentioned above, a
possible distinction between E1 and M 1 multipolari-
ties could be provided by experimentally establishing the
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amount of a by-pass over this isomeric state in the decay
pattern from the higher-lying excited states.

B. 294-ns state

The decay path of the 294-ns state is more complex
and involves several transitions. Importantly, all pairs of
50.2-, 60.0- and 63.4 decays show a prompt character in
their mutual coincidences, an example is shown for the
γγ(50.2 – 63.4) pair in the inset to Fig. 2(c). This fact
suggests that only one of these decays originates from
the isomeric state, while the apparent isomeric half-lives
of other transitions is determined just by the fact that
they follow the initial isomeric decay.
The three transitions have a mixed M 1/E2 character.

It is instructive to first remind the Weisskopf half-life es-
timates for pure M 1 and E2 multipolarities for such low-
energy decays. Accordingly, typical half-lives of ≈10−11–
10−10 s are expected for pure M 1 50 – 60 keV decays,
while substantially longer values of a few hundreds of
nanoseconds are expected for the E2 multipolarity. The
latter provides a first clue on the possible nature of iso-
merism in this case, as a strong E2 component alone
would be enough to produce an isomeric decay.
Among the three transitions, only the 63.3-keV decay

has a strong E2 character, as evidenced by its experimen-
tal mixing ratio of δ(E2/M 1)≈0.95(14) [Table I]. This is
about 3 times larger than the mixing ratios for other two
decays. This ratio is further reflected in a larger B(E2)
transition strength for the 63.4-keV transition in com-
parison to the other two decays.
Therefore, in our opinion, the larger E2 component in

the 63.4-keV transition is the reason for its isomeric half-
life. Based on these grounds, we propose our preferred
decay scheme for the 294-ns isomeric state as shown in
Fig. 4(a), whereby the isomeric 63.4-keV decay is followed
by a prompt 50.2–60.0- keV cascade.

C. Possible spin assignments for the new isomeric

states

The non-observation of the 173.6-keV delayed decay in
our data suggests that the spin of the respective 294-ns
173.6-keV excited state should be different by at least
three units of angular momentum relative to the most
likely Iπ = (2+,3−) ground state of 178Au, proposed in
[18]. Otherwise, for any ∆I≤2 difference between the two
states, a full energy decay would be expected, though it
would be very weak and probably beyond the sensitivity
of our experiment if it were an M 2 decay. Overall, in the
extreme case of a full alignment of the angular momenta
of all three transitions (or accounting for an E2 for 113.4-
keV decay), a spin value as high as 5–6 can be expected
for the 294-ns state.
Based on either an M 1 or E1 multipolarity for the

56.7-keV decay and the most likely assignment of Iπ

=(7+,8−) for 178Aum in [18], the possible spin of the 373-
keV isomeric state can be 6,7,8,9. The lowest values of
6 and 7 should most probably be discarded, as otherwise
it would open a possibility for the 373-ns state to decay
to the 294-ns state or other lower-lying states on top of
178Aug. No evidence for such transitions was observed in
our data.

VI. CONCLUSIONS AND OUTLOOK

In this work, the identification of two sub-µs isomeric
states in 178Au was presented. This measurement be-
came possible due to the use of a unique segmented pla-
nar germanium detector of GREAT, which allowed the
measurements of the low-energy γ rays. The high effi-
ciency for the low-energy γ–γ coincidences in the PGD
played a key role in the construction of the decays scheme
of the 294-ns isomeric state. The application of the recoil-
decay tagging method allowed us to establish the de-
cay paths of these isomeric decays to specific α-decaying
states in 178Au. Reasons for the occurrence of the sub-µs
isomeric states in this nucleus were proposed.
The establishment of the low-energy excitation scheme

in 178Au will pave the way for dedicated in-beam studies
of this nucleus, based on the application of the isomeric-
decay tagging technique and gating on the decays of sub-
µs isomeric states. This possibility will allow a circum-
vention of the difficulties of using the RDT method for
relatively long-lived α-decaying states with half-lives of
≈3 s in 178Au.
Furthermore, the knowledge of the low-energy states in

