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Abstract

Dispersion, or the distribution of kinetic and thermodynamic parameter values

describing a redox reaction, has long been acknowledged as a complicating factor in

the analysis of both solution and surface-confined voltammetry experiments. In this tutorial

paper, we show how varying levels of dispersion can affect the appearance of the experimental

current, mainly illustrating the concept with reference to surface-confined reversible one

electron transfer. We focus on three voltammetric techniques, ramped Fourier Transform AC

Voltammetry, Purely Sinusoidal Voltammetry and Direct Current Voltammetry, showing the

effect the dispersion parameters have on the appearance of the resulting current. We have

also implemented an interactive web-based simulation package for comparison
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of the effects of the various parameters, available here. As modelling dispersion

significantly increases the computational burden of simulating voltammetry experiments,

making well-informed choices about when to include this effect is essential. To facilitate this,

we discuss the intuition for when to include dispersion when fitting experimental voltammetry

data, again with reference to the three techniques described above.

Introduction

Simulations of voltammetry experiments conducted on surface-confined (“film”) redox species

are generated by solving an ordinary differential equation (ODE)1 that describes the current

response of a redox system to a time-varying potential input with given chemical and exper-

imental parameters; we refer to this as solving the forward problem. In parameter inference

for experimental data, the goal is to determine the simulation parameters which best describe

this data; we refer to this process as solving the “inverse problem”.2 There is a small galaxy

of work on solving the inverse problem in electrochemistry, using a battery of computational

and mathematical techniques. The approach of fitting computational predictions to exper-

imental data is reviewed in work by Gavaghan2 and Bieniasz.3 Other approaches include

using quantitative relationships between features of the experimental current and reaction

parameters, for example in work by Zouraris,4 Bell5 and Laviron.6

When solving the inverse problem, in order to obtain good agreement between experimental

data and simulation, we have found that it is necessary to assume that there will be disper-

sion of the behaviour of the reaction occurring on the surface of the electrode.7 Dispersion

corresponds to an underlying distribution of certain parameter values; this is distinct from

an inferred parameter distribution as recovered, for example, by Bayesian methods,2 which

represents uncertainty about point values of parameters. Dispersion has been acknowledged

as a complicating factor in the analysis of surface-confined voltammetry experiments since
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at least the 1990s,8–10 and has been demonstrated and quantified for a range of systems with

multiple different methods. These studies have focused on dispersion in two key parame-

ters, the rate constant for electron transfer (k0) and the reversible potential (E0), which is

a measure of the thermodynamic driving force required for an electrochemical reaction.11–13

We refer to these two forms as kinetic and thermodynamic dispersion, respectively. The

aim of this paper is to provide a guide on the impact that dispersion can have

on the current output of a voltammetric experiment. To best illustrate these

concepts, we have focused primarily on the simplest possible case, that of a

surface-confined, reversible single-electron redox process and we show that for

this case, thermodynamic dispersion often has a more visible impact on the ex-

perimental signal. It should be noted that, for solution phase voltammetry, which we do

not analyse here, it is not possible to have a distribution in the E0 parameter.14

For a two electron catalytic oxidation reaction, Léger et al.15 showed that the presence

of dispersion in k0 could be detected by a change in the relationship between overpotential

and observed current, in a study of the H2-oxidising ability of a [NiFe]-hydrogenase. Since

this initial study, Léger and co-workers, in analysing the steady-state current of

various surface-confined biological macromolecules, have shown that incorporat-

ing kinetic dispersion is an essential element of the modelling process16,17. We

have therefore included an example of a simple surface-confined catalytic mech-

anism in our considerations.

