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The study of free-space quantum communications requires tools from quantum information theory, optics,

and turbulence theory. Here we combine these tools to bound the ultimate rates for key and entanglement

distribution through a free-space link, where the propagation of quantum systems is generally affected by

diffraction, atmospheric extinction, turbulence, pointing errors, and background noise. Besides establishing

ultimate limits, we also show that the composable secret-key rate achievable by a suitable (pilot-guided and

postselected) coherent-state protocol is sufficiently close to these limits, therefore showing the suitability of

free-space channels for high-rate quantum key distribution. Our paper provides analytical tools for assessing the

composable finite-size security of coherent-state protocols in general conditions from the standard assumption

of a stable communication channel (as is typical in fiber-based connections) to the more challenging scenario of

a fading channel (as is typical in free-space links).

DOI: 10.1103/PhysRevResearch.3.013279

I. INTRODUCTION

In a future vision where quantum technologies are expected

to be developed on a large scale, hybrid and flexible architec-

tures represent a key strategy for their success [1]. Quantum

communications will need to involve mixed scenarios where

fiber connections, good for fixed ground stations, are merged

and interfaced with free-space links, clearly more suitable

for mobile devices. Currently, fiber-based implementations

are well studied, but free-space quantum channels are clearly

underdeveloped from the point of view of theoretical analysis,

both in terms of ultimate limits and rigorous security assess-

ment. Indeed, they require a more demanding study due to

the presence of many effects, such as diffraction, atmospheric

extinction, turbulence effects, pointing errors, etc.

In this paper, we consider all these aspects by combining

tools from quantum information theory [2,3], optics [4–7],

and turbulence theory [8–11]. In this way, we investigate the

ultimate limits of free-space quantum communications, estab-

lishing upper and lower bounds on the maximum number of

secret key bits (and entanglement bits) that can be shared by

two remote parties. Such analysis explicitly accounts for the

fading nature of the free-space channels together with their

typical background noise. Our treatment is mainly developed

for the relevant regime of weak turbulence but we also discuss

how to extend the results to stronger fluctuations.

Besides investigating the ultimate limits achievable in free-

space quantum communications, we also analyze the practical

secret-key rates that are achievable in such conditions by
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continuous-variable (CV) protocols of quantum key distribu-

tion (QKD) [12]. To this aim, we develop a general theory for

assessing the composable finite-size security of coherent-state

protocols [13,14], starting from the standard assumption of a

stable communication channel (e.g., as typical in fiber-based

connections) to considering the more challenging scenario

of a free-space fading channel, whose transmissivity rapidly

fluctuates.

In particular, we have designed a coherent-state protocol,

aided by pilot pulses and a suitable postselection procedure,

which is able to achieve high secret-key rates in conditions

of weak turbulence, within one order of magnitude of the

ultimate bounds. In this way, we show that generally turbulent

free-space channels are indeed able to support high-rate QKD,

with immediate consequences for wireless quantum commu-

nications.

The paper is structured as follows. In Sec. II, we provide

the general bounds and capacities for free-space quantum

communications. In Sec. III, we provide a general formulation

of composable finite-size security for CV-QKD. In Sec. IV,

we extend this formulation to free-space, showing that suit-

ably high key rates can indeed be achieved. Finally, Sec. V is

for conclusions.

II. BOUNDS FOR FREE-SPACE QUANTUM

COMMUNICATIONS

A. Diffraction-limited bounds

Consider two remote parties separated by distance z, one

acting as a transmitter (Alice) and the other as a receiver

(Bob). They are located approximately at the same altitude

h on earth’s surface. We consider free-space quantum com-

munication mediated by a quasimonochromatic bosonic mode

(�λ-nm large and �t-sec long) represented by a Gaussian

beam, with carrier wavelength λ, curvature R0, and field spot
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size w0 [5,6,15,16]. The beam is prepared by the transmitter

(whose aperture is sufficiently larger than w0) and directed

toward the receiver, whose aperture is circular with radius aR.

Due to free-space diffraction, the receiver gets a beam whose

spot size is increased to

w
2
z = w

2
0[(1 − z/R0)2 + (z/zR)2], (1)

where zR := πw
2
0λ

−1 defines the Rayleigh range. Because

the receiver only collects a portion aR of the spread beam,

there is a diffraction-induced transmissivity associated with

the channel, given by

ηd = 1 − e−2a2
R/w2

z . (2)

See Appendix A for a brief review on the basic theory of free-

space propagation with Gaussian beams.

Let us apply the point-to-point repeaterless Pirandola-

Laurenza-Ottaviani-Banchi (PLOB) bound [17] �(x) :=
− log2(1 − x) to ηd, which provides the secret key capacity

and the two-way entanglement distribution capacity of the

pure loss channel with transmissivity ηd. Then, we find that

the maximum rate K of secret key bits that can be distributed

per transmitted mode through the free-space channel must

satisfy

K � U (z) := 2

ln 2

a2
R

w
2
z

. (3)

(See Appendix B for an explicit proof.) Let us stress that,

because entanglement bits (or ebits) are a specific type of

private bits, this inequality also provides an upper bound for

the maximum rate of ebits per mode E � K that is achievable

by protocols of entanglement distribution. The diffraction-

limited bound U (z) is simple, depending only on the ratio

between the receiver’s aperture aR and the spot size of the

beam at the receiver wz. Furthermore, it is not restricted to the

far field (z ≫ zR).

We can check that U (z) is maximized by a focused

beam (R0 = z), providing Ufoc(z) = 2 f0R/ ln 2, where f0R :=
[πw0aR/(λz)]2 is the Fresnel number product of the beam

and the receiver. However, this solution is typically restricted

to short distances. A more robust solution, suitable for any

distance, is to employ a collimated beam (R0 = ∞). In such a

case, we write the bound

Ucoll(z) = 2

ln 2

a2
R

w
2
0

[
1 + z2/z2

R

] . (4)

This formula is simple but may be too optimistic, not

including other important physical aspects of free-space com-

munication. We progressively include them below.

B. Atmospheric extinction and setup efficiency

Besides free-space geometric loss ηd due to diffraction,

there are other inevitable effects to consider which include

atmospheric extinction. In fact, while a Gaussian beam is

propagating through the atmosphere, it is subject to both

absorption and scattering. For a fixed altitude h above the

ground/sea level, the overall atmospheric transmissivity is

modeled by the Beer-Lambert extinction equation

ηatm(h, z) = exp[−α(h)z], (5)

where z is the path length in the atmosphere, and α(h) =
N (h)σ is the extinction factor [7, Chap. 11]. Here N (h) is

the mean number of particles per unit volume at altitude h,

and σ = σabs + σsca is the total cross section associated with

molecular and aerosol absorption (σabs) and scattering (σsca)

[11, Chap. 2]. In general, both Rayleigh and Mie scattering

give contributions to σsca.

Assuming a standard model of atmosphere, one can write

its mean density at altitude h as [18]

N (h) = N0 exp(−h/h̃), (6)

where h̃ = 6600 m and N0 = 2.55 × 1025 m−3 is the density

at sea level. As a result, we may similarly write

α(h) = α0 exp(−h/h̃), (7)

where α0 ≃ 5 × 10−6 m−1 is a good estimate of the extinction

factor at sea level for the optical wavelength λ = 800 nm (see

also Sec. III.C of Ref. [19]).

Besides extinction, there is also a fixed constant contribu-

tion associated with the local transmissivities of the setups.

At the receiver, we may have nonunit transmissivity ηeff as

a result of fiber couplings and limited quantum efficiency of

the detector. In a realistic implementation, one may reach

values of ηeff ≃ 0.5 [20,21]. At the transmitter, there may be

an additional loss ηT due to the diffraction caused by the

finite radius aT of its aperture. For the sake of simplicity, in

our treatment we assume that aT � 2w0, so we can safely

set ηT ≃ 1 (see Appendix A 2). Small deviations from this

assumption can be considered by explicitly reinserting param-

eter ηT into the model. In our study, we generally assume the

worst-case scenario where ηeff may cause leaks to a poten-

tial eavesdropper (suitable relaxations of this assumption into

scenarios of trusted loss/noise for the receiver are discussed

afterward).

Atmospheric extinction and setup efficiency cause several

modifications to the general diffraction-limited bounds dis-

cussed in Sec. II A above. In fact, we need to consider the

combined transmissivity ηdηatmηeff, which leads to the revised

upper bound

K � − log2(1 − ηdηatmηeff) (8)

= − log2

[
1 − ηeff

(
1 − e−2a2

R/w2
z

)
e−α(h)z

]
(9)

≃ 2ηeff

ln 2

a2
R

w
2
z

e−α(h)z, (10)

where the latter expansion is obtained in the far field, so we

can use ηd ≃ 2a2
R/w2

z ≪ 1 and the linear approximation of the

PLOB bound �(x) ≃ x/ ln 2.

It is important to remark that the combined transmissivity

ηdηatmηeff still misses an important aspect: the process of

channel fading induced by atmospheric turbulence and point-

ing errors, a process that was pioneered in seminal works from

the late ’60s and early ’70s [22–24].

C. Turbulence and pointing errors

1. Broadening and wandering of the beam

Assuming weak turbulence, we can identify physical pro-

cesses with different timescales [25]. On a fast timescale, we

013279-2
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have the broadening of the beam waist due to the interaction

with smaller turbulent eddies; for this reason, wz becomes a

larger short-term spot size wst. On a slow timescale, we have

the deflection of the beam due to the interaction with the larger

eddies. This causes the random Gaussian wandering of the

beam centroid with variance σ 2
TB. Its dynamics is of the order

of 10 − 100 ms [26], which means that it can be resolved by

a sufficiently fast detector (e.g., with a realistic bandwidth of

100 MHz). Pointing errors from jitter and imprecise tracking

also cause centroid wandering with a slow timescale. For a

typical 1 μrad error at the transmitter, it contributes with a

variance σ 2
P ≃ (10−6z)

2
, so the centroid wanders with total

variance σ 2 = σ 2
TB + σ 2

P . The characterization of wst and σ 2
TB

needs specific tools from turbulence theory that we introduce

below.

For a beam with wave number k = 2π/λ and propagation

distance z, one defines the spherical-wave coherence length

[25, Eq. (38)],

ρ0 =
(
0.548k2C2

n z
)−3/5

, (11)

where C2
n is the refraction index structure constant (measuring

the strength of the fluctuations in the refraction index caused

by spatial variations of temperature and pressure). Parameter

C2
n is typically described by the Hufnagel-Valley (H-V) model

of atmospheric turbulence [27,28] (see Appendix C for de-

tails). For an horizontal path, the structure constant takes a

fixed value which depends on the specific altitude, besides the

time of day and weather conditions. In particular, its value

is typically larger during the day, meaning that the effects of

turbulence are more pronounced for daytime operation. For

slightly slant paths, it is a good approximation to average C2
n

over the various altitudes or, alternatively, to take its highest

value along the path, typically at the lowest altitude. (In our

following numerical investigations, we assume a horizontal

path with h = 30 m.)

Then, the regime of weak turbulence can be expressed by

the condition

z � k[min{2aR, ρ0}]2 (12)

or, alternatively, it can be more stringently expressed in terms

of the Rytov parameter as

σ 2
Rytov = 1.23C2

n k7/6z11/6 < 1. (13)

For weak turbulence and setting φ := 0.33(ρ0/w0)1/3, we

may write the analytical approximations [29]:

w
2
st ≃ w

2
z + 2

(
λz

πρ0

)2

(1 − φ)2, σ 2
TB ≃ 0.1337λ2z2

w
1/3
0 ρ

5/3
0

. (14)

These analytical expressions are rigorous for φ ≪ 1 and

represent very good approximations for ρ0/w0 < 1. For

ρ0/w0 � 1, they need to be replaced by numerical estimates

(see Appendix C for details). For ρ0/w0 ≫ 1, σ 2
TB is negli-

gible and w
2
st is equal to the long-term spot size w

2
lt = w

2
z +

2[λz/(πρ0)]2 [25]. Let us also note that, in the limit of negli-

gible turbulence C2
n → 0, we have ρ0 → ∞. In such a case,

Yura’s analytical expansions are just replaced by σTB ≃ 0

and wlt ≃ wst ≃ wz (which all come from the collapse of the

FIG. 1. Free-space communication from a transmitter (Tx) to a

receiver (Rx) separated by distance z. The transmitter generates a

Gaussian beam with spot size w0 and mean number of photons n̄T .

The propagation of the beam is affected by diffraction, atmospheric

extinction ηatm, and turbulence/pointing errors, so its short-term

spot-size wst is randomly deflected by r from the aperture center of

the receiver, with an associated transmissivity ηst(r). The beam is

also affected by an additional attenuation, given by the efficiency ηeff

of the receiver. In total, transmitter and receiver are connected by an

instantaneous lossy channel with transmissivity τ (r) = ηst(r)ηatmηeff

as in Eq. (17). Besides loss, we also consider noise. In particular,

thermal noise n̄B is collected by the field of view of the Rx and

further noise n̄ex may be locally generated by setup imperfections. As

a result, the detector is hit by n̄R = τ (r)n̄T + n̄ mean photons whose

n̄ = ηeffn̄B + n̄ex are due to thermal noise.

long-term spot size w
2
lt = w

2
st + σ 2

TB into its diffraction com-

ponent w
2
z ).

2. Incorporating short-term effects and deflection

The first mathematical modification induced by turbulence

is that the diffraction-limited transmissivity ηd needs to be

replaced by a more general expression ηst in terms of the

short-term waist wst, i.e.,

ηst = 1 − e−2a2
R/w2

st ≃ 2a2
R

w
2
st

:= ηfar
st , (15)

where the expansion is valid in the far field (z ≫ zR). The new

loss parameter

η := ηstηatmηeff (16)

represents the maximum value of the link transmissivity when

the beam centroid �xC is perfectly aligned with the center �xR of

the receiver’s aperture.

Because the beam centroid wanders following a Gaussian

probability with variance σ 2, the actual instantaneous value of

the transmissivity varies over time and can only be � η. This

leads to the second modification associated with the fading

process: The maximum transmissivity η needs to be replaced

by a distribution P0(τ ) of instantaneous transmissivities τ �

η. Here we first connect the instantaneous transmissivity τ to

the deflection value r := ‖�xC − �xR‖ � 0; we will then super-

impose the random walk in r to describe the fading process

affecting τ (discussed in the next subsection).

As also depicted in Fig. 1, for each value of the deflection

r, there is an associated transmissivity

τ (r) = ηst(r)ηatmηeff, (17)

where ηst(r) accounts for the misalignment and reads

ηst(r) = e
− 4r2

w
2
st Q0

(
2r2

w
2
st

,
4raR

w
2
st

)
. (18)
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In the expression above, the factor Q0(x, y) is an incomplete

Weber integral [30],

Q0(x, y) := (2x)−1ex

∫ y

0

dt te−t2/4xI0(t ), (19)

where the notation In denotes a modified Bessel function of

the first kind with order n. Note that Eq. (18) is obtained by

adapting a previous result [31, Eq. (D2)].

Following Ref. [31], we have that ηst(r) can be well-

approximated by the analytical expression

ηst(r) ≃ ηst exp
[
−
( r

r0

)γ ]
, (20)

where γ and r0 are shape and scale (positive) parameters,

given by the following functionals:

γ = 4ηfar
st 
1

(
ηfar

st

)

1 − 
0

(
ηfar

st

)
[

ln
2ηst

1 − 
0

(
ηfar

st

)
]−1

, (21)

r0 = aR

[
ln

2ηst

1 − 
0

(
ηfar

st

)
]− 1

γ

, (22)

with 
n(x) := exp (−2x)In(2x). As a result, combining

Eqs. (17) and (20), we may write

τ (r) = η exp
[
−
( r

r0

)γ ]
. (23)

3. Incorporating beam wandering

Beam wandering is modeled by treating the position of

the centroid as a stochastic variable, which can be taken to

be Gaussian [32] with variance σ 2 around the center of the

receiver’s aperture, where σ 2 is the sum of two independent

contributions: the variance σ 2
TB due to large-scale turbulence

and the variance σ 2
P due to pointing error. In general, one

may also assume that the wandering is around an average

deflection point at a nonzero distance d from the center of

the receiver’s aperture. For the sake of simplicity, here we

consider the optimal working condition of d = 0, which can

always be realized by means of sufficiently fast adaptive

optics.

The Gaussian random walk around the receiver’s center

induces a Weibull distribution for the deflection r, expressed

by the zero-mean density function:

PWB(r) = r

σ 2
exp

(
− r2

2σ 2

)
. (24)

In turn, the Weibull distribution over r induces a correspond-

ing probability density for τ = τ (r), given by

P0(τ ) = r2
0

γ σ 2τ

(
ln

η

τ

) 2
γ
−1

exp

[
− r2

0

2σ 2

(
ln

η

τ

) 2
γ

]
, (25)

as also discussed in Appendix D.

The random fluctuation of the effective transmissivity τ

creates a fading channel from transmitter to receiver that can

be described by the ensemble E := {P0(τ ), Eτ }, where the

lossy channel Eτ with transmissivity τ is randomly selected

with probability density P0(τ ). Using the convexity properties

of the relative entropy of entanglement (REE) [33–35] over an

ensemble of channels as in Ref. [17, Eq. (17)], we can bound

the secret key capacity of the fading channel E by means of

the following average:

K �

∫ η

0

dτ P0(τ )�(τ ) := B(η, σ ), (26)

where �(τ ) = − log2(1 − τ ) is the PLOB bound associated

with the instantaneous channel Eτ .

The integral in Eq. (26) can be simplified by working with

the variable ln(η/τ ) and then solving by parts. In this way, we

find that the maximum secret key rate achievable through the

free-space channel is bounded by

K � B(η, σ ) = −�(η, σ ) log2(1 − η), (27)

where the correction factor � is given by

�(η, σ ) = 1 + η

ln(1 − η)

∫ +∞

0

dx
exp

(
− r2

0

2σ 2 x2/γ
)

ex − η
. (28)

The formula in Eq. (27) is our main result: It bounds the secret

key capacity K and the entanglement-distribution capacity

E of a free-space lossy channel E affected by diffraction,

extinction, setup loss, and fading, the latter being induced by

turbulence and pointing errors.

We can further simplify the upper bound B(η, σ ) for high

loss η ≪ 1. In fact, in such a case, we can reduce the �

correction and write the approximate bound:

B(η, σ ) ≃ η
(η, σ )

ln 2
, (29)


(η, σ ) := 1 −
∫ +∞

0

dx exp

(
− r2

0

2σ 2
x2/γ − x

)
. (30)

Note that the condition η ≪ 1 is not necessarily achieved in

the far field, because η = ηstηatmηeff and the factors ηatmηeff

may decrease the overall value of the transmissivity already

in the near field. In the far field (z ≫ zR), we may use both

η ≪ 1 and the expansion ηst ≃ 2a2
Rw

−2
st , so we can write

B(η, σ ) ≃ ηatmηeff

ln 2

2a2
R

w
2
st


(η, σ ). (31)

In our model above, the free-space channel E is an ensem-

ble {P0(τ ), Eτ } of instantaneous pure-loss channels Eτ with

probability P0(τ ). For all these channels, the upper bound

�(τ ) is achievable by their (bosonic) reverse coherent in-

formation [36,37], which corresponds to the optimal rate

of entanglement distribution protocols assisted by one-way

classical communication (see Appendix E for details). Aver-

aging over P0(τ ) implies that the upper bound in Eq. (27) is

achievable by these entanglement distribution protocols and,

therefore, we may write E = K = −� log2(1 − η), where

E � K is the entanglement distribution capacity of the link.

