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A B S T R A C T   

Introduction: Elevated myocardial T1-mapping and extracellular volume (ECV) measured on cardiac MR (CMR) 
imaging is associated with myocardial abnormalities such as oedema or fibrosis. This meta-analysis aims to 
provide a summary of T1-mapping and ECV values in pulmonary arterial hypertension (PAH) and compare their 
values with controls. 
Methods: We searched CENTRAL, MEDLINE, Embase, and Web of Science in August 2020. We included CMR 
studies reporting T1-mapping or ECV values in adults with any type of PAH. We calculated the mean difference of 
T1-values and ECV between PAH and controls. 
Results: We included 12 studies with 674 participants. T1-values were significantly higher in PAH with the 
highest mean difference (MD) recorded at the RV insertion points (RVIP) (108 milliseconds (ms), 95% confidence 
intervals (CI) 89 to 128), followed by the RV free wall (MD 91 ms, 95% CI 56 to 126). The pooled mean T1-value 
in PAH at the RVIP was 1084, 95% CI (1071 to 1097) measured using 1.5 Tesla Siemens systems. ECV was also 
higher in PAH with an MD of 7.5%, 95% CI (5.9 to 9.1) at the RV free wall. 
Conclusion: T1 mapping values in PAH patients are on average 9% higher than healthy controls when assessed 
under the same conditions including the same MRI system, magnetic field strength or sequence used for 
acquisition. The highest T1 and ECV values are at the RVIP. T1 mapping and ECV values in PH are higher than the 
values reported in cardiomyopathies and were associated with poor RV function and RV dilatation.   

1. Introduction 

Native myocardial T1 and extracellular volume (ECV) mapping have 
shown promise as novel biomarkers to support diagnostic, therapeutic 
and prognostic decision making in several cardiovascular disorders [1]. 
T1 mapping produces a pixel-by-pixel representation of the longitudinal 

relaxation times (T1) within a tissue [2]. This relaxation time can be 
measured on a MRI system and sequence-specific standardised scale to 
provide surrogate tissue characterisation data [3]. In the myocardium, 
T1 times are affected by two main factors; oedema and collagen in the 
interstitial space [4]. Oedema can be secondary to inflammation or 
infarction, whereas increased collagen is associated with fibrosis or 
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arterial hypertension; PH, pulmonary hypertension; RV, right ventricle; RVEF, right ventricle ejection fraction; RVIP, right ventricle insertion point; SASHA, 
Saturation Recovery Single-Shot Acquisition; SD, standard deviation; T, tesla. 
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infiltrative processes [5–8]. An elevated T1 value is, therefore, a non- 
specific tissue composition marker for conditions such as myocardial 
infarction, myocarditis, cardiomyopathies and diastolic heart failure 
[6,9–16]. A low T1 is being used as a diagnostic tool and follow-up 
biomarker in Anderson-Fabry disease [17–21] and can be used as a 
complementary sequence to T2* in thalassemia [22,23]. 

Performing T1 mapping after contrast administration enables the 
assessment of the extracellular space [1,4]. As gadolinium collects in the 
extracellular fluid, its paramagnetic effect causes shortening of the T1 
values of the myocardium. The T1 shortening is proportional to the 
concentration of the gadolinium in the extracellular fluid. Therefore, 
combining pre- and post-contrast T1 values of the myocardium and 
blood pool with the haematocrit allows estimation of the extracellular 
volume (ECV) [1]. Elevated ECV is seen with myocardial fibrosis or 
oedema and is associated with an increased risk for mortality [24–26]. 
Native T1 and ECV can provide prognostic information in coronary ar-
tery disease and nonischemic cardiomyopathies [4,27,28] and might 
play a role in disease risk stratification, early diagnosis and monitoring 
progression [2,13,14]. 

In pulmonary arterial hypertension (PAH), elevated pulmonary ar-
tery pressure causes significant afterload on the right ventricle (RV). 
Eventually, the RV hypertrophies and dilates triggering a fibrogenic 
process [29]. T1 mapping and ECV might, therefore, play a role in 
evaluating the changes in the RV [30] and the degree of fibrosis in PAH 
[29]. 

