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Abstract

Incomplete data – which fail to represent environmental effects or damage – are a significant challenge

for structural health monitoring (SHM). Population-based frameworks offer one solution by considering

that information might be shared, in some sense, between similar structures. In this work, the data from a

group of aircraft tailplanes are considered collectively, in a shared (more consistent) latent space. As a

result, the measurements from one tailplane enable damage detection in another, utilising various pair-wise

comparisons within the population.

Specifically, Transfer Component Analysis (TCA) is applied to match the normal condition data from

different population members. The resulting nonlinear projection leads to a general representation for the

normal condition across the population, which informs damage detection via measures of discordancy. The

method is applied to a experimental dataset, based on vibration-based laser vibrometer measurements

from three tailplanes. By considering the partial datasets together, consistent damage-sensitive features

can be defined, leading to an 87% increase in the true positive rate, compared to conventional SHM.

Keywords: Population-based structural health monitoring; domain adaptation; transfer learning; novelty detection;
one-class classification; damage detection

1. A Population-based Approach to SHM

Data-driven frameworks are critical within Structural Health Monitoring (SHM) [1], as well as related

fields, including: condition monitoring [2], non-destructive testing [3, 4], and prognosis and health manage-

ment [5]. In general terms, machine learning algorithms are used to detect patterns in previously-recorded

data, to infer the condition of the system (operational, environmental, or health) given measurements into

the future. Health and/or performance predictions are valuable, as they improve maintenance, decision

making and efficiency [6].

The development of machine learning methods for health monitoring of engineering systems is prevalent

in the literature [7, 8]; however, data-models typically require large amounts of training data to learn a

variety of patterns, thus enabling good generalisation to future measurements. In SHM, however, the data

available for training are often highly restricted and unrepresentative of future observations [9]. Consider a

rail-network, for example: acquisition systems might record several years of data from operational lines; on
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the other hand, a newly-built line will have limited data. In this case, the absence of a priori measurements

inhibits the use of conventional (supervised) data modelling for monitoring purposes.

One solution to incomplete training data adopts a Population-Based approach to SHM (PBSHM)

[10–12]. By considering groups of similar systems (or models) together, information might be shared or

transferred, in some sense, between members of that population. Returning to the rail-network example:

measurements from one (or several) line(s) might prove useful to inform the data-modelling of another.

The assumption here is that patterns in one dataset resemble patterns in another. Therefore, a critical

step for PBSHM is establishing which systems are similar enough to share information – some similarity

measures have been proposed in [11]. By transferring information between similar systems, the predictive

performance of pattern recognition algorithms should significantly improve. Caution is required, however:

if dissimilar systems are used to inform each other, the predictive performance can be degraded, leading to

negative transfer [13].

In this work, the concept of knowledge transfer between groups of similar systems is demonstrated

for SHM via an experimental case study. The data available for training are extended by considering the

measurements from a population of structures collectively, in a shared, more consistent, latent space. The

experiments show that, by considering the partial datasets together, the reliability of damage-detection

across the population can increase.

The layout of the paper is as follows. Section 2 summarises transfer learning via domain adaptation,

in the context of damage-detection, while Section 3 covers related work. Section 4 explains the aircraft

tailplane experiments, as well as benchmark techniques, to motivate the need for transfer learning. Section 5

explains the TCA algorithm, and how it can be applied to inform damage detection. Section 6 presents

the results and discussion, while Section 7 offers concluding remarks and future considerations.

2. PBSHM and Transfer: Domain Adaptation

Machine learning methods typically assume that the data between training and testing are drawn from

the same feature space and underlying data distribution [13, 14]. For SHM, this implies no change in

modelled distributions from inference to the monitoring of real-time signals. In practice, the assumption

of stationarity [15, 16] can break down for various reasons: e.g. cold temperature effects can lead to a shift

in the distribution for the normal condition data [17]; alternatively, one might look to use the data from

one system to inform the model of another – as previously discussed.

Once the underlying distribution has changed, most statistical models must be completely re-learnt to

ensure good generalisation [13]. Alternatively, transfer learning can accommodate for changes in the data

distribution, task, or feature space.

At this stage, it is useful to define domain and task objects [18]:

• A Domain D = {X, p(X)} is an object that consists of a feature space X and a marginal probability

distribution p(X) over a finite sample of feature data X = {xi}ni=1 ∈ X.

• A Task T = {Y, f(·)} is a combination of a label space Y and a predictive model/function f(·).
The function f : X → Y is unknown and inferred from the training data, while the finite set of

corresponding labels is y = {yi}ni=1 ∈ Y.