178Au will crucially help clarify the so-far poorly known
α-decay scheme of the two long-lived states in the chain
182Tl→178Aug,m. In particular, we notice that the ex-
istence of a 112.9(1)-keV transition in the decay of low-
lying excited states in 178Au was established in the α-
decay study 182Tl→178Au in Ref. [19]. However, this
transition was not yet placed in the decay scheme. It
remains to be seen whether the 113.4(4)-keV decay ob-
served in the present study is the same transition as seen
in [19]. On the other hand, none of the 50.2-, 60.0-, 63.4-
and 56.7-keV decays assigned to 178Au in the present
work was reported in [19]. This could possibly be both
due to their relatively large internal conversion coeffi-
cients and a much lower γ-ray detection efficiency of the
setup used in [19]. However, we cannot rule out the possi-
bility that the α decay of 182Tl does not populate isomeric
states seen in this investigation.
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[31] T. Kibédi et al.. Nucl. Instrum. Methods Phys. Res.,

Sect. A, 589:202, 2008.
[32] A.N. Andreyev et al. Nucl. Instrum. Methods Phys. Res.,

Sect. A, 533:422, 2004.
[33] R.B Firestone. Table of Isotopes, volume 2. Wiley-VCH,

8 edition.
[34] P.M. Endt. At. Data Nucl. Data Tables, 26(1):47, 1981.
[35] M O Kortelahti et al. J. Phys. G, 14(11):1361, 1988.



10

TABLE I. Total experimental (αtot,exp) and theoretical (αtot,th) internal conversion coefficients and mixing ratios, δ(E2/M 1)
for listed γ decays, where available. The theoretical ICC values and mixing ratios were calculated with BrIcc [31]. Also shown
are the reduced transition probabilities assuming that given transition directly depopulates the isomeric state. Two scenarios,
denoted as ‘Sc.1’ and ‘Sc.2’ are considered for the 56.7-keV decay, with a pure M 1 or E1 multipolarity, respectively, see main
text. The B(M 1) and B(E2) values in the last two columns include the conversion, relative intensities (where relevant) and
the mixing ratios, except for pure E2, 113.4-keV and 56.7- keV (E1 or M1 decay). The B-values for mixed transitions were
calculated within the framework described in Appendix I-1.1 of Ref. [33]. Unless noted otherwise the B-Values are calculated
using the αtot,exp values.

Eγ (keV) ITot αtot,exp αtot,th(E1) αtot,th(M1) αtot,th(E2) δ(E2/M 1) B(E1) W.u. B(M 1) W.u. B(E2) W.u.

294(7)-ns isomer

50.2(2) 94(1) 19.3(25) 0.538(10) 9.74(18) 123(3) 0.30(4) 2.5(4)×10−5 0.39(6)

60.0(2) 100 10.4(12) 0.331(6) 5.77(10) 51.8(12) 0.34(5) 2.7(4)×10−5 0.37(6)

63.4(2) 94(1) 21.3(27) 0.285(5) 4.91(9) 39.7(9) 0.95(14) 6.5(10)×10−6 0.63(10)

113.4(4) 6(1) 3.11(7)a 0.302(5) 5.06(9) 3.11(7) 0.025(4)

373(9)-ns isomer

56.7(2), Sc.1, M1 100 6(2) 0.386(7) 6.81(12) 68.1(16) 4.6(15)×10−5

56.7(2), Sc.2, E1 100 0.386(7)b 0.386(7) 2.3(4)×10−6

a For the pure E2 113.4-keV decay, the experimental ICC coefficient αtot,exp is assigned to that of αtot,th(E2) = 3.11(4)
b In Sc. 2, the experimental ICC coefficient αtot,exp is equated that of αtot,th(E1)=0.386(6)
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