In conclusion, as long as we can neglect thermal noise and

consider a pure-loss fading process, the bound in Eq. (27)

represents both the secret-key and entanglement distribution

capacity of the free-space link. In particular, note that the

formulas in Eqs. (27) and (29) have a clear structure. They are

given by the capacity − log2(1 − η) ≃ η/ ln 2 achievable with

a perfectly aligned link with no wandering, multiplied by a

free-space correction factor which accounts for the wandering

effects (� ≃ 
).
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One can check that, with the assumptions of negligible

turbulence and pointing error (σ ≃ 0 and ηst ≃ ηd), we have

� ≃ 1 in Eq. (28), and Eq. (27) reduces to Eq. (8). If we

further assume no atmospheric extinction and unit setup ef-

ficiency, Eq. (27) reduces to Eq. (3) which only accounts for

free-space diffraction.

D. Thermal noise

The quantity −� log2(1 − η) in Eq. (27) provides an upper

bound even in the presence of thermal noise. The reason is

because any instantaneous thermal-loss channel Eτ,n̄ adding a

mean number of photons n̄ can be written as a decomposition

of a pure-loss channel Eτ followed by a suitable additive-

Gaussian noise channel [3]. Because the PLOB bound � is

based on the REE, it is monotonic over such decompositions,

meaning that its value �(τ, n̄) computed over Eτ,n̄ cannot

exceed its value �(τ ) over Eτ . Thus, the loss-based upper

bound in Eq. (27) is still valid in the presence of thermal

noise (no matter if this noise is trusted or untrusted). However,

it is no longer guaranteed to be achievable. For this reason,

we derive a tighter upper bound and a corresponding lower

bound (technical details about the following derivations are in

Appendix F).

Assume that the receiver collects a nontrivial amount of

thermal noise which couples into the output mode. The natural

source is the brightness of the sky B
sky

λ which varies between

≃ 1.5 × 10−6 and ≃ 1.5 × 10−1 W m−2 nm−1 sr−1, from

clear night to cloudy daytime [38] (and assuming that the

field of view does not include the moon or the sun). For a

receiver with aperture aR, angular field of view �fov, and using

a detector with time window �t and spectral filter �λ around

λ, the number of background thermal photons per mode is

given by [20,38]

n̄B = πλŴR

hc
B

sky

λ , ŴR := �λ�t�fova2
R, (32)

where h is Planck’s constant and c is the speed of light.

As an example, for a 100 MHz detector (�t = 10 ns) with

a filter �λ = 1 nm around λ = 800 nm, and a telescope with

aR = 5 cm and �fov = 10−10sr, the value of n̄B ranges be-

tween ≃ 4.75 × 10−8 photons/mode (at night) and ≃ 4.75 ×
10−3 photons/mode (during a cloudy day). A fraction ηeffn̄B

of these photons is detected by a receiver with limited effi-

ciency ηeff. See Fig. 1.

It is important to note that the number of photons in the

natural background n̄B may be higher than that expected from

Eq. (32) as a consequence of the presence of bright sources

of light within the field of view of the receiving telescope.

Our formalism accounts for such deviations, even though we

consider Eq. (32) in our numerical simulations. In general, all

the (detected) photons coming from the outside channel must

be ascribed to Eve in the worst-case scenario, even though

this is an overpessimistic assumption due to the line-of-sight

configuration in free-space communication. However, such an

assumption must be made because Eve might inject and hide

her photons in the background.

Besides the natural background, excess photons n̄ex may

be created by imperfections in the receiver setup (e.g., due

to electronic noise and other errors), so the receiver sees a

total of n̄ = ηeffn̄B + n̄ex thermal photons. Thus, assuming

that n̄T mean photons are generated at the transmitter and

τ is the overall instantaneous transmissivity of the channel,

the receiver’s detector gets n̄R = τ n̄T + n̄ mean photons (per

mode). See Fig. 1.

The free-space process in Fig. 1 can be described by an

overall thermal-loss channel Eτ,n̄ with instantaneous transmis-

sivity τ and output thermal noise n̄. This channel is equivalent

to a beam-splitter mixing the signal mode with an input

thermal mode with n̄e := n̄(1 − τ )−1 mean photons. In the

worst-case scenario, Eve controls all the input noise and col-

lects all the photons that are leaked from the other output

of the beam splitter (which means that she collects photons

leaking from both the channel and the receiver setup).

To account for the centroid wandering, we adopt the distri-

bution P0(τ ) for the transmissivity τ while keeping the output

thermal noise n̄ as a constant. The latter is in fact composed

of a fraction n̄B which is independent from the fading process,

while the other contribution n̄ex can always be assumed to be

optimized over such a process (see discussion in Appendix

F 1 for more details). For this reason, the free-space fading

channel can be represented by the ensemble E = {P0(τ ), Eτ,n̄}.
For a free-space fading channel E with maximum transmis-

sivity η and thermal noise n̄ � η, we compute the following

tighter upper bound for the secret key capacity:

K � −�(η, σ ) log2(1 − η) − T (n̄, η, σ ), (33)

where the thermal correction T is given by

T (n̄, η, σ ) =
{

1 − e
− r2

0

2σ2 [ln(η/n̄)]2/γ

}[
n̄ log2 n̄

1 − n̄
+ h(n̄)

]

− �(n̄, σ ) log2(1 − n̄), (34)

and we have used the entropic function

h(x) := (x + 1) log2(x + 1) − x log2 x. (35)

We also compute the following achievable rate (lower bound)

for entanglement distribution and, therefore, secret key

generation:

E � −�(η, σ ) log2(1 − η) − h

(
n̄

1 − η

)
. (36)

For negligible noise n̄, the bounds in Eqs. (33) and (36)

collapse to the bound in Eq. (27). By contrast, for strong noise

n̄ = η, the thermal correction in Eq. (34) becomes predomi-

nant and we get K � 0 from Eq. (33). The threshold condition

n̄ = η implies the existence of a maximum security distance

zmax for free-space QKD in the presence of thermal noise. A

simple bound on this maximum distance is achieved imposing

n̄ = ηd, leading to

2 f0R(zmax) � − ln(1 − n̄) (37)

for the case of a collimated beam.

E. Analysis of the ultimate bounds

To study our bounds, we consider different possibilities

which depend on the treatment of loss and noise present in

the setup of the receiver. In the worst-case scenario assumed

so far, we explicitly account for the nonideal values of the
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(a) (b) (c)

FIG. 2. Performance of free-space quantum communications in terms of bits per channel use versus distance. (a) We consider the general

worst-case scenario with untrusted loss and noise at the receiver (ηeff = 0.5, n̄ex = 0.05). We plot the ultimate loss-based upper bound of

Eq. (27) for nighttime (top red line) and daytime (red dashed line). This is compared with the bounds explicitly accounting for thermal noise

n̄ = ηeff n̄B + n̄ex. In particular, we plot the thermal upper bound of Eq. (33) for nighttime (black solid line) and daytime (black dashed line), as

well as the thermal lower bound of Eq. (36) for nighttime (blue solid line) and daytime (blue dashed line). (b) Same comparison as in (a) but

considering a noiseless receiver (ηeff = 0.5, n̄ex = 0). For nighttime, the upper and lower thermal bounds coincide with loss-based upper bound

(solid red line). For daytime, the performances are instead separate (dashed lines). (c) Same comparison as in (a) but considering an ideal

lossless and noiseless receiver (ηeff = 1, n̄ex = 0). As in (b), the two thermal bounds collapse in the loss-based upper bound during night

time (solid red line). Performances are different during daytime (dashed lines). Other parameters are R0 = ∞ (collimated Gaussian beam),

λ = 800 nm, w0 = aR = 5 cm, �fov = 10−10 sr, �t = 10 ns, and �λ = 1 nm. We consider h = 30 m, so C2
n ≃ 1.28(2.06) × 10−14 m−2/3 for

night (day), and we have n̄B ≃ 4.75 × 10−8 (×10−3) at night (cloudy day).

receiver parameters ηeff and n̄ex, assuming that Eve may access

that leakage and control that noise. This setting can be used to

bound the performance of all protocols where both leakage

and local noise in the receiving setup are considered to be

untrusted. We may then consider the case where the local

noise n̄ex is set to zero, i.e., a noiseless receiver. This setting

can be used to bound all protocols where such local noise is

considered to be trusted (trusted-noise scenario). Finally, we

may also consider the optimal case of n̄ex = 0 and ηeff = 1,

i.e., an ideal lossless and noiseless receiver. This can be used

to bound all those protocols where local noise and limited

efficiency of the receiver are both considered to be trusted

(trusted-loss-and-noise scenario).

Numerical behavior of the bounds is shown in Fig. 2.

For the chosen parameters, the condition of weak turbulence

σ 2
Rytov < 1 limits day-time distance to a range of z � 1km.

As we can see from Fig. 2(a), there is a clear gap between

the ultimate loss-based upper bound of Eq. (27) and the two

thermal bounds in Eqs. (33) and (36). This is created by

the presence of thermal noise n̄. During the night, when the

background contribution n̄B is negligible, it is the presence of

untrusted setup noise n̄ex to create the gap in the performances

[see solid lines in Fig. 2(a)]. During the day, there is a higher

turbulence on the ground as quantified by the higher value

of the structure constant C2
n ; mainly for this reason, we have

a degradation of all the day-time rates with respect to their

nighttime counterparts [compare dashed with solid lines in

Fig. 2(a)]. For the thermal bounds, this degradation is slightly

increased due to the additional contribution of the thermal

background n̄B, which is non-negligible during the day.

In the case of a noiseless receiver as in Fig. 2(b), thermal

noise is only coming from the external background n̄B. For

nighttime operation, this background is negligible and the

two thermal bounds in Eqs. (33) and (36) collapse into the

loss bound of Eq. (27), which therefore represents the secret

key capacity (and entanglement distribution capacity) of the

nighttime link [see red solid line in Fig. 2(b)]. However,

during the day, the external background n̄B is not negligible

and this creates a small gap in the performance, so there is no

collapse of the thermal bounds [black and blue dashed lines

in Fig. 2(b)] into the upper loss-based bound [red dashed line

in Fig. 2(b)]. In the case of an ideal (lossless and noiseless)

receiver, we have basically the same situation but with higher

rates, as shown in Fig. 2(c).

An interesting observation for daytime operation is the

trade-off between Eq. (15), where aR increases the trans-

missivity, and Eq. (32), where aR increases thermal noise.

For this reason, the optimal performance is achieved when

the receiver’s aperture aR takes an intermediate value. For

instance, consider the case of an ideal receiver and let us study

the behavior of the two thermal bounds in Eqs. (33) and (36)

as a function of aR at some fixed distance, say z = 1 km. As

we can see from Fig. 3, we find an optimal working point at

around aR ≃ 10 cm for the specific regime considered. This is

true as long as the other parameters of the receiver are fixed,

such as its field of view �fov which intervenes in Eq. (32).

Note that the field of view does not directly depend on aR, but

FIG. 3. For daytime and fixed distance z = 1 km, we plot the

thermal bounds in Eqs. (33) and (36) as a function of the receiver’s

aperture aR. We assume an ideal receiver (n̄ex = 0 and ηeff = 1).

Other parameters are as in Fig. 2.
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decreases with the focal length of the receiver’s telescope f

and increases with the area of the detector a. For instance, for a

rectilinear optical system focused at ∞, it is easy to check that

the angle of view satisfies �
1/2

fov ≃ 2 arctan(
√

a/2 f ), which is

also a good approximation for a spherical optical system.

1. Noise filtering

It is important to note that the behavior of the thermal

bounds is strongly dependent on the filter �λ. So far, nu-

merical investigations have assumed a value of �λ = 1 nm,

which is the value of the narrow-band filter typically consid-

ered in studies with discrete variables. At 800 nm, the value

�λ = 1 nm corresponds to a relatively large bandwidth of

�ν = cλ−2�λ ≃ 470 GHz. However, in the setting of CVs,

much narrower filters are possible by exploiting suitable in-

terferometric procedures at the receiver, so the effective value

of �ν becomes equivalent to the bandwidth of the transmitted

pulses.

An important ingredients in experiments with CV systems

is the local oscillator (LO). They are typically performed

with a transmitted LO (TLO), where each quantum signal is

multiplexed in polarization with an associated LO and both

are sent to the receiver. At the receiver, signal and LO are

demultiplexed via a polarizing beam splitter and made in-

terfered on a beam splitter before detection (in a homodyne

or heterodyne setup). Alternatively, CV experiments may be

performed with a local local oscillator (LLO), where quantum

signals are interleaved with strong reference pulses, the latter

being used by the receiver to reconstruct the LO locally (with

some imperfection [39,40]).

It is important to note that, in a homodyne measurement,

the output of the detector is proportional to
√

n̄LOx̂, where x̂

is the generic quadrature of the signal and n̄LO is the num-

ber of photons from the LO. The value of n̄LO can be very

high. In fact, considering 10-ns-long pulses from a 100-mW

laser at λ = 800 nm, we have that each pulse contains n̄LO ≃
4 × 109 photons. Even if we pessimistically assume 20 dB of

loss (τ ≃ 10−2), we see that about O(107) photons reach the

receiver.

Thanks to the large prefactor
√

n̄LO, only the contribution

of thermal noise mode-matching with the LO will survive

in the output. This means that the interferometric process

introduces an effective filter which is given by the bandwidth

�ν of the LO. Compatibly with the time-bandwidth product

�t�ν � 0.44 (for Gaussian pulses), one can make �ν very

small. As an example, for a 10-ns pulse, we may consider

�ν = 50 MHz corresponding to just �λ = 0.1 pm around

800 nm; this filter is four orders of magnitude narrower than

the one considered above. With respect to �λ = 1 nm, such

a narrow filter realizes a corresponding 10−4 suppression of

the background noise n̄B, which therefore becomes negligible

(daytime noise becomes n̄B ≃ 10−7). As a result, the detector

would only experience locally generated noise, i.e., n̄ ≃ n̄ex.

From the point of view of the rates, with a narrow filter

�λ = 0.1pm, we have an increase of the daytime thermal

bounds in Fig. 2. In particular, for a noiseless setup (n̄ex = 0)

we have n̄ ≃ 0. In this case, the daytime thermal bounds

computed from Eqs. (33) and (36) collapse into the daytime

loss bound given by Eq. (27), which therefore becomes the

secret-key capacity (and entanglement distribution capacity)

of the daytime link. This means that the black and blue dashed

lines in Fig. 2(b) collapse into the upper red dashed line.

The same happens in Fig. 2(c) which refers to a lossless and

noiseless setup, but with higher rates.

It is worth stressing that, if we optimize over the receiver

to make the total thermal noise n̄ negligible (as a result of

a noiseless setup n̄ex ≃ 0 and noise filtering n̄B ≃ 0), then

the loss bound of Eq. (27) is achievable no matter what the

external conditions are (nighttime or daytime). It is also clear

that this bound can be further optimized by assuming no

pointing error at the transmitter and unit quantum efficiency at

the receiver. The result of these optimizations (implicit in our

formula) provides a bound/capacity which uniquely depends

on the external free-space channel between the two remote

parties (affected by diffraction, extinction, and turbulence).

F. Extension of the bounds

1. Slow detection

So far, we have considered the situation where the detector

of the receiver is fast enough to resolve the wandering of

the centroid. In general, this dynamics has two components:

on the one hand, there are the fluctuations induced by atmo-

spheric turbulence, with a timescale of the order of 10–100

ms; on the other hand, there is pointing error (from jitter

and imprecise tracking) that fluctuates over a slightly slower

timescale, of the order of 0.1−1 s. For detection, we can

therefore identify three different regimes: (i) fast detectors

able to resolve all the dynamics above; (ii) intermediate de-

tectors, able to solve part of the dynamics, i.e., pointing-error

wandering but not turbulence-induced fluctuations; and (iii)

slow detectors, not able to resolve any of the wandering dy-

namics. For instance, the latter situation may occur when the

measurement time is intentionally increased with the aim of

increasing the detection efficiency. In all cases, we assume

that the pulses have a temporal length perfectly matching the

bandwidth of the detector.

In the case of an intermediate detector (ii), we integrate

over the fast fading process induced by turbulence. As a result,

we have an overall fading channel which is only generated by

the pointing error, and whose instantaneous transmissivity is

now determined by the long-term spot size w
2
lt = w

2
st + σ 2

TB.

Let us set

ηint = ηltηatmηeff, (38)

ηlt := 1 − exp
(
− 2a2

R/w2
lt

)
≃ 2a2

R

w
2
lt

:= ηfar
lt . (39)

Then we may write the upper bound

Kint � Bint := −�(ηint, σP) log2(1 − ηint), (40)

where � of Eq. (28) has to be computed over ηint and σP

(with parameters r0 and γ to be computed over ηlt and ηfar
lt ).

Similarly, the thermal upper bound takes the form

Kint � Bint − T (n̄, ηint, σP). (41)

Basically, we obtain the modified formulas by setting σ 2
TB ≃

0 and replacing wst with the long-term spot size wlt in the

bounds of Eqs. (27), (33), and (36).
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Assuming a slower detector (iii), we need to integrate over

the entire fading process induced by turbulence and pointing

error. Instead of a fading channel, we now have an average

lossy channel with transmissivity ηtot which is determined

by the long-term spot size w
2
lt = w

2
st + σ 2

TB together with the

variance of the pointing error σ 2
P , besides ηatm and ηeff. In other

words, we have [41]

ηtot =
[
1 − exp

(
− 2a2

R/w2
tot

)]
ηatmηeff, (42)

w
2
tot := w

2
lt + σ 2

P = w
2
st + σ 2

TB + σ 2
P . (43)

As a result, the upper bound in Eq. (27) simplifies to

Kslow � − log2(1 − ηtot) �
2

ln 2

a2
R

w
2
lt + σ 2

P

. (44)

Similarly, the thermal upper bound of Eq. (33) becomes

Kslow � − log2

[
(1 − ηtot)η

n∗
tot

]
− h(n∗), (45)

n∗ := n̄/(1 − ηtot), (46)

for n̄ � ηtot, and is equal to zero otherwise. Note that this

formula is a direct modification of Ref. [17, Eq. (23)].

It is important to note that, to fairly compare Eqs. (40),

(41), (44), and (45) with the previous fast-detection bounds,

we need to account for the clock of the system. In fact, in

such a comparison, one should explicitly account for the inte-

gration time which smooths the fluctuations but also reduces

the final rate (or throughput) in terms of bits per second. In

fact, given a rate K in terms of bits/use, we need to plug a

clock C (uses/second) which depends on the bandwidth of

the detector and the repetition rate of the source. The effective

rate (bits/second) would then be CK . For instance, using a

detector with bandwidth W = 100 MHz, we may work with

10-ns pulses and use a clock of C = W/3 ≃ 3.3 × 107 uses

(pulses) per second. If we assume a slow detector (and cor-

responding longer pulses) with a detection time of 100 ms,

we then have a clock of about 3.3 uses per second, leading

to an orders-of-magnitude lower rate in terms of bits per

second. Furthermore, long detection times also lead to higher

background noise, which may become a major problem for

daytime.