Considering vibration-based monitoring, frequency-domain observations (xi) from rotating machinery

could represent the feature space {xi}ni=1 ∈ X, while the model f(·) might predict the condition of the
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machine bearings – classified by labelling yi ∈ Y; for example: normal (yi = 0), damaged (yi = 1), or

environmental effects (yi = 2).

This work considers a transfer problem between two domains at a time, which is typical in the

literature [13]. Firstly, the source domain Ds is a finite set of observations and corresponding labels,

i.e. {(xs
i , y

s
i )}ns

i=1 where {xs
i ∈ Xs, y

s
i ∈ Ys}. The second is referred to as the target domain Dt with

observations and (potentially unknown) labels, i.e.
{(

xt
i, y

t
i

)}nt

i=1
where {xt

i ∈ Xt, y
t
i ∈ Yt}.

Following Pan and Yang [13], transfer learning can be defined generally,

Given a source domain Ds and task Ts, as well as a target domain Dt and task Tt, transfer

learning aims to improve the target predictive function ft(·) in Dt, using the knowledge in Ds

and Ts, where Ds 6= Dt, or Ts 6= Tt.

For the case study presented here, the source and target domains are associated with different structures,

while the (common) task is to represent/approximate the normal condition data to improve damage

detection. In other words, the task is a type of one-class classification [19], where yi = 0 (normal) ∀i in
training. The goal is, therefore, to match the normal condition distributions between source and target

systems, to improve the predictive performance (primarily for the target structure) though a shared

model f .

These ideas align closely with those of transductive transfer learning [20]. Transductive transfer

considers that the source and target tasks are the same (Ts = Tt) while the domains are different

(Ds 6= Dt). Relating back to the experiments in this work, the model of the normal-condition data is the

common task f , while the features and distributions from each structure represent source/target domains.

Specifically, domain adaptation is applied as a form of transductive transfer learning [20]; this is

appropriate when a model f(·) will not generalise between the source and target domains due to differences

between the distributions p(xs
i ) and p(x

t
i) [18]. Transfer Component Analysis (TCA) [14] is applied, which

looks to match source and target distributions in a shared latent space (Z = {zi}ns+nt

i=1 ∈ Z) where the

data properties can be preserved. In the latent space Z, a shared model (f = fs = ft) can be learnt for

novelty/damage detection. The population-based framework to match normal condition data between

structures is visualised in Figure 1. Algorithm details are provided in Section 5.

3. Related Work

A ‘shared’ model to represent a population of systems is closely related to the concept of the form

for PBHSM [10]. The form is typically represented by a model of some consistent feature recorded from

members within a population. The model should capture the essential nature as well as variance of systems

within the group. Future measurements can then be monitored through comparisons to the form. In

previous work [10], a (Gaussian process) regression of the power curve was used to represent the form for

a wind turbine population. The framework in [10] does not attempt to match the data distributions (or

tasks) between members through transfer learning; instead, the population data are considered collectively

in the original data-space, and the tasks are modelled separately.

The majority of literature concerning transfer learning for SHM focusses on image classification through

Convolutional Neural Networks (CNNs), e.g. [21–24]. Typically, applications consider crack detection

[21–23], and fine tuning the parameters of a CNN trained on the source domain to aid generalisation in

the target domain. Generally, fine tuning does not aim to transfer label knowledge from source to target

domains; instead, it focusses on re-purposing expensive-to-train ‘deep’ neural networks [18].

In addition to fine tuning, neural networks have been applied for domain adaptation within SHM, for

example [25–27]. These techniques use a neural network to define the mapping from the domain-data into
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Figure 1: Visualisation of domain adaptation for knowledge transfer between source and target structures, distribution

matching for the normal condition data. Ellipses represent clusters of data from the source (black) and target (red) structures.

In the original space xi ∈ X, the distributions for each structure (i.e. domain) are different; in the latent space zi ∈ Z (a

transformation of xi) the distributions have been (approximately) matched.

a shared latent space, where a classification model is learnt. An interesting study is presented by Michau

and Fink [28], demonstrating domain adaptation for condition monitoring, applied to a fleet of power

plants. Unsupervised feature alignment is achieved using a variational auto-encoder; a new loss function

is introduced to preserve the inter-point relationship between the inputs and latent features. Feature

alignment is further enforced with an origin discriminator, trained in an adversarial manner [28]. The

dataset for this application is large (tens of thousands of measurements), allowing for the inference of a

relatively highly-parametrised network.

Besides neural networks, a paper by Chakraborty et al. [29] applies a probabilistic method for transfer

learning, by defining an objective function such that information in the source and target domains is

considered jointly. This application focusses on the important issue of sensor coverage (for a single

structure) rather than transferring information between similar systems.