Previous reviews have assessed normal T1 mapping and ECV values 
in healthy people [31] and pathological values in cardiomyopathies 
[32–34]. Several studies report T1 values in PAH, but there is currently 
no meta-analysis to summarise their results. This meta-analysis aims to 
compare the range of T1 values and ECV in PAH to control participants 
and identify the regions of the myocardium with the highest T1 values. 

2. Methods 

The review was prospectively registered with The International 
Prospective Register of Systematic Reviews on 10/02/2020 (ID: 
CRD42020166392). 

2.1. Criteria for considering studies for this review 

We considered any study comparing T1 mapping or ECV values in 
adult patients with PAH and controls; such as controlled trials, cohort 
studies or case-control studies. Studies with less than 10 participants and 
case reports were excluded. Inclusion was considered irrespective of 
prospective or retrospective recruitment, publication date, publication 
status or language. 

2.2. Outcomes  

1. The pooled mean difference of T1 value and ECV between PAH and 
controls  

2. Identifying the myocardial region with the largest T1 values and ECV 
in PAH  

3. Comparing the T1 values in the subgroups of PAH 

2.3. Search methods for identification of studies 

The following databases were systematically searched for relevant 
studies on 08/08/2020: i) Cochrane Central Register of Controlled Trials 
(CENTRAL) ii) MEDLINE (ProQuest, 1946 to Aug 2020) iii) Embase 
(Ovid, 1974 to 2020 Week 32) and Web of Science. The search strategy 
used is outlined in the Appendix. 

The reference lists of all relevant articles identified during the full- 
text screening were scrutinised for relevant studies. 

2.4. Statistical analysis and data synthesis 

We used Review Manager 5.4 (The Cochrane Collaboration, 2020) to 
perform a meta-analysis of the mean differences (MD) and produce the 
forest-plot. A random-effect model with 95% confidence intervals (CI) 
was used in the analyses. The available data allowed us to calculate the 
mean difference for 1.5 T field strength only. 

We pooled the means and standard deviations (SD) of T1 values for 
the PAH and control groups when they were measured using the same 
MRI system and field strength, which was only possible for 1.5 T 
Siemens systems. The non-weighted means of T1 values with their 95% 
CI for PAH patients and controls were presented on a forest plot using 
GraphPad Prism version 8.3 (GraphPad Software, La Jolla CA, USA). If 
the T1 and ECV values for the RV insertion points were measured both at 
the superior and inferior insertion points, data for the inferior insertion 
points were chosen, as this was the case with the majority of the studies. 
A funnel plot to assess publication bias was not performed as the number 
of included studies in each meta-analysis were too low to identify real 
asymmetry [35]. 

3. Results 

3.1. Results of the search 

Our comprehensive search identified a total of 12 studies that were 
included in the meta-analysis. Nine studies reported T1 mapping values 
in PAH [36–44] including one conference abstract [45] and five studies 
reported ECV values [37–39,46,47]. The details of the literature search 
are presented in the PRISMA flow diagram (Fig. 1). 

3.2. Description of included studies 

3.2.1. Study design 
The review includes nine case-control studies and three case-series 

published between 2015 and 2020. Prospective recruitment was per-
formed in seven studies and retrospective recruitment in five studies. 
Only three studies had a sample size ≥60. The largest study was Saun-
ders 2018 with 223 PAH patients and 24 controls. 

3.2.2. Population 
The studies were conducted in 8 different countries; 6 studies were 

conducted in Europe, 2 in the USA and 4 in Japan and China. The studies 
included 554 PH patients of which 513 (93%) had PAH, 32 (6%) had 
chronic thromboembolic pulmonary hypertension (CTEPH) and 9 (1%) 
had PH secondary to lung disease. The control group included 120 
people, of whom 97 were healthy and 23 were non-PH patients. The age 
of patients with PAH was 53 ± 15 years and 64% were women with a 
pooled average mPAP of 48 ± 15 mmHg, and RVEF of 42 ± 14%. The 
control group had a pooled average age of 49 ± 7 years and 52% were 
women. The pooled average of RVEF was 55 ± 5%. Details of included 
studies are presented in Table 1. 