With regards to a surface-confined one-electron reaction, Patil et al.13 detected dispersion in

the reversible, non-catalytic single electron-transfer chemistry of the protein azurin through

the addition of a Forster resonance donor that fluoresces when reduced, allowing for quan-

tification of the distribution of reversible potentials (as defined by the Nernst equation).13

This technique was extended in work by Salvedera et. al by recording fluorescence movies,
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such that the reversible potentials and rate constants of distinct parts of the electrode could

be determined.12 When these values were binned and plotted as a histogram, the resulting

appearance was used by Morris11 to suggest the true distribution of kinetic and thermo-

dynamic parameters that generated the observations12 were lognormal and normal respec-

tively1. This analysis has informed our choice of parameter distribution, but it

should be noted that other approaches to modelling kinetic dispersion choose

a different distribution, such as the log-uniform distribution, as in the work by

Léger et al15 and explored below.

The assumption that the redox-reactivity of all the subject molecules in the experiment

can be described by the same reaction parameter values (i.e. no dispersion) is just one of a

series of assumptions introduced to simplify the simulation of surface-confined voltammet-

ric experiments. Additional assumptions include the choice of isotherm18 and the theory

used to describe electron transfer.19 In terms of isotherm, the Langmuir isotherm is the sim-

plest, assuming non-interaction between individual chemical moieties, while other isotherms,

such as the Freundlich, Temkin and Frumkin isotherms include terms for the interaction of

these species, along with different descriptions for their adsorption behaviours. The rate of

electron transfer can be described by Butler-Volmer theory,20 Marcus theory21 or other quan-

tum approaches.22 While we only address the presence of dispersion in this piece of work, it

should be noted that all three assumptions have areas of conceptual overlap; for example,

the Temkin isotherm assumes a distribution of adsorption states, along with molecule self-

interaction, which could lead to dispersion-like behaviours. Consequently, the experimental

artefacts we ascribe to dispersion are likely the result of a highly complex surface chemistry.

We have focused on dispersion in this case as it has received more extensive attention in the

1A lognormal distribution of kinetic values can also be observed when attempting to solve the inverse prob-

lem and a logarithmic transform has been applied when non-dimensionalising the kinetic parameter. Nor-

mally distributed uncertainty about the dimensionless kinetic value would result in lognormally-distributed

uncertainty about the dimensional kinetic value. It should be noted that this effect is distinct from an

underlying spread of kinetic values, and could be observed even if the true distribution was a delta function.
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theoretical literature,11 with most models of voltammetry experiments assuming a Langmuir

isotherm and Butler-Volmer kinetics, although there are exceptions.22

When analysing surface-confined voltammetry data, obtaining the solution to the forward

problem when dispersion is incorporated is significantly more computationally taxing. In

addition, modelling the dispersion effects adds more degrees of freedom to the inverse prob-

lem due to the need to parameterise a probability distribution for each dispersed parameter,

resulting in a greater frequency of spurious results, due to becoming trapped in local minima.

Consequently, determining which form of dispersion is present (if at all), and the likely order

of magnitude for the required parameters, is an essential step in the process of solving the

inverse problem in reasonable time. The purpose of this paper is to communicate the effect

that dispersion of key parameters has on the current response in a range of surface-confined

voltammetry experiments, and to act as a reference for when the nature of the dispersion is

ambiguous, such that appropriate choices about where to include dispersion can be made.

The values of the dispersion parameters that we describe here are informed by both observa-

tions of experimental data,7 and a desire for clarity of demonstration. The interested reader

can explore the phenomenon further using our online simulation package.

In this work, we focus on the effect of including dispersion on three experimental tech-

niques; ramped Fourier transform alternating current voltammetry (FTACV), purely si-

nusoidal voltammetry (PSV) and direct current voltammetry (DCV), which are distin-

guished by the form of the potential-time input. The potential-time input for

DCV is a ”triangular” waveform, which increases linearly from a starting to a

reversal potential, then back down again. PSV uses a large-amplitude sinusoid,

and the potential-time input for FTACV is a combination of the linear ramp and

sinusoid of the other two techniques. Assuming the chemical reaction parameters for an

electrode film are independent of input potential, the current output from different voltam-
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metric protocols should be well described by one parameter vector, allowing for variation

introduced by temporal separation and artefacts peculiar to the specific protocol. Conse-

