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Abstract 

In this paper, we analyse how railway maintenance costs are affected by different levels of railway 

line capacity utilisation. Previous studies have focused on the wear and tear of the infrastructure, 

while this paper shows that it is important to also acknowledge the heterogeneity of the 

maintenance production environment. Specifically, we estimate marginal maintenance costs for 

traffic using econometric methods on a panel dataset from Sweden and show that these costs 

increase with line capacity utilisation. The results are significant considering that current EU 

regulation (2015/909) states that track access charges can be based on marginal costs, with the aim 

of achieving an efficient use of available infrastructure capacity. 
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1. Introduction 

The use of track access charges has become a requirement within the European Union after the 

vertical separation between infrastructure management and train operations. It is established in the 

EU regulation 2015/909 that these charges should be based on the direct cost to the infrastructure 

manager of running a vehicle on the tracks. One part of these costs concerns the maintenance 

performed due to wear and tear of the rail infrastructure. The overall weight of rolling stock is an 

important cost driver in this aspect, and hence, gross tonne-km is a rather common charging unit 

among infrastructure managers in Europe. 

There are other aspects that are also important for explaining the maintenance cost level. 

Different characteristics of the infrastructure such as the age and structure of the track, curvature, 

the number of switches and line speed are important cost drivers (see for example Öberg et al. 

(2007) and Odolinski and Nilsson (2017)), as well as vehicle and running gear characteristics, such 

as wheel slip, unsprung mass and curving performance (see Boysen and Andersson (1989)). These 

characteristics are often used as control variables in econometric studies that attempt to establish a 

relationship between traffic and costs (except the vehicle characteristics which can be used to 

differentiate the marginal costs; see Booz Allen Hamilton (2005), Öberg et al. (2007), and Smith 

et al. (2017)). Capacity utilisation is however a factor that has not been fully recognised in studies 

on marginal maintenance costs of rail infrastructure use. 

The purpose of this paper is to estimate cost elasticities with respect to traffic that may 

capture potential differences in maintenance costs with respect to line capacity utilisation. These 

elasticities can be used to differentiate marginal maintenance costs. If these costs vary for different 

levels of capacity utilisation, then track access charges should be set accordingly in order to achieve 
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a more efficient use of the infrastructure, according to the short-run marginal cost pricing 

principle.1 

 The literature on the marginal maintenance costs for rail infrastructure use has focused on 

the wear and tear caused by traffic (see for example Munduch et al. (2002), Johansson and Nilsson 

(2004), Öberg et al. (2007), Andersson (2008), Link et al. (2008), Wheat et al. (2009), Odolinski 

and Nilsson (2017)). From an engineering perspective, the wear and tear (need of repair) of the 

infrastructure may be non-linear with respect to traffic – that is, a proportional increase in traffic 

may result in disproportionate increases in wear and tear depending on the traffic level and the 

contributing damage mechanisms. For example, Öberg et al. (2007) find a non-linear relationship 

between axle load and track deterioration, while examples of studies that find a non-linear 

relationship between traffic and costs include Wheat and Smith (2008), Marti et al. (2009), 

Andersson (2011) and Odolinski (2016).  

From a production perspective, different levels of traffic intensity will also result in 

different possibilities to maintain the assets. This effect is dependent on the line capacity utilisation. 

For example, if the available infrastructure capacity is heavily used, i.e. the line capacity utilisation 

is high, then the time slots for maintenance activities may be short and fragmented which creates 

more interruptions of the maintenance work, and/or maintenance activities need to be performed 

at night, which tends to be more costly. Indeed, according to Lidén and Joborn (2016), the planning 

regime for maintenance in Sweden lets the maintenance contractors apply for slots at a late stage 

in the planning process, which makes it difficult to find possessions that are cost efficient (with 

 
1 There are situations in which it is relevant to deviate from the marginal cost, see for example Rothengatter (2003). 

Still, as argued by Nash (2003), this does not change the fact that marginal cost should be the basis for an efficient 

pricing policy. 
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respect to maintenance production costs). In other words, traffic and infrastructure design with 

respect to capacity have an impact on scheduling track possessions. Moreover, considering that 

tracks with high capacity utilisation are more sensitive to delays (Lindfeldt (2015)), where 

disruptions can result in significant user costs, there is reason to carry out more (preventive) 

maintenance when capacity utilisation increases. The aim of this paper is therefore to study if and 

how capacity utilisation affects maintenance costs. 

In general, capacity costs come in the form of congestion and scarcity costs. The former 

type of cost is the result of capacity related delays, which is considered by the track access charges 

in the United Kingdom. Specifically, a capacity charge is used to recover the delay costs incurred 

on the infrastructure manager (Network Rail) by increased traffic and is based on a relationship 

between line capacity utilisation and ‘congestion related reactionary delay’ (Rail Delivery Group 

(2014)). Scarcity costs, on the other hand, considers the cost of not meeting the demand for slots – 

that is, the opportunity cost of not allowing train services or maintenance personnel to receive the 

preferred slot. This part of capacity costs is particularly difficult to quantify within the railway 

industry as the train operators’ value of each time slot on the tracks is not known (Nash (2018)). 

Nilsson (2002) considers an auctioning procedure to reveal the opportunity cost and generate an 

efficient timetable and congestion charges. However, as pointed out by Nash (2018), this method 

is complex and is little used in practice, and it is only the United Kingdom that uses a specific 

method for calculating capacity (congestion) costs for railways, where scarcity costs are not 

included. For example, the Swedish infrastructure manager (Trafikverket, hereafter referred to as 

the IM) uses a capacity charge stating that the aim is to achieve more efficient use of railway 

capacity, but the charges are not based on empirical evidence on how capacity utilisation affects 

(maintenance) costs. Finding the capacity costs related to maintenance production is however not 

as complex as revealing the opportunity cost of train operators. The impact that capacity utilisation 
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has on maintenance production is included in the maintenance cost, and empirical data on the 

variation in these two factors can be a way to establish a (possible) relationship. 

This paper is organized as follows. Section 2 gives and overview of railway infrastructure 

capacity and its relationship with maintenance. This forms the basis for the infrastructure capacity 

variables that will be used in the estimation approach, which is presented in section 3. The model 

we estimate is presented in subsection 3.1, while the calculation of marginal costs for traffic is 

described in subsection 3.2. Descriptive statistics of the data used in the estimations are provided 

in section 4. Estimation results are presented in section 5, and section 6 concludes. 

 

2. Railway infrastructure capacity and maintenance 

For railways, there is a theoretical capacity that corresponds to a certain number of passengers or 

net cargo that can be transported past a point of the infrastructure (line or junction) during a certain 

time period. This measure is the product of train capacity (passengers or tonnes per train) and line 

capacity (trains per unit time), suggested by Boysen (2012). In this paper, we are interested in line 

capacity and its level of utilisation. When analysing the line capacity, the UIC (2013) states that 

one first and foremost needs a definition of the infrastructure and timetable boundaries (which 

should be interlocked). The next step is to calculate the capacity utilisation, which is defined as 

“…the utilisation of an infrastructure’s physical attributes along a given section, measured over a 

defined time period.” (UIC 2013, p. 13).2 The Swedish IM bases its capacity calculations on the 

UIC leaflet and uses 6 hours per day as the additional time to secure quality of operation in the 

calculations, which include track possession for maintenance activities. 