Domain adaptation has been discussed generally for SHM by Gardner et al. [18, 30]; this work considers

methods for knowledge transfer, comparing tools to aid supervised damage classification. Case studies

include a simulated source and target domain, as well as a simulated source and experimental target

structure. In other words, two structures are considered per case study, at least one of which corresponds

to a simulated system.

3.1. Novel contribution

Considering a population-based approach to SHM, transfer learning is applied here to an experimental

case study, to aid unsupervised damage detection. The SHM data concern laser vibrometer measurements
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from a population of three aircraft tailplanes (i.e. three pairs of structures). To extend the concept of

the population form [10], transfer learning is applied to infer a shared model, representing the underlying

distribution of the normal condition data for similar systems – as visualised in Figure 1. The model is

utilised for damage detection through comparisons to future data.

Rather than considering transfer from a single source to a target structure, a population of three

tailplanes are considered together, with (pair-wise) transfer between each member. All members correspond

to an experimental rig, rather than simulated systems. Unlike various neural networks, the proposed

methods are suited to small/incomplete data, which are found in many practical examples of SHM.

4. Experimental Data: Aircraft Tailplane Population

Three tailplanes from a Piper PA-28 aircraft are considered in the experiments. Two planes (labelled

A and B) correspond to ‘Arrow’ variants of the PA-28, while the third corresponds to a ‘Cherokee’ variant

(labelled C). Following separation from the aircraft, the elevators and wing-tips were removed from each

tailplane. All wing sections have the same airfoil (NACA0012) and chord (0.76m) with different spans:

tail C is 3.62m long, while A and B are 2.75m long.

Each plane was cut in half, to create three pairs of similar wing structures. These are referred to

as: A1/A2, B1/B2, and C1/C2 – for port/starboard sides (1/2) respectively. The A plane was cut

symmetrically, while the B plane was cut asymmetrically – the port side (B1) has a longer section at the

original connection, while the starboard side (B2) is shorter – dimensions are provided in Figure 2. Lastly,

the C plane was cut symmetrically, with damage artificially introduced to the starboard wing (C2) by

removing a rectangular section from the skin – again, dimensions are provided in the schematic in Figure 2.

The structures are also shown in Figure 3, where the damage to C2 is visible. It should be considered that

the artificial damage imitates a fairly large, significant fault. The mass difference between the A planes

was 1.89% (4.85kg and 4.76kg for A1/A2); for the B planes it was 9.39% (4.26kg and 4.66kg for B1/B2);

for the C planes it was 0.56% (6.74kg and 6.70kg for C1/C2)1.

Following PBSHM terminology [10], the A and B tailplanes would be referred to as weakly homogeneous.

In general terms, this implies the structures are nominally identical, with slight variations. That is, while

each structure is the same model (Arrow), the port and starboard sides are mirrored; additionally, for

B1/B2 the cut is asymmetric, leading to differences in mass and geometry2. When including the C planes,

the group becomes heterogeneous [12]. While each structure is a tailplane wing, they correspond to two

different models of aircraft (Cherokee/Arrow). Despite differences, however, the structures remain similar :

the chord and aerofoil are the same design, and the A/B planes can be viewed as subsets of the C plane

geometry (refer to Figures 2 and 3). Homogeneous and heterogeneous structures for PBSHM are more

formally defined (through graphical representations) in [11].

4.1. Vibration tests

Each tailplane was excited with Gaussian white noise using an electromagnetic shaker. The tailplanes

were hung free-free from a metal frame, and the shaker was attached to the rear, as demonstrated in

Figure 4. The responses of the structures were recorded using a scanning laser Doppler vibrometer. Laser

scanning vibrometry is beneficial, as it measures the response of a large surface in a single test, unaffected

by the mass of sensing devices (measurements are contact free). The laser vibrometer was a tripod-mounted

1Percentages are w.r.t. the lightest wing.
2Manufacturing tolerances and imperfections (e.g. small dents or cracks) should also be considered.
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(a) A/B planes, including asymmetric cut for B1/B2

(b) C plane, including damage in C2

Figure 2: Schematic, units are in mm. The reference point for scanning is {x = 0, y = 0}. The red cross indicates the forcing

location, while the red dashed square shows the artificial damage in C2.

Polytec PSV-400 scanning head, with a PSV-A-420 geometry scan unit, controlled by a Polytec OFV-5000

controller and a JSV-500 junction box.