3.2.3. MRI systems and T1 techniques 
The majority of studies were performed using 1.5 Tesla field-strength 

MRI systems. A 3 Tesla system was used in Asano 2018, Dong 2018 and 
Reiter 2017 [40,45,47]. Siemens MRI scanners were used in most studies 
apart from Saunders 2018 and Homsi 2017 who used a GE and Philips 
MRI system, respectively [37,41]. A modified look-locker inversion re-
covery (MOLLI) sequence was used in all studies apart from Mehta 2015 
who used accelerated and navigator-gated look-locker imaging for car-
diac T1 estimation (ANGIE) [38]. T1 mapping values were measured on 
short-axis images on a single mid-chamber slice [41,42,44,46,47], single 
basal slice [43], average of two mid-chamber slices [38], average of a 
basal and a mid-chamber slice [36,39] or averaged over basal, mid- 
chamber and apical slices [37,40]. T1 values were measured in end- 
diastole, apart from Mehta 2015 and Reiter 2017 who measured T1 
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values in systole [38,40]. None of the included studies used stress MRI to 
assess T1 values. Details of the MRI systems, techniques and sequences 
used are provided in Table 2. 

3.3. Results of the Meta-analysis of the T1 values and ECV 

3.3.1. The mean difference of T1 value in PAH and controls 
Seven studies compared myocardial T1 values at 1.5 Tesla between 

375 PAH patients and 87 healthy controls. The T1 values in PAH are 
significantly larger than the T1 values of the control group. The largest 
difference was reported at the RVIP (MD 108 ms, 95% CI 89 to 128), 
followed by the RV free wall (MD 91 ms, 95% CI 56 to 126). The mean 
difference at the mid septum and LV lateral wall were relatively smaller 
(MD 56 ms, 95% CI 41 to 72) and (MD 36 ms, 95% CI 14 to 58), 
respectively. The forest plot of the meta-analysis of mean differences 
between PAH and controls is presented in Fig. 2. 

Two studies reported myocardial T1 values at 3 Tesla; Reiter 2017 
and Asano 2018 [40,45]. However, their results could not be pooled as 
they reported T1 values at different regions of the myocardium. In 
addition, Reiter 2017 included non-PH patients as the control group, 
whereas Asano 2018 included healthy people. The highest calculated 
mean difference of the T1 values in Reiter 2017 was 105 ms, 95% CI (76 
to 133) at the RVIP. The mean difference at the septum and LV lateral 
wall were smaller 63 ms, 95% CI (40 to 86) and 40 ms, 95% CI (20 to 
60), respectively. In Asano 2018 the calculated MD at the RV free wall 
was 178 ms, 95% CI (134 to 222). 

3.3.2. T1 values in different myocardial regions 
Comparing the mean difference in the T1 values in different 

myocardial regions measured within PAH patients showed that the T1 
values at the RVIP is on average 6% higher than the septum (MD 62 ms, 
95% CI 49 to 74) and 9% higher than the LV lateral wall (MD 102 ms, 
95% CI 82 to 121). The pooled mean value of T1 with a 1.5 T Siemens 

system for PAH patients and healthy controls are shown in Table 3 and 
their ranges are illustrated in Fig. 4. The T1 values for PAH were pooled 
including values reported in the case series Tello 2019 and Habert 2020. 
Excluding the results of Mehta 2015, who used ANGIE sequences, did 
not significantly change the pooled values. 

3.3.3. T1 values in different PAH subgroups 
Three studies compared T1 values in 140 patients with idiopathic 

PAH to T1 values in 118 patients with PAH associated with CTD or CHD 
[37,41,42]. These studies showed no significant differences in the T1 
mapping values between the different PAH subgroups (MD 4 ms, 95% CI 
-18 to 26). 

3.3.4. ECV mean difference 
Five studies reported ECV values in PAH. Three used a 1.5 T Siemens 

and one a 1.5 [38,39,46], one a 1.5 T Philips system [37] and one a 3 T 
Siemens scanner [47]. Three studies compared the value of myocardial 
ECV at 1.5 T between PAH and healthy controls [37–39]. Due to the 
limited data pooling the mean differences of ECV values was only 
possible for the RV free wall and LV lateral wall and was significantly 
higher in PAH compared to the control group at both sites with a mean 
difference of 7.5%, 95% CI (5.9 to 9.1) at the RV free wall and 4.8%, 
95% CI (1.6 to 8.1) at the LV free wall. The mean difference at the RVIP 
was reported in Homsi 2017 as 5.8%, 95% CI (2.2 to 9.4) and at the 
septum as 5.7%, 95% CI (3 to 8.4). The forest plot of the meta-analysis of 
mean differences is presented in Fig. 3. 