 

2 Specifically, the percentage capacity consumption is defined as 
𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦 𝑡𝑖𝑚𝑒+𝐴𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑡𝑖𝑚𝑒𝑠𝐷𝑒𝑓𝑖𝑛𝑒𝑑 𝑡𝑖𝑚𝑒 𝑝𝑒𝑟𝑖𝑜𝑑 ∙ 100, where 

“additional times” is set (by the infrastructure manager) in order to secure quality of operation. 
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The additional time used for maintenance is in reality heterogeneous. First of all, track 

possession times depend on the work to be performed, which may require possession times from 

one hour (or less) to several days. For example, signal repair, snow removal, and tamping of 

turnouts may take 1 to 4 hours, grinding and tamping of tracks may take 4 to 8 hours, whereas 

urgent repair may take several days (see Lidén (2014) for a list of maintenance activities with 

different time possessions and planning horizons). The required possession times, together with 

the planning horizon for maintenance and the planning process for obtaining possessions, will thus 

to a large extent determine the possession times given to maintenance production. 

Nilsson et al. (2015) describe the planning process in Sweden and the priority setting used: 

The maintenance (and renewal) 3 activities that have a long planning horizon and require exclusive 

and long consecutive track possessions in which the track is closed for traffic, are determined at an 

early stage in the timetabling process. In fact, these activities are planned before the train operators 

can make requests for train paths. Track possessions for the other maintenance activities, with 

shorter planning horizons, are determined simultaneously with the train operators’ requests for train 

paths. When there is a conflict between requests for track possessions, the IM uses a set of priority 

criteria with the aim of finding the solution with the highest socio-economic benefit. The priority 

criteria are presented in the annual network statement by the Swedish IM (see for example 

Trafikverket (2015)). Requests for possession times for maintenance are in this case treated by 

calculating the alternative production costs for other possession times than those requested (the 

Swedish IM are however aware that the solution is complex, and that the model and priority criteria 

used are not optimal)4. When the train timetable has been set, there are (usually) free time slots still 

 
3 Note however that renewals are not considered in this study. 

4 See for example Brännlund et al. (1998), who presents an optimization approach for finding a profit maximizing 

timetable with respect to track capacity constraints, which now has resulted in attempts to develop an optimization tool 
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available. Train operators and maintenance contractors can apply for these available slots, at which 

the main principle is ‘first come, first served’. The lengths of time slots vary depending on the 

capacity utilisation. Nilsson et al. (2015) provide an example from a maintenance contract, where 

four different sections of the track had different time slots available. One line section had 5 

consecutive hours available, with one track open for traffic, while the other sections had between 

2 and 6 consecutive hours with no other traffic running. 

Clearly, the maintenance production environment is heterogeneous, and the track 

possession times available for maintenance can vary considerably between different track sections. 

Specifically, the timetabling process described above is interconnected to the infrastructure design 

and the traffic demand. As described in UIC (2013), Nelldal et al. (2009), and Boysen (2013), other 

important factors for the level of capacity available in railway systems are the number of tracks, 

the signalling system, the distances between passing sidings, interlockings (such as stations, nodes 

and junctions), train speeds and train speed heterogeneity. The interaction between these factors 

determines the production environment for maintenance work and its track possessions. In this 

study, we consider some of these factors in the assessment of whether and how line capacity 

utilisation has an impact on maintenance costs. In doing this, it is important to consider differences 

in railway asset types, where the IM is likely to have invested in high quality assets where the 

traffic volume is high, which can influence maintenance costs irrespective of the capacity. 

Variables for infrastructure characteristics that are included in the estimations are presented in 

section 4. 

 

 

for timetabling (Nilsson et al. 2017). See also Lusby et al. (2011) for a survey of models and methods for railway track 

allocation, and Lidén (2016) for a treatment of the planning and scheduling problem for maintenance in coordination 

with traffic. 
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3. Estimation approach 

The marginal cost pricing principle is the basis for the analysis in this paper, which means that the 

short-run marginal cost of infrastructure use is estimated. The marginal cost (MC) per train-km 

(TKM) is derived as (see Munduch et al. (2002) or Odolinski and Nilsson (2017)): 

 𝑀𝐶𝑖𝑡 = 𝜕𝐶𝑖𝑡𝜕𝑇𝐾𝑀𝑖𝑡 = 𝑇𝐾𝑀𝑖𝑡𝐶𝑖𝑡 𝜕𝐶𝑖𝑡𝜕𝑇𝐾𝑀𝑖𝑡 𝐶𝑖𝑡𝑇𝐾𝑀𝑖𝑡 = 𝜕𝑙𝑛𝐶𝑖𝑡𝜕𝑙𝑛𝑇𝑖𝑡 𝐶𝑖𝑡𝑇𝐾𝑀𝑖𝑡,     (1) 

 

where 𝐶𝑖𝑡 is maintenance costs on track section 𝑖 in year 𝑡. Specifically, the cost elasticity with 

respect to trains (
𝜕𝑙𝑛𝐶𝑖𝑡𝜕𝑙𝑛𝑇𝑖𝑡) needs to be derived and multiplied by the average cost (

𝐶𝑖𝑡𝑇𝐾𝑀𝑖𝑡). From a line 

capacity usage perspective, we consider train-km to be a more relevant charging unit compared to 

gross tonne-km (however, we include a variable for the average tonnage density of the trains in the 

model estimation to capture the impact of heavier trains on the line). 

The main approaches used in previous research to estimate the marginal cost of 

infrastructure use are the so-called bottom-up approaches (see Booz Allen Hamilton (2005) and 

Öberg et al. (2007)) and top-down approaches (see for example Munduch et al. (2002), Johansson 

and Nilsson (2004), Link et al. (2008), Gaudry and Quinet (2009) and Wheat et al. (2009)). The 

former approach uses engineering models to establish a relationship between traffic and wear and 

tear of the infrastructure, and then links the damage measures to costs, whereas the latter establishes 

a direct relationship between traffic and costs. The bottom-up approach is good at describing the 

infrastructure damage mechanisms caused by traffic (e.g. rolling contact fatigue, abrasive wear, 

track settlement and component fatigue), whereas the top-down approach is good at linking 

different cost drivers (such as traffic) to actual costs, allowing for various elasticities of production 

(depending on the cost function that is specified). 
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We use the econometric top-down approach, considering that the aim of this paper is to 

establish a relationship between maintenance costs and the traffic volume’s interaction with line 

capacity. This implies that the cost impact of line capacity utilisation needs to be considered in this 

estimation, and the marginal cost charges need to be differentiated accordingly (the specification 

of our model in section 3.1 below reveals how this is achieved).  

As previously noted, there are different factors that determine the level of capacity that is 

available in the railway system, such as the number of tracks, the signalling system, the distances 

between passing sidings, interlockings, train speeds and train speed heterogeneity and how the 

timetable is constructed. The factors considered in this study are infrastructure characteristics and 

traffic volume. Specifically, we use data from the Swedish IM’s track information system ‘BIS’ 

and create two different variables for infrastructure capacity:  

 

- Track length/Route length (average number of tracks), and  

- Number of passing sidings per route-km 

 

Note that track length only includes the main tracks, i.e. yard tracks are not included (which may 

be used for storage and thus do not have an impact on line capacity). The definition of passing 

sidings follows the definition provided in Lindfeldt (2009, pp. 13-14). For single track lines, there 

should be more than one track on a station in order to be defined as a passing siding. For double 

track lines, there should be more than two tracks, where at least one of the tracks is not classified 

as main track. 