The frequency bandwidth during testing was 1kHz with a sample rate of 2.56kHz, leading to a resolution

of 0.3125 Hz in the frequency domain (3200 spectral points). For tailplanes A and B, there were 180 scan

points on the port and starboard wings (each). For the C plane, due to its larger span, there were 295

scanning points on the port and starboard wings (each). Scanning and forcing locations were consistent

(as far as possible) between port and starboard pairs: the scanning grid for each pair is compared in

Figure 5, while the forcing location is included in Figure 2. There are six averages per response point

when storing frequency domain measurements – the Frequency Response Functions (FRFs, H1 estimator)

and coherence functions are used in this work.

Each tailplane test (A, B, and C) is summarised below:

A plane PA-28 Arrow : symmetrically cut, 180 response points for port (A1) and starboard (A2) wings

(each), 1.89% mass difference between port and starboard.

B plane PA-28 Arrow : asymmetrically cut, 180 response points for port (B1) and starboard (B2) wings

(each), 9.39% mass difference between port and starboard.
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(a) A1 (port)/A2 (starboard)

(b) B1 (port)/B2 (starboard)

(c) C1 (port)/C2 (starboard)

Figure 3: Tailplane structures, including artificial damage in wing C2 – dimensions are provided in Fig. 2.

C plane PA-28 Cherokee: symmetrically cut, 295 response points for port (C1) and starboard (C2)

wings (each), 0.56% mass difference between port and starboard.

Figure 6 shows the summed FRF over the response locations for each tailplane. The response functions

are self-normalised in the log-space through the Z-score (subtracting the sample mean and dividing by the

standard deviation) using a subset of training data3. Clearly, the FRFs in Figure 6 differ significantly from

structure to structure, even comparing port and starboard wings of the same plane. In agreement with

the modal analysis by Papatheou et al. [31], however, some consistent patterns can be observed between

port and starboard wings – as well as between A, B and C pairs. Intuitively, there are more similarities at

lower frequencies of the response for A and B, while the discrepancy increases at higher frequencies. Even

considering the C plane (including damage), a low-frequency mode for all structures appears at around

75Hz.

4.2. Problem set-up and feature selection

To define a knowledge transfer problem, each wing pair is associated with its own domain – A, B and

C. In this way, the experiments are viewed as a three-domain problem: domains A and B contain normal

3Normalised features are better suited to Transfer Component Analysis, as well as the benchmark methods (Principal

Component Analysis).
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(a) test-rig and scanning laser vibrometer

(b) electrodynamic shaker (fixed to rear)

Figure 4: Test set-up example – shown for PA-28 Arrow tailplane

condition data, while domain C has both normal and damage data. It is assumed, therefore, that the

normal data from port and starboard sides are sampled from the same underlying distribution.

Considering this approximation, it is necessary to select features that are (relatively) consistent

between the port and starboard wings (of A and B) for transfer learning to make sense4. Based on

engineering/physics-based knowledge of the FRF, Figure 6 is inspected visually, considering wings A and

B only. According to the framework in [32], the window between 56.56 – 81.56Hz can be selected as a

consistent feature, highlighted with dotted lines. This region of the response covers a common mode

for the normal condition FRFs. The consistency of this feature is logical, as the response below 50Hz is

increasingly influenced by rigid body dynamics, leading to discrepancies in the response for the B tailplanes;

here, the mass imbalance (due to the asymmetric cut) can be viewed as an additional lumped mass to

the B2 system. On the other hand, higher modes become increasingly sensitive to small imperfections in

the skin, ribs, or stringers of the tailplane, thus, the response for the normal data becomes increasingly

inconsistent.

4For the C plane, the features do not have to be consistent, as the starboard wing (C2) is damaged.
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(a) A scanning grid – 180 points.

(b) B scanning grid – 180 points.

(c) C scanning grid – 295 points.

Figure 5: Scanning grid corresponding to response locations: blue dots indicate the port wing (A1/B1/C1), red stars indicate

starboard wing (A2/B2/C2). The reference point {x = 0, y = 0} is shown on the wing schematic in Fig. 2.
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Figure 6: Frequency response functions for tailplane pairs, normalised in the log-space. Dotted lines highlight the range of

consistent features selected for transfer learning.

At this stage, the authors emphasise that feature selection remains critical in transfer learning, as with

other forms of machine learning. If the features prove too dissimilar, or represent different information,

the risk of negative transfer can increase dramatically, even for very similar systems [12, 13]. In the

worst-case scenario, predictions can be inferior to conventional domain-wise methods. In consequence,

the available features should influence the choice in model and associated parameters to aid successful

knowledge transfer, particularly in an unsupervised damage detection setting.