2. Intermediate and strong turbulence

The previous bounds for slow detection can be stated for

increasing levels of turbulence. From a physical point of

view, stronger values of turbulence can be associated with

an increasingly-faster averaging process so that the receiver

loses the ability to resolve the fading dynamics. The effect is

similar to having an increasingly slower detector. However,

besides this averaging process, there is also the appearance

of scintillation effects and other effects of beam deformation,

so the transition from weak to stronger regimes of turbulence

cannot be described in simple mathematical terms. That being

said, the concept of long-term spot size is robust and applies

to the various regimes of turbulence, from weak to strong [25,

Sec. III A]. In fact, even when the beam is broken up in multi-

ple patches, the long-term spot size provides the mean-square

radius of the region containing the patches.

In virtue of these considerations, we may rely on the ro-

bustness of the notion of long-term spot size to extend our

upper bounds beyond the weak (σ 2
Rytov < 1) and the weak-

intermediate (σ 2
Rytov ≃ 1) regimes of turbulence (see also

Appendix C for a discussion of these regimes in terms of the

ratio ρ0/w0). At intermediate-strong turbulence (σ 2
Rytov > 1),

the variance σ 2
TB becomes relatively small, while the short-

term spot size wst tends to approximate the long-term value

wlt. If the pointing error is non-negligible, then we may

write the upper bounds in Eqs. (40) and (41). However, if

pointing error σ 2
P is also negligible (with respect to w

2
lt),

then we directly consider the upper bounds in Eqs. (44) and

(45). For high values of turbulence (σ 2
Rytov ≫ 1), we may

certainly assume σ 2
P ≃ σ 2

TB ≪ w
2
lt, and write the upper bounds

in Eqs. (44) and (45) for the strong-turbulence secret-key

capacity Kstrong. Because these bounds do not come from an

operational reduction of the detection time, the value C of the

system of clock can be high here.

III. COMPOSABLE SECURITY AND KEY RATES

FOR CV-QKD

In this part of the paper, we study practical rates for free-

space CV-QKD, therefore providing state-of-the-art lower

bounds for the free-space secret key capacities discussed in

Sec. II. In this specific section, we first develop a general and

simplified theory of composable security that applies to CV-

QKD protocols with a stable channel (fixed transmissivity),

as is the typical case in fiber-based implementations or even

certain free-space links where turbulence and other fading

effects are negligible. This theory is the basis for the next

section, Sec. IV, where we extend it to the case of CV-QKD

protocols over a fading channel (variable transmissivity) as is

the general case of free-space links affected by pointing errors

and turbulence. The latter is a more difficult scenario but with

interesting implications for both ground- and satellite-based

communications [42–49] .

A. Description of the protocol

Let us study a Gaussian-modulated coherent-state protocol

with a fixed transmissivity between Alice (the transmitter) and

Bob (the receiver) [12]. The general scenario is the one de-

picted Fig. 4. Alice encodes classical information in a bosonic

mode by preparing a coherent state |α〉 whose amplitude α

is modulated according to a complex Gaussian distribution

with zero mean and variance μ − 1. Note that we may write

α = (q + ip)/2, where x = q or p is the mean value of the

generic quadrature operator x̂ = q̂ or p̂ with [q̂, p̂] = 2i [3].

Therefore, the generic quadrature of the mode can be decom-

posed as x̂ = x̂0 + x, where x̂0 corresponds to vacuum noise

and the displacement x is a real Gaussian variable with zero

mean and variance σ 2
x = μ − 1.

The coherent state contains n̄T = |α|2 mean number of

photons and it is transmitted through a channel with transmis-

sivity ηch and environmental noise n̄b = n̄B(1 − ηch)−1, so that

n̄B thermal photons are injected in the channel. (In terms of the

free-space configuration of Fig. 1, parameter ηch corresponds

to the instantaneous value ηatmηst(r), and n̄B is the thermal

background.) The output state is then measured by a receiver
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FIG. 4. General description of the protocol and worst-case eaves-

dropping scenario. Alice’s modulated coherent state |α〉, with n̄T

mean photons, is subject to channel loss ηch and background noise

n̄B, before entering the receiver with quantum efficiency ηeff and

setup noise n̄ex. Bob’s detects n̄R = τ n̄T + n̄ mean photons, where

τ = ηchηeff is the total transmissivity of the link and n̄ = ηeffn̄B + n̄ex

is the total number of thermal photons. The input-output relation

for the quadratures is given by Eq. (48). In the worst-case scenario,

Eve collects all the leakage and controls all thermal noise. This

is equivalent to assume that she replaces the channel with a beam

splitter with transmissivity τ and thermal input n̄e = n̄/(1 − τ ). The

latter is part of a TMSV state in her hands, whose output is stored in

a quantum memory.

with limited efficiency ηeff and affected by thermal noise, such

to add n̄ex extra mean photons. As a result, the final (ideal)

detection is reached by n̄R = τ n̄T + n̄ mean photons, where

τ = ηchηeff is the total transmissivity and

n̄ = ηeffn̄B + n̄ex (47)

is the total number of thermal photons. See Fig. 4.

The final detection is either a randomly switched measure-

ment of q̂ or p̂ (homodyne) or a joint measurement of q̂ and p̂

(heterodyne). In both cases, there is an outcome y correspond-

ing to Alice’s classical input x. A single pair (x, y) per mode is

generated by the homodyne protocol [14], while two pairs per

mode are generated by the heterodyne protocol [13]. For both

protocols, we may compactly write the input-output relation

y = √
τx + z, (48)

where the noise variable is given by

z =
√

ηeff(1 − ηch)x̂b + √
τ x̂0 +

√
1 − ηeffx̂v + ξex + ξdet.

(49)

Here x̂b is the quadrature of the background thermal mode, x̂v

is the quadrature of a setup vacuum mode, ξex is a Gaussian

variable with variance 2n̄ex, and ξdet is an additional variable

whose variance depends on the specific type of final detection,

i.e., we have var(ξdet) = 0 for homodyne, and var(ξdet) = 1

for heterodyne. It is useful to introduce the quantum duty, νdet

to pay by the detector, which is νdet = 1 for homodyne (due

to the vacuum noise in the state) and νdet = 2 for heterodyne

(which is increased due to the simultaneous measurements

of the two conjugate quadratures). Thus, in total, the noise

variable z has variance

σ 2
z = 2n̄ + νdet. (50)

Alice and Bob’s mutual information I (x : y) is the same

in direct reconciliation (Bob inferring x from y) and reverse

reconciliation (Alice inferring y from x). This is easy to com-

pute under ideal postprocessing techniques able to reach the

Shannon capacity of the additive-noise Gaussian channel. In

fact, from var(y) = τσ 2
x + σ 2

z and var(y|x) = σ 2
z , one derives

I (x : y) = νdet

2
log2

(
1 + σ 2

x

χ

)
, (51)

where χ := σ 2
z /τ is the equivalent noise, given by

χ = 2n̄B

ηch

+ νdet + 2n̄ex

τ
. (52)

In particular, note that the first term in Eq. (52) is the specific

contribution of the channel to the excess noise:

εch := 2n̄B

ηch

= 2(n̄ − n̄ex)

τ
. (53)

For the homodyne and heterodyne protocols, we may explic-

itly write

Ihom(x : y) = 1

2
log2

(
1 + τσ 2

x

2n̄ + 1

)
, (54)

Ihet(x : y) = log2

(
1 + τσ 2

x

2n̄ + 2

)
. (55)

Before proceeding with the security analysis and the

derivation of the asymptotic key rate, it is important to clar-

ify the most relevant noise contributions that are present in

the setup noise n̄ex. In our paper, we assume the worst-case

scenario where this noise is considered to be untrusted, even

though it may be estimated or calibrated by the parties. This

robust approach allows us to lower bound the performances

that are achievable by CV-QKD in general, including those

situations where some of the setup noise is considered to

be trusted (as might be the case for some tolerable level of

electronic noise).

B. Practical observations on the receiver setup

Here we discuss the contributions to the setup noise, that

may be broken up as n̄ex = n̄LO + n̄el + n̄other, where n̄LO are

thermal photons generated by imperfection in the LO (phase

errors), n̄el is electronic noise, and n̄other is any other uncharac-

terized and independent noise source that might appear in the

setup (that we numerically neglect here). In general, the setup

noise n̄ex will depend on the channel transmissivity. Below we

start by describing n̄LO which has a different behavior depend-

ing on the type of LO. Afterward, we discuss the expression

of n̄el.

1. Local oscillator (TLO and LLO)

To encode and decode information with the quadratures of

a bosonic mode, the reference frames of the transmitter and

receiver need to be phase locked. There are two possible ways

to achieve this: either via a TLO or an LLO. In the experimen-

tal practice, the use of a TLO is the simplest solution. One the
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one hand, it introduces negligible phase error n̄TLO ≃ 0 and

guarantees that the spatial modes of the signal and LO pulses

are the same, so the mode matching is ideal at the receiver. On

the other hand, the fact that the LO transmitted together with

the signal means that it may also be the subject of attacks. This

problem can be mitigated by real-time monitoring of the LO

intensity and properties, so as to match the values expected by

the parties [12].

The other solution of a LLO excludes channel attacks

against the LO but inevitably introduces nontrivial phase

errors in the receiver setup. These phase errors provide a

contribution to the excess noise equal to

εLLO ≃ 2πσ 2
x C−1lW, (56)

where C is the clock and lW is the laser linewidth. This for-

mula is derived from Ref. [39] assuming that signal pulses and

LO reference pulses are generated with the same coherence

time τcoh ≃ (π lW)−1. More generally, in Eq. (56) one needs to

consider the average linewidth (l
signal

W + lLO
W )/2, but we omit

this technicality here.

From the formula, it is clear that the noise decreases for

higher clocks and narrower linewidths. In general, this ap-

proach requires better hardware than the TLO. In our analysis,

we have σ 2
x � 10, so a reasonably low value εLLO � 0.02 can

be reached by C = 5 MHz and lW ≃ 1.6 KHz or, alternatively,

by C = 100 MHz and lW ≃ 32 KHz (e.g., together with a

1 GHz homodyne receiver for detecting 0.1C−1 ≃ 1 ns pulses

[50]). In other words, very good cw-lasers and detectors are

needed. Refined analyses suggest that highly performant am-

plitude modulators are also required to avoid the introduction

of other noise contributions [40,51].

To account for the LLO in our theoretical treatment, we

recall that Alice and Bob’s mutual information takes the form

in Eq. (51) where the equivalent noise χ is broken down as in

Eq. (52), i.e., we write

χ = εch + νdet + 2n̄ex

τ
, (57)

where εch := 2n̄B/ηch is channel’s excess noise. The intro-

duction of the LLO contribution consists of making the

replacement χ → χ + εLLO in the formula above. Because

this type of noise is within the local setup of the receiver, we

make it a contribution to n̄ex by writing

n̄LLO = τεLLO

2
= πτσ 2

x C−1lW. (58)

Some observations are in order. The basic implementa-

tion of LLO considers the regular alternation between signal

pulses and LO reference pulses. In such a setting, one may ar-

gue that the actual rate per second (throughput) is halved with

respect to the TLO. However, it is worth noting that this factor

1/2 may be compensated if the signals are encoded in both

polarizations for each channel use (not possible for a TLO

due to its multiplexing in polarization). Another observation is

about the use of homodyne or heterodyne at the receiver. Be-

cause of the regular signal-reference alternation, the receiver

may use a dedicated heterodyne detector for the LO references

and another detector for the signals (heterodyne or randomly

switched homodyne). However, if the receiver is limited to a

single homodyne detector, then the transmitter can send two

LO reference pulses with orthogonal polarizations and rotated

by π/2 in phase space. At the receiver, these pulses can be

demultiplexed, delayed, and sequentially homodyned to give

the complete phase information.

2. Electronic noise

One of the typical and unavoidable sources of noise within

the setup of the receiver is electronic noise, with associated

variance νel or equivalent number of photons n̄el = νel/2. This

depends on the noise equivalent power (NEP) of the ampli-

fiers and photodiodes to be used in the homodyne detectors,

besides the detection bandwidth W , the duration of the LO

pulses �tLO, the LO power at the detector Pdet
LO , and the fre-

quency of the light ν. In fact, one can write the formula [52,53]

νel = νdetNEP2W �tLO

hνPdet
LO

. (59)

At W = 100 MHz, we may consider NEP = 6 pW/
√

Hz.

Then, assuming ν ≃ 3.75 × 1014 Hz (λ = 800 nm) and

�tLO = 10ns, we may write νel = 1.45 × 10−4νdet/Pdet
LO . In a

TLO setup, we have Pdet
LO = τPLO, where PLO is the initial LO

power at the transmitter. Setting PLO = 100 mW, we derive

νel(τ ) �
2.9 × 10−3

τ
, (60)

where the bound is taken by assuming the worst-case sce-

nario of heterodyne detection (νdet = 2). As we can see from

Eq. (60), the noise is small at short ranges but may become

non-trivial at long distances, e.g., νel � 0.29 at 20 dB, i.e., for

τ = 10−2.

In the case of an LLO setup, where the LO pulse is locally

generated, we have Pdet
LO = PLO in Eq. (59). This means that νel

becomes independent from the transmissivity and its value can

be very low. In our numerical example, Eq. (60) is replaced by

νel � 2.9 × 10−3. Thus, the LLO setup provides an advantage

with respect to the TLO in terms of reduced electronic noise

(to be balanced with the negative effect of introducing phase

errors).

3. Setup noise versus channel transmissivity

As we see from the discussion above, the setup noise n̄ex

also depends on the transmissivity of the channel τ , due to the

fact that the value of τ is relevant for both the LO power and

the (attenuated) modulation of the signals at the receiver. Let

us make the notation more compact by introducing the term

�el := νdetNEP2W �tLO

2hνPLO

. (61)

Then, the setup noise n̄ex has different monotonicity in τ

depending on the use of a TLO or an LLO. In fact, we can

write the following:

n̄TLO
ex (τ ) = �el

τ
, n̄LLO

ex (τ ) = �el + πτσ 2
x C−1lW, (62)

showing that n̄TLO
ex is decreasing in τ , while n̄LLO

ex is increasing.
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C. Asymptotic key rate

Once we have clarified the various contributions to ther-

mal noise, we proceed with the security analysis assuming

that the various imperfections of the receiver are untrusted,

both in terms of setup noise n̄ex and quantum efficiency ηeff.

Thus, our approach assumes the worst-case scenario where

Eve not only perturbs the outside channel (with transmissivity

ηch and background noise n̄B), but also collects the fraction

1 − ηeff of photons leaked by the receiver, and potentially

tampers with its setup noise n̄ex (which might be exploited

to insert Trojan-horse photons). As already said before, this is

a conservative approach which allows us to lower bound the

performance of CV-QKD and to remove the exploitation of

potential loopholes in the practical devices.

In the worst-case scenario, Alice and Bob ascribe the en-

tirety of loss τ = ηchηeff and thermal noise n̄ = ηeffn̄B + n̄ex

to Eve. See Fig. 4. In other words, Eve is assumed to have the

total control of the environmental dilation of the thermal-loss

channel Eτ,n̄ that is observed by the parties and leading to the

input-output relation of Eq. (48). Such a dilation corresponds

to a beam splitter of transmissivity τ that mixes each signal

mode with an environmental mode carrying n̄e = n̄/(1 − τ )

thermal photons, which is in turn part of a two-mode squeezed

vacuum (TMSV) state prepared by Eve. For each incoming

signal, a fresh TMSV state is prepared and used in the inter-

action. After interaction, the signal output of the beam splitter

is released to Bob, while the environmental output is stored in

a quantum memory, to be jointly measured by Eve at the end

of the protocol. This is a collective entangling-cloner attack

which is the most practical and relevant collective Gaussian

attack [54].

In this scenario, let us compute Eve’s Holevo informa-

tion, i.e., the maximum amount of information that she can

steal per use of the channel. It is convenient to work in the

entanglement-based representation, where Alice’s Gaussian-

modulated coherent states with variance σ 2
x = μ − 1 are

realized by heterodyning the idler mode A of a TMSV state

[3] with covariance matrix (CM)

VAA′ =
(

μI
√

μ2 − 1Z√
μ2 − 1Z μI

)
, (63)

where I := diag(1, 1) and Z := diag(1,−1). After the action

of the thermal-loss channel on the transmitted mode A′, we

have that Alice and Bob share a zero-mean Gaussian state with

CM

VAB =
(

μI C

CT bI

)
,

C :=
√

τ (μ2 − 1)Z,

b := τ (μ − 1) + 2n̄ + 1.
(64)

Because the total output state ρABE of Alice A, Bob B and

Eve E = EE ′ is a pure state, we can compute Eve’s Holevo

bound from Alice’s and Bob’s von Neumann entropies S(· · · ).

In reverse reconciliation, Eve’s Holevo bound with respect to

Bob’s variable y is given by

χ (E : y) := S(E) − S(E|y) = S(AB) − S(A|y), (65)

where S(E) = S(AB) comes from the total purity, and

S(E|y) = S(A|y) comes from the fact that Bob’s measurement

is a rank-1 projection (homodyne/heterodyne), so that Alice

and Eve’s conditional state ρAE|y is pure.

It is easy to compute the entropies above starting from

Alice and Bob’s output CM VAB. Let us call ν± the two

symplectic eigenvalues of VAB. Then, we may write

S(AB) = H (ν+) + H (ν−), H (x) := h[(x − 1)/2], (66)

where H (x) is defined using Eq. (35). The value of S(A|y) is

given by computing H (x) over the symplectic eigenvalue of

the conditional CM VA|y, whose explicit expression depends

on the type of detection.

Let us set � := diag(1, 0). For the homodyne protocol,

Alice’s CM conditioned on Bob’s outcome y is [3,55,56]

Vhom
A|y = μI − b−1C�CT , (67)

and its symplectic eigenvalue is given by

νhom =
√

det Vhom
A|y =

√
μ2 − μτ (μ2 − 1)

b
. (68)

For the heterodyne protocol, we have instead [3,55,56]

Vhet
A|y = μI − (b + 1)−1CCT = νhetI, (69)

with symplectic eigenvalue

νhet = μ − τ (μ2 − 1)

b + 1
. (70)

As a result, we have

χhom(E : y) = S(AB) − H (νhom), (71)

χhet(E : y) = S(AB) − H (νhet). (72)

For a realistic reconciliation efficiency β ∈ [0, 1], account-

ing for the fact that data processing may not reach the Shannon

limit, we write the asymptotic key rate

Rasy(τ, n̄) = βI (x : y)τ,n̄ − χ (E : y)τ,n̄ , (73)

where the explicit expressions for the homodyne protocol [14]

(Rhom
asy ) and the heterodyne protocol [13] (Rhet

asy) derive from

the corresponding expressions for the mutual information Ihom

and Ihet [cf. Eqs. (54) and (55)] and the Holevo bound χhom

and χhet [cf. Eqs. (71) and (72)]. In an experimental im-

plementation, the term βI in Eq. (73) is determined by the

empirical entropy associated with the key and the specific

code used for error correction.

It is important to observe that the rate in Eq. (73) can be

computed by Alice and Bob once they know the values of

the total transmissivity τ and the total thermal noise n̄. In a

practical setting, the values of τ and n̄ are not known but must

be evaluated during the protocol via a dedicated procedure

of parameter estimation. Because a realistic protocol runs for

a finite number of times, this estimation is not perfect and

decreases the rate.