3.3.5. ECV values in different myocardial regions 
Limited data reporting ECV values was available and only ECV 

values measured at the RV and LV free walls using a 1.5 T Siemens 
scanner could be pooled (Table 3 and Fig. 4). Dong 2018 evaluated ECV 
values with a 3 T Siemens system and reported a value of 29.3% ± 4.9 at 
the septum and 38.5% ± 3.9 at the RVIP. 
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Fig. 1. PRISMA Flow Chart.  
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4. Discussion 

In this systematic review and meta-analysis, we demonstrate a sig-
nificant rise in myocardial T1 values in patients with PAH when 
compared to healthy controls scanned under the same conditions, con-
firming potential diagnostic value in measuring T1 mapping in PAH. The 
myocardial region with the largest difference between PAH and healthy 
controls was the RVIP with a mean difference of 108 ms, 95% (CI 89 to 
128). The mean difference at the septum was 63 ms, 95% CI (40 to 86) 
and at the LV free wall 40 ms, 95% CI (20 to 60). The pooled T1 value at 
the RVIP on 1.5 Tesla Siemens system and MOLLI sequence was 1084 
ms, 95% CI (1071 to 1097), which is on average 9% higher than in 
healthy people. Therefore the RVIP should be used to measure T1 
mapping values in suspected PAH. The pooled normal T1 values at the 
septum on 1.5 T Siemens scanners in our meta-analysis were 988 ms, 
95% CI (978 to 998) which are similar to the values reported in a large 
meta-analysis of normal T1 values of 977 ms, 95% CI (969 to 985) [31]. 

Limited data exists on ECV values in PAH. The highest mean differ-
ence of ECV in PAH compared to healthy people was at the RV free wall 
and measured 7.5%, 95% CI (5.9 to 9.1) on 1.5 Tesla Siemens systems. 

The T1 values in PAH and the mean difference in T1 values between 
PH and healthy controls is higher than what is reported in cardiomy-
opathies [33,34]. The mean difference in septal T1 values were 45 ms, 

95% CI (31 to 60) in dilated cardiomyopathies and 47 ms, 95% CI (33 to 
62) in hypertrophic cardiomyopathies compared to healthy controls 
[33]. Reiter 2017 assessed the difference between PH patients and pa-
tients with cardiomyopathies which is more realistically seen in a clin-
ical setting [40]. They found that at 3 T there remained a significant 
difference between the patient groups (105 ms) at the insertion points. 
Saunders 2018 found the differences smaller on a 1.5 T scanner. The T1 
values at the RVIP were 1065 ± 86 ms in PH patients compared to 1017 
± 69 ms in non-PH patients and 943 ± 52 ms in healthy volunteers [41]. 
Myocardial T1 mapping might therefore not be able to differentiate 
between PAH and other cardiac abnormalities at 1.5 T but it would 
indicate an underlying pathological process increasing the mechanical 
strain on the RV. The elevated T1 values at the insertion point in 
particular might represent engorgement of extracellular spaces in the 
early phases [25] or fibrosis in more advanced stages of PAH [48]. 

We pooled the results of different subtypes of PAH including idio-
pathic PAH, PAH secondary to connective tissue disease (CTD) and 
congenital heart disease (CHD). CTD and CHD are known to generate 
fibrosis in the RV and septum the current studies [49–52] and particu-
larly CTD has shown elevated T1 values [53]. However, three included 
studies reporting different subtypes of PAH showed no significant dif-
ferences with the T1 mapping values seen in idiopathic PAH compared to 
PAH secondary to CTD or CHD [37,41,42]. Therefore, pooling the 

Table 1 
Study characteristics.   