quently, if an inferred parameter vector describes one experiment well but not the others, this

suggests that the inferred parameters represent a local rather than the global minimum in

parameter space. We have specifically chosen these protocols as they have contrasting areas

of strength and weakness. The potential inputs of ramped FTACV and PSV both include

large-amplitude sinusoids, which means that the Faradaic current response to these inputs

is non-linear, resulting in harmonics of the frequency of the input sinusoid. These harmonics

can be individually selected by use of the Fourier Transform, and the higher harmonics are

largely free of the “background” non-Faradaic current from double-layer capacitance.20,23

The harmonics of ramped FTACV in particular are information rich, and highly sensitive to

dispersion. By contrast, PSV is a simpler technique that contains less information and is less

sensitive to dispersion, but is much faster to simulate than the ramped FTACV experiment,

by at least an order of magnitude.7 DCV takes approximately the same time to simulate as

PSV, and is included because of its widespread use amongst the electrochemistry commu-

nity. This paper builds on the basic theoretical work described previously,11 extending the

analysis to PSV and DCV, and including sensitivity information about the various dispersion

parameters.

Mathematical model

The main focus of this paper is the simplest possible experimental system, that of

a surface-confined reversible 1-electron redox reaction, with the chemical equa-

tion

Red
kox−−−⇀↽−−−
kred

Ox+ e–
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where the surface processes are assumed to be well-described by Butler-Volmer

kinetics and a Langmuir isotherm. We will briefly cover, in non-dimensional

terms, the equations predicting the resultant current. Expressions for the oxi-

dation and reduction rate constants take the form

kox(t) = k0 exp
(

(1− α)(Eapp(t)− I(t)Ru − E0)
)

, (1)

kred(t) = k0 exp
(

− α(Eapp − I(t)Ru − E0)
)

, (2)

where k0 is the rate constant, α is the symmetry factor, Eapp the applied potential,

I the current, Ru the uncompensated resistance and E0 the reversible potential.

Faradaic current can be expressed as the rate of change of the proportion of ox-

idised species dθ
dt
. Furthermore, the total current arising from a surface-confined

experiment can be expressed as the sum of capacitive and Faradaic current, such

that,

I = Cdl

(

dEapp(t)

dt
−Ru

dI(t)

dt

)

+ Γ

(

(1− θ)kox(t)− θkred(t)

)

(3)

assuming the current arising form double-layer capacitance (Cdl) is linear. The

Faradaic current is scaled by the electrode coverage of electroactive species, Γ.

In our previous work we have described how to obtain the dimensionless forms

and numerically solve these equations1, with the three different experimental proto-

cols of FTACV, PSV and DCV being modelled through changes in the terms describing the

applied potential. The equations used throughout this paper can be found in.1,20 To model

the dispersion of a subset of np of the parameters, we follow the procedure described below.

We assume that any parameter which is affected by dispersion no longer has a single fixed

value but instead is drawn from a probability distribution which captures the degree of the

dispersion. If we have np dispersed parameters in the model, then we assume that in any par-

ticular experiment, those np parameters are drawn from a joint probability φ(p1, p2, ..., pn).
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The total current recorded given the distribution is the expectation E[I(t, (p1, ..., pn))], which

we refer to as Idisp
11

Idisp =

∫

An

...

∫

A1

I(t, (p1, ..., pn))φ(p1, p2, ..., pn)dp1...dpn, (4)

where I(t, (p1, ..., pn)) is the simulated current I as a function of time and the np dispersed

parameters p1, p2, ..., pn. The range of the ith integral is represented as Ai. This integral

cannot be calculated analytically, and so we approximate it with numerical quadrature.

Numerical quadrature

We describe two numerical quadrature approaches here for a single parameter (i.e. the

calculation of E[I(t, p)]), but they can be easily combined for multiple integrals, as in the

expression in equation 4. The same principle can be applied to both methods; the function to

be integrated is evaluated at points over the range of the integral, and these evaluations are

weighted appropriately and summed. This is represented in figure 1, where, the distribution

has been partitioned in equally-spaced “bins”. The sum of the area of all bins (such as the

one filled in blue) is an approximation to the value of the integral.