The traffic variables we use are the number of trains that have run on a track section during 

a given year and the average tonnage density of the trains, where the latter is used to separate the 

impact of heavier trains from the effect of increased capacity utilisation. That is, if more and heavier 
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trains are running on a track section, the train density variable captures its impact on capacity 

utilisation while the average tonnage density variable captures the impact of higher axle loads. 

Regarding the impact of train speeds, we have information about the quality class number of a track 

section, which indicates the maximum speed allowed (higher speeds generally imply more trains 

per time period, yet this depends on the signalling system; see Nelldal et al. (2009)). However, its 

impact on capacity can be difficult to isolate from the effect line speed has on the wear and tear of 

the infrastructure, as well as from effects caused by differences in requirements on track geometry 

standard. Considering train speed heterogeneity, we do have information on whether the train is a 

passenger or a freight train. We can therefore (to some extent) capture the effect of traffic 

homogeneity with respect to speeds. We define this variable as | Passenger train‐kmTotal  train‐km − 0.5|, which 

thus can take a value on the interval [0, 0.5], where 0 implies a 50-50 mix between passenger and 

freight traffic, while 0.5 implies that either passenger or freight traffic is the only traffic type on 

the railway line (i.e. homogeneous traffic). 

We consider the timetabling process to be relatively fixed, where any changes over time 

are due to changes in traffic demand and/or changes in infrastructure characteristics. If this is not 

the case, i.e. if the timetabling process changes due to factors not captured by our explanatory 

variables, we might have a problem with omitted variable bias. However, if these are general effects 

over the railway network, then they can be captured by year dummy variables (the specification of 

the model is presented below). 

 

3.1 Model 

To derive the cost elasticity with respect to traffic and capacity, we use a short run cost function 
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𝐶𝑖𝑡 = 𝑓(𝑄𝑖𝑡, ∑ 𝐾𝑘𝑖𝑡3𝑘=1 , ∑ 𝑋𝑙𝑖𝑡𝐿𝑙=1 , ∑ 𝑍𝑑𝑖𝑡𝐷𝑑=1 ),       (2) 

 

where 𝐶𝑖𝑡 is maintenance costs in track section 𝑖 during year 𝑡. 𝑄𝑖𝑡 is the train density, and ∑ 𝐾𝑘𝑖𝑡3𝑘=1  

is our set of infrastructure capacity measures: track length/route length, number of passing sidings 

per route-km, and train speed homogeneity (| Passenger train‐kmTotal  train‐km − 0.5|).  ∑ 𝑋𝑙𝑖𝑡𝐿𝑙=1  are other network 

characteristics such as track length and quality class (linked to line speed), including average 

tonnage density of the trains. ∑ 𝑍𝑑𝑖𝑡𝐷𝑑=1  are dummy variables. 

To capture the effect of capacity utilisation in the estimation of marginal costs, we need to 

consider the interaction between traffic and infrastructure capacity (𝐾𝑘𝑖𝑡), as well as non-linear 

effects of traffic. A flexible model that includes these types of effects is the Translog model, which 

was proposed by Christensen et al. (1971). It is a second order approximation of a cost (production) 

function (see Christensen and Greene (1976) for an application to cost functions). The cost model 

we estimate is 

 𝑙𝑛𝐶𝑖𝑡 = 𝛼 + 𝛽0𝑙𝑛𝐶𝑖𝑡−1 + 𝛽𝑄𝑙𝑛𝑄𝑖𝑡 + 12 𝛽𝑄𝑄(𝑙𝑛𝑄𝑖𝑡)2 + ∑ 𝛽𝑘𝐾𝑘𝑖𝑡3𝑘=1 +12 ∑ ∑ 𝛽𝑘𝑘𝑙𝑛𝐾𝑘𝑖𝑡𝑙𝑛𝐾𝑘𝑖𝑡3𝑘=13𝑘=1 + ∑ ∑ 𝛽𝑘𝑝𝑙𝑛𝐾𝑘𝑖𝑡𝑙𝑛𝐾𝑝𝑖𝑡𝑃𝑝=1𝐾𝑘=1 + ∑ 𝛽𝑘𝑄𝑙𝑛𝐾𝑘𝑖𝑡𝑙𝑛𝑄𝑖𝑡3𝑘=1 +∑ 𝛽𝑙𝑙𝑛𝑋𝑙𝑖𝑡 + 12 ∑ ∑ 𝛽𝑙𝑙𝑙𝑛𝑋𝑙𝑖𝑡𝑙𝑛𝑋𝑙𝑖𝑡 +𝐿𝑙=1𝐿𝑙=1 ∑ ∑ 𝛽𝑙𝑟𝑙𝑛𝑋𝑙𝑖𝑡𝑙𝑛𝑋𝑟𝑖𝑡 +𝑅𝑟=1𝐿𝑙=1𝐿𝑙=1 ∑ 𝛽𝑙𝑄𝑙𝑛𝑋𝑙𝑖𝑡𝑙𝑛𝑄𝑖𝑡 +𝐿𝑙=1∑ ∑ 𝛽𝑙𝑘𝑙𝑛𝑋𝑙𝑖𝑡𝑙𝑛𝐾𝑘𝑖𝑡3𝑘=1𝐿𝑙=1 +  ∑ 𝜗𝑑𝑍𝑑𝑖𝑡 +𝐷𝑑=1  𝜇𝑖 + 𝑣𝑖𝑡,      (3) 

 

where 𝛼 is a scalar, 𝑣𝑖𝑡 the error term, and 𝜇𝑖 is the impact of unobserved track section specific 

effects. 𝛽𝑄, 𝛽𝑄𝑄, 𝛽𝑘, 𝛽𝑘𝑘, 𝛽𝑘𝑝, 𝛽𝑘𝑄, 𝛽𝑙, 𝛽𝑙𝑙, 𝛽𝑙𝑟, 𝛽𝑙𝑄, 𝛽𝑙𝑘, and 𝜗𝑑 are parameters to be estimated, and 

the symmetry restrictions 𝛽𝑘𝑝 = 𝛽𝑝𝑘, 𝛽𝑙𝑟 = 𝛽𝑟𝑙, and 𝛽𝑙𝑘 = 𝛽𝑘𝑙 are used. The Cobb-Douglas 

constraint 𝛽𝑄𝑄 = 𝛽𝑘𝑘 = 𝛽𝑘𝑝 = 𝛽𝑘𝑄 = 𝛽𝑙𝑙 = 𝛽𝑙𝑟 = 𝛽𝑙𝑄 = 𝛽𝑙𝑘 = 0 is tested using and F-test. We 
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use a double-log specification as our functional form, which can reduce heteroscedasticity and 

skewness (Heij et al. (2004)). This functional form is common in the literature on rail infrastructure 

costs (see for example Munduch et al. (2002), Link et al. (2008), Wheat and Smith (2008), 

Odolinski and Nilsson (2017), Odolinski and Wheat (2018)). 