Study author 
year 

Country Design Study 
period 

Group Size Sex F 
% 

Age Heart 
rate 

mPAP RVEF PH Type 

PAH and 
control 

Asano 2018 Japan RCC 2015–2017 PH 30 N.R N.R N.R 41 ±
13 

N.R 100% PAH 

Control 10 N.R N.R N.R N.R N.R Healthy 
Chen 2017 China PCC 2015–2016 PH 22 73% 40 ±

13 
74 ± 8 60 ±

18 
35 ±
11 

PAH 82%, CTEPH 18% 

Control 10 60% 38 ±
14 

70 ± 7 N.R 56 ± 6 Healthy 

Homsi 2017 Germany PCC 2014–2015 PH 17 47% 64 ±
14 

74 ± 10 N.R 40 ±
13 

PAH 100% 

Control 20 50% 63 ±
11 

66 ± 14 N.R 55 ± 3 Healthy 

Mehta 2015 USA RCC N.R PH 12 67% 61 ±
19 

N.R N.R 36 ±
10 

PAH 83%, CTEPH 17% 

Control 10 80% 24 ±
3 

N.R N.R 55 ± 5 Healthy 

Patel 2020 USA PCC 2014–2016 PH 13 77% 59 ±
16 

81 ± 16 48 ± 8 44 ±
11 

PAH 100% 

Control 8 38% 71 ±
4 

64 ± 9 N.R 53 ± 4 Healthy 

Reiter 2017 Austria PCC 2012–2015 PH 35 57% 64 ±
16 

74 ± 12 44 ±
13 

41 ±
14 

PAH 51%, CTEPH 23%, Lung 
disease 20%, Other 6% 

Control 23 70% 59 ±
12 

68 ± 11 18 ± 4 54 ± 7 Non-PH patients 

Saunders 
2018 

UK RCC 2015 PH 223 67% 55 ±
16 

72 ± 14 46 ±
15 

45 ±
15 

PAH 100% 

Control 24 51% 58 ±
4 

N.R N.R N.R Healthy 

Spruijt 2016 Holland RCC 2011–2014 PH 70 73% 54 ±
16 

79 ± 14 47 ±
13 

42 ±
16 

PAH 86%, CTEPH 14% 

Control 10 40% 20 ±
1 

74 ± 11 N.R N.R Healthy 

Wang 2018 China PCC N.R PH 18 44% 61 ±
12 

N.R 44 ±
13 

38 ±
11 

PAH 100% 

Control 5 60% 37 ±
13 

N.R N.R 55 ± 3 Healthy 

PAH only Dong 2018 China RCS 2016–2017  60 65% 35 ±
15 

81 ± 16 59 ±
20 

40 ±
12 

PAH 100% 

Habert 2020 France PCS 2012–2013  12 50% 50 ±
16 

N.R 44 ±
12 

40 ±
18 

PAH 83%, CTEPH 17% 

Tello 2019 Germany PCS 2016–2018  42 52% 56 ±
13 

N.R 43 ±
14 

38 ±
13 

PAH 86%, CTEPH 14% 

ANGIE, Accelerated and navigator-gated look-locker imaging; CTEPH, chronic thromboembolic pulmonary hypertension; MOLLI, Modified Look-Locker inversion 
recovery; mPAP, mean pulmonary artery pressure; n, number; N.R, not reported; PAH, pulmonary arterial hypertension; PHpH, pulmonary hypertension; PCC, 
prospective case-control; PCS, prospective case series; RCC, retrospective case-control; RCS, retrospective case series; RVEF, right ventricle ejection fraction; T, tesla. 
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Table 2 
Study T1 mapping systems, sequences and parameters.  

Study 
author year 

MRI system FS 
(Tesla) 

Technique Sequence 
protocol 

TE/TR 
(ms) 

Flip 
angle 

Spatial 
resolution 
mm2 

Slice 
thickness 
(mm) 

Slices measured FOV 
(mm) 

Partial Fourier 
Technique 

Parallel 
imaging 
factor 

Software used 

Asano 2018 Siemens, 
Magnetom Verio 

3 MOLLI N.R N.R N.R N.R N.R N.R N.R N.R N.R N.R 

Chen 2017 Siemens, 
Magnetom Aera 

1.5 MOLLI 5(3)3 1.1 / 
2.3 

35 1.4 × 1.4 8 Mean of basal and mid- 
chamber 

360 ×
360 

7/8 
reconstruction 

GRAPPA 2 Argus, Siemens 

Homsi 2017 Philips, Ingenia 1.5 MOLLI 3(3)3 (3)5 1 / 2.2 35 1.2 × 1.2 10 Mean of basal, mid- 
chamber and apex 