Up to an error probability εpe, Alice and Bob derive

worst-case estimators τ ′ ≃ τ − f (τ, n̄) and n̄′ ≃ n̄ + g(n̄), for

suitable monotonic functions f and g (both increasing in n̄).

Thus, they use τ ′ and n̄′ to compute the parameter-estimation-

based version of the rate

Rpe(τ ′, n̄′) = βI (x : y)τ ′,n̄′ − χ (E : y)τ ′,n̄′ . (74)

Below we clarify the explicit expressions for f and g.
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D. Details of parameter estimation

Here we go into the fine details of parameter estimation,

also clarifying the explicit forms of the functions f and g that

are used above. For implementing this step of the protocol,

Alice and Bob jointly choose a random subset of m channel

uses. By publicly comparing the corresponding input-output

values, they estimate the relevant channel parameters (τ and n̄)

whose knowledge is crucial for applying the most appropriate

procedures of error correction and privacy amplification.

1. Estimators

Alice and Bob randomly choose m signals whose encoding

x and decoding y are publicly disclosed. This means that the

parties compare mp := νdetm pairs of values {xi, yi}mp

i=1 related

by Eq. (48). These pairs are m for the homodyne protocol

and 2m for the heterodyne protocol. Under the assumption

of a collective Gaussian attack, they are Gaussian as well as

independent and identically distributed (iid).

From the mp disclosed pairs, the parties construct an esti-

mator T̂ of T := √
τ as follows [57,58]

T̂ :=
∑mp

i=1 xiyi∑mp

i=1 x2
i

≃
∑mp

i=1 xiyi

mpσ 2
x

, (75)

which is Gaussianly distributed for sufficiently large mp.

Equivalently, one may write

T̂ = Ĉxy

σ 2
x

, Ĉxy = m−1
p

mp∑

i=1

xiyi, (76)

where Ĉxy estimates the covariance Cxy := 〈xy〉 = √
τσ 2

x .

It is easy to check that T̂ is unbiased since we have

〈T̂ 〉 ≃
∑mp

i=1〈xiyi〉
mpσ 2

x

≃ 〈xy〉
σ 2

x

= T . (77)

For the variance, we may compute

σ 2
T := var(T̂ ) =

∑mp

i=1 var(xiyi )

m2
pσ

4
x

≃ σ 2
z

mpσ 2
x

+ 2τ

mp

, (78)

where we use that xiyi are iid (var
∑ = ∑

var), the fact that

the noise has zero mean 〈z〉 = 0 and, finally, that 〈x4〉 = 3σ 4
x

for a zero-mean Gaussian variable.

From the square-root transmissivity, Alice and Bob can

derive the estimator of the transmissivity as τ̂ = (T̂ )2, which

is unbiased with variance:

σ 2
τ := var(̂τ ) ≃ 4τ 2

mp

(
2 + σ 2

z

τσ 2
x

)
+ O

(
m−2

p

)
. (79)

This is shown by noting that, for a Gaussian variable X ∼
N (x̄, σ ), one has var(X 2) = 2σ 2(2x̄ + σ 2). Alternatively, one

uses Eq. (76) and notes that γ̂xy := (Ĉxy)2/σ 2
cov with

σ 2
cov := var(Ĉxy) ≃ m−1

p τσ 4
x

[
2 + σ 2

z /
(
τσ 2

x

)]
(80)

is a noncentral chi-square distribution χ2(1, λnc), having

one degree of freedom and noncentrality parameter λnc =
C2

xy/σ
2
cov (so its mean is 1 + λnc and its variance is 2 + 4λnc).

Computing the variance of τ̂ = γ̂xy(σ 2
cov/σ

4
x ) up to O(m−2

p ),

one gets Eq. (79).

Note that Eq. (78) is in line with the derivation of Ref. [57],

while Ref. [58] resorts to a further approximation that would

lead to the removal of the term 2τ/mp in the expression above.

Here we follow the most conservative choice (approach of

Ref. [57]) which implies a larger uncertainty for the value of

the transmissivity.

For the variance of the thermal noise σ 2
z , Alice and Bob

build an estimator:

σ̂ 2
z := 1

mp

mp∑

i=1

(yi − T̂ xi )
2 = 1

mp

mp∑

i=1

z2
i . (81)

For large mp, the variable Yz := mpσ̂ 2
z /σ 2

z follows a chi-square

distribution χ2(mp) with mp degrees of freedom (mean value

mp and variance 2mp), so we have

〈
σ̂ 2

z

〉
≃ σ 2

z , var
(
σ̂ 2

z

)
≃ 2σ 4

z

mp

. (82)

Equivalently, they can build the estimator for the thermal

number n̄ defined by

̂̄n :=
(
σ̂ 2

z − νdet

)
/2, (83)

with mean value 〈̂n̄〉 ≃ n̄ and variance

σ 2
n̄ = var

(
σ̂ 2

z

)

4
≃ σ 4

z

2mp

. (84)

Because the number of degrees of freedom is typically very

large, the chi-square distribution χ2(mp) can also be approxi-

mated by a Gaussian distribution with the same mean value

and variance. As a result, the estimators σ̂ 2
z and ̂̄n can be

considered to be asymptotically Gaussian.

It is important to observe that, from an experimental point

of view, the variances in Eqs. (78), (79), (82), and (84) can be

computed by using the estimators T̂ and σ̂ 2
z on the right-hand

sides of the equations.

2. Worst-case estimators

From the estimators, Alice and Bob construct suitable

worst-case estimators by assuming a certain number w of

confidence intervals, for some acceptable error probability εpe.

For the square-root transmissivity, they build

T ′ := T̂ − wσT ≃ T − w

√
2τ + σ 2

z /σ 2
x

mp

. (85)

The probability εpe that the actual value T is less than T ′ is

given by

εpe = prob(T < T̂ − wσT ) (86)

= prob

[
T̂ − T

σT

> w

]
= 1 − �CND(w),

where �CND(x) = [1 + erf (x/
√

2)]/2 is the cumulative of the

standard normal distribution. Equivalently, for a given value

of εpe, one derives

w =
√

2 erf−1(1 − 2εpe). (87)

From Eq. (85), one can immediately construct the worst-

case estimator for the transmissivity τ by taking the square
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τ ′ = (T ′)2 so we obtain

τ ′ ≃ τ − 2w

√
2τ 2 + τσ 2

z /σ 2
x

mp

+ O
(
m−1

p

)
. (88)

Equivalently, this is derived by writing τ ′ := τ̂ − wστ and

then using τ̂ ≃ τ together with στ from Eq. (79).

Because σ̂ 2
z and ̂̄n are asymptotically Gaussian, Alice and

Bob can build corresponding worst-case estimators for which

they connect the number w of confidence intervals with the

error probability εpe according to Eq. (87). In particular, they

build the worst-case estimator for the thermal number n̄′ :=
̂̄n + wσn̄, where w is such that εpe = prob(n̄ > n̄′). We easily

compute

n̄′ ≃ n̄ + wσ 2
z√

2mp

. (89)

As a result, up to an error probability εpe = εpe(w), Alice

and Bob are able to bound the actual values of τ and n̄ with

the worst-case estimators in Eqs. (88) and (89). In the notation

of Sec. III C, this means that we have τ ′ ≃ τ − f (τ, n̄) and

n̄′ ≃ n̄ + g(n̄), where

f (τ, n̄) = 2w

√
2τ 2 + τσ−2

x (2n̄ + νdet)

mp

, (90)

g(n̄) = w√
2mp

(2n̄ + νdet). (91)

Note that εpe is here defined for each basic parameter to be es-

timated, so the total error associated with the two parameters

τ and n̄ is given by εpe(1 − εpe) + (1 − εpe)εpe + ε2
pe ≃ 2εpe.

Also note that, for the typical choice εpe = 2−33 ≃ 10−10, we

have w ≃ 6.34.

3. Tail bounds

When the value of εpe is chosen to be very low (� 10−17),

the approach above creates divergences (w → ∞). In this

case, we must resort to suitable tail bounds. Let us start by

analyzing the estimation of the thermal noise. For the central

chi-square variable Yz ∼ χ2(mp), we may write the following

tail bound [59, Lemma 1]:

prob[Yz � mp − 2
√

mpx] � e−x, (92)

for any x. Let us combine the latter with Eq. (83). With

probability � e−x, the estimator ̂̄n satisfies

̂̄n � n̄ − σ 2
z

√
x

mp

, (93)

or, equivalently, the actual value n̄ satisfies

n̄ � ̂̄n + σ 2
z

√
x

mp

≃ ̂̄n + σn̄

√
2x. (94)

Let us set x = ln(1/εpe). Then, with probability � εpe, we

have

n̄ � ̂̄n + σn̄

√
2 ln(1/εpe). (95)

Thus, the worst-case value takes the form n̄′ := ̂̄n + wσn̄ as

before but now with

w =
√

2 ln(1/εpe). (96)

Note that, in this case, εpe = 2−33 corresponds to w ≃ 6.76,

slightly larger than before. However, now we can also deal

with smaller values of the error probability; e.g., εpe = 10−43

corresponds to w ≃ 14.

Similar extensions can be derived with other tail bounds

[60, Appendix 6.1]. In particular, the derivation can imme-

diately be adapted to the transmissivity. For a variable X ∼
χ2(d, λnc) with d degrees of freedom and noncentrality pa-

rameter λnc, we may write [61] (see also Ref. [60, Lemma 8])

prob[X � (d + λnc) − 2
√

(d + 2λnc)x] � e−x. (97)

Setting x = ln(1/εpe), we then write

prob

[
X � (d + λnc) − 2

√
(d + 2λnc) ln

1

εpe

]
� εpe. (98)

Take X = γ̂xy ∼ χ2(1,C2
xy/σ

2
cov). With probability � εpe,

this estimator satisfies

γ̂xy � 1 +
C2

xy

σ 2
cov

− 2

√(
1 + 2

C2
xy

σ 2
cov

)
ln

1

εpe

. (99)

With the same probability, τ̂ = γ̂xy(σ 2
cov/σ

4
x ) satisfies

τ̂ �
σ 2

cov + C2
xy

σ 4
x

− 2

σ 4
x

√
(
σ 4

cov + 2σ 2
covC

2
xy

)
ln

1

εpe

(100)

(∗)≃ τ − 2τ

√
2m−1

p

(
2 + σ 2

z

τσ 2
x

)
ln

1

εpe

+ O
(
m−1

p

)
(101)

= τ − στ

√
2 ln

1

εpe

+ O
(
m−1

p

)
, (102)

where in (∗) we have used C2
xy ≃ τσ 4

x , the scaling σ 2
cov ≃

O(m−1
p ) and Eq. (80). More precisely, the approximation in

(∗) is certainly valid for 2(mp − 1) ≫ σ 2
z /(τσ 2

x ), which is the

typical regime of parameters. From Eq. (102), we see that, for

the transmissivity, we have again τ ′ := τ̂ − wστ but where w

is now given in Eq. (96).

E. Finite-size composable key rate

So far, we have considered the effect of parameter esti-

mation on the key rate, so that its expression takes the form

Rpe in Eq. (74), where the worst-case estimators τ ′ and n̄′ are

computed according to Eqs. (88) and (89) with a confidence

parameter w as in Eq. (87) [or Eq. (96) for smaller values of

εpe]. Now we further develop the security analysis and derive

a formula for the composable key rate of a coherent-state pro-

tocol that is valid under conditions of stability for the quantum

channel (no fading). From this point of view, the results of this

section provides the basic tool for the composable security

analysis of a CV-QKD protocol that is implemented over a

stable channel, as is typical in fiber-based implementations.

Assume that the parties exchange N signals over the quan-

tum channel. Because m are publicly sacrificed for parameter

estimation, there are remaining n = N − m signals to be used

for key generation. Besides parameter estimation, any realis-

tic QKD implementation needs to consider error correction
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and privacy amplification, which also come with their own

imperfections. First, there is a probability of successful error

correction pec which is less than 1, so only an average of

npec signals are processed into a key. This means that final

secret-key rate will be rescaled by the prefactor:

r := npec

N
=
(

1 − m

N

)
pec. (103)

Various imperfections arise in the finite-size scenario,

which are summarized in the overall ε security of the protocol

with additive contributions from parameter estimation, error

correction and privacy amplification. Besides εpe, the protocol

has an associated ε correctness εcor (which bounds the residual

probability that the strings are different after passing error

correction) and an associated ε-secrecy εsec (which bounds the

distance between the final key and an ideal output classical-

quantum (CQ) state that is completely decoupled from the

eavesdropper). More technically, one writes εsec = εs + εh,

where εs is a smoothing parameter and εh is a hashing pa-

rameter. All these parameters are set to be small (e.g., 2−33 ≃
10−10) and provide the overall security parameter:

ε = 2pecεpe + εcor + εsec. (104)

Note that pec explicitly multiplies εpe due to the fact that error

correction occurs after parameter estimation. Also note the

factor of 2 before εpe, which accounts for the estimation of

two basic channel parameters.

For a Gaussian-modulated coherent-state protocol [13,14]

with success probability pec and ε security against collective

(Gaussian) attacks [54], we write the following composable

key rate in terms of secret bits per use of the channel (see

Appendix G for its proof):

R � r

(
Rpe − �aep√

n
+ �

n

)
, (105)

where Rpe is given in Eq. (74) and

�aep := 4 log2(2
√

d + 1)

√
log2

(
18

p2
ecε

4
s

)
, (106)

� := log2

[
pec

(
1 − ε2

s /3
)]

+ 2 log2

√
2εh, (107)

with d representing the size of the effective alphabet after

analog-to-digital conversion of sender’s and receiver’s CVs

(quadrature encodings and outcomes). Note that one typically

chooses a five-bit digitalization (d = 25 = 32), so that there

is a negligible discrepancy between the information quantities

computed over discretized and CVs.

In ground-based QKD experiments, the total number of

data points (signals/uses of the channel) can be of the order of

1012 [62]. Thus, data points are split in blocks of suitable size

for data processing, typically of the order of 106 − 107 points.

The success probability pec represents the frequency with

which a block is successfully processed into key generation

and this can also be written as pec = 1 − FER, where FER is

known as the frame error rate.

F. Key rate under general coherent attacks

The rate in Eq. (105) is derived for collective attacks and,

in particular, collective Gaussian attacks, since the Gaussian

assumption is adopted for parameter estimation. This level

of security can be extended to general coherent attacks under

certain symmetries for the protocol, which are satisfied by the

no-switching protocol based on the heterodyne detection [13].

In particular, by combining our rate in Eq. (105) with some of

the tools from Ref. [63], we derive a simple formula for the

composable finite-size key rate under general attacks.

Suppose that the coherent-state protocol P is ε-secure with

finite-size rate R under collective Gaussian attacks, and P can

be symmetrized with respect to a Fock-space representation of

the group of unitary matrices. This symmetrization is equiv-

alent to apply an identical random orthogonal matrix to the

classical CVs of the two parties (encodings and outcomes)

[63], which is certainly possible for the heterodyne-based

protocol [13]. Let us denote by P̃ the symmetrized protocol.

Then, let us assume that the remote parties perform an

energy test T on met randomly chosen pairs of modes. This

test is based on two thresholds, dT for the transmitter, and dR

for the receiver. For each pair, they measure the number of

photons in their local modes and they average these quantities

over their met measurements, so as to compute the local mean

number of photons. If these energies are below the thresholds,

the test is passed (with probability pet); otherwise the protocol

aborts. Now assume that dT is larger than the mean number

of thermal photons n̄T = (μ − 1)/2 associated with the aver-

age thermal state generated by the transmitter. Working with

dT � n̄T + O(m
−1/2
et ) implies that the test is almost certainly

successful (pet ≃ 1) for sufficiently large values of met. Also

note that, for a lossy channel with reasonably small excess

noise, the receiver will get an average number of photons

which is clearly less than that of the transmitter, which means

that a successful value for dR can be chosen to be equal to dT .

(In our numerical investigations, we set dR = dT ≃ n̄T .)

By taking the local dimensions large enough we have pet ≃
1 and the overall success of the protocol remains unchanged,

i.e., we have pec pet ≃ pec. Then, the parties go ahead with

the symmetrized protocol P̃ which will now use n = N − m̃

modes for key generation, where m̃ := m + met. This already

introduces a modification in Eq. (105), where the effective

number n of modes for key generation will be reduced in the

rate, so that the prefactor of Eq. (103) becomes

r =
(

1 − m̃

N

)
pec. (108)

By setting met = fetn for some factor fet < 1, the total number

of key generation signals takes the form

n = N − m

1 + fet

. (109)

The second modification consists of an additional step of

privacy amplification which reduces the final number of secret

key bits by the following amount [63]:

�n := 2

⌈
log2

(
Kn + 4

4

)⌉
, (110)
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where

Kn = max {1, n(dT + dR)�n}, (111)

�n :=
1 + 2

√
ln(8/ε)

2n
+ ln(8/ε)

n

1 − 2
√

ln(8/ε)

2 fetn

. (112)

Accounting for the two modifications above, we have that

the key rate Rhet of Eq. (105), specified for the heterodyne

protocol [13], becomes the following:

Rhet
gen � r

[
Rhet

pe − �aep√
n

+ � − �n

n

]
, (113)

where Rhet
pe is Rpe of Eq. (74) for the heterodyne protocol.

The rate established in Eq. (113) is valid for a symmetrized

coherent-state protocol P̃ with heterodyne detection [13],

which is now secure against general coherent attacks, with

modified epsilon security equal to [63]

ε′ = K4
n ε/50, (114)

and probability of success pec ≃ pec pet. Note that, because

Kn ≃ O(n), we need to start with a very small value for ε

so that the final epsilon-security ε′ remains well below 1 and

the term �n in Eq. (113) does not explode. In particular, this

means that εpe needs to be very small (e.g., ≃ 10−43) and

the corresponding confidence parameter w must be computed

from Eq. (96).

IV. COMPOSABLE SECURITY AND KEY RATES FOR

FREE-SPACE CV-QKD

A. Preliminary considerations

Here we extend the previous theory (Sec. III) to account for

the channel fluctuations that generally affect free-space quan-

tum communications. We consider free-space fading where

the transmissivity τ is not stable but varies over a time scale of

the order of 100 ms or similar. Because of this issue, the first

important physical condition is that the setups need to have

system clocks and detectors that are suitably fast to collect

enough statistics while the value of τ fluctuates.

In a general fading process, the instantaneous transmissiv-

ity τ between transmitter and receiver follows a probability

distribution P0(τ ), which takes the specific expression in

Eq. (25) when the physical aspects of the free-space commu-

nication are taken into account. The probability that τ falls

in a small interval [τ, τ + δτ ] is given by pδ = p(τ, τ + δτ ),

where we define

p(τ1, τ2) :=
∫ τ2

τ1

dτ P0(τ ). (115)

This means that only a small fraction pδm of the signals can

be used for estimating this value of τ . (From now on, when

we write a postselected quantity like pδm, we implicitly mean

an integer approximation of it.)

As we can see from Eq. (79), the error variance σ 2
τ in

the estimation of τ scales as O(m−1). Here this becomes

O[(pδm)−1], with the problem of leading to insufficient statis-

tics. We can overcome this issue by introducing energetic

pilot pulses specifically dedicated to track the instantaneous

transmissivity of the channel so that we can create suitable

bins for collecting signals with almost equal transmissivity.

These bins are then subject to a suitable postprocessing that

we call defading.

Another preliminary consideration is about noise filtering.