We also include lagged maintenance costs (𝑙𝑛𝐶𝑖𝑡−1) in the model to capture dynamic effects 

in the maintenance production; a change in a cost driver (such as traffic) during a year might also 

have an impact on costs in the subsequent year(s). This effect was for example found by Andersson 

(2008), Odolinski and Nilsson (2017), and Odolinski and Wheat (2018). The lagged maintenance 

costs 𝑙𝑛𝐶𝑖𝑡−1 are however correlated with the (time-invariant) individual effects 𝜇𝑖. We use the 

forward orthogonal deviation to remove these track section specific effects, a transformation 

proposed by Arellano and Bover (1995). Moreover, lagged maintenance costs are correlated with 

the error terms 𝑣𝑖𝑡. We therefore use instruments for the lagged variables. The best instruments 

available to us are further lags of the lagged variable(s) (which are not correlated with the error 

terms 𝑣𝑖𝑡), where a longer set of lags can improve estimation efficiency. To not lose observations 

when increasing the number of lags, we use the method by Holtz-Eakin et al. (1988) in which 

missing values are substituted by zeros when building our set of instruments for each time period. 

This generates the moment condition ∑ 𝑙𝑛𝐶𝑖,𝑡−2𝑣𝑖𝑡 = 0𝑖,𝑡  (we collapse the set of instruments to one 

column to restrict the number of instruments and not overfit the endogenous variables – see 

Roodman (2009) for details). 

The estimates �̂�𝑘, �̂�𝑘𝑘, �̂�𝑙𝑘 and �̂�𝑘𝑝 comprise the effects our infrastructure capacity 

measures have on costs, while �̂�𝑄 and �̂�𝑄𝑄 capture the impact traffic has on costs. Moreover, the 

estimate �̂�𝑘𝑄 captures the cost impact of an increase in traffic when the level of infrastructure 

capacity increases – that is, it allows us to evaluate the cost elasticity for traffic with respect to 
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different levels of infrastructure capacity, while holding the other variables constant. More 

specifically, the effect of a change in traffic is 

 

𝜕𝑙𝑛𝐶𝑖𝑡𝜕𝑙𝑛𝑄𝑖𝑡 = �̂�𝑄 + �̂�𝑄𝑄𝑙𝑛𝑄𝑖𝑡 + �̂�𝑘𝑄𝑙𝑛𝐾𝑘𝑖𝑡,         (4) 

 

We test the inclusion of interaction terms between the squared capacity and traffic variables – that 

is, we include 
12 𝛽𝑘𝑘𝑄(𝑙𝑛𝐾𝑘𝑖𝑡)2𝑙𝑛𝑄𝑖𝑡, 

12 𝛽𝑄𝑄𝑘(𝑙𝑛𝑄𝑖𝑡)2𝑙𝑛𝐾𝑘𝑖𝑡 and 
12 12 𝛽𝑄𝑄𝑘𝑘(𝑙𝑛𝑄𝑖𝑡)2(𝑙𝑛𝐾𝑘𝑖𝑡)2, which 

implies that we allow the interaction effect between traffic and the infrastructure capacity variables 

to be non-linear. 

 With a dynamic model, we can estimate so-called ‘equilibrium cost elasticities’ for traffic, 

where ‘equilibrium cost’ is used for a situation in which there is no tendency to change maintenance 

costs, ceteris paribus (Odolinski and Wheat (2018)). Hence, the equilibrium cost level is 𝑙𝑛𝐶𝑖𝑡 =𝑙𝑛𝐶𝑖𝑡−1 = 𝑙𝑛𝐶𝑖𝑡𝑒 . Note that this does not need to be an optimal level of maintenance costs, but it is 

rather the level chosen by the IM (we still consider that it has the objective of minimizing costs 

with respect to cost drivers such as traffic). Inserting the expression for equilibrium maintenance 

cost into equation (3), we get  

 𝑙𝑛𝐶𝑖𝑡𝑒 = 𝛼 + 𝛽0𝑙𝑛𝐶𝑖𝑡𝑒 + 𝛽𝑄𝑙𝑛𝑄𝑖𝑡 + 12 𝛽𝑄𝑄(𝑙𝑛𝑄𝑖𝑡)2 + ∑ 𝛽𝑘𝐾𝑘𝑖𝑡3𝑘=1 +
12 ∑ ∑ 𝛽𝑘𝑘𝑙𝑛𝐾𝑘𝑖𝑡𝑙𝑛𝐾𝑘𝑖𝑡3𝑘=13𝑘=1 + ∑ ∑ 𝛽𝑘𝑝𝑙𝑛𝐾𝑘𝑖𝑡𝑙𝑛𝐾𝑝𝑖𝑡𝑃𝑝=1𝐾𝑘=1 + ∑ 𝛽𝑘𝑄𝑙𝑛𝐾𝑘𝑖𝑡𝑙𝑛𝑄𝑖𝑡3𝑘=1 +
∑ 𝛽𝑙𝑙𝑛𝑋𝑙𝑖𝑡 + 12 ∑ ∑ 𝛽𝑙𝑙𝑙𝑛𝑋𝑙𝑖𝑡𝑙𝑛𝑋𝑙𝑖𝑡 +𝐿𝑙=1𝐿𝑙=1 ∑ ∑ 𝛽𝑙𝑟𝑙𝑛𝑋𝑙𝑖𝑡𝑙𝑛𝑋𝑟𝑖𝑡 +𝑅𝑟=1𝐿𝑙=1𝐿𝑙=1 ∑ 𝛽𝑙𝑄𝑙𝑛𝑋𝑙𝑖𝑡𝑙𝑛𝑄𝑖𝑡 +𝐿𝑙=1∑ ∑ 𝛽𝑙𝑘𝑙𝑛𝑋𝑙𝑖𝑡𝑙𝑛𝐾𝑘𝑖𝑡3𝑘=1𝐿𝑙=1 +  ∑ 𝜗𝑑𝑍𝑑𝑖𝑡 +𝐷𝑑=1  𝜇𝑖 + 𝑣𝑖𝑡,      (5) 
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which can be expressed as 