300 ×
300 

N.R SENSE 2 Segment, 
Medviso 

Mehta 2015 Siemens, 
Magnetom Avanto 

1.5 ANGIE 5 (4)3 1.6 / 
3.2 

35 1.2–1.4 ×
1.2–1.4 

4 Mean of two mid- 
chamber slices (end- 
systole) 

270 ×
340 

no factor 2 Argus, Siemens 

Patel 2020 Siemens, 
Magnetom Aera 

1.5 MOLLI 5(3)3 N.R 35 1 × 1 8 Mean of basal and mid- 
chamber 

280 ×
210 

6/8 
reconstruction 

GRAPPA 2 MASS, Medis 

Reiter 2017 Siemens, 
Magnetom Trio 

3 MOLLI 5(4)2 1.1 / 
2.6 

35 2.1 × 1.4 8 Mean of basal, mid- 
chamber and apex (in 
systole) 

315 ×
360 

6/8 
reconstruction 

GRAPPA 2 Argus, Siemens 

Saunders 
2018 

GE, HDx 1.5 MOLLI 3(3)5 1.41 / 
3.2 

35  5.1 Single mid-chamber 400 N.R 2 GE Advantage 
Workstation 

Spruijt 2016 Siemens, 
Magnetom Avanto 

1.5 MOLLI 3(3)5 N.R N.R N.R N.R Single mid-chamber N.R N.R N.R N.R 

Wang 2018 Siemens, 
Magnetom Avanto 

1.5 MOLLI N.R 1.17 / 
2.4 

35 1.71 × 1.67 8 Single mid-chamber 240 ×
330 

N.R N.R MASS, Medis 

Dong 2018 Siemens, 
Magnetom Trim 
Trio 

3 MOLLI 5(3)3 1.12 / 
2.9 

35 2.4 × 1.8 8 Single mid-chamber 320 ×
340 

N.R 2 MASS, Medis 

Habert 2020 Siemens, 
Magnetom 
Symphony 

1.5 MOLLI 5(3)3 1.2 / 
2.4 

35 2.3 × 2.3 7 Single mid-chamber N.R N.R N.R Argus, Siemens 

Tello 2019 Siemens, 
Magnetom Avanto 

1.5 MOLLI 3(3)5 1.06 / 
740 

35 2.2 × 1.8 8 Single basal 240 ×
340 

6/8 
reconstruction 

N.R Argus, Siemens 

FS, field strength; MOLLI, Modified Look-Locker inversion recovery; MRI, Magnetic resonance imaging; ms, milliseconds; N.R, not reported; TE,echo time; TR, repetition time; 
CI, confidence intervals; ECV, extracellular volume; LV, left ventricle; ms, milliseconds; PAH, pulmonary arterial hypertension; N, number; NA, not available; RV, right ventricle; RVIP, Right ventricular insertion points; 
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results of the subgroups of PAH was considered appropriate. 
T1 values [36,41] and ECV [38,46] significantly correlated to RV 

function and volumes. This is in agreement with similar findings in 
nonischemic cardiomyopathies, which showed an association between 
elevated T1 at the RVIP and RV dysfunction [54]. Deterioration in RV 
function is associated with a poor prognosis in PAH [55,56]. However, 
Saunders 2018 found that myocardial T1 mapping did not predict 
mortality. During a median follow-up of 27 months, they reported 59 
deaths from 369 included patients. Their univariate Cox regression 
showed that RV ejection fraction, end-diastolic and end-systolic RV 
volumes, RV mass index and the septal angle were prognostic markers, 
but not T1 values [41]. 

Areas with late gadolinium enhancement (LGE) showed a high T1 
value and ECV in Homsi 2017 and were associated with a significantly 
impaired RV function [37]. LGE at the RVIP is linked to focal fibrosis and 
more severe disease [48,50,57–60]. T1 values and ECV remained 
significantly higher in PAH compared to controls even in the absence of 
LGE, which may indicate that myocardial T1 mapping is more sensitive 
than LGE and could serve as an early marker for fibrosis [37]. This 
observation is in keeping with findings in patients with PH secondary to 
CTEPH [61] and findings of a porcine model of chronic PH, where T1 

values and ECV were elevated in areas of fibrosis before the onset of LGE 
[62]. 