As already mentioned in Sec. II E 1, one can effectively nar-

row the frequency filter of the receiver to match the bandwidth

of the LO, thanks to the interferometric process occurring

in the homodyne/heterodyne setup. Thus, instead of being

limited to a physical filter of 1 nm around 800 nm at the re-

ceiver’s aperture, the detector imposes a much narrower filter

of 0.1 pm, by interfering the signal with the 10-ns-long and

50-GHz-wide pulse of the LO, close to the time-bandwidth

product. Such a process is secure as long as the projection

of the homodyne detectors does not create correlations with

the frequencies outside the bandwidth of the LO, since these

extra frequencies could be used as Trojan-horse modes. In

realistic implementations, such cross talk is/can be made

negligible. As a result, thanks to the use of the LO (as TLO or

LLO), the parties are able to suppress the external background

noise (down to n̄B ≃ 10−7 in daylight conditions with typical

parameters). For this reason, one can make the numerical

approximation

n̄B ≪ 1, n̄ ≃ n̄ex. (116)

B. Loss tracking via random pilots

For free-space parameter estimation, the parties sacrifice

not only m signal pulses (as before in Sec. III) but also addi-

tional mP energetic pilot pulses. The mP pilots are specifically

used for the quasiperfect estimation of the (generally variable)

transmissivity τ , so as to track its instantaneous value. In this

way, the parties can create a lattice of suitably narrow bins of

transmissivity for signal classification (discussed in the next

subsection).

The pilots are prepared in exactly the same coherent state

|n̄1/2
P eiπ/4〉 and randomly transmitted during the quantum

communication. In a TLO setup, both signals and pilots are

multiplexed with their LOs. As previously discussed, the LO

can be very bright, with mean number of photons n̄LO of the

order 107 at the receiver even after 20 dB of loss (this is

for 10-ns-long pulses from a 100-mW laser at λ = 800 nm).

This means that relatively-energetic pilots can be generated

with just a 10−4 fraction of the LO energy (so that n̄P ≃ 103

photons are collected by the receiver). In this way, the pilots

are bright enough to provide an excellent estimate of τ , while

the LO remains so much brighter that the measurements of the

pilots will still be shot-noise limited. In an LLO setup, the ref-

erence pulses for the local LO reconstruction are transmitted

at the odd uses of the channel, while the pilots are randomly

interleaved with the signals at the even uses of the channel.

In a small fading interval δτ , we have pδmP pilots to be

used for the estimation of τ . From these pilots, the parties

derive pδmPνdet pairs {xi, yi} of sampling variables xi = √
2n̄P

and yi = √
τxi + zi. They then build the estimator

T̂P := 1

pδmPνdet

∑

i

yi

xi

, (117)
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with mean
√

τ and variance σ 2
z /(2n̄P pδmPνdet). The latter

variance goes to zero for suitably large n̄P, so the parties

achieve a practically perfect estimate of τ already for mP ≃
O(1). In other words, we may consider T̂P = √

τ , meaning

that the parties can perform real-time tracking of the trans-

missivity τ with negligible error.

C. Postselection interval and lattice allocation

While monitoring the transmissivity τ with the pilots, the

parties only keep the data points exchanged within an agreed

postselection interval � := [τmin, τmax], with associated prob-

ability p� = p(τmin, τmax) as computed from Eq. (115). Thus,

from a total of N exchanged pulses, only a portion S� :=
(N − mP)p� of signals is selected for further processing.

The interval is chosen so that S� ≫ 1, leading to sufficient

statistics for parameter estimation. The parties may choose

τmax = η := ηstηatmηeff, which is the maximum value achiev-

able by a perfectly aligned beam, and then take τmin = fthη for

a threshold value fth ∈ (0, 1).

Within the postselection interval �, Alice and Bob intro-

duce a regular lattice with step δτ so that there are a number of

transmissivity slots/bins �k := [τk, τk+1] with τk := τmin +
(k − 1)δτ , for k = 1, . . . , M and M = (τmax − τmin)/δτ . In

this coarse graining of the transmissivity, each slot �k is

populated with probability pk = p(τk, τk+1) according to the

fading distribution in Eq. (115). This means that slot �k has

Sk := (N − mP)pk signals to be used for parameter estima-

tion and key generation. For a sufficiently narrow slot, these

signals provide νdetSk pairs of points {xi, yi} that satisfy the

input-output relation

yk ≃ √
τkx + zk, (118)

where zk = z(τk ) is a noise variable [cf. Eq. (48)] with vari-

ance

σ 2
z (τk ) := var(zk ) = 2n̄(τk ) + νdet. (119)

A potential strategy consists of processing each slot �k

independently from the others, by performing parameter esti-

mation over a corresponding set of sacrificed signals, and then

going through the next steps of data processing. This approach

is based on the fact that we can consider the transmissivity τk

and the noise-variance σ 2
z (τk ) to be approximately constant

for all data points in the same slot (so there is a well-defined

thermal-loss channel associated with it). In turn, this means

that we can directly apply the procedures of Sec. III valid for a

stable quantum channel. As a result, each slot �k will provide

a slot rate Rk with corresponding epsilon security εk . The total

finite-size key rate of the link is the average of Rk over the

slots, i.e.,

R̄ =
M∑

k=1

pk max{0, Rk}, (120)

with total security ε = ∑M
k=1 pkεk . Because this solution may

suffer from insufficient statistics in the various slots, we adopt

the procedure of the following subsection.

FIG. 5. Defading of data. See text for details.

D. Defading

The parties can process their data to eliminate the fading

and create an overall stable channel at the cost of using the

minimum transmissivity within the post-selection interval.

This procedure of defading is one of the possible strategies

and is used to provide an achievable lower bound for the secret

key rate.

In this procedure, Bob maps all his νdetSk data points

yk from the generic kth slot �k to the first slot �1 in the

post-selection interval, by using the following downlift trans-

formation

yk → y′k :=
√

τmin

τk

yk = √
τminx + z′k, (121)

where z′k is a Gaussian noise variable with variance var(z′k ) =
σ 2

z (τk )τmin/τk . See also Fig. 5.

While Eq. (121) is certainly a valid postprocessing of data,

it is not guaranteed that the entire input-output transformation

x → y′k can be made equivalent to the action of a quan-

tum channel (which is a useful condition for our theoretical

treatment). This is due to the noise reduction induced by

the rescaling τmin/τk � 1, which means that var(z′k ) might

become < νdet, violating the minimum noise associated with

the final quantum measurement.

This problem is solved if Bob applies a classical Gaus-

sian channel y′k → y′′k := y′k + ξ k
add with additive noise

var(ξ k
add) = (1 − τmin/τk )νdet. In this way, Bob generates

y′′k = √
τminx + z′′k, (122)

where z′′k is a Gaussian variable with variance

σ 2
k := var(z′′k ) = 2n̄(τk )τmin/τk + νdet � νdet. (123)

We see that the transformation yk → y′′k is a slot-

dependent beam-splitter channel Ck performed over the data,

with transmissivity ιk := τmin/τk and environmental noise

variance equal to νdet. Equivalently, this can be represented by

a virtual beam splitter directly applied to the pulses allocated

to slot �k followed by the measurement. In other words, Alice

and Bob’s input-output relation x → y′′k is equivalent to the

action of a composite Gaussian channel Fk := Ck ◦ Ek , where

Ek is a thermal-loss channel with transmissivity τk and thermal

number n̄(τk ), followed by Bob’s measurement.

Assuming that the transformation yk → y′′k is performed

for all the M slots of the interval, Bob creates a new variable

y′′ which satisfies

y′′ = √
τminx + z′′, (124)

where z′′ is non-Gaussian. Since x → y → y′′ is a Markov

chain, Bob’s postprocessing can only decrease the mutual

information I (x : y′′) � I (x : y). The noise variable z′′ can be
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written as an ensemble {πk, z′′k}, with the independent ele-

ment z′′k being selected with probability πk = pk/p�. Thus, it

has zero mean and variance:

σ 2
z′′ =

M∑

k=1

πkσ
2
k = νdet + 2τmin

M∑

k=1

πk

τk

n̄(τk ). (125)

Overall, the transformation of Eq. (124) is equivalently ob-

tained by measuring the output of a non-Gaussian channel F ,

which is described by the ensemble {πk,Fk} and assumed to

be completely controlled by Eve.

Due to the optimality of collective Gaussian attacks for

Gaussian-modulated coherent-state protocols, the parties may

assume the worst-case scenario where the non-Gaussian chan-

nel F is replaced by a thermal-loss Gaussian channel Eτmin,n̄G

with the same transmissivity τmin and thermal number,

n̄G = τmin

M∑

k=1

πk

τk

n̄(τk ), (126)

so that it has noise variance σ 2
G = 2n̄G + νdet equal to σ 2

z′′ of

Eq. (125). This means that the noise variable z′′ in Eq. (124)

can be replaced by a Gaussian variable zG, and the total input-

output relation is assumed to be

y′′ = √
τminx + zG. (127)

Thus, we lower bound Alice and Bob’s performance by

considering the postprocessed variables {x, y′′} connected by

the input-output relation of Eq. (127), after defading and as-

suming a Gaussian attack (Gaussianification). This leads to

the asymptotic key rate,

Rasy = βI (x : y′′)τmin,n̄G
− χ (E : y′′)τmin,n̄G

, (128)

which can be computed from Eq. (73). The explicit expres-

sions for the mutual information I and the Holevo bound χ

are given in Secs. III A and III C for the homodyne (Rhom
asy ) and

heterodyne protocols (Rhet
asy) [64].

Because we have reduced the fading process to a stable

thermal-loss channel Eτmin,n̄G
, we can exploit the methodology

of Sec. III. In particular, we can apply the tools of Sec. III D

to compute the estimators and worst-case estimators for τmin

and n̄G, to be employed in the key rate.

E. Estimating the channel parameters

In the parameter estimation step, Alice and Bob sacrifice

some of their signals to estimate the actual values of the

minimum transmissivity τmin = T 2
min and the Gaussian noise

σ 2
G (or n̄G) up to an acceptable error probability. Note that,

in general, the actual value of τmin might be different from

what determined via the pilots, which means that its esti-

mation via the signals is needed. In fact, Eve might try to

use a QND measurement to distinguish between pilots and

signals. After such QND measurement (with loss τk), Eve

may apply an additional measurement (with loss τ̃ ) only to

the signals. This means that, after defading, the input-output

relation of Eq. (127) would become ỹ′′ = √
τ̃minx + z̃G, with

lower transmissivity τ̃min := τ̃ τmin and generally higher noise

z̃G.

Because parameter estimation is performed over a subset

of the signals, the parties will detect these discrepancies with

respect to the pilots. Most importantly, they will derive the

corresponding estimators for the lower transmissivity τ̃min and

the different noise levels to be used in the calculation of their

secret key. Of course, Eve might be more disruptive over

the signals so their transmissivity might be sensibly different

from that of the corresponding pilots, but the point is that any

such a perturbation will be anyway detected and estimated

by the parties. If the discrepancy between pilots and signals

is too strong, the noise level detected by the parties becomes

too high for secure communication (denial of service). In the

following, we make the realistic assumption that Eve acts uni-

versally over pilots and signals, so τ̃min = τmin. However, we

point out that this is only a simplification, not a limitation of

the approach whose application to τ̃min �= τmin is immediate.

To create their estimators, the parties sacrifice mp� sig-

nals from those they have postselected. This corresponds to

m� := νdetmp� pairs of data points {x, y′′}, and we can also

write m� = ∑M
k=1 mk , where mk := νdetmpk is the contribu-

tion coming from the generic slot �k . In writing mp�, we

implicitly assume that m is the equivalent number of signals

that would have been sacrificed by the parties in the absence of

postselection. This notation is theoretically useful to describe

scenarios where the same protocol (with fixed m) is imple-

mented over different distances over which the value of p�

can be optimized.

For the square-root transmissivity, Alice and Bob build the

estimator:

T̂min :=
m�∑

i=1

xiy
′′
i

/ m�∑

i=1

x2
i ≃ 1

m�σ 2
x

m�∑

i=1

xiy
′′
i . (129)

It is easy to check that this is unbiased (i.e., its mean is ≃ Tmin)

and its variance is given by

var(T̂min) ≃ 1

m2
�σ 4

x

m�∑

i=1

var(xiy
′′
i ) (130)

= 1

m2
�σ 4

x

M∑

k=1

mk∑

ik=1

var
(
xik y′′k

ik

)
(131)

≃ 1

m2
�σ 4

x

M∑

k=1

mkvar(xy′′k ) (132)

= 1

m2
�σ 4

x

M∑

k=1

mk

(
2τminσ

4
x + σ 2

x σ 2
k

)
(133)

= 1

m�

(
2τmin + 1

m�σ 2
x

M∑

k=1

mkσ
2
k

)
(134)

= 2τmin + σ 2
G/σ 2

x

m�

. (135)
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Let us build an estimator for the variance σ 2
G of the thermal

noise zG. This is given by

σ̂ 2
G := 1

m�

m�∑

i=1

(y′′
i − T̂minxi )

2 (136)

≃ 1

m�

M∑

k=1

mk∑

ik=1

(
y′′k

ik
− Tminxik

)2
(137)

= 1

m�

M∑

k=1

σ 2
k Yk, Yk :=

mk∑

ik=1

(
z′′k

ik

)2

σ 2
k

, (138)

where Yk is distributed according to a χ2 distribution with mk

degrees of freedom. It is easy to check that the estimator is

unbiased, i.e., we have

〈
σ̂ 2

G

〉
= 1

m�

M∑

k=1

σ 2
k 〈Yk〉 ≃ σ 2

G. (139)

Then, for the variance, we compute

var
(
σ̂ 2

G

)
= 1

m2
�

M∑

k=1

σ 4
k var(Yk ) ≃ 2

m2
�

M∑

k=1

mkσ
4
k . (140)

Equivalently, in terms of number of thermal photons n̄G :=
(σ 2

G − νdet)/2, we write the estimator

̂̄nG :=
(
σ̂ 2

G − νdet

)
/2, (141)

which is unbiased 〈 ̂̄nG〉 ≃ n̄G with var( ̂̄nG) = var(σ̂ 2
G)/4.

It is important to note that all the mean values and variances

above are computable by the parties by replacing estimators

on the right-hand sides of the formulas. In fact, once T̂min and

σ̂ 2
G have been computed, these can be replaced in Eq. (135)

to provide var(T̂min). To compute var(σ̂ 2
G), the parties need to

derive estimators of σ 2
k , i.e.,

σ̂ 2
k

:= 1

mk

mk∑

ik=1

(
y′′k

ik
− T̂minxik

)2
, (142)

whose squares go in Eq. (140).

F. Worst-case estimators and bounds

According to Eq. (127), Alice and Bob’s postprocessed

data is generated by a thermal-loss channel Eτmin,n̄G
with trans-

missivity τmin and thermal number n̄G. For the transmissivity

and the thermal number, we write the worst-case estimators

τ ′
min :=

[
T̂min − w

√
var(T̂min)

]2

≃ T̂ 2
min − 2wT̂min

√
var(T̂min) + O

(
m−1

�

)
, (143)

n̄′
G := ̂̄nG + w

√
var( ̂̄nG), (144)

where the confidence parameter w is connected to the error

εpe according to Eqs. (87) or (96).

For the sake of the theoretical analysis, it is useful to

introduce bounds for τ ′
min and n̄′

G. Consider the worst-case

noise variance σ 2
wc = 2n̄wc + νdet such that σ 2

wc � σ 2
k for any

slot k. Then, we may write

var(T̂min) �
2τmin + σ 2

wc/σ
2
x

m�

, (145)

〈 ̂̄nG〉 � n̄wc, var( ̂̄nG) �
(2n̄wc + νdet)

2

2m�

. (146)

As a result, we have the bounds

τ ′
min � τLB := τmin − 2w

√
2τ 2

min + τminσ 2
wc/σ

2
x

m�

, (147)

n̄′
G � n̄UB := n̄wc + w

2n̄wc + νdet√
2m�

. (148)

Let us now evaluate the worst-case thermal number n̄wc to

be used in the bounds above. We write

n̄wc = ηeffn̄B + n̄ex,wc, (149)

where n̄ex,wc := n̄ex(τwc) � n̄ex(τ ) is computed over the

worst-case value τwc. The latter may be chosen to be τwc =
τmin for the TLO and τwc = τmax for the LLO (due to the fact

that n̄ex(τ ) has different monotonicity in τ , as discussed in

Sec. III B 3). In other words, for n̄ex,wc, we may consider the

two estimates

n̄TLO
ex,wc ≃ �el/τmin, (150)

n̄LLO
ex,wc ≃ �el + πτmaxσ

2
x C−1lW, (151)

where �el is the electronic noise term in Eq. (61).

In our numerical investigations, we assume the bounds

τLB and n̄UB in Eqs. (147) and (148), which take different

expressions for TLO and LLO depending on Eqs. (150) and

(151). Since each of these worst-case estimators is correct

up to an error εpe, the total error affecting the procedure of

parameter estimation is ≃ 2εpe.

G. Composable key rate for free-space CV-QKD

Let us summarize the scenario. Alice and Bob perform

a Gaussian-modulated coherent-state (homodyne or hetero-

dyne) protocol with variance σ 2
x = μ − 1 over a free-space

channel with instantaneous transmissivity ηch and background

thermal noise n̄B. The receiver has setup efficiency ηeff and

setup noise n̄ex, so the total thermal noise is n̄ = ηeffn̄B + n̄ex.

The overall instantaneous transmissivity from Alice to Bob

is given by τ = ηchηeff and it fluctuates following a fading

distribution P0(τ ) as in Eq. (25). Because n̄ex = n̄ex(τ ) (see

Sec. III B 3), we also have thermal-noise fluctuations n̄ =
n̄(τ ). The physical scenario is depicted in Fig. 1, and also

modelled in Fig. 4 for each fixed value of the transmissivity.

Alice sends to Bob a total of N pulses which are multi-

plexed with an LO in polarization (TLO) or in time (LLO).

Note that in terms of throughput (bits/sec), given by the rate

(bits/use) times the clock C (uses/sec), one should account

for the additional uses of the link associated with the LO.

Thus, there is a factor of 1/2 for the LLO, unless this is com-

pensated by using two polarizations for the quantum signals

(see Sec. III B 1).

Within the total set of N pulses, there are mP pilots that

are prepared in a bright coherent state and are randomly
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interleaved with the N − mP signal pulses. Thanks to these

pilots, the parties monitor the instantaneous transmissivity

τ and they create a postselection interval � := [τmin, τmax],

where τmax = η := ηstηatmηeff is the maximum value achiev-

able and τmin = fthη for some threshold value fth ∈ (0, 1).

The interval � postselects a portion S� = (N − mP)p� of the

signals, where the probability p� = p(τmin, τmax) is given in

Eq. (115). Then, the interval is further divided into a lattice

of M slots with small step δτ , in such a way that each slot

�k := [τk, τk+1] collects signals with almost-equal transmis-

sivity τ ≃ τk := τmin + (k − 1)δτ .

The postselected S� signals provide νdetS� pairs of data

points {xi, yi} where x is Alice’s generic quadrature encoding

and y is Bob’s corresponding decoding. The outcomes {yi} are

all mapped into the first slot �1 with minimum transmissivity

τmin, by means of the de-fading channel y → y′′ described in

Sec. IV D. As a result, Alice and Bob’s data points satisfy the

input-output relation y′′ = √
τminx + zG of Eq. (127), which is

equivalent to a thermal-loss channel Eτmin,n̄G
with transmissiv-

ity τmin and thermal number n̄G, so that σ 2
G = 2n̄G + νdet.