Midpoint rule

The midpoint rule for the integral of a function f(x) is

∫ a

b

f(x)dx ≈ (b− a)f

(

b+ a

2

)

. (5)

In order to approximate the value of the expectation E[I(t, p)] using this rule, for a chosen

number of bins Nb, we use the expression

E[I(t, p)] ≈
Nb
∑

i=1

wiI

((

bi + bi−1

2

)

, t

)

, (6)

8



Figure 1: A representation of numerical integration of a Gaussian distribution

where the set of parameter values is b0, ..., bNb
and the weight wi is calculated using the

midpoint rule such that

wi = (bi − bi−1)f

(

bi + bi−1

2

)

, (7)

or alternatively

wi = F (pi)− F (pi−1), (8)

where f and F are the probability density and cumulative density functions for the parameter

distribution φ(p) respectively. As the support for many distributions is infinite, for numerical

purposes we define the parameter range to integrate over (i.e. p0, ..., pn) using the inverse

cumulative density function F−1, such that p0 = F−1(x) and pn = F−1(1− x). The area of

an integral over f defined by this range of values will be ∼ 1− 2x, and so we choose a value

for x that is small enough such that
∑n

i=1
wi ≈ 1.

Gauss-Hermite quadrature

When approximating E[I(t, p)] when the distribution φ(p) is Gaussian, we can use Gauss-

Hermite quadrature, which achieves better accuracy than the midpoint rule, and is valid
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for integrals over the range [−∞,∞]. By choosing the positions at which to evaluate the

function (the nodes), and weighting it appropriately, Gauss-Hermite quadrature can exactly

calculate the integrals of polynomial functions of degree 2n-1 in the form e−x2

f(x) using Nb

nodes, such that
∫

∞

−∞

e−x2

f(x)dx =

Nb
∑

i=0

wif(xi). (9)

To make this appropriate for the calculation of the expectation of a Gaussian distribution,

we write the calculation for E[I(t, p)] in the form

E[I(t, p)] =

∫

∞

−∞

1

σ
√
2π

exp

(

−(p− µ)2

2σ2

)

I(p, t)dp, (10)

where µ and σ are mean and standard deviation of the normal distribution. If we transform

p such that p = σ
√
2x+ µ, then

E[I(t, p)] =

∫

∞

−∞

1√
π
exp

(

− x2

)

I(σ
√
2x+ µ, t)dx, (11)

consequently, for a Hermite polynomial of degree Nb

E[I(t, p)] ≈
Nb
∑

i=1

1√
π
wiI(σ

√
2xi + µ, t)dx, (12)

where xi and wi are the zeros and appropriate weights of the Hermite polynomial of degree

Nb respectively, and the weights are calculated using the Golub-Welsch algorithm.

Results and Discussion

In order to show the effect each dispersion parameter has, we perform parameter scans where

all parameters are held constant except the one of interest. Although the effect observed

from this process may not be exclusive to the parameter in question (as other parameters

have the same effect), and there may be parameter regimes where the observed effect is less
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apparent, this process is the easiest way to gain intuition about the effects of the various pa-

rameters. Intuition about the approximate order of magnitude for the dispersion parameters

allows the experimentalist to constrain parameter space (for either heuristic or automatic

inference approaches). The more parameter space is constrained, the easier it is to find the

global optimum, as long as the constraint process has not, in fact, excluded this optimum.