 𝑙𝑛𝐶𝑖𝑡𝑒 = 𝛼1−𝛽0 + 𝛽01−𝛽0 𝑙𝑛𝐶𝑖𝑡𝑒 + 𝛽𝑄1−𝛽0 𝑙𝑛𝑄𝑖𝑡 + 12 𝛽𝑄𝑄1−𝛽0 (𝑙𝑛𝑄𝑖𝑡)2 + ∑ 𝛽𝑘1−𝛽0 𝑙𝑛𝐾𝑘𝑖𝑡3𝑘=1 +
12 ∑ ∑ 𝛽𝑘𝑘1−𝛽0 𝑙𝑛𝐾𝑘𝑖𝑡𝑙𝑛𝐾𝑘𝑖𝑡3𝑘=13𝑘=1 + ∑ ∑ 𝛽𝑘𝑝1−𝛽0 𝑙𝑛𝐾𝑘𝑖𝑡𝑙𝑛𝐾𝑝𝑖𝑡𝑃𝑝=1𝐾𝑘=1 + ∑ 𝛽𝑘𝑄1−𝛽0 𝑙𝑛𝐾𝑘𝑖𝑡𝑙𝑛𝑄𝑖𝑡3𝑘=1 +
∑ 𝛽𝑙1−𝛽0 𝑙𝑛𝑋𝑙𝑖𝑡 +𝐿𝑙=1
 12 ∑ ∑ 𝛽𝑙𝑙1−𝛽0 𝑙𝑛𝑋𝑙𝑖𝑡𝑙𝑛𝑋𝑙𝑖𝑡 +𝐿𝑙=1𝐿𝑙=1 ∑ ∑ 𝛽𝑙𝑟1−𝛽0 𝑙𝑛𝑋𝑙𝑖𝑡𝑙𝑛𝑋𝑟𝑖𝑡 +𝑅𝑟=1𝐿𝑙=1 ∑ 𝛽𝑙𝑄1−𝛽0 𝑙𝑛𝑋𝑙𝑖𝑡𝑙𝑛𝑄𝑖𝑡 +𝐿𝑙=1
∑ ∑ 𝛽𝑙𝑘1−𝛽0 𝑙𝑛𝑋𝑙𝑖𝑡𝑙𝑛𝐾𝑘𝑖𝑡3𝑘=1𝐿𝑙=1 + ∑ 𝜗𝑑1−𝛽0 𝑍𝑑𝑖𝑡 +𝐷𝑑=1  𝜇𝑖1−𝛽0 + 𝑣𝑖𝑡1−𝛽0,     (6) 

 

The equilibrium cost elasticity for traffic is then 

 𝛾𝑖𝑡 = 𝜕𝑙𝑛𝐶𝑖𝑡𝑒𝜕𝑙𝑛𝑄𝑖𝑡 = 𝛽𝑄1−𝛽0 + 𝛽𝑄𝑄1−𝛽0 𝑙𝑛𝑄𝑖𝑡 + ∑ 𝛽𝑘𝑄1−𝛽0 𝑙𝑛𝐾𝑘𝑖𝑡3𝑘=1 ,       (7) 

 

3.2 Marginal costs 

To calculate marginal costs, we use a fitted cost 

 �̂�𝑖𝑡 = exp (ln(𝐶𝑖𝑡) − 𝑣𝑖𝑡 + 0.5�̂�2)                    (8) 

 

which derives from the double-log specification of our model that assumes normally distributed 

residuals (see Munduch et al. (2002) and Wheat and Smith (2008)). The average cost for train-km 

is calculated as 

 𝐴�̂�𝑖𝑡 = �̂�𝑖𝑡 𝑇𝐾𝑀𝑖𝑡⁄                                 (9) 
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The marginal cost is calculated by multiplying the average cost by the estimated cost elasticities.  

 𝑀𝐶𝑖𝑡 = 𝐴�̂�𝑖𝑡 ∙ 𝛾𝑖𝑡                               (10) 

 

A weighted marginal cost is calculated for the entire railway network included in this study: 

 𝑀𝐶𝑖𝑡𝑊 = 𝑀𝐶𝑖𝑡 ∙ 𝑇𝐾𝑀𝑖𝑡(∑ 𝑇𝐾𝑀𝑖𝑡)𝑖𝑡 /𝑁          (11) 

 

where 𝑁 is the number of observations in the sample.5 The weighted marginal cost will generate 

the same income to the IM as if it would use each observation’s marginal cost (eq. 10) for the 

different track sections. 

 

4. Data 

The data has been provided by the Swedish IM and covers a large part of the Swedish railway 

network during the period 1999 to 2014. Five regional units and a central planning unit within the 

IM administers the state-owned 14 100 track-km network. Information about the infrastructure is 

available at different levels of detail. Technical aspects of the tracks, such as rail weight, type of 

sleeper and quality class are provided for segments of the track that can be shorter than 100 meters, 

whereas information on costs is available for track sections of the network that comprise 3 to 290 

track-km. In total, there are about 250 track sections during the period 1999-2014 (there are changes 

where sections merge, as well as splitting into new sections). Our dataset does however not include 

 

5 Munduch et al. (2002) and Andersson (2008) use a different expression for weighted marginal costs (𝑀𝐶𝑊 =∑ 𝑀𝐶𝑖𝑡𝑖𝑡 ∙ 𝑇𝐾𝑀𝑖𝑡(∑ 𝑇𝐾𝑀𝑖𝑡)𝑖𝑡 ), which generates the same value as the average value of equation (11). Using equation (11), we 

can provide average values for different parts of the railway network with respect to capacity utilisation. 
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all sections, partly due to missing information, and partly due to the exclusion of marshalling yards, 

sections closed for traffic, and heritage railways. Moreover, we exclude so called stations sections 

in our analysis, i.e. sections that have a short route length but many parallel tracks. The reason is 

that the traffic structure is different compared to most other track sections as these station sections 

are not only used for overtaking or crossing, but can also be used for shunting, changing 

locomotives, as well as starting or terminating train services (UIC (2013)). In total, we observe on 

average 164 track sections per year during 1999-2014, comprising on average 11 936 km, which 

is the majority of the state-owned railway network. Descriptive statistics of our dataset are 

presented in Table 1. 

 Information on the technical characteristics of the infrastructure has been collected from 

the track information system ‘BIS’ administered by the IM. As mentioned above, this information 

is available at a more disaggregate level than the cost data, which means that we use weighted 

averages (with track lengths as weighting factors) of variables such as rail weight and quality class 

in the model estimations made at the track section level. Traffic data has been collected from the 

IM and comprise information on train-km and the gross tonnage of the trains reported by the train 

operators. We use a density measure for trains that is calculated as train-km/route-km and can be 

described as the average number of trains that have run on the entire route length of the section. 

We also use an average tonnage density measure, calculated as tonne-km per train-km on a section 

and year. 

 The maintenance cost data include costs for all activities conducted to maintain the rail 

infrastructure, including snow removal, inspections and minor replacements. Specifically, it 

includes maintenance of all the infrastructure assets, i.e. tracks (sub- and superstructure), 

electrification, signalling, and telecommunications. Major replacements are defined as renewals 

and are not included in this analysis as it has a different data generating process and requires a 
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different model approach; see for example Andersson et al. (2012), Andersson et al. (2016) and 

Odolinski and Wheat (2018) who use corner solution models, survival analysis and vector 

autoregressive models, respectively. 