To define the transfer learning dataset, observations are re-sampled from uncertain representations

of the experimental FRFs. According to [33], the coherence function γp(ω) can be used to estimate the

uncertainty in the magnitude of the response at frequency ω. Specifically, assuming Gaussian statistics at

each response point p, the standard deviation in the FRF magnitude is [34],
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σ(|Hp(ω)|) =

√

1− γ2p(ω)

|γp(ω)|
√
2N

|Hp(ω)| (1)

where N = 6, the number of repeats for frequency-domain measurements. The associated uncertainty can

be propagated to the summed FRF via a Monte-Carlo method [35] – this involves iterating the following

steps: (i) a sample is taken from the uncertain FRF at each response point |Hp(ω)|, (ii) the samples

are summed
∑

p |Hp| and then stored. Steps (i) and (ii) are repeated for a large number of iterations

(10,0000), then the sample mean and standard deviation are calculated from the batch of summed FRFs.

Figure 7 shows the resulting mean and deviation for the selected feature, between 56.56 and 81.56Hz, for

all tailplanes.

Lastly, observations are sampled from the uncertain feature shown in Figure 7 for domains A, B and C.

The multi-domain data are defined as follows:

A plane domain DA, data
{

xA
i

}nA

i=1
, 200 observations of normal condition data (100 each from A1/A2).

B plane domain DB, data
{

xB
i

}nB

i=1
, 200 observations of normal condition data (100 each from B1/B2).

C plane domain DC with data
{

xC
i

}nC

i=1
, 100 observations of normal condition data (C1) and 100

observations of damage data (C2).

Importantly, the training data are defined as a random subset of 50% of the samples from the port-side

FRFs only : A1/B1/C1 (i.e. 25% of the total data in each domain). Therefore, only data corresponding to

the normal condition are available for training. The testing data include the remaining 50% of samples

from the port wing, and the starboard examples. Thus, testing will verify the approximation of a single

domain per tailplane pair, as well as standard generalisation.

The problem here is one of exclusive outlier analysis [36]: only normal data are available for training,

and the task T is to model the normal data data through f . Predictions then determine if future data are

samples from the same underlying distribution (inlying), or not (outlying).

4.3. Benchmark: principal component analysis for novelty detection

Conventional damage detection is applied via Principal Component Analysis (PCA) and the Maha-

lanobis distance [36], whereby each domain is considered separately. These results are useful to motivate

the need for transfer learning.

Firstly, PCA is applied to each domain, to project the data into a two-dimensional subspace. Note,

two-dimensional subspaces are used throughout for consistency, and to aid visualisation. Briefly, PCA is a

linear projection X → Z, where {xi} ∈ X ∈ R
M and {zi} ∈ Z ∈ R

D. In the Z subspace, the dth projected

dimension is a weighted sum wd of the original features,

zid = w⊤

d xi (2)

A total of D projection vectors {w1, . . . ,wD} (M -dimensional) are defined, such that d ∈ {1, . . . , D}.
Thus, D is the dimensionality of the desired subspace (in this case D = 2), while M is the dimensionality of

the original feature (M = 70, as there are 70 frequency bins in the response between 56.56 and 81.56Hz).

PCA uses the variance in the projected space zi ∈ Z,RD as a criterion for the optimal weight-vector

for each dimension {w1, . . . ,wD}. Conveniently, the optimisation can be solved by defining a Lagrangian

(an intuitive proof is available in [35]) and taking the (partial) derivative with respect to wd. In this form,

the optimal weights are the solution to a standard eigenvector/value problem,
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Figure 7: Feature between 56.56 – 81.56Hz, for all tailplanes. Shaded region shows one standard deviation around the mean.
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Swd = λdwd (3)

where S is the sample covariance of the original data, S = 1
n

∑n
i=1 xix

⊤

i (since the data are normalised).

The eigenvector with the highest eigenvalue corresponds to the projected dimension with maximum

variance w1, while the second highest eigenvalue corresponds to the projection with the second highest

variance w2, and so on [35].

Only the training data should be used to find wd for each domain. The weights {w1,w2} can then

be used to project the complete data into a two-dimensional subspace. Here, the sample mean µ and

covariance Σ can be calculated for {zi}ni=1 to approximate the underlying distribution for the (normal)

training data, assuming they are Gaussian distributed f = p(zi) ∼ N (µ,Σ) [36].

The PCA subspace for the tailplane domains (A, B and C), as well as the Gaussian model for normal

data f , are shown in Figure 8. All the test data appear to be sampled from the same underlying distribution

for A and B – this is intuitive, considering the aims of feature selection, as the test data correspond to

the normal condition only. However, the distributions also remain similar in domain C, despite including

outliers (the damaged wing, C2). In consequence, the PCA space appears insensitive to the novelty

(damage) of interest.