In figures 2-4, we show the results of holding all parameters constant (as reported in table 1)

except the parameter named in the upper left hand corner of each plot, the value of which

is indicated. We have chosen this range of parameters as a compromise between clear visual

separation between different parameter values, and chemical realism. For this reason, the

parameters that contribute to the background current (the capacitance and uncompensated

resistance) are in the lower range of what would be observed in a typical voltammetry ex-

periment, and the surface coverage is in the higher range. The experimental parameters

are taken from a PSV experiment, performed on a glassy carbon electrode modified with a

bacterial cytochrome. The reversible potential parameters are from the parameterisation of

this same experiment. The kinetic parameters were chosen as a compromise between provid-

ing the “ideal” ramped harmonic appearance, and sensitivity to these parameters (all kinetic

distributions where the majority of the range is approaching or exceeding the reversible limit

will look identical). In the supplementary information, we have included equivalent plots for

the irreversible to quasi-reversible regime, (i.e. k0 = 1) for all three experiments, see figures

S1-S3. With regards to the choice of distribution, for the reversible potential E0, we use

a skewed Gaussian distribution (where a skew of zero is a regular Gaussian), and for the

rate constant k0 we use a lognormal distribution. The choice of a Gaussian and lognormal

distributions are informed by previous work.11,12 The skew parameter was included as obser-

vations of ramped FTACV data in our previous work implied the presence of an asymmetric

distribution of E0 values,7 which for normally distributed values indicates the presence of

skew. Although other parameters are suspected of being dispersed, such as the symmetry

factor α7 and the uncompensated resistance, we neglect them here due to space constraints.
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For each subgroup of plots, the input parameter distribution is shown on the top, and the

resultant current-potential output is shown below.

For the the ramped experiment, we show harmonics 3, 5 and 7 plotted against time instead

Table 1: Simulation parameters used to generate plots in the main body of this paper. For
some experimental parameters, the simulation value is different for each technique, and is
written in the following order: ramped FTACV/PSV/DCV, with a * indicating that the
parameter is not used in the simulation

Parameter Symbol Value

Start potential Estart (V) -0.5
Reverse potential Ereverse (V) 0.1

Reversible potential E0 (V) -0.25
Rate constant k0(s

−1) 100
Uncompensated resistance Ru (Ω) 0.0
Double-layer capacitance Cdl (F) 1.0E-5

Surface coverage Γ (mol cm−2) 1.0E-10
Symmetry factor α 0.5

Scan rate v (V s−1) 0.022/*/1
Potential frequency ω (Hz) 8.881/8.94/*

Phase Phase (rads) 0.0/3π
2
/*

Potential amplitude ∆E (V) 0.15/0.3/*
Sampling rate (s−1) 400.0
Electrode Area Area (cm2) 0.07

Reversible potential mean E0µ (V) -0.25
Reversible potential standard deviation E0σ (V) 0.05

Reversible potential skew E0κ 0.0
Rate constant shape log(k0(s

−1))σ 0.5
Rate constant scale log(k0(s

−1))µ 100

of a current-potential plot, as the harmonics are more sensitive to dispersive effects, and are

easily interpretable. In terms of the thermodynamic distribution parameters, the value of the

mean of the distribution E0µ affects the position of the harmonic relative to the potential,

and the magnitude of the harmonic increases the closer the value of the E0µ is to the reverse

potential. The standard deviation of the distribution E0σ affects the both the width and

magnitude of the harmonic, with higher harmonics being affected more strongly. The skew-
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ness of the distribution E0κ has a slightly more complex effect — the skewed distributions

are less broad than the unskewed distribution (i.e. E0κ = 0), which accounts for why the

magnitude of each skewed harmonic is larger than for the unskewed harmonic. In addition,

the presence of skew means that the position of the harmonic within the timeseries is a

function of the order of the harmonic, and that higher-order harmonics have an asymmetric

shape relative to an unkewed distribution.