 

Table 1. Descriptive statistics, track sections, 1999-2014 (2619 observations) 

 Median Mean St. dev. Min Max 

Maintenance cost, million SEK in 2014 prices 8.30 11.71 11.37 0.01 110.75 

      

Traffic and line capacity variables      

Train-km, thousand 474 763 875 0 4 778 

Tonne-km, thousand 169 144 390 953 536 092 1 4 176 261 

Train density (Train-km/Route length), thousand 11 16 19 0 146 
Average tonnage density (Tonne-km/Train-km) 406 523 493 52 6 011 
Dev. from 50-50 mix in traffic (Deviation from 50-50 mix 
between passenger train and freight trains) 0.36 0.32 0.16 0.00 0.50 

Track length/Route length (Average number of tracks) 1.006 1.260 0.463 1.000 3.517 

No. of passing sidings 5.00 6.65 5.81 1.00 40.00 

No. of passing sidings per route length 0.11 0.14 0.12 0.01 1.11 

      

Infrastructure characteristics and weather      

Route length, km 47.21 59.26 43.41 0.97 258.10 

Track length, km 59.65 72.92 51.69 3.18 290.65 

Switch length, km 1.18 1.53 1.34 0.06 9.07 

Rail weight, average kg of one meter rail 49.98 51.14 5.03 39.86 60.00 

Share of track length with concrete sleepers 0.84 0.62 0.39 0.00 1.00 

Share of track length with wooden sleepers) 0.16 0.38 0.39 0.00 1.00 

Share of track length with slab track 0.00 0.00 0.00 0.00 0.00 

Max axle load, tonnes 22.50 23.09 1.75 16.00 30.00 

Average quality class number, 1-6 3.00 2.99 1.23 1.00 6.00 

Snow (mm precipitation when temperature <0° Celsius) 98 111 64 2 344 

      

Organisational dummy variables      

Tendered in competition 0.00 0.48 0.50 0.00 1.00 

Mix tendered and not tendered in competition 0.00 0.06 0.24 0.00 1.00 

Sections in region West 0.00 0.18 0.39 0.00 1.00 

Sections in region North 0.00 0.13 0.33 0.00 1.00 

Sections in region Central 0.00 0.19 0.39 0.00 1.00 

Sections in region South 0.00 0.26 0.44 0.00 1.00 

Sections in region East 0.00 0.24 0.43 0.00 1.00 
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Starting in 2002, maintenance was gradually exposed to competitive tendering. Odolinski and 

Smith (2016) found that this reduced costs by about 11 per cent. To control for the impact tendering 

had on maintenance costs, we include dummy variables indicating when a track section belongs to 

an area tendered in competition.  

 Sweden is a large country with climate differences, especially between the northern and 

southern parts. This can have an impact on the maintenance production, especially since snow 

removal is included in this study. We have therefore collected weather data from the Swedish 

Meteorological and Hydrological Institute (SMHI), comprising information on daily mean 

temperatures and mm of precipitation. We define a variable for snow as mm of precipitation when 

the daily mean temperature is below 0 degrees Celsius. 

 

5. Results 

The dynamic model is estimated with the generalized method of moments (GMM), where we use 

the two-step System GMM, an approach proposed by Arellano and Bover (1995) and Blundell and 

Bond (1998). The variables in our model have been divided by their sample median prior to taking 

a logarithmic transformation. In that way the first order coefficients can be interpreted as elasticities 

at the sample median. However, the dummy variables and the variables for sleeper type have not 

been log-transformed. The percentage change in costs from a change in these variables is therefore 

calculated as 
∆𝐶𝐶 = 100 ∙ [exp (�̂�𝑙∆𝑋𝑙) − 1], where �̂�𝑙 is the estimated coefficient for variable 𝑋𝑙.  

The estimation results are presented in section 5.1 below. The Windmeijer (2005) correction of 

the variance-covariance matrix is used to avoid downward biased standard errors. All estimations 

are carried out using Stata 12 (StataCorp, 2011). 
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5.1 Estimation results 

The estimation results are presented in Table 2. First, we can note that the coefficient for lagged 

maintenance costs is positive and statistically significant, which is in line with the results in 

previous studies on long panel data sets (see Wheat (2015), Odolinski and Nilsson (2017), and 

Odolinski and Wheat (2018)).6 Hence, an increase in a cost driver in year 𝑡 − 1 will have an impact 

on maintenance costs in year 𝑡; the IM is not able to adjust its maintenance cost level within the 

current year after a sudden change in a cost driver. Furthermore, we note that the first order 

coefficients for track length, switch length, rail weight, snow, and sleeper type (concrete sleepers, 

with wooden sleepers as baseline), have the expected signs.7 However, the estimates for snow and 

concrete sleepers are not statistically significant. 

The quality classification of the railway line (linked to line speed) can be an important 

factor for maintenance costs (higher speeds may increase wear and tear and are also linked to 

stricter requirements on track geometry etc.). However, its coefficient in the estimations is small 

and not statistically significant. Here we can note that the correlation coefficients between this 

variable and the number of tracks and train density are -0.56, and -0.42, respectively. Dropping the 

quality classification variable does not change the estimations results significantly. 

Turning to the first order coefficients for the line capacity variables, we can see that the 

coefficient for the average number of tracks (no. of tracks) has a positive sign, yet its second order 

effect is negative. The average cost elasticity with respect to the number of tracks – evaluated at 

the sample median of the other variables – is -0.3828 (standard error 0.1602 and p-value 0.018). 

 
6 Andersson (2008) found a negative impact using a much shorter panel (years 1999 to 2002).  
7 Note that newer rails are usually heavier. Rail weight therefore picks up the impact track age has on costs to some 

extent (a variable for the age of the tracks was also considered in the estimations, but it did not have an impact on the 

results when rail weight was also included). 
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That is, increasing the number of tracks on a line lowers maintenance costs at the sample median, 

ceteris paribus, which is in line with the hypothesis in this paper as more tracks imply higher line 

capacity available. The coefficient for the number of passing sidings per route-km is positive, yet 

the estimate is small and not statistically significant. Moreover, the interaction terms between 

passing sidings per route-km and traffic were not statistically significant and were therefore 

dropped from the model. The parameter estimate for the level of traffic mix is is positive and not 

statistically significant.  

Turning to the impact of traffic, the first order coefficient for train density is 0.2601 and 

the second order coefficient is 0.0342 (both statistically significant), which shows that the effect of 

train density is increasing. Specifically, this indicates that running one more train is costlier on 

tracks with higher traffic volume, i.e. with higher capacity utilisation. The overall equilibrium cost 

elasticity (see equations 5-7) with respect to train density is 0.25 (including the impacts from the 

interactions with average number of tracks) and statistically significant at the 1 per cent level.8 The 

estimate shows that we have considerable economies of density, where a 10 per cent increase in 

train density generates a 2.5 per cent increase in maintenance costs. Importantly, this implies that 

track sections with a higher traffic density have lower average costs, i.e. cost per train-km. The cost 

elasticity with respect to traffic is in line with estimates in the literature on rail infrastructure costs 

(see Link et al. (2008) and Wheat et al. (2009)). Moreover, the average tonnage density estimate is 

 
8 The overall cost elasticity with respect to train density without the impact from lagged maintenance costs is 0.1967. 

Considering that the estimate for lagged maintenance costs is 0.2144, we have a rather fast adjustment period: the cost 

impact from train density left in the next year is (0.1967*0.2144=) 0.0422, and in the subsequent year it is 

(0.1967*0.2144^2=) 0.0090. Note that the equilibrium cost elasticity includes the effects from the entire adjustment 

period, and is 0.1967/(1-0.2144)=0.2504. 
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0.0492 (p-value 0.100), indicating that increasing the average weight of the trains will increase 

maintenance costs. 