Alice and Bob sacrifice mp� signals to derive worst-case

estimators τ ′
min and n̄′

G according to Eqs. (143) and (144),

where the confidence parameter w is determined by the error

εpe according to Eqs. (87) or (96). These estimators are used

to compute the asymptotic key rate affected by parameter

estimation

Rpe = Rasy(τ ′
min, n̄′

G), (152)

where Rasy is given in Eq. (128). For the theoretical analysis,

we consider the further lower bound

Rpe � RLB := Rasy(τLB, n̄UB), (153)

which is based on τLB and n̄UB from Eqs. (147) and (148).

The signals remaining for key generation are np�, where

n = N − (m + mP). Thus, after parameter estimation, the par-

ties process their np�νdet key generation points {xi, y′′
i } via

the procedures of error correction and privacy amplification.

Depending on the reconciliation parameter β (related to the

rate of the error-correcting code) and the correctness εcor (re-

lated to the probability of residual errors in Alice’s and Bob’s

corrected strings), the step of error correction has an associ-

ated success probability pec to promote the block of points

to the next step of privacy amplification. The latter procedure

is ideal (i.e., decouples Eve) up to an error quantified by the

secrecy parameter εsec = εs + εh, in turn decomposed into a

smoothing (εs) and a hashing parameter (εh). After privacy

amplification, an average number of np� pec signals contribute

to the final key, leading to an overall factor np� pec/N in front

of the rate.

The composable finite-size key rate associated with the

post-selection interval � is bounded by

R �
np� pec

N

(
RLB − �aep√

np�

+ �

np�

)
, (154)

where the two terms �aep and � are given in Eqs. (106) and

(107) for some value log2 d of digitalization. This rate is ε se-

cure against collective Gaussian attacks, where ε = 2pecεpe +
εcor + εsec. The expression of the key rate in Eq. (154) can be

specified for the homodyne/heterodyne protocol and for the

two types of LO (TLO/LLO).

For the heterodyne protocol, we can extend the key rate

to composable finite-size security against general coherent

attacks (see Sec. III F). This is done by adopting a suitable

symmetrization and including energy tests, both operations

to be performed on the data points {xi, y′′
i }. The number of

energy tests is set to be p�met, where met = fetn for some

factor fet < 1. Thus, the final key generation signals will be

np� pec with

n = N − (m + mP + met) = N − (m + mP)

1 + fet

. (155)

The composable key rate is bounded as follows:

Rhet
gen �

np� pec

N

(
Rhet

LB − �aep√
np�

+ � − �np�

np�

)
, (156)

where the extra term �n is defined as in Eq. (110) and is

expressed in terms of Kn of Eq. (111), for which we choose

the dimensions dR = dT ≃ n̄T = σ 2
x /2 (in such a way that the

energy test succeeds with probability pet ≃ 1).

Note that the key rate Rhet
gen is secure up to an epsilon secu-

rity ε′ = K4
np�

ε/50. This means that, to get ε′ ≃ 10−10 against

general attacks, we need to start from a security of ε ≃ 10−43

against collective Gaussian attacks. In turn, this also implies

εpe ≃ 10−43, meaning that we need to use Eq. (96) for the

worst-case estimators.

H. Numerical simulations

In our numerical investigations, we consider the hetero-

dyne protocol for which we study the free-space composable

key rate under collective and coherent attacks, assuming the

two types of LO. The free-space model is the same as in Sec. II

and depicted in Fig. 1. We consider the z propagation of a

collimated Gaussian beam which is subject to diffraction, at-

mospheric extinction ηatm [as quantified by the Beer-Lambert

equation of Eq. (5)], pointing error σ 2
P ≃ (10−6z)2 (for an

error of 1μrad at the transmitter), and Rytov-Yura weak tur-

bulence (σ 2
Rytov < 1) under the H-V model of atmosphere (see

Appendix C). Turbulence leads to beam broadening, with

short-term transmissivity ηst, and centroid wandering, with

variance σ 2
TB. Including the setup efficiency ηeff, we have

a maximum transmissivity η := ηstηatmηeff when the beam

is perfectly aligned. The overall wandering, with variance

σ 2 = σ 2
P + σ 2

TB, leads to the distribution P0(τ ) of Eq. (25)

for the instantaneous transmissivity τ of the link. Thermal

background follows the description of Sec. II D for cloudy

daytime conditions (but suppressed by the homodyne filter).

In particular, we assume the physical parameters listed in

Table I.

The steps of the protocol are those explained in the previ-

ous subsection, where Alice and Bob assume a postselection

interval � := [τmin, τmax] with τmax = η and τmin = fthη for

some threshold value fth ∈ (0, 1). In particular, we choose the

parameters listed in Table II.

As we can see from Fig. 6(a), the composable key rates

against collective attacks are sufficiently high, even though

these values actually represent lower bounds to what achiev-

able by Alice and Bob. As a matter of fact, in most of the

weak-turbulence range, these rates are within one order of

magnitude of the ultimate loss-based upper bound of Eq. (27)
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TABLE I. Physical parameters.

Physical parameter Symbol Value

Beam curvature R0 ∞
Wavelength λ 800 nm

Beam spot size w0 5 cm

Receiver aperture aR 5 cm

Receiver field of view �fov 10−10 sr

Homodyne filter �λ 0.1 pm

Detector efficiency ηeff 0.5

Detector bandwidth W 100 MHz

Noise equivalent power NEP 6 pW/
√

Hz

Linewidth lW 1.6 KHz

LO power PLO 100 mW

Clock C 5 MHz

Pulse duration �t,�tLO 10 ns

Altitude h 30 m

Structure constant (day) C2
n 2.06 × 10−14 m−2/3

Background noise

(day, �λ = 0.1 pm)
n̄B 4.75 × 10−7

which is plotted as red dashed line in Fig. 2(a), computed for

daytime and the same physical parameters considered here. In

Fig. 6(a), we study the rates that are achievable with the TLO

and the LLO. In one setting (solid curves), we fix the value of

the threshold parameter for postselection fth to 84% and we

also fix the value of the input Gaussian modulation (μ = 20

for TLO and μ = 8.4 for LLO). These values are chosen to

maximize the rates at the maximum distance z = 1066 m but

they are not the optimal choices for the other distances. In

another approach, we maximize the rates over fth and μ at

each distance, finding substantially improved performances

(dashed lines).

In Fig. 6(b), we plot the composable key rates achievable

against general attacks assuming no optimization in fth and μ.

On the one hand, these rates are not far from the correspond-

ing results against collective attacks. On the other hand, the

choice of parameters in Table II may be far more challenging

for this general case (e.g., in terms of β and pec for such a

low value of εcor). Also note that the final epsilon security

TABLE II. Protocol parameters.

Protocol parameter Symbol Collective attacks General attacks

Total pulses N 5 × 107 5 × 107

Pilot pulses mP 0.1 × N 0.1 × N

PE signals m 0.1 × N 0.1 × N

Energy tests fet − 0.2

KG signals n 0.8 × N ≃ 3.33 × 107

Digitalization d 25 25

Rec. efficiency β 0.98 0.98

EC success prob pec 0.9 0.5

Epsilons εh,s,... 2−33 ≃ 10−10 10−43

Confidence w ≃ 6.34 ≃ 14.07

Security ε, ε′ ≃ 5.6 × 10−10 � 1.3 × 10−9

Modulation μ variable
20 (TLO)

8.4 (LLO)

Threshold fth variable 0.84

(a)

(b)

FIG. 6. Composable secret-key rates (bits/use) versus distance

(m) for free-space QKD in the regime of weak turbulence and for

cloudy daytime operation. We consider a coherent-state protocol

with heterodyne detection, pilot-guided and operated in postselection

as described in the main text. Physical and protocol parameters are

listed in Tables I and II. (a) We plot the secret key rate of Eq. (154)

assuming a TLO (black curves) and an LLO (blue curves). In par-

ticular, we plot the performances at fixed postselection threshold

fth = 0.84 and fixed input modulation, μ = 20 for TLO and μ = 8.4

for LLO (solid curves). These are chosen to optimize the rates at the

maximum distance (z = 1066 m). We compare these performances

with those achievable by optimizing the rates over μ and fth at

each distance (dashed curves). (b) We plot the rate of Eq. (156)

against general attacks for TLO (black line) and LLO (blue line).

These performances are not optimized and refer to fixed threshold

fth = 0.84 and input modulation (μ = 20 for TLO and μ = 8.4 for

LLO).

ε′ depends on the distance. For the parameters chosen, this

ranges from ≃ 1.38 × 10−11 for the LLO at z = 1066 m and

≃ 1.32 × 10−9 for the TLO at z = 200 m.

A final important observation (already mentioned be-

fore but here relevant to stress) is that the rates shown in

Fig. 6 refer to bits per use of the quantum communica-

tion channel, without accounting for the transmission of the

LO reference pulses. If we include the clock of the system

(uses/second) and compute the throughput of the commu-

nication (bits/second), then we need to include the uses of

the link dedicated to the LO. Thus, for the LLO, we should

halve the final rate (with respect to the TLO) due to the time

multiplexing of the LO. However, it is also true that, with the
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LLO, one could use both polarizations in the transmission of

the signals, so the factor of 1/2 in the final rate can be fully

compensated.

V. CONCLUSIONS

In conclusion, we have established the ultimate bounds

for free-space quantum communications under general con-

ditions of diffraction, atmospheric extinction, pointing errors,

turbulence, and background thermal noise. We first developed

the theory for the regime of weak turbulence, crucial for free

space ground-communications in a relatively short range, and

then extended the results to the case of stronger turbulence.

In the short range, we have then derived achievable and

composable key rates for free-space CV-QKD, proving that

these rates are sufficiently close to the ultimate limits. This

shows the robustness and suitability of free-space channels for

implementing high-rate quantum-secured communications.

The achievable rates are derived by first formulating

a general theory of composable finite-size security for

Gaussian-modulated coherent-state protocols under condi-

tions of channel stability, then extending this theory to

considering fading (non Gaussian) channels, which can be

dealt via the introduction of pilot modes and suitable post-

processing techniques. In this way, we have been able to

handle the difficult step of parameter estimation and to reduce

the problem to the easier framework of a stable Gaussian

channel. Fully assessing the practical security of CV-QKD in

strong turbulent channels is an interesting future direction of

investigation.

In conclusion, our paper not only established the ultimate

limits and benchmarks for free-space quantum communi-

cations but also provided a comprehensive machinery for

studying the composable finite-size security of CV-QKD pro-

tocols both in stable conditions (e.g., in standard fiber-based

connections) and unstable conditions (i.e., in free-space links

subject to fading effects).
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APPENDIX A: PROPAGATION OF GAUSSIAN BEAMS

Most of the contents of this Appendix are basic notions of

quantum optics. They are given here to set the general notation

of the paper and for the sake of completeness.

1. Free-space diffraction

Consider an optical bosonic mode with wavelength λ, an-

gular frequency ω = 2πc/λ, and wave number k = ω/c =
2π/λ. Under the scalar approximation (single and uniform

polarization) and the paraxial wave approximation, the elec-

tric field takes the form

E (x, y, z, t ) = u(x, y, z) exp[i(kz − ωt )], (A1)

where the field amplitude u(x, y, z) is a slowly varying func-

tion in the longitudinal propagation direction z, with x and

y being the transverse coordinates and t the time coordinate.

The possible expressions for the field amplitude u must satisfy

the Fresnel-Kirchoff integral in the Fresnel approximation [6,

Eq. (4.6.9)]. A solution of this integral which maintains its

functional form, i.e., an eigensolution, is the Gaussian beam.

In particular, assume free-space propagation along the z

direction with no limiting apertures in the transverse plane, for

which we introduce the radial coordinate r =
√

x2 + y2. Then,

the lowest order (TEM00) single-mode Gaussian beam takes a

simple analytical expression. At the initial position z = 0, its

field amplitude has the form

u(0, r) = exp
(
−r2/w2

0

)
exp [−ikr2/(2R0)], (A2)

where w0 is the beam spot size and R0 is the phase-front

radius of curvature. For beam spot size, we precisely mean

the field spot size, corresponding to the radial distance at

which the amplitude of the field decays to 1/e of its maxi-

mum value. Note that the intensity of the beam is given by

I (0, r) = exp (−2r2/w2
0 ), and one can define an intensity spot

size w
I
0 = w0/

√
2 that is also widely used in the literature

(e.g., in Refs. [25,29]).

Let us introduce the Rayleigh range,

zR := πw
2
0

λ
, (A3)

and the Fresnel number of the beam,

f := πw
2
0

λz
= zR

z
, (A4)

so the far-field regime (z ≫ zR) corresponds to f ≪ 1. Fol-

lowing the notation of Ref. [15], we also introduce the Fresnel

ratio � := f −1 and the curvature parameter �0 := 1 − z/R0.

Note that a collimated beam (R0 = +∞) corresponds to �0 =
1, while a convergent beam (R0 > 0) to �0 < 1, and a diver-

gent beam (R0 < 0) to �0 > 1.

In terms of the previous parameters, we can write the field

at any distance z as [15,16]

u(z, r) = w0

wz

exp
(
−r2/w2

z

)
exp [−ikr2/(2Rz ) − iφz], (A5)

where ωz is the spot size at position z, Rz is the corresponding

curvature at z, and φz is its longitudinal phase at z, also known

as Guoy phase shift [5, Sec. 17.4]. These quantities take the

following expressions:

w
2
z = w

2
0

(
�2

0 + �2
)
, (A6)

Rz=
z
(
�2

0 + �2
)

�0(1 − �0) − �2
, (A7)

φz = tan−1(�/�0). (A8)

More explicitly, we may write

w
2
z = w

2
0

[(
1 − z

R0

)2

+
( z

zR

)2]
(A9)

= w
2
0

(
1 − z

R0

)2

+ λ2z2

π2
w

2
0

. (A10)
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A typical assumption is to adopt the planar approximation

of a collimated beam at the transmitter (�0 = 1). In such a

case, it is immediate to check that

w
2
z = w

2
0[1 + (z/zR)2], (A11)

Rz = −z[1 + (zR/z)2], (A12)

φz = tan−1(z/zR). (A13)

Note that w
2
z is the sum of the initial (minimum) condition

w
2
0 and a term w

2
0 (z/zR)2 which is due to diffraction. In the

far-field, the latter term is dominant and we have

wz ≃ w0(z/zR) = λz

πw0

, (A14)

which increases linearly with the distance z. Defining beam

divergence as θ := wz/z, we write θ ≃ λ/(πw0), which in-

creases with the wavelength (as expected). For a collimated

beam, the curvature is minimal at z = zR and then goes as

≃ z at large distances, meaning that the beam asymptotically

becomes a spherical wave.

From Eq. (A5), we see that the beam intensity at longitudi-

nal distance z is given by

I (z, r) = Iz
max exp

(
− 2r2/w2

z

)
, Iz

max := w
2
0/w

2
z . (A15)

Assume that the beam is orthogonally intercepted by a re-

ceiver, which is described as a sharped-edged circular aperture

with radial size aR, therefore, with total detection area πa2
R.

Let us compute the total power impinging on the finite-size

detector by integrating over the radial coordinates 0 � r � aR

and 0 � ϕ � 2π . We easily find

P(z, aR) :=
∫ 2π

0

dϕ

∫ aR

0

rdrI (z, r)

= Pz

(
1 − e−2a2

R/w2
z

)
, (A16)

where Pz := (πw
2
z Iz

max)/2 represents the total power in the op-

tical beam at distance z (corresponding to a receiver of infinite

radius aR → ∞). Note that we may also rewrite Eq. (A15) as

I (z, r) =
(
2Pz/πw

2
z

)
exp

(
−2r2/w2

z

)
. (A17)

The diffraction-limited transmissivity ηd associated with

the finite size of the receiver is given by

ηd := P(z, aR)/Pz = 1 − e−2a2
R/w2

z , (A18)

where we may explicitly express w
2
z as in Eq. (A9). In the far

field, we have � ≫ 1 in Eq. (A6), so wz ≫ w0. Assuming that

the receiver’s aperture radius aR is comparable to the spot size

w0, then we have wz ≫ aR and we can expand Eq. (A18) into

ηd ≃ ηfar
d := 2a2

R

w
2
z

≪ 1. (A19)

In particular, for a collimated beam, we can use the approxi-

mation in Eq. (A14) and write the far-field expression:

ηd ≃ η
far,coll
d := 2

(πw0aR

λz

)2

. (A20)

Recognizing that A0 = πw
2
0 and AR = πa2

R as the effective

transversal areas of the beam and the receiver’s aperture, we

note that we may write Eq. (A20) as ηd ≃ 2 f0R, where

f0R := A0AR/(λz)2 (A21)

is the Fresnel number product associated with the beam and

the receiver.

2. Diffraction at the transmitter

Any realistic transmitter involves an aperture with finite

radius aT . This means that the Gaussian profile of the beam

could be truncated outside that radius causing diffraction.

However, if the aperture aT is sufficiently larger than w0,

diffraction becomes negligible.

Assume that the transmitter has a plane exit pupil A0 of

area A0 while the receiver has an entrance pupil Az of area Az.

We consider the quasimonochromatic approximation where

the transmitter excites planar modes within a narrow band of

frequencies, centered around the carrier (angular) frequency

ω, and the receiver only detects planar modes within this

bandwidth. We then consider the usual scalar approximation

(i.e., a single and uniform polarization) and the paraxial wave

approximation (so that the transverse components of the wave

vector are negligible at the receiver).

Let us write x := (x, y) ∈ A0 to be the transverse coor-

dinates at the transmitter and x′ := (x′, y′) ∈ Az those at the

receiver. The electric field at the transmitter can then be ex-

pressed as [65]

E0(x, t ) =
∑

k,l

âk,l�k (x)�l (t ), (A22)

where �k (x)�l (t ) are orthonormal spatiotemporal modes

defined over A0 and 0 � t � tmax, with tmax being the

time duration of the transmitter’s signal. These modes have

corresponding annihilation operators âk,l . Thanks to this

normal-mode decomposition, one can express the electric

field at the receiver, which is given by [65]

Ez(x′, t ) =
∑

k,l

(√
ηk âk,l +

√
1 − ηk êk,l

)

× �k (x′)�l (t − c−1z) (A23)

for modes defined over Az and 0 � t − c−1z � tmax. Above,

êk,l are the annihilation operators associated with environmen-

tal modes impinging on the pupil of the receiver, which are

generally described by thermal states.

Free-space diffraction-limited quantum communication

can therefore be completed described by the input-output

relations

âk,l → b̂k,l = √
ηk âk,l +

√
1 − ηk êk,l , (A24)

which correspond to a collection of thermal-loss channels

(beam-splitter transformations with thermal environment). It

is important to note that

∑

k

ηk = A0Az

(λz)2
:= nf, (A25)

which is equal the Fresnel number product nf of the two pupils

[65, Eq. (37)]. In the far-field regime (nf ≪ 1), only one mode

is effectively transmitted from transmitter to receiver, with

transmissivity ηfar ≃ nf.
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For circular apertures A0 = πa2
T and Az = πa2

R, we there-

fore have

ηfar =
(πaT aR

λz

)2

. (A26)

From Eq. (A26), we see that we obtain the far-field

collimated-beam transmissivity in Eq. (A20) by setting aT =√
2w0 ≃ 1.41w0. In other words, by choosing such a value

for the transmitter’s aperture, we may neglect its far-field

contribution to diffraction from the point of view of the trans-

missivity (otherwise aT = w0 would cause a 3dB loss). That

being said, the choice aT =
√

2w0 may still be too generous

because the profile of the Gaussian beam could be affected

in the far field by non-negligible intensity ripples and peak

intensity reductions.