The effect of the parameters for the lognormal k0 distribution on the simulation output

are less immediately obvious. Increasing the scale parameter (which is the mean of the nat-

ural logarithm of k0, i.e. log(k0)µ) largely effects the resolution of the individual harmonics,

with the higher harmonics being more sensitive to this effect; this is especially apparent in

the 7th harmonic, where the peaks of the green plot are less well-resolved than the blue and

orange plots, which have a higher log(k0)µ value. As expected, this is similar to the effect

of altering the value of k0 as a point value. The log(k0)σ parameter, which also affects the

width of distribution has the effect of reducing the magnitude of the harmonics, where the

higher harmonics are also more strongly affected. This is distinct from the E0σ parameter,

which reduces and broadens the harmonics.
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Figure 2: Plots of simulated ramped FTACV harmonics vs time , with dispersion parameters
for E0 — mean, standard deviation and skew (E0µ,E0σ,E0κ) and k0 — shape and scale
(log(k0)µ, log(k0)σ) where the parameter being varied is in the top left hand corner. The
resulting distribution, where f(parameter) is the probability density, is shown at the top of
the plot, and the 3rd, 5th and 7th harmonics shown. The colour of the harmonic corresponds
to the colour of the distribution. Simulation parameters are found in table 1. For all cases,
the kinetics of the reaction are in the reversible regime.
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For the PSV case (figure 3), we assess the effect of each parameter on the current-potential

plots, instead of the harmonics. This is because the harmonics of the PSV timeseries are not

as amenable to immediate visual interpretation as the harmonics of the ramped experiment.

The effects of the various thermodynamic and kinetic dispersion parameters are similar for

PSV and DCV (figure 4), which is not unexpected. The reason for this similarity is that the

PSV potential input is highly similar to multiple cycles of the DCV potential input, except

without a discontinuity at the switching potential, and the fact that the PSV input elicits

a non-linear current response. With this similarity in mind, we note that the effect of each

parameter controlling the shape of the E0 distribution on both the PSV and DCV current-

potential outputs is as described for the ramped FTACV harmonics, namely E0µ alters the

position of the reductive and oxidative peaks, E0σ broadens and reduces the magnitude of

these peaks, and E0κ affecting the position and amplitude of the peak. However, the effect

of the k0 distribution parameters are different for ramped-FTACV harmonics and PSV/DCV

current-potential plots. For the PSV plots, the log(k0)µ parameter also exerts a similar effect

to the one described for the ramped harmonics, i.e. similar to the effect of k0 as a point value.

The exact nature of this effect depends upon which regime (irreversible, quasi-reversible or

reversible) the dimensionless k0 value is in. In more detail, for current-potential PSV plot

of a completely reversible system, the oxidative and reductive peaks will be stacked on top

of one another. As the kinetics becomes progressively slower, the relative peak position will

start to diverge, along with peak broadening and a reduction in maximum amplitude. The

parameter log(k0)σ affects the gradient of the current returning from a Faradaic peak to

background current. As the effects of the kinetic parameters are similar for both the DCV

and PSV timeseries, for the DCV case (figure 4) we also show trumpet plots — this method,

as introduced by Laviron,6 plots the potential value at which the oxidative and reductive

peaks are observed, against the base 10 logarithm of the scan rate, and is used for inferring

the kinetic value in DCV experiments. The log(k0)σ parameter slightly reduces the gradient

of the oxidative and reductive curves. The log(k0)µ parameter alters the scan rate at which
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the locations for the oxidative and reductive peaks start to diverge.

The descriptions of all of the effects of these parameters are caveated with the fact that

varying other parameters used in the simulation of the current response can have similar

effects. Obtaining an understanding of the effects and interactions of the various parameters

requires iteratively comparing multiple simulations. As this is not feasible in the static for-

mat of a journal article, we have developed an online interactive application for the 1-electron

redox case. This can be found here, and allows the user to simulate the three experiments

described in this paper, with or without dispersion, and compare multiple different simula-

tions. The app can also be run locally using the source code hosted in the associated Github

repository.