Table 2. Econometric results 

 Coef. Corr. Std. Err. [95% Conf. Interval] 

Constant 12.4495*** 0.8936 10.6869 14.2122 

ln(maintenance cost t-1) 0.2144*** 0.0560 0.1040 0.3248 

ln(track length) 0.6214*** 0.0600 0.5030 0.7399 

ln(track length)^2 0.0851 0.0949 -0.1022 0.2724 

ln(switch length) 0.1226*** 0.0445 0.0348 0.2104 

ln(switch length)^2 0.0835 0.0530 -0.0211 0.1881 

ln(rail weight) -0.5084* 0.2611 -1.0235 0.0067 

ln(average quality class) 0.0357 0.0439 -0.0509 0.1222 

ln(max axle load) -0.2200 0.3061 -0.8238 0.3838 

ln(max axle load)^2 7.4073*** 2.7776 1.9283 12.8863 

Share of concrete sleepers -0.0860 0.0607 -0.2057 0.0336 

Share of slab sleepers 191.6174** 80.0568 33.6977 349.5371 

ln(passing sidings per route length) 0.0061 0.0342 -0.0614 0.0737 

Deviation from 50-50 mix in traffic 0.0098 0.0097 -0.0093 0.0288 

ln(no. of tracks) 0.1151 0.2676 -0.4128 0.6430 

ln(no. of tracks)^2 -1.1746** 0.5359 -2.2317 -0.1175 

ln(average tonnage density] 0.0492* 0.0297 -0.0095 0.1078 

ln(train density) 0.2601*** 0.0336 0.1938 0.3263 

ln(train density)^2 0.0342*** 0.0118 0.0108 0.0575 

ln(train density)ln(no. of tracks) -0.4479** 0.1826 -0.8082 -0.0877 

ln(train density)[ln(no. of tracks)^2] 1.4072*** 0.4617 0.4964 2.3180 

[ln(train density)^2]ln(no. of tracks) 0.0379 0.1016 -0.1624 0.2383 

[ln(train density)^2][ln(no. of tracks)^2] -0.4478* 0.2313 -0.9041 0.0085 

ln(track length)ln(no. of tracks) -0.2093* 0.1196 -0.4453 0.0267 

ln(track length)ln(switch length) -0.0682 0.0688 -0.2040 0.0677 

ln(track length)ln(max axle load) 0.0716 0.2976 -0.5155 0.6586 

ln(no. of tracks)ln(switch length) 0.1703 0.1122 -0.0510 0.3916 

ln(no. of tracks)ln(max. axle load) 0.5585 0.8069 -1.0332 2.1501 

ln(switch length)ln(max axle load) -0.3029 0.1943 -0.6861 0.0803 

ln(snow) 0.0380 0.0253 -0.0119 0.0878 

Mix tendered in competition, dummy -0.0306 0.0378 -0.1052 0.0441 

Tendered in competition, dummy -0.1178*** 0.0358 -0.1884 -0.0473 

Year dummies Yesa - - - 

Region dummies Yesb - - - 
***, **, *: Significance at 1%, 5%, 10% level, a Jointly significant (F(14, 189)=11.85, Prob>F=0.000), b Jointly significant (F(4, 

189)=4.98, Prob>F=0.001). Test of Cobb-Douglas constraint: F(15, 189)=4.67, Prob>F=0.000. No. of instruments: 64. 
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To evaluate how the cost elasticities with respect to traffic vary with capacity utilisation, we turn 

to the coefficients for the interaction terms between the traffic and the infrastructure capacity 

variables. The parameter estimate for the interaction between train density and number of tracks 

(ln(train density)ln(no. of tracks)) is -0.4479 and statistically significant at the 5 per cent level. The 

interpretation of the coefficients is that the cost elasticity with respect to traffic is decreasing with 

the degree of infrastructure capacity, as measured by the average number of tracks, which is in line 

with the hypothesis in this paper. Note that we also have an interaction between the squared variable 

for the number of tracks and the traffic variable (ln(train density)[ln(no. of tracks)^2]), which is 

positive – thus, the negative impact this capacity measure has on the cost elasticity for traffic 

diminishes. We also have interaction terms between squared traffic and the number of tracks 

([ln(train density)^2]ln(no. of tracks)) and between squared traffic and the squared number of 

tracks ([ln(train density)^2][ln(no. of tracks)^2]), where the former is positive (0.0379) and not 

statistically significant and the latter is negative (-0.4478) and statistically significant. These 

estimates imply that the positive second order effect of traffic diminishes (and turns negative) when 

the number of tracks increases.  

The impact of these estimates can be seen in Figure 1 below, where track sections with an 

average number of tracks in the interval [1.00, 1.75) have cost elasticities that increase with the 

traffic volume (capacity utilisation), whereas track sections with more tracks (interval at [1.75, 

3.52]), have decreasing cost elasticities with respect to traffic. In general, cost elasticities are higher 

when there are fewer tracks available for a certain traffic volume (comparing the elasticities 

between different intervals of average number of tracks at a certain point on the x-axis in Figure 1) 

– that is, when capacity utilisation is higher. One exception is the comparison between the highest 

intervals [1.13, 1.75) and [1.75, 3.52] at the lower levels of traffic volume, which indicates that 

there may be differences in maintenance production strategies (activities) that are not captured by 
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our explanatory variables. Moreover, the decreasing cost elasticities for sections with an average 

number of tracks above 1.75 suggests that these sections have a relatively low capacity utilisation, 

making a traffic increase less costly compared to the other track sections. In other words, receiving 

cost efficient time slots for maintenance does not seem to be a problem for the current traffic levels 

on these sections. And indeed, for higher levels of traffic, these sections have lower cost elasticities 

than sections with fewer tracks (i.e. with higher capacity utilisation). 

 

 

Figure 1. Cost elasticities with respect to train density9 

 

 
9 This figure excludes 55 negative cost elasticities with respect to traffic. 
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The cost elasticities are summarized in Tables 3 and 4, in which we have grouped the observations 

based on traffic volume and the average number of tracks. A comparison of average cost elasticities 

going from the top left to the bottom right of Tables 3 and 4 (excluding sections with tracks in the 

interval [1.75, 3.53]) shows that elasticities are increasing with capacity utilisation as shown by 

Figure 1. Moreover, even though the results for sections with the highest number of tracks ([1.75, 

3,52]) stand out, for high traffic volumes they are still in line with the general pattern of increasing 

cost elasticities at higher levels of capacity utilisation as measured by the number of tracks (see 

Table 4). 

 

Table 3. Average cost elasticities with respect to different levels of capacity utilisation, train density 

intervals [0K, 5K), [5K, 10K) and [10K, 20K). 

 Elasticity Obs. Elasticity Obs. Elasticity Obs. 

No. of tracks (Train density [0K, 5K)) (Train density [5K, 10K)) (Train density [10K, 20K)) 

[1.75, 3.52] 0.72 1 - 0 0.38 56 

[1.13, 1.75) 0.16 24 0.24 7 0.28 131 

[1.03, 1.13) 0.16 36 0.27 72 0.33 92 

[1.00, 1.03) 0.18 576 0.30 369 0.35 452 
 

Table 4. Average cost elasticities with respect to different levels of capacity utilisation, train density 

intervals [20K, 30K), [30K, 40K), and [40K, 146K]. 

 Elasticity Obs. Elasticity Obs. Elasticity Obs. 