To preserve the Gaussian profile with excellent approxi-

mation, a more conservative choice is aT � 2w0, e.g., aT ≃
2.3w0 [5, Sec. 17.1]. Let us write Eq. (A16) at z = 0 for the

transmitter’s aperture aT . Then, we see that the total power

passing through the transmitter is given by P0(1 − e−2a2
T /w2

0 ).

If we choose aT � 2w0, then � 99.97% of P0 is transmitted.

This estimate provides an idea of the extremely small per-

turbation that such a large aperture (aT � 2w0) causes to the

Gaussian beam.

APPENDIX B: DIFFRACTION-LIMITED

FREE-SPACE BOUNDS

Quantum mechanically, the propagation of the Gaus-

sian beam from transmitter to receiver can be represented

by a single mode whose annihilation operator â at the

transmitter undergoes the following input-output Bogoliubov

transformation:

â → b̂ = √
ηdâ +

√
1 − ηdê, (B1)

where b̂ is the annihilation operator of the signal mode at the

receiver and ê is the annihilation operator of an environmental

mode impinging on the receiver and coupling with the output

signal mode. Mode ê is generally described by a thermal

state whose mean number of photons n̄e depends on vari-

ous factors. Its typical values largely vary between nighttime

and daytime operations, weather conditions, etc. The basic

process described in Eq. (B1) is also known as single-mode

thermal-loss channel [3], here denoted by E n̄e
ηd

. (Note that, in

the main text and other parts of these Appendices, we use

the different notation Eηd,n̄ to indicate a thermal-loss channel

with transmissivity ηd and n̄e = n̄/(1 − ηd), implying that n̄

thermal photons are added to its output).

To give a universal upper bound which is valid in ev-

ery condition, we neglect thermal noise, so that Eq. (B1)

describes a pure-loss channel Eηd
: â → √

ηdâ + √
1 − ηdv̂,

where the environmental mode v̂ is associated with a vacuum

state. Thermal noise can be neglected from an information-

theoretical point of view, because an upper bound on a

pure-loss channel would automatically be an upper bound on

a thermal-loss channel. In fact, a thermal-loss channel E n̄e
ηd

as in Eq. (B1) is equivalent to a composition of a pure-loss

channel Eηd
followed by an additive-noise Gaussian channel

Aξ
ηd

: â → â + √
1 − ηdξ , where the variable ξ is taken with

noise variance 〈ξ 2〉 = n̄e, so that

â
Eηd→ √

ηdâ +
√

1 − ηdv̂

Aξ
ηd→ √

ηdâ +
√

1 − ηd(v̂ + ξ )

= √
ηdâ +

√
1 − ηdê. (B2)

Because we have E n̄e
ηd

= Aξ
ηd

◦ Eηd
, we may apply data pro-

cessing for any functional that is decreasing under completely

positive trace-preserving (CPTP) maps. This is a property

which can be exploited for the REE.

Given two states ρ and σ , their relative entropy is defined

by S(ρ||σ ) := Tr[ρ(log2 ρ − log2 σ )]. Then, the REE of a

bipartite state ρAB is defined by

ER(ρAB) := inf
σ∈SEP

S(ρAB||σAB), (B3)

where SEP is the set of separable states. Now we observe

that the relative entropy is monotonic under the same CPTP

map N applied to both its arguments, i.e., S[N (ρ)||N (σ )] �

S(ρ||σ ). This allows one to show that, for any bipartite state

ρAB, we may also write

ER[I ⊗ N (ρAB)] � ER(ρAB). (B4)

In fact, it is quite easy to check that

ER[I ⊗ N (ρAB)] = inf
σ∈SEP

S[I ⊗ N (ρAB)||σAB]

(1)

� inf
σ∈SEP

S[I ⊗ N (ρAB)||I ⊗ N (σAB)]

(2)

� inf
σ∈SEP

S(ρAB||σAB)

:= ER(ρAB), (B5)

where (1) exploits the fact that I ⊗ N (σAB) represent a subset

of all possible separable states, and (2) exploits the mono-

tonicity of the relative entropy under the CPTP map I ⊗ N .

The ultimate rates at which two remote parties can gener-

ate a key (secret key capacity K), or distribute entanglement

(two-way assisted entanglement distribution capacity E , also

denoted by D2), or teleport/transfer quantum states (two-way

assisted quantum capacity Q2) at the two ends of a bosonic

single-mode Gaussian channel G are all limited by the follow-

ing REE bound [17]:

Q2 = E � K � �(G) := lim inf
μ→∞

ER

[
I ⊗ G

(
�

μ
AB

)]
, (B6)

where �
μ
AB is a TMSV state with variance μ, i.e., (μ − 1)/2

mean number of photons in each mode.

For any composition of Gaussian channels, we can com-

bine Eq. (B6) with the data processing inequality in Eq. (B4).

In particular, for the secret key capacity of a thermal-loss

channel E n̄e
ηd

, we may write

K � �
(
E n̄e

ηd

)
� �

(
Eηd

)
, (B7)

where

�(Eηd
) = �(ηd) := − log2(1 − ηd) (B8)
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is the PLOB bound [17]. For ηd ≃ 0, we have the approxima-

tion

�(ηd) ≃ ηd/ ln 2 = 1.44ηd (bits per channel use). (B9)

Consider now free-space line-of-sight quantum communi-

cation at wavelength λ, between a transmitter, generating a

Gaussian beam with spot size w0 and curvature radius R0, and

a remote receiver, with aperture radius aR at slant distance

z. The corresponding expression for the diffraction-induced

transmissivity ηd is explicitly given in Eq. (A18). By replacing

it in the PLOB bound �(ηd), we see that the maximum rate

for QKD and, therefore, any other form of quantum commu-

nication, is bounded by

K � U (z) := 2

ln 2

(
aR

wz

)2

, (B10)

where wz is the spot-size function of Eq. (A9). More explic-

itly, we may write

U (z) = 2

ln 2

a2
R

w
2
0

[(
1 − z

R0

)2

+ z2

z2
R

]−1

. (B11)

From Eq. (B11), we see that the bound is maximized by a

focused beam (z = R0). In such a case, we derive

Ufoc(z) = 2

ln 2

a2
R

w
2
0

z2
R

z2
= 2

ln 2

(πw0aR

λz

)2

= 2 f0R

ln 2
, (B12)

where f0R is the Fresnel number product associated to the

beam and the receiver, as in Eq. (A21). Instead, for a colli-

mated beam (R0 = +∞), the upper bound simplifies to the

following expression:

Ucoll(z) = 2

ln 2

a2
R

w
2
0

[
1 + z2/z2

R

] (B13)

≃ Ufoc(z), in the far field. (B14)

APPENDIX C: ATMOSPHERIC TURBULENCE

A crucial parameter in the study of atmospheric turbulence

is the refraction index structure constant C2
n [10,11]. This

measures the strength of the fluctuations in the refraction

index, due to spatial variations of temperature and pressure.

There are several models which provide C2
n with a functional

expression in terms of the altitude h in meters above sea level.

The most known is the H-V model [27,28],

C2
n (h) = 5.94 × 10−53

(
v

27

)2

h10e−h/1000 + 2.7

× 10−16e−h/1500 + Ae−h/100, (C1)

where v is the wind speed (m/s) and A ≃ C2
n (0). Assum-

ing high-altitude low-wind v = 21 m/s and the ground-level

nighttime value A = 1.7 × 10−14 m−2/3, one has the H-V5/7

model [10, Sec. 12.2.1]. However, during the day, we may

have A ≃ 2.75 × 10−14 m−2/3 [20]. In our paper, we assume

v = 21 m/s, the day value A ≃ 2.75 × 10−14 m−2/3, and an

altitude of h = 30 m, so C2
n ≃ 2.06 × 10−14 m−2/3.

The structure constant is at the basis of other important

parameters such as the scintillation index [10] and the Rytov

variance [66], which is given by

σ 2
Rytov = 1.23C2

n k7/6z11/6. (C2)

The condition σ 2
Rytov < 1 corresponds to the regime of weak

turbulence, where scintillation (i.e., random fluctuations of

the intensity) can be considered to be negligible, and the

mean intensity of the beam can still be approximated by a

Gaussian spatial profile. An alternative condition was con-

sidered by Yura [29] and Fante [25] in terms of the

spherical-wave coherence length ρ0, which is closely related

to the Fried’s parameter [67,68]. For a fixed (or mean) value

of the structure constant C2
n , this length is expressed by

ρ0 =
(
0.548k2C2

n z
)−3/5

. (C3)

Then, weak turbulence corresponds to the condition

z � k[min{2aR, ρ0}]2. (C4)

We note that, in our numerical investigations, Eq. (C2) turns

out to be more stringent than the condition in Eq. (C4). In fact,

for the regime of daytime parameters considered in Fig. 2 of

the main text, σ 2
Rytov < 1 leads to z � 1066 m, while Eq. (C4)

implies z � 1657 m.

In the regime of weak turbulence, we may distinguish the

actions of small and large turbulent eddies: Those smaller

than the beam waist act on a fast timescale and broaden the

waist; those larger than the beam waist act on a slow timescale

(10 − 100 ms) and randomly deflect the beam [25]. The over-

all action can be decomposed in the sum of two contributions,

the broadening of the diffraction-limited beam waist wz into

the short-term spot size wst, and the random wandering of

the beam centroid with variance σ 2
TB. Averaging over all the

dynamics, one has the long-term spot size [25, Eq. (32)]:

w
2
lt = w

2
st + σ 2

TB. (C5)

If we assume the validity of Yura’s condition [25,29],

φ := 0.33
( ρ0

w0

)1/3

≪ 1, (C6)

then we can write decomposition in Eq. (C5) where the long-

and short-term spot sizes take the following forms [25,29] (see

also Refs. [69–72]):

w
2
lt ≃ w

2
z + 2

(
λz

πρ0

)2

, (C7)

w
2
st ≃ w

2
z + 2

(
λz

πρ0

)2

(1 − φ)2, (C8)

and we may also expand

(1 − φ)2 ≃ 1 − 0.66
( ρ0

w0

)1/3

. (C9)

As a result, for the variance of centroid wandering, we derive

the following expression [29]:

σ 2
TB = w

2
lt − w

2
st ≃ 0.1337λ2z2

w
1/3
0 ρ

5/3
0

. (C10)

Note that, while the expression in Eq. (C7) of the long-term

spot size w
2
lt is valid under general conditions [25, Eq. (37)],

Yura’s short-term expressions in Eqs. (C8) and (C10) are
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rigorous in the limit φ ≪ 1. These short-term expressions can

also be considered good approximations for ρ0/w0 < 1, i.e.,

for φ < 0.33. In the regime of daytime parameters considered

for Fig. 2 of the main text, we have that φ < 0.33 implies a

minimum distance z � 200 m. (In other words, our numerical

investigation in that figure meets the sweet spot provided

by the range 200 � z � 1066, where turbulence is weak and

Yura’s analytical expansions are approximately correct.)

When φ passes its threshold (i.e., ρ0/w0 � 1), the ex-

pansions in Eqs. (C8) and (C10) become imprecise and the

correct value of w
2
st needs to be numerically derived from the

1/e point of the spherical-wave short-term mutual coherence

function (see Ref. [29]). Alternatively, one can exploit Eqs.

41(a), (41b), and Fig. 3 of Ref. [25]. Once w
2
st is known,

then Eq. (C5) can be used to derive σ 2
TB. When ρ0/w0 ≫ 1,

σ 2
TB is negligible and w

2
st is equal to the long-term value w

2
lt

in Eq. (C7). The long-term spot-size w
2
lt also applies in the

regime of strong turbulence z ≫ k[min{2aR, ρ0}]2, where the

beam is broken up into multiple patches; in this case, w
2
lt

describes the radius of the mean region where the multiple

patches are observed.

Remark 1. The expressions in Eqs. (C7) and (C8)

are derived from Ref. [29, Eqs. (16)–(18)] and Ref. [25,

Eq. (37)], changing their notation from intensity spot size

(wI) to field spot size (w =
√

2w
I). In Ref. [25], instead of

(1 − φ)2, we find

� =
[
1 − 0.5523

( ρ0

w0

)1/3]6/5

. (C11)

Despite being slightly different, its expansion for ρ0/w0 ≪ 1

is the same as in Eq. (C9). As a result, the centroid wandering

is characterized by the same variance σ 2
TB as in Eq. (C10),

which is equivalent to Eq. (40) of Ref. [25]. Also note that

Yura’s expressions take different forms in terms of the Fried’s

parameter ρF = 2.088ρ0 [73]. In fact, one may also write

[71,72]

w
2
st ≃ w

2
z + 2

(
2.088λz

πρF

)2[
1 − 0.26

( ρF

w0

)1/3]2

. (C12)

APPENDIX D: RANDOM WALK OF THE BEAM

CENTROID

Consider a random walk of the beam centroid �xC around

an average point �xP at distance d from the center of the

receiver �xR, following a Gaussian distribution with variance

σ 2. The distribution for the instantaneous deflection distance

r = ‖�xC − �xR‖ � 0 will be Rician with parameters d and σ ,

i.e.,

p(r|d, σ ) = r

σ 2
exp

(
− r2 + d2

2σ 2

)
I0

(
rd

σ 2

)
. (D1)

When the mean deflection is zero (d = 0), Eq. (D1) can be

simplified to the Weibull distribution PWB(r) := p(r|0, σ ) of

Eq. (24) of the main text.

By combining the Rice distribution of the centroid r given

in Eq. (D1) with

r = r0

(
ln

η

τ

) 1
γ

:= r0�, (D2)

which is the inverse of Eq. (23) of the main text, one can

easily compute the probability distribution for the deflected

transmissivity:

P(τ ) = [p(r|d, σ )]r=r(τ )

∣∣∣∣
dr

dτ

∣∣∣∣. (D3)

Explicitly, this takes the following form:

P(τ ) = r2
0�

2−γ

γ σ 2τ
I0

(
r0d

σ 2
�

)

× exp

(
− r2

0�
2 + d2

2σ 2

)
for 0 < τ � η (D4)

and zero otherwise.

The latter equation can also be derived by combining Ref.

[31, Eq. (8)], there written for the transmittance coefficient√
τ , with the probability density of the squared variable

P(τ ) = (2
√

τ )−1P(
√

τ ). Also note that the distribution in

Eq. (D4) can be bounded exploiting the inequality I0(x) �

cosh(x) � exp(x) valid for any x � 0. For x = 0, the equality

holds, while for x > 0 the upper bound comes from the fact

that we may write In(x) < xn

2nn!
cosh(x) for n = 0, 1, ... which

can be easily proven starting from Ref. [74, Eq. (6.25)]. After

simple algebra, we therefore find

P(τ ) �
r2

0�
2−γ

γ σ 2τ
exp

[
− (r0� − d )2

2σ 2

]
(D5)

�
r2

0

γ σ 2τ

(
ln

η

τ

) 2
γ
−1

. (D6)

Assuming zero mean deflection (d = 0), Eq. (D4) simpli-

fies to P0(τ ) in Eq. (25) of the main text. The probability

distribution P0(τ ) describes the statistics of the fading channel

by providing the instantaneous value of the deflected transmis-

sivity τ for the case where the average position of the beam

centroid is aligned with the center of the receiver’s aperture.

APPENDIX E: ACHIEVABILITY OF THE LOSS-BASED

BOUNDS

As long as the instantaneous (short-term) quantum chan-

nels can be approximated to pure-loss channels Eτ , the upper

bound in Eq. (27) of the main text is an achievable rate for

secret key generation and entanglement distribution. In fact,

the PLOB upper bound �(τ ) = − log2(1 − τ ) of each Eτ

is achievable, i.e., there are optimal protocols whose rates

saturate this ultimate limit for all the relevant capacities, so we

have Q2(Eτ ) = D2(Eτ ) = K (Eτ ) = �(τ ). In fact, a pure-loss

channel is known to be distillable [17], which means that

the upper bound �(τ ), based on the REE, is achievable by a

protocol of entanglement distribution, so that D2(Eτ ) = �(τ ).

In particular, it is sufficient to consider a protocol where the

entanglement is distributed and then distilled with the help

of a single round of feedback classical communication [37].

This protocol may achieve a rate that is at least the reverse

coherent information of the channel IRCI(Eτ ) = − log2(1 − τ )

[36]. Once this entanglement has been distilled, it can also be

used to transmit qubits via teleportation or to generate secret

keys.
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If we are interested in QKD only, then there are different

asymptotic ways to reach the PLOB upper bound, i.e., the se-

cret key capacity K of the pure-loss channel. This is certainly

possible by using a QKD protocol equipped with a quantum

memory as discussed in Ref. [17]. An alternative method is

to use a strongly biased QKD protocol with squeezed states

[75]. Suppose that, with probability p, the transmitter pre-

pares a position-squeezed state with CM diag(μ−1, μ). With

probability 1 − p, it instead prepares a momentum-squeezed

state with CM diag(μ,μ−1). In each case, the mean value of

the squeezed quadrature is Gaussianly modulated with vari-

ance μ − μ−1, so that the average output state is an isotropic

thermal state with variance μ = 2n̄T + 1, where n̄T is the

mean number of photons. These states are sent through the

link and measured at the receiver by a homodyne detector

switching between position and momentum with the same

probability distribution of the transmitter. Finally, the parties

perform a sifting process where they only select their match-

ing choices of the quadrature, which happens with frequency

p2 + (1 − p)2.

Assume that the communication is long enough (asymp-

totic limit of infinite signals exchanged) so that the parties

access many times the instantaneous pure-loss channel Eτ

for some τ (within some small resolution δτ ). For large μ,

we can compute the following mutual information between

transmitter and receiver:

IT R|p,τ ≃ p2 + (1 − p)2

2
log2

( τμ

1 − τ

)
. (E1)

Assuming reverse reconciliation, where the variable to be

inferred is the outcome of the receiver, we have that the

eavesdropper’s information cannot exceed the Holevo bound

χER|τ ≃ 1
2

log2[(1 − τ )τμ]. (E2)

The asymptotic (conditional) rate is equal to

Rsq(p, τ ) := IT R|p,τ − χER|τ . (E3)

For an unbiased protocol (p = 1/2), we have Rsq(1/2, τ ) =
�(τ )/2. In the limit of a completely biased protocol (p → 1),

we instead find Rsq(1−, τ ) → �(τ ).

It is clear that this is the same performance that could be

achieved by an equivalent entanglement-based protocol where

the transmitter sends the B-modes of TMSV states (with large

variance μ), keeps their A modes in a quantum memory, and

finally homodynes the A modes once the receiver classically

communicates which detection was in the position quadrature

and which was in the momentum one [17,36].