16



Figure 3: Parameter scans for a PSV current-potential plot, where the parameter distribu-
tions under investigation are plotted in the top panel of each plot subgroup. The remaining
simulation parameters can be found in table 1.
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Figure 4: Parameter scans for a DCV current-potential plot (left), and trumpet plots (right)
which plot the potential-values of the maximum and minimum current peaks against the base
10 logarithm of the scan rate. The inset plot in the right hand column is a current(µA)-
potential(V) plot of a DCV simulation using a scan rate from the middle of the range defined
in the x-axis of the containing plot. The remaining simulation parameters can be found in
table 1. 18



Distinguishing different forms of dispersion

Dispersion is predominantly relevant when solving the inverse problem, that is

when attempting to fit experimental data. Naturally, ascertaining whether or

not dispersion is actually present is an essential first step in this process, as

the spurious inclusion of dispersive effects increases the chances of being mis-

led. The risk is that a “good fit” could be achieved with parameters that do

not reflect the underlying chemical reality, and that a proposed solution only

represents a local, rather than the global, minimum in parameter space. With

this in mind, in figure 5, we show the effects of dispersion for three cases, E0, k0 and a

combination of the two, as shown in the legend, relative to the non-dispersed case, which is

marked as “None”. Distinguishing between purely thermodynamic and purely kinetic dis-

persion is relatively simple, at least in the ramped case, as, while both result in a reduction

in the expected magnitude of the harmonic (with the higher harmonics being more sensitive

to this effect), only E0 broadens it. The difficulty lies in resolving a combination of E0 and

k0 dispersion from pure E0 dispersion, as the latter dominates. This is also complicated by

the fact that the reduction in harmonic magnitude is also an effect of other parameters, such

as the uncompensated resistance. As before, for the simple reaction model under investi-

gation, both the PSV and DCV cases are less sensitive to the presence of dispersion and

more challenging to interpret. For DCV, instead of showing current-potential plots for cases

involving kinetic dispersion, we have used trumpet plots. Here, there is a slight difference in

gradient between the kinetically-dispersed, thermodynamically dispersed and non-dispersed

cases. In figure S4, we show that when k0 is highly reversible, the presence of k0 dispersion is

identical to the non-dispersed case, and in figure S5 we show that the effect of k0 is greatest

relative to the non-dispersed case in the irreversible and quasi-reversible regimes. This is

because the timeseries is more sensitive to changes in k0 in these regimes, and consequently

a distribution of values has a greater effect. Consequently increasing either the scan rate

(for DCV) or the input frequency (for ramped FTACV and PSV) will therefore make the
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results of the experiment more sensitive to kinetic dispersion. It is possible to quantify this

by assessing the distance between the dispersed and non-dispersed cases, and selecting the

input frequency that delivers the greatest amount of distance, an example of which we show

in figure S9. It should also be noted that a separation between thermodynamic and kinetic

dispersion is somewhat arbitrary. Marcus theory predicts that the thermodynamics of an

electron transfer reaction will impact the rate constant, and consequently we should expect

that presence of dispersion in one parameter will then imply dispersion in the other parame-

ter. The separation is only a valid approximation when one of the dispersed parameters can

be assumed to be a point value with reasonable accuracy, as is the case with low values of

the E0σ parameter, or a distribution of k0 values which are largely reversible.

Given this analysis, our proposal for using these results to distinguish different forms of

dispersion is to compare experimental data against non-dispersed simulations, and select

which dispersion parameter it is necessary to include in the model based on the observed

discrepancy. Furthermore, it is our experience that the best medium for this comparison is

the ramped harmonics. If it is possible to obtain a good fit between the lower-order ramped

harmonics, but the simulated magnitude for the higher harmonics is too large, and the ex-

perimental harmonics are broader than predicted by the simulation, then it is likely that E0

dispersion is present. If it is the case that the discrepancy is only in the magnitude, then the

dispersion is likely kinetic, as long as the experimentalist is confident that the uncompensated

resistance is not causing this effect. This method requires non-dispersed simulations that are

a reasonably good fit to existing experimental data. These simulations could be generated

using our existing workflows for automatic fitting processes, as laid out in more detail in

previous work.2 Because the simulation of a non-dispersed current is N
np

b times faster than

simulating dispersed current (i.e. the number of bins or nodes to the power of the number