Almost all included studies used the MOLLI myocardial T1 mapping 
sequences, while Mehta 2015 used ANGIE sequences [38]. However, 
even within MOLLI sequences there are a multitude of sequence pa-
rameters. The accuracy and precision of MOLLI sequences are highly 
dependent on several factors including flip angle, inversion times, re-
covery times, numbers of inversions, off-resonance, heart rate, spatial 
resolution, parallel imaging and field strength to mention some [63]. 
The primary meta-analysis compared PAH patients with controls imaged 
under the same conditions and therefore any differences in image 
acquisition does not affect the result of the meta-analysis. However, 
patients with PAH are more likely to have a higher heart rate than 
controls. When stroke volume decreases cardiac output is compensated 
by increased heart rate. The MOLLI sequence is heart rate sensitive 
owing to the time between inversion and the influence of the readout 
during each inversion recovery. The effect is that when ‘normal heart 
rate’ MOLLI is used in a high heart rate situation the T1-values can be 
expected to be falsely lower. Many of the studies pooled in the meta- 
analysis have T1-values within the higher limit of normal range, even 
in the insertion point area. These values could be falsely normal if 

Myocardial T1-mapping values [ms]

Study or Subgroup

Pulmonary hypertension

Mean SD Total Mean SD Total Weight

Control Mean Difference

Random, 95% CI Mean Difference

RV Insertion Points

Heterogeneity: I² = 54%

Test for overall effect: P < 0.00001

RV free wall

Heterogeneity: I² = 0%

Test for overall effect: P < 0.00001

Heterogeneity: I² = 43%

Test for overall effect: P < 0.00001

Heterogeneity: I² = 70%

Test for overall effect: P < 0.0001

LV lateral wall

Septum

Fig. 2. Forest plot of the mean difference of T1 values in PAH and controls. 
T1 values in PAH were significantly higher than controls assessed under the same conditions. The mean difference is pooled for myocardial region separately. 
CI, confidence intervals; ECV, extracellular volume; ms, millisecond; LV, left ventricle; PH, pulmonary hypertension; RV, right ventricle; SD, standard deviation. 
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‘normal heart rate’ MOLLI sequences were used. 
Repeatability of T1-values was high in Saunders 2018 and Chen 2017 

and was highest at the septum followed by the RVIP. Intraobserver T1- 
values varied by up to 20 ms in Chen 2017. The high agreement between 
readers, confirms that there is good repeatability of T1 measurement 
when the same system, parameters and sequences are used [63,64]. A 
standardised method of measuring T1 values might support the 
myocardial T1 mapping technique becoming more reliable in the 
assessment of PH [65]. Deep learning methods for the automated 
quantification of T1 mapping and ECV are being developed and have 
shown good performance compared to manual assessment [66]. How-
ever, the repeatability of T1 mapping between different scanners can 
vary considerably even when using the same sequences and field 
strength [67] which can limit its utility as a follow-up tool. MRI Har-
monisation techniques have been proposed to reduce inter-scan and 
inter-site variability by adjusting MRI data to a correction factor [68]. 
Several methods have been suggested for estimating correction factors 
such as using data from matched controls or travelling subjects between 
sites [69]. The correction covariate applied at a voxel level can bring T1 
values from different sequences into a unified space for a more accurate 
quantitative comparison of percent differences in T1 and ECV values 
between normal and PAH subjects. 

RV free wall T1 mapping was assessed in five studies 
[38,39,42,44,45]. T1 mapping at the RV free was significantly higher 
compared to the LV lateral wall in the same patient and compared to the 
RV free wall in healthy control. The increase of T1 values in a thickened 
RV free wall compared to the LV free wall may reflect the increased 
pressure and afterload on the RV in PH [54]. However, despite this, 
assessing the T1 value at the RV free wall remains challenging. The 
partial volume effects from the adjacent blood pool or epicardial fat is 
truly an issue particularly as image slices are currently thicker than the 
RV wall itself. Sequences with higher spatial resolution might allow 
better assessment of the thin RV free wall such as the ANGIE sequences 

Table 3 
Pooled T1 and ECV values at different myocardial regions (1.5 T Siemens).  