To quantify similarity, the ith datum in the two-dimensional subspace (zi ∈ Z) can be compared to the

normal condition (f) through the Mahalanobis-Squared-Distance (MSD). This measure of discordancy is

regularly used for outlier analysis and damage detection [1, 36, 37],

ζ2i = (zi − µ)⊤Σ−1(zi − µ) (4)

In words, ζ2i is the distance of zi from the centre of the training data, normalised by the variance. Generally,

an observation is considered outlying if ζ2i passes a threshold or critical value; here, like the data, the

threshold is determined via a Monte Carlo method [1, 36, 37] to define the 95% critical value.
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Figure 9: Domain-wise Mahalanobis distance. Filled markers • represent training data, hollow markers ◦ represent test data.

The solid vertical line separates the damage data (C2), the dashed line shows the critical value for damage detection.

Figure 9 shows the MSD for the data in each domain; these distances agree with observations made

from the PCA space. The test data (◦) for A and B are inlying, as they correspond to normal condition

FRFs. For domain C, however, the damage data (C2) incorrectly appear as inlying. To reiterate, the

feature space defined by PCA is insensitive to damage, and the outliers are being masked by the normal

condition [37].

Before transfer learning, Kernel PCA (KPCA) is applied to extend conventional domain-wise damage

detection5. Via a kernel substitution, KPCA defines a nonlinear transformation of the original feature to

maximise variance. Recalling equation (3) (assuming zero-mean for the projected data) the covariance

matrix S = 1
n

∑n
i=1 xix

⊤

i is replaced with,

C =
1

n

n
∑

i=1

φ(xi)φ(xi)
⊤ (5)

where φ(xi) is a nonlinear transform into an n-dimensional feature space. Standard PCA is applied in

the new feature space, which implicitly defines a nonlinear projection in the original space, xi ∈ X [38].

Conveniently, the eigenvalue problem Cwd = λdwd can be solved without having to work explicitly in

the nonlinear feature space through the kernel trick. A nice proof is available in [38], which leads to the

following expression for a nonlinear projection (in X),

zid =

n
∑

j=1

adjk(xi,xj) (6)

where ad is the dth largest eigenvector for the problem Kad = λdnad. The kernel function is k(xi,xj) =

φ(xi)
⊤φ(xj), and K is the kernel matrix, with elements K[i,j] = k(xi,xj) ∀ i, j ∈ {1, . . . , n}.

5Additionally, the KPCA benchmark will be more directly comparable to transfer component analysis.
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Any valid choice of kernel k(·) can be used; for consistency, the Radial-Basis Function (RBF) is used

throughout this work,

k(xi,xj) = exp

{ || xi − xj ||2
2l2

}

(7)

The parameter l defines the length-scale. Generally speaking, the kernel encodes the degree of coupling

between two points in the feature space. It is widely known that defining kernel hyperparameters in an

unsupervised (damage detection) setting proves to be challenging and application specific [39, 40]. The

user can employ techniques such as the median heuristic [40] or reconstruction metrics [39] to help select

this parameter. For consistency, the length scale is set to l = 16 throughout – this value was found to

define an acceptable reconstruction error for KPCA, while remaining close to the median heuristic for the

tailplane population data.

Again, the subspace and MSDs produced by KPCA lead to similar issues of masking, shown in

Appendix A, such that the MSDs for damage data fail to pass the detection threshold. Clearly, single

domain projections that maximise variance (PCA/KPCA) produce feature spaces that are insensitive to

damage: an alternative projection is needed to aid separation of the damage data in DC . Transfer learning

via domain adaptation offers one solution, such that normal data from all domains are considered together

in a shared subspace. By extending the size of the effective training set, the criterion for projection can be

adapted, and transfer learning should enable damage detection in DC , while remaining general in domains

DA and DB.

5. Transfer Component Analysis for Novelty Detection

Transfer Component Analysis (Pan et al. [14]) is used to match the distributions of the normal data

from each tailplane in a shared latent space – i.e. Figure 1. The general assumption is that the marginal

distributions between the source and target domains are different, such that p(Xs) 6= p(Xt). Therefore,

TCA looks to find a common latent representation for Xs = {xs
i}ns

i=1 ∈ X and Xt = {xt
i}nt

i=1 ∈ X which

preserves the data configuration after transformation [14]. Specifically, a nonlinear transform of the feature

space is learnt (similar to KPCA) ψ : X → Z, where the marginals are approximately matched,

p (ψ (Xs)) ≈ p (ψ (Xt)) (8)

Additionally, the conditionals are assumed consistent, i.e. p (Ys|ψ (Xs)) = p (Yt|ψ (Xt)). For damage

detection in this context, these assumptions imply that: while the training data are distributed differently

in each domain, they all correspond to normal structures, which can be matched in the latent space6.