of dispersed parameters), the time impact of the additional non-dispersed fitting attempts

is relatively light. These non-dispersed simulations could be generated heuristically, but this
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comes with all the attendant issues with heuristic fitting, as discussed in the commentary

by Bond.14

In terms of our own experience, we have found that when solving the inverse

problem for single-electron systems of this type there is a clear contribution from

thermodynamic dispersion, but that the inclusion or absence of kinetic dispersion

does not improve the fits to the data. This is not to say that kinetic dispersion is

not taking place, rather that in the experimental systems we have investigated,

our analysis of voltammetric data has not required kinetic dispersion to obtain

acceptable fits to the data. This assertion is supported by our observations in

this paper, specifically the limited effect that kinetic dispersion has on the ap-

pearance of the experimental current. It should be noted that our inability

to detect kinetic dispersion is in contrast to other established literature.16,17 As

described in the introduction, in Légers work on analysing catalytic current in

the steady state, analysis of the voltammetric data heavily emphasises kinetic

dispersion. A possible reason for this contradiction is the difference in com-

plexity of mechanism analysed; we show that, under certain parameter regimes,

the effect of kinetic dispersion is more apparent when the current is simulated

with a model that incorporates catalytic chemistry (see figures S6 and S7 in the

supplementary information). In addition, the choice of distribution of k0 will

also have some affect on the modelled effects. We demonstrate this in figure S8,

which shows that because a log-uniform k0 distribution has higher density for

lower values of k0 than the corresponding lognormal k0 distribution, consequently

current resulting from the former distribution has a more irreversible character

than the latter.
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Figure 5: Comparison of different forms of dispersion for ramped FTACV, PSV and DCV.
Each column represents a different form of dispersion, compared against the non-dispersed
case (labelled as “None”). From left to right, the dispersed parameters are E0, k0 and a
combination of the two, as listed in the legend of the middle row. All parameters are as in
table 1. Harmonics were generated without the usage of the Hann window
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Figure 6: Simulated and experimental harmonics 3-6 from ramped-FTACV current. The left
hand side was simulated using dispersion (using the ramped parameters described in table
1 in previous work7). On the left, simulations were generated by setting the E0µ value as
the E0 value, and reducing the value of the surface concentration Γ by half.

We conclude with a demonstration of determining the presence of dispersion from ex-

perimental data. When fitting PSV data,7 we found could fit the data without including

dispersion, but when comparing the resultant ramped-FTACV simulation to the data, we

discovered a discrepancy between experimental and simulated harmonics that could only be

explained by the presence of thermodynamic dispersion. We show this in figure 6; on

the left is a fit to the ramped harmonics generated using thermodynamic dis-

persion. On the right, the simulation is generated without dispersion. For the

non-dispersed case, although there is a reasonably good fit to the third harmonic,

the amplitudes of experimental higher harmonics decrease more rapidly than is

predicted by the simulation, and in addition, the non-dispersed harmonic peaks

are insufficiently broad.

Supporting Information Available

Figures 2-4 are repeated with lower values of the kinetic parameter. Figures 5 is repeated
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with the kinetic parameter in both totally reversible and irreversibly regimes. We also in-

clude a figure on maximising the discrepancy between dispersed and non-dispersed systems

by changing the frequency, and show modelling approaches where kinetic dispersion has a

more noticeable effect
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(15) Léger, C.; Jones, A. K.; Albracht, S. P.; Armstrong, F. A. Effect of a dispersion of

interfacial electron transfer rates on steady state catalytic electron transport in [NiFe]-

hydrogenase and other enzymes. The Journal of Physical Chemistry B 2002, 106,

13058–13063.

(16) Fourmond, V.; Baffert, C.; Sybirna, K.; Lautier, T.; Abou Hamdan, A.; Dementin, S.;

Soucaille, P.; Meynial-Salles, I.; Bottin, H.; Léger, C. Steady-state catalytic wave-shapes
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