No. of tracks (Train density [20K, 30K)) (Train density [30K, 40K)) (Train density [40K, 146K]) 

[1.75, 3.52 ) 0.26 86 0.22 108 0.15 217 

[1.13, 1.75) 0.28 31 - 0 - 0 

[1.03, 1.13) 0.38 30 0.40 11 - 0 

[1.00, 1.03) 0.40 41 0.43 5 0.48 11 
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5.2 Marginal costs 

We calculate the marginal costs by multiplying the estimated equilibrium cost elasticities with the 

average costs, as described in section 3.2. The average cost, marginal cost and the weighted 

marginal cost for the entire sample are presented in Table 5. We can note that the charge used by 

the Swedish IM in 2018 is about SEK 0.0107 per gross tonne-km (in 2014 prices), which covers 

both maintenance and renewal costs. The charge for maintenance is about SEK 0.0051 per gross 

tonne-km, considering that maintenance covers 47 per cent of the cost according to the marginal 

cost estimates that the charge is based on. Using the average tonnage density in our data (407 

tonnes), the maintenance cost charge corresponds to SEK 2.07 per train-km, which is significantly 

smaller than our estimated weighted marginal cost at SEK 3.96 per train-km. This difference is 

bigger for higher levels of capacity utilisation (see Tables 6 and 7 below). 

 

Table 5. Average costs, marginal costs and weighted marginal costs, SEK per train-km 

Variable Mean Std. Err. [95 % Conf. Interval] 

Average cost 44.2151 2.3482 39.6104 48.8198 

Marginal cost 8.1151 0.3123 7.5026 8.7275 

Weighted marginal cost 3.9647 0.0728 3.8220 4.1074 

 

To evaluate the impact that capacity utilisation has on marginal costs, we plot these costs against 

traffic volume and differentiate with respect to the average number of tracks on a section. See 

Figure 2 below, where the observations in the figure correspond to a marginal cost for each track 

section (𝑖) in each year (𝑡). Specifically, Figure 2 shows that marginal costs fall sharply with train 

density, which is similar to the shapes presented in for example Wheat et al. (2009). This is 

expected, considering that the cost elasticities with respect to train density are below 1, indicating 

economies of density with decreasing average costs. Still, the marginal cost per train-km are 
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generally higher for track sections with a lower average number of tracks – that is, when comparing 

the marginal costs at certain point on the x-axis. However, there are observations that are not in 

line with this general pattern. 

 

 

Figure 2. Marginal cost per train-km, SEK 

 

The differences in costs with respect to capacity utilisation are slightly more apparent in Tables 6 

and 7, in which we present weighted marginal costs that have been grouped based on traffic volume 

and the average number of tracks. The weighted marginal costs are mostly increasing with capacity 

utilisation (going from the top to the bottom of the table, i.e. comparing sections with different 

number of tracks), except when comparing costs with the highest interval [1.75, 3.52].  As the 
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marginal costs are weighted with traffic, the sections with highest traffic volumes have lower 

marginal costs (due to economies of density). Specifically, going from left to right in Table 6 shows 

an increasing weighted marginal cost, whereas Table 7 (with the highest traffic volumes) shows a 

decreasing weighted marginal cost with traffic volume. 

To sum up: holding train density constant, a comparison of sections based on the number 

of tracks shows that weighted marginal costs are generally increasing with capacity utilisation. 

Holding the number of tracks constant, a comparison between traffic volumes shows that weighted 

marginal costs are increasing with capacity utilisation, up to a train density at about twenty 

thousand per year. For higher levels of traffic, the weighted marginal cost is decreasing. 

 

Table 6. Weighted marginal costs per train-km (SEK) with respect to capacity utilisation, train 

density intervals [0K, 5K), [5K, 10K) and [10K, 20K). 

 WMCa Obs. WMCa Obs. WMCa Obs. 

No. of tracks (Train density [0K, 5K)) (Train density [5K, 10K)) (Train density [10K, 20K)) 

[1.75, 3.52) 0.70 (-) [-, -] 1 - 0 4.54 (0.30) [3.93, 5.15] 56 

[1.13, 1.75) 1.28 (0.20) [0.88, 1.69] 24 2.86 (0.53) [1.58, 4.14] 7 4.16 (0.21) [3.74, 4.58] 131 

[1.03, 1.13) 1.42 (0.13) [1.14, 1.69] 36 2.98 (0.29) [2.41, 3.55] 72 5.82 (0.35) [5.12, 6.53] 92 

[1.00, 1.03) 1.87 (0.07) [1.74, 2.01] 576 4.40 (0.19) [4.02, 4.78] 369 5.84 (0.22) [5.40, 6.28] 452 
a 

Standard errors are in parentheses and 95 per cent confidence intervals in brackets.
  

 

Table 7. Weighted marginal costs per train-km (SEK) with respect to capacity utilisation, train 

density intervals [20K, 30K), [30K, 40K), and [40K, 146K]. 

 WMCa Obs. WMCa Obs. WMCa Obs. 

No. of tracks (Train density [20K, 30K)) (Train density [30K, 40K)) (Train density [40K, 146K]) 

[1.75, 3.52) 5.80 (0.36) [5.09, 6.52] 86 5.72 (0.31) [5.11, 6.33] 108 3.21 (0.16) [2.89, 3.52] 217 

[1.13, 1.75) 4.47 (0.35) [3.75, 5.19] 31 -  0 -  0 

[1.03, 1.13) 4.47 (0.49) [3.47, 5.48] 30 3.61 (0.27) [3.00, 4.22] 11 -  0 

[1.00, 1.03) 4.76 (0.37) [4.00, 5.51] 41 2.79 (0.98) [0.06, 5.52] 5 1.13 (0.17) [0.75, 1.52] 11 
a 

Standard errors are in parentheses and 95 per cent confidence intervals in brackets. 
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6. Conclusions 

Capacity utilisation can have an impact on the possibilities to maintain the railway, where for 

example the time slots for maintenance activities may be short and fragmented when capacity 

utilisation is high, which can increase production costs. This paper shows how differences in line 

capacity utilisation influence marginal maintenance costs for rail infrastructure usage, which is a 

contribution to the literature as previous studies have focused on the wear and tear caused by traffic. 

Specifically, the estimation results show that cost elasticities with respect to traffic are increasing 

with capacity utilisation, where fewer tracks on a line and/or a higher traffic level imply higher 

maintenance costs. One exception is the sections with the highest number of tracks, which have 

cost elasticities that decrease with higher traffic levels, suggesting that their capacity utilisation is 

relatively low and that one more train will not affect the maintenance production in this aspect (for 

example, cost efficient time slots for maintenance are still available). The weighted marginal costs 

per train-km – calculated as the product between average costs and the cost elasticities – have a 

similar pattern as the cost elasticities. However, due to economies of density, these marginal costs 

eventually decrease with higher traffic volumes. 

The results are significant for future studies on marginal maintenance costs of rail 

infrastructure usage – that is, these studies need to recognize that high capacity utilisation may have 

an impact on possession times for maintenance, and that highly utilised tracks are more sensitive 

to delays, which can require more (preventive) maintenance. In this, we acknowledge that our 

results indicate that sections with the highest number of tracks have a cost structure that differs 

from the rest of the network, which needs to be investigated further in future research. Still, 

including the impact of capacity utilisation in the marginal cost estimation is important, especially 

since track access charges can be based on marginal costs, and that several countries set their 

charges based on econometric studies (examples are France, Sweden and Switzerland). Setting 
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charges based on marginal costs that are differentiated with respect to capacity utilisation may well 

change the behaviour of the operators, and thus lead to a more efficient use of the infrastructure. 
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