In brief terms, the transform ψ minimises the distance between the source and target data by defining

a nonlinear mapping into a Reproducing Kernel Hilbert Space H (details/proofs can be found in [14]). By

virtue of the kernel trick, the Maximum Mean Discrepancy (MMD) can then be used as the criterion to

minimise the difference between the empirical means for the source and target data in the latent space [14],

Dist

[

p (ψ (Xs)) , p (ψ (Xt))

]

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

ns

ns
∑

i=1

ψ(xs
i )−

1

nt

nt
∑

i=1

ψ(xt
i)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

H

= tr (KL) (9)

here, K ∈ R
(ns+nt)×(ns+nt) is the kernel matrix for both the source and target data, X = Xs ∪ Xt ∈

R
(ns+nt)×M (including cross domain distances) and L is the MMD matrix, such that,

6As this is exclusive outlier analysis, the damage data appear in testing.
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Li,j =















1
n2
s

xi,xj ∈ Xs

1
n2
t

xi,xj ∈ Xt

−1
nsnt

otherwise

(10)

A matrix W ∈ R
(ns+nt)×D can be inserted to define a low-rank kernel embedding K̃ = KWW⊤K, which

transforms the feature vectors into the D-dimensional latent space, where D < nt+ns (in this case, D = 2,

as with PCA). The embedding of the ith point in the latent space becomes,

zi = [W⊤K][:,i], zi ∈ R
D

the matrix subscript [:, i] refers to the ith column. Considering the kernel embedding into the latent

subspace, the distance can be re-written [14],

Dist

[

p (ψ (Xs)) , p (ψ (Xt))

]

= tr
(

(KWW⊤K)L
)

(11)

= tr
(

W⊤KLKW
)

(12)

For a given kernel, the optimal weights can be determined by minimising (12); in this way, the source and

target data are brought together in the subspace:

min
W

= tr
(

W⊤KLKW
)

+ α tr
(

W⊤W
)

s.t. W⊤KHKW = ID (13)

The term α tr
(

W⊤W
)

regularises the complexity of the projection, such that α is a trade-off parameter.

The constraint W⊤KHKW = ID is added to prevent the trivial solution W = 0, whereby all the data

are transformed onto the origin. ID is the identity matrix, dimension D. Finally, H is a centring matrix,

where H = Ins+nt +
1

ns+nt
1, and 1 is a (ns + nt)× (ns + nt) matrix of ones.

As with PCA, the optimal transform can be defined as another eigenvalue problem, by defining a

Lagrangian from (13) and taking the partial derivative w.r.t. W [14],

[

(KLK+ αI)−1
KHK

]

wd = λwd (14)

where W = {wd}Dd=1 correspond to the D leading eigenvalues.

6. Results and Discussion

As discussed, D = 2 for the TCA subspace in the tailplane applications; the RBF kernel is used (7)

with length l = 16 (to be consistent with PCA/KPCA). In line with other work [14], the regularisation

trade-off parameter is set to α = 0.1; in fact, for these data, any value α > 1× 10−10 was found to avoid

rank deficiency of the denominator for the generalised eigendecomposition (14).

Three, pair-wise transfer experiments are investigated:

• A ↔ C: using the normal data from DA and DC to improve damage detection in DC

• A ↔ B: using the normal data from DA and DB to ensure generalisation in both DA and DB
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• B ↔ C: using the normal data from DB and DC to improve damage detection in DC

Considering exclusive outlier analysis, the distinction between the source and target domains becomes less

relevant, as both domains are labelled/assumed normal (i.e. ysi = yti = 1 ∀i in training). As a result, the

proposed experiments cover all possible source/target combinations. That said, in this application, there

is a practical focus to improve damage detection in domain C.

Interestingly, as each domain is implicitly labelled during exclusive outlier analysis, unsupervised TCA

becomes (somewhat) analogous to a multi-task learning7; for details, the reader is referred to [13].

6.1. Knowledge transfer: A ↔ C

TCA successfully defines damage-sensitive representation of the data in the latent space Z, by

distribution matching for DA and DC . Visually, Figure 10a shows that the damage data (C2) have been

projected out from the normal condition cluster f . All of the MSD values in Figure 10b that correspond

to damage are correctly flagged as outlying, with zero false negatives (below the threshold).

The results are quantified and compared to the PCA benchmarks in Figure 10c. For each domain, the

relevant metric(s) is (are) displayed. For domain A, the True Negative Rate (TNR) is provided only (as

all the data are inlying),

TNR =
correctly predicted inliers

number inliers in the test set

For domain C, the True Positive Rate (TPR) is also provided,

TPR =
correctly predicted outliers

number of outliers in the test set

The TPR for domain C is important, as TPR ≈ 1 indicates sensitivity to damage. On the other hand, a

TNR ≈ 1 is necessary to indicate good generalisation to test examples of the normal condition.