Let us now account for the fading process, according

to which the instantaneous transmissivity τ occurs with

probability density P0(τ ). In a coarse-graining descrip-

tion of the process, one has a large number of instan-

taneous channels with transmissivities contained in slots

[0, δτ ], [δτ, 2δτ ], . . . [(k − 1)δτ, kδτ ], . . . up to a maximum

value η, given by ηstηeffηatm. Each slot is used a large (virtually

infinite) number of times. Therefore, we can take a suitable

joint limit for small δτ , and approximate the weighted sum

of rates with an integral. For the case of the squeezed-state

protocol, we write the average rate:

Rsq(p) =
∫ η

0

dτ P0(τ )Rsq(p, τ ). (E4)

In the biased limit p → 1−, we have that the achievable rate

of the fading channel {P0(τ ), Eτ } is

Rsq(1−) →
∫ η

0

dτ P0(τ )�(τ ), (E5)

which coincides with the upper bound of Eq. (27) of the main

text. In other words, this bound is asymptotically achievable

by this ideal QKD protocol.

It is clear that the squeezed-state protocol just represents a

theoretical tool to demonstrate the achievability of the bound

but it is not realizable with current technology. Consider now

the protocol of Ref. [14], where the transmitter Gaussianly

modulates coherent states and the receiver performs homo-

dyne detection switching between the two quadratures. In the

large modulation limit, one computes the instantaneous rate

Rcoh(τ ) = �(τ )/2, so we have the average value

Rcoh = 1

2

∫ η

0

dτ P0(τ )�(τ ), (E6)

achieving half of the bound.

APPENDIX F: FREE-SPACE BOUNDS

WITH THERMAL NOISE

1. Thermal-noise model

During daytime operation, background thermal noise may

become nontrivial. For this reason, we need to suitably modify

the description of the free-space channel and derive more

appropriate bounds. In the presence of non-negligible noise,

an instantaneous (short-term) quantum channel can be ap-

proximated by an overall thermal-loss channel Eτ,n̄ between

transmitter and receiver. More precisely, assume that n̄T is

the mean number of photons in the mode generated by the

transmitter. Then, the mean number of photons n̄R reaching

the receiver’s detector is given by the input-output relation

n̄T → n̄R = τ n̄T + n̄, (F1)

where τ is the instantaneous transmissivity, and n̄ = ηeffn̄B +
n̄ex is the channel’s thermal number, given by the detected

environmental photons ηeffn̄B plus extra photons n̄ex added by

the receiver’s setup. To understand Eq. (F1), see also Fig. 1 of

the main text.

The instantaneous channel Eτ,n̄ can equivalently be de-

scribed by a beam splitter with transmissivity τ mixing an

input mode with an environmental mode with mean number

of photons n̄e = n̄/(1 − τ ). Channel’s transmissivity τ varies

between 0 and a maximum value η according to the probabil-

ity density P0(τ ) determined by turbulence and pointing error.

The mean number of thermal photons n̄ can be assumed to be

constant by assuming a suitably stabilized receiver setup (with

negligible fluctuations in n̄ex) and stable conditions for the

external background (so that the photons collected within the

field of view are approximately constant). If this assumption is

not met, then we can always make n̄ constant by maximizing

it over τ (worst-case scenario, suitable for the lower bound)

or minimizing it over τ (best-case scenario, suitable for the
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upper bound). For this reason, we can always model the free-

space fading channel E as an ensemble {P0(τ ), Eτ,n̄}, whose

elements have variable τ but constant n̄.

2. Upper and lower bounds

Given the asymptotic rate R(Eτ,n̄) associated with a generic

instantaneous channel Eτ,n̄, the asymptotic rate of the free-

space link E is given by the average

R =
∫ η

0

dτ P0(τ )R(Eτ,n̄). (F2)

This rate is asymptotically achievable if the fading dynamics

is perfectly resolved by detectors and a large (virtually in-

finite) number of signals are allocated to each infinitesimal

slot [τ, τ + dτ ]. It also assumes that the adaptive optics com-

pletely eliminates any average offset d of the beam’s centroid

[otherwise P0 is replaced by the more general distribution in

Eq. (D4)].

Because the instantaneous channel is a thermal-loss chan-

nel Eτ,n̄, we do not know its two-way assisted capacities

D2(Eτ,n̄) = Q2(Eτ,n̄) � K (Eτ,n̄) and we are limited to consider

upper and lower bounds. The secret key capacity is upper-

bounded by the thermal-loss version of the PLOB bound

K (Eτ,n̄) � �(τ, n̄), given by

�(τ, n̄) = − log2

[
(1 − τ )τ

n̄
1−τ

]
− h

( n̄

1 − τ

)
, (F3)

for n̄ � τ , while �(τ, n̄) = 0 for n̄ � τ . In the previous for-

mula, the entropic quantity h is defined as in Eq. (35), i.e., we

have

h(x) := (x + 1) log2(x + 1) − x log2 x. (F4)

As a result, any key rate associated with the fading channel

E = {P0(τ ), Eτ,n̄} cannot exceed the thermal bound

R �

∫ η

n̄

dτ P0(τ )�(τ, n̄), (F5)

which is different from zero when n̄ � η = ηstηeffηatm.

Let us define the normalization factor

N (n̄, η, σ ) :=
∫ η

n̄

dτ P0(τ ), (F6)

= 1 − exp

{
− r2

0

2σ 2

[
ln
(η

n̄

)] 2
γ

}
, (F7)

and the following entropic quantity:

g(n̄) := n̄ log2 n̄

1 − n̄
+ h(n̄), (F8)

= (n̄ + 1) log2(n̄ + 1) + n̄2 log2 n̄

1 − n̄
. (F9)

For n̄ � η, we may therefore write

R � −
∫ η

n̄

dτ P0(τ )
[
log2(1 − τ ) + n̄

1 − τ
log2 τ

+ h
( n̄

1 − τ

)]
(F10)

� −
∫ η

n̄

dτ P0(τ ) log2(1 − τ )

−
[

n̄ log2 n̄

1 − n̄
+ h(n̄)

] ∫ η

n̄

dτ P0(τ ) (F11)

� B(η, σ ) − T (n̄, η, σ ), (F12)

where B(η, σ ) = −�(η, σ ) log2(1 − η) is the pure-loss upper

bound [cf. Eqs. (27) and (28) of the main text], and T (n̄, η, σ )

is a thermal correction given by

T (n̄, η, σ ) = g(n̄)N (n̄, η, σ ) − �(n̄, σ ) log2(1 − n̄). (F13)

Let us now discuss lower bounds. For each short-term in-

stantaneous channel, an asymptotically achievable rate R(Eτ,n̄)

is given by the reverse coherent information [36], here taking

the following form:

IRCI(Eτ,n̄) = − log2(1 − τ ) − h
( n̄

1 − τ

)
. (F14)

Replacing this expression in Eq. (F2) provides an achievable

rate for entanglement distribution and secret key generation

via the free-space link. Explicitly, we write

R � B(η, σ ) −
∫ η

0

dτ P0(τ )h
( n̄

1 − τ

)
(F15)

� B(η, σ ) − h

(
n̄

1 − η

)
. (F16)

If we look at QKD, we can consider two specific pro-

tocols. For an asymptotically biased squeezed-state protocol

(p → 1−), we can write the short-term rate Rsq(1−, τ, n̄) →
IRCI(Eτ,n̄). For the coherent-state protocol, we can instead

write

Rcoh(τ, n̄) = �(τ ) − h
( n̄

1 − τ

)
+ 1

2
log2

(
1 − τ

2n̄ + 1

)
.

(F17)

Replacing these expressions in Eq. (F2) provides asymp-

totically achievable QKD rates for the free-space link. In

particular note that, for small n̄, we can expand

Rcoh(τ, n̄) ≃ �(τ )

2
− h

( n̄

1 − τ

)
, (F18)

and write the following rate for the link:

Rcoh �
B(η, σ )

2
− h

(
n̄

1 − η

)
. (F19)

In conclusion, according to our derivations, the optimal

rates for entanglement distribution and key generation in the

presence of background thermal noise can be bounded by the

following sandwich relation:

B(η, σ ) − h

(
n̄

1 − η

)
� R � B(η, σ ) − T (n̄, η, σ ). (F20)

One can check that these inequalities collapse to single loss-

based bound R ≃ B(η, σ ) for small thermal numbers n̄ (e.g.,

compatible with night-time operation).
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APPENDIX G: MORE DETAILS ON THE COMPOSABLE

SECURITY OF CV-QKD

1. Composable key rate under collective attacks

Consider a CV-QKD protocol where N modes are trans-

mitted from Alice A (transmitter) to Bob B (receiver). A

portion n of these modes will be used for key generation,

while the remaining part is used for parameter estimation

(and other potential operations). Here we start by assuming

perfect knowledge of the channel parameters; afterward, we

will include the effect of imperfect knowledge as coming from

parameter estimation.

Let us call x Alice’s variable and y Bob’s variable. In the

homodyne protocol, the relevant quadrature is selected by

Bob’s randomly switched measurement of q̂ and p̂. There-

fore, x and y represent Alice’s quadrature encoding and the

corresponding Bob’s outcome after the random selection im-

posed by the measurement. In the heterodyne protocol, these

variables are instead bidimensional real vectors associated to

both quadratures, so we have x = (qA, pA) and y = (qB, pB).

The CVs are subject to analog-to-digital conversion (ADC),

described by x
ADC→ k and y

ADC→ l , where k and l are d-bit

strings. Note that, for the heterodyne protocol, ADC may

occur independently for each quadrature (qA, pA)
ADC→ (lq, lp)

after which one may concatenate l = lqlp. In such a case, we

assume that each quadrature component is digitalized with

d/2 bits (for even d).

Under the action of a collective attack, the output CQ state

of Alice (A), Bob (B), and Eve (E ) has the tensor-structure

form ρ⊗n, where

ρ =
∑

k,l

p(k, l )|k〉A〈k| ⊗ |l〉B〈l| ⊗ ρE (k, l ), (G1)

and p(k, l ) is a joint probability distribution. For n uses, there

will be two sequences, kn and ln, with binary length n log2 d

and associated probability p(kn, ln). Alice and Bob will then

perform procedures of error correction and privacy amplifica-

tion over the state ρ⊗n in order to approximate the sn-bit ideal

CQ state

ρid := 2−sn

2sn −1∑

z=0

|z〉An〈z| ⊗ |z〉Bn〈z| ⊗ ρEn , (G2)

where Alice’s and Bob’s classical systems contain the same

random sequence z of binary length sn from which Eve is

completely decoupled.

In reverse reconciliation, it is Alice attempting to recon-

struct Bob’s sequence ln. During the step of error correction,

Bob reveals leakec bits of information to help Alice to com-

pute her guess l̃n of ln starting from her local data kn. In a

practical scheme, these leakec bits of information correspond

to a syndrome that Bob computes over his sequence ln, in-

terpreted as noisy codeword of a linear error-correcting code

agreed with Alice.

Then, as a verification, Alice and Bob publicly compare

hashes computed over ln and l̃n. If these hashes coincide,

the two parties go ahead with probability pec, otherwise they

abort the protocol. The hash comparison requires Bob sending

⌈− log2 εcor⌉ bits to Alice for some suitable εcor (the number

of these bits is negligible in comparison to leakec). Parameter

εcor is called ε correctness [76, Sec. 4.3] and it bounds the

probability that the sequences are different even if their hashes

coincide. The probability of such an error is bounded by [77]

pecProb(l̃n �= ln) � pec2−⌈− log2 εcor⌉ � εcor. (G3)

Note that pec and εcor are implicitly related. In fact, the lower

is the value of εcor, the stronger is the hash-verification test

made over the sequences ln and l̃n, which results in a lower

probability of success pec.

Error correction can be simulated by a projection �S of

Alice’s and Bob’s classical systems An and Bn onto a good set

S of sequences. With success probability

pec = Tr(�Sρ⊗n), (G4)

this operation generates a CQ state

ρ̃n := p−1
ec �Sρ⊗n�S , (G5)

which is restricted to those good sequences {kn, ln} that

can be transformed into a successful pair {l̃n, ln} by Alice’s

transformation kn → l̃n. We implicitly assume that the latter

transformation is performed on the state ρ̃n so that it provides

the pair {l̃n, ln} for next manipulations.

With probability pec the protocol proceeds to privacy am-

plification, where the parties apply a two-way hash function

over ρ̃n which outputs the privacy amplified state ρ̄n, i.e.,

ρ⊗n ec−→ ρ̃n pa−→ ρ̄n. The latter state approximates the ideal

private state ρid, so we may write pecD(ρ̄n, ρid) � εsec where

εsec is the ε secrecy of the protocol [76, Sec. 4.3]. Via the

triangle inequality, this condition implies [76, Th. 4.1]

pecD(ρ̃n, ρid) � ε := εcor + εsec, (G6)

and the protocol is said to be ε secure.

Thanks to the procedure of two-universal hashing applied

to ρ̃n, Alice and Bob’s state ρ̄n will contain sn bits of shared

uniform randomness. According to Ref. [78] (see also Ref.

[79, Eq. (8.7)]), we have that sn satisfies the direct leftover

hash bound:

sn � H
εs

min(ln|En)ρ̃n + 2 log2

√
2εh − leakec. (G7)

Here H
εs

min(ln|En)ρ̃n is the smooth min-entropy of Bob’s se-

quence ln conditioned on Eve’s system En, and the smoothing

εs and hashing εh parameters satisfy

εs + εh = εsec. (G8)

In Eq. (G7), we explicitly account for the bits leaked to

Eve during error correction. In fact, one may write sn �

H
εs

min(ln|EnR)ρ̃n + 2 log2

√
2εh where R is a register of di-

mension dR = 2leakec , while En are the systems used by

Eve during the quantum communication. Then, the chain

rule for the smooth-min entropy leads to H
εs

min(ln|EnR)ρ̃n �

H
εs

min(ln|En)ρ̃n − log2 dR.

As a next step, we revise and improve a previous result

which connects the smooth-min entropies of ρ̃n and ρ⊗n. In

fact, we may show that

H
εs

min(ln|En)ρ̃n � H
pecε

2
s /3

min (ln|En)ρ⊗n

+ log2

[
pec

(
1 − ε2

s /3
)]

. (G9)
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Because H
εs

min only depends on Bob and Eve’s parts of the

state ρ̃n, one could trace Alice’s system ρ̃n →trAρ̃n and write

the bound above directly for the reduced state. See Ap-

pendix G 2 for a proof of Eq. (G9) which exploits tools from

Refs. [79,80].

Next, we simplify the smooth-min entropy term via the

asymptotic equipartition property [79, Cor. 6.5]

H
pecε

2
s /3

min (ln|En)ρ⊗n � nH (l|E )ρ

− √
n�aep

(
pecε

2
s /3, d

)
, (G10)

where H (l|E )ρ is the conditional von Neumann entropy com-

puted over the single-copy state ρ, and [79, Th. 6.4]

�aep(εs, d ) := 4 log2(2
√

d + 1)

√
− log2

(
1 −

√
1 − ε2

s

)

≃ 4 log2(2
√

d + 1)

√
log2

(
2/ε2

s

)
, (G11)

with d being the cardinality of the discretized variable l .

The combination of Eqs. (G7), (G9), and (G10) allows us

to write the following lower bound:

sn � nH (l|E )ρ − √
n�aep

(
pecε

2
s /3, d

)
+ log2

[
pec(1 − ε2

s /3)
]

+ 2 log2

√
2εh − leakec. (G12)

Note that, for the conditional entropy, we have

H (l|E )ρ = H (l ) − χ (l : E )ρ, (G13)

where H (l ) is the Shannon entropy of l , and χ (l : E )ρ is

Eve’s Holevo bound with respect to l . Because of the data

processing inequality, we have χ (l : E )ρ � χ (y : E )ρ under

digitalization y
ADC→ l , and we may write

H (l|E )ρ � H (l ) − χ (y : E )ρ . (G14)

Moreover, we may define the reconciliation parameter β ∈
[0, 1] by setting

H (l ) − n−1leakec = βI (x : y), (G15)

where I (x : y) � I (k : l ) is Alice and Bob’s mutual informa-

tion computed over their CVs. By replacing Eqs. (G14) and

(G15) in Eq. (G12), we derive

sn � nR∞ − √
n�aep

(
pecε

2
s /3, d

)
+ log2

[
pec

(
1 − ε2

s

/
3
)]

+ 2 log2

√
2εh, (G16)

where we have introduced the asymptotic rate:

R∞ = βI (x : y) − χ (y : E )ρ . (G17)

The lower bound in Eq. (G16) refers to a protocol with secu-

rity ε = εcor + εs + εh and success probability pec.

Let us account for the effect of parameter estimation. The

asymptotic key rate R∞ depends on a number npm of parame-

ters p (e.g., transmissivity and thermal noise of the channel).

By sacrificing m modes, Alice and Bob compute maximum

likelihood estimators p̂ with associated mean values p̄ and

error variances σ 2
p . Then, they compute worst-case estimators

pwc which are w standard deviations away from the mean

values of the estimators or they are computed by employing

suitable tail bounds for the variables involved. Each worst-

case estimator bounds the corresponding actual parameter up

to an error probability εpe = εpe(w), so all together the npm

worst-case estimators pwc bound the parameters p up to a

total error probability ≃ npmεpe. Correspondingly, the key rate

R∞(p) is replaced by Rpe := R∞(pwc).

Note that assuming pwc for the quantum channel is equiv-

alent to change the global output ρ̃n of Alice, Bob and Eve

with a worst-case state ρ̃n
wc (described by parameters that

are at least as good as the worst-case estimators). However,

with probability npmεpe, one could have a different state ρ̃n
bad

with a lower rate (where one or more parameters violate

the worst-case estimators). On average, the state could be

modelled as ρpe := (1 − npmεpe)ρ̃n
wc + npmεpeρ̃

n
bad with trace

distance D(ρpe, ρ̃
n
wc) � npmεpe. From D(ρ̃n

wc, ρid) � ε/pec [cf.

Eq. (G6)] and the triangle inequality, we compute

D(ρpe, ρid) � ε/pec + npmεpe. (G18)

Thus, the average state ρpe is (ε/pec + npmεpe) close to an

ideal private state ρid whose number of secret bits sn is

lower-bounded by Eq. (G16) up to replacing R∞ → Rpe. It is

clear that parameter estimation adds an overall error pecnpmεpe

to the ε security of the protocol so that we have ε → ε +
pecnpmεpe, as is clear from Eq. (G18).

Replacing R∞ → Rpe in Eq. (G16), dividing by N = n + m

and including pec, we derive the following bound for the com-

posable secret key rate (bits per use) of a generic CV-QKD

protocol under collective attacks:

Rn := pecsn

N

�
pec

N

{
nRpe − √

n�aep

(
pecε

2
s /3, d

)

+ log2

[
pec

(
1 − ε2

s

/
3
)]

+ 2 log2

√
2εh

}
, (G19)

which is valid for a protocol with success probability pec (or

frame error rate 1 − pec) and overall security:

ε = εcor + εs + εh + pecnpmεpe. (G20)

The expression in Eq. (G19) corresponds to Eq. (105) in the

main text.

2. Proof of Eq. (G9)

Consider an arbitrary Hilbert space H and two gener-

ally subnormalized states ρ, ρ∗ ∈ S�(H) with Trρ, Trρ∗ �

1. We may consider the purified distance [81] P(ρ, ρ∗) =√
1 − FG(ρ, ρ∗)2, where FG is the generalized quantum fi-

delity [79, Def. 3.3, Lemma 3.1]

FG(ρ, ρ∗) := F (ρ, ρ∗) +
√

(1 − Trρ)(1 − Trρ∗), (G21)

F (ρ, ρ∗) := ‖√ρ