Myocardial 
region 

Group T1 
values 
[ms] 
(95% 
CI) 

N Studies 
(participants) 

ECV 
[%], 
(95% 
CI) 

N Studies 
(participants) 

RVIP PAH 1084 
(1071 
to 
1097) 

4 (152) NA NA 

Healthy 
controls 

999 
(985 to 
1014) 

3 (25) NA NA 

Septum PAH 1021 
(1012 
to 
1030) 

4 (152) 34.2 
(30 to 
44) 

1 (12) 

Healthy 
controls 

988 
(978 to 
998) 

3 (25) NA NA 

RV free wall PAH 1017 
(1006 
to 
1028) 

6 (167) 34 
(32.5 
to 
35.5) 

3 (37) 

Healthy 
controls 

978 
(944 to 
1012) 

3 (23) 26.6 
(24.9 
to 
28.3) 

2 (18) 

LV free wall PAH 997 
(987 to 
1007) 

5 (135) 30.4 
(29 to 
31.8) 

3 (37) 

Healthy 
controls 

984 
(975 to 
992) 

5 (43) 26 
(24.7 
to 
27.4) 

2 (18)  

RV Insertion Points

Homsi 2017

RV free wall

Mehta 2015

Patel 2020

Subtotal (95% CI)

Heterogeneity: I² = 0%

Test for overall effect: P < 0.00001

Septum
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Subtotal (95% CI)

Heterogeneity: I² = 78%

Test for overall effect: P = 0.003
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Fig. 3. Forest plot of the mean difference of ECV in PAH and controls. 
For abbreviation list see legend for Fig. 2. 
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used by Mehta 2015 employed [38]. However, technical problems 
eliciting T1 values can also be caused by the relative asymmetrical shape 
of the RV with its curved wall at midventricular level and its myocardial 
trabeculation [54]. Mehta 2015 tried to overcome this by measuring T1 
values of the RV free wall in end-systole when the RV is at its thickest. 
While this might facilitate obtaining a T1 value reading, it is not as ac-
curate or reliable as diastolic T1 maps and more likely to cause false 
values. In systole the likelihood of including RV trabeculations and 
hence blood is increased when the borders of trabeculations/compact 
myocardium are less distinguishable. Assessing the T1 value in a thin RV 
free wall in healthy people is particularly difficult [41,42]. In Spruijt 
2016 it was not feasible to draw regions of interest in the RV free wall in 
the majority of PAH patients and the healthy controls because the RV 
free wall was too thin and the partial volume effects too substantial, 

emphasising the concerns and limited benefit of measuring T1 values at 
the RV free wall. 

4.1. Limitations 

The strength of the meta-analysis is the extensive literature search 
that identified all reported myocardial T1 mapping and ECV values re-
ported in PAH. The main limitation is that the analysis is based on 
mainly small retrospective studies. The variation in MRI systems and 
field strength limited the number of meta-analyses possible. The main 
analysis pooled the differences between T1 mapping values in PAH and 
healthy volunteers measured under the same condition to reduce the 
effect of variations between T1 mapping estimation methods across 
studies. However, pooling the actual T1 mapping values across studies is 
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Fig. 4. Pooled T1 and ECV values in PAH and controls on 1.5 T Siemens. 
The T1 values measured on 1.5 T Siemens systems were pooled together. T1 values are significantly higher in PAH (red lines) compared to healthy controls (green 
lines) in all myocardial regions. There is overlap in the T1 value ranges at the septum and LV and RV free walls, however the overlap was the lowest at the RVIP where 
the T1 values most distinguished between PAH and controls. Limited data was available for ECV but again this showed significant differences between PAH and 
controls. 
For abbreviation list see legend for Fig. 2. 
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prone to heterogeneity from several sources including imaging sites, 
MRI systems, sequences, techniques and slice selection. ECV was only 
reported in five studies using different techniques and a mean ECV value 
could not be calculated. PH is a group of very diverse diseases that vary 
in the mechanisms of affecting pulmonary artery pressure, resistance 
and morphology and have different RV remodeling responses. We 
included studies reporting T1 mapping mainly in PAH and excluding 
other PH groups to limit disease heterogeneity. However, the included 
studies included 6% of patients with CTEPH and 1% of other types of PH 
which might have introduced some heterogeneity. 

5. Conclusion 

T1 mapping values in PAH patients are on average 9% higher than 
healthy controls when assessed under the same conditions including the 
same MRI system, magnetic field strength or sequence used for acqui-
sition. The highest T1 and ECV values are at the RV insertion points. T1 
values and ECV in PH are higher than the values reported in cardio-
myopathies and were associated with poor RV function and RV 
dilatation. 
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