Therefore, Figure 10c quantifies the success of transfer learning, which enables damage detection in

domain C through distribution matching of the normal data from DA. Specifically, the model remains

general, with the TNR at 1, while the TPR improves significantly: from 0.13 and 0.00 for PCA and KPCA

(respectively), to TPR = 1 through TCA. In other words, domain adaptation corresponds to an 87% TPR

increase compared to conventional (domain-wise) damage detection.

When assuming Gaussian statistics for f , with a 95% threshold, it is acknowledged that the TNR

should be approximately 0.95 (corresponding to a 5% false positive rate). The low number of false

positives is (unsurprisingly) due to the fact that data appear non-Gaussian in the Z-space; the simplified

representation proves suitable, however, to detect outlying observations in this application, as in previous

work [1, 7, 36, 37].

6.2. Knowledge transfer: A ↔ B

When distribution matching between DA and DB, the model of the normal condition data remains

general between the port and starboard sides. Good generalisation between A and B verifies the approxi-

mation of a single domain for each tailplane pair. Generalisation can be observed visually in Figure 11a,

as the data from all structures appear similar and approximately from the same underlying distribution.

Some drift can be observed for the data sampled from B2, which leads to a false positive in the MSDs

(normal data crossing the threshold) in Figure 11b. While this situation is not ideal, it is unsurprising

7Where a common task f is improved for multiple (labelled) domains, as opposed to transferring label information from a

source to target domain [13].
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Figure 10: Transfer learning for novelty detection between tailplane A and tailplane C.
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physically, due to the mass difference between the B1/B2 structures. In consequence, a single outlier

represents good generalisation for the normal data across domains A and B, such that the TNR remains

at 99%8.

6.3. Knowledge transfer: B ↔ C

The final experiment matches the data from B with the normal data from C. As with transfer between

A and C (Figure 10), the data from the B can also be used to define damage-sensitive features in the shared

latent space. Again, the features are shown visually in the Z-space (in Figure 12a) and through the MSD

(in Figure 12b) where the damage data (C2) are distinct from the remaining normal data (B1/B2/C1). In

agreement with transfer from A to B, there is drift in the normal data from DB , leading to a false positive

for B2 (i.e. TNR = 0.99). This is a small trade-off, however, considering the mass differences in B1/B2

and the increase in sensitivity to damage for domain C (again, 87% compared to conventional methods)

with no false negatives (TPR = 1).

7. Concluding remarks

A population-based approach to SHM has been utilised to share information between a group of similar

(but not identical) structures. Specifically, transfer learning, via domain adaptation, has been utilised

for damage detection through an experimental case study concerning aircraft tailplanes. By considering

the collective data from a population of three tailplane pairs, knowledge transfer enables the definition

of damage-sensitive features, where conventional methods fail (domain-wise PCA/KPCA). Specifically,

Transfer Component Analysis (TCA) is utilised to match the normal condition data from different

structures through a nonlinear transformation onto a shared latent space, which defines a damage-sensitive

representation. When distribution matching, TCA relies on a statistical distance between observations

from different structures; thus, there must be enough data to embed the underlying distributions through

an appropriate kernel. Utilising different pair-wise comparisons across the population, transfer learning

leads to an 87% increase in the sensitivity to damage (true positive rate).

As with all forms of machine learning, feature and model selection are application specific; these steps

prove critical to the success of transfer learning for unsupervised damage detection. Future work should

investigate ways in which feature/model selection can be automated and enhanced within unsupervised

transfer learning for novelty detection.
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Appendix A. Kernel PCA – Masked Outliers Domain C

−0.4 −0.2 0.0 0.2 0.4

zi1

−0.4

−0.2

0.0

0.2

0.4

z
i
2

A1

A1

A2

(a) DA

−0.4 −0.2 0.0 0.2 0.4

zi1

−0.4

−0.2

0.0

0.2

0.4

z
i
2

B1

B1

B2

(b) DB

−0.4 −0.2 0.0 0.2 0.4

zi1

−0.4

−0.2

0.0

0.2

0.4

z
i
2

C1

C1

C2

(c) DC

Figure A.13: Domain-wise KPCA. Filled markers • represent training data, hollow markers ◦ represent test data. The dashed

line shows the 95% confidence ellipse for f .
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Figure A.14: Domain-wise Mahalanobis distance for KPCA. Filled markers • represent training data, hollow markers ◦

represent test data. The solid vertical line separates the damage data (C2), the dashed line shows the critical value for damage

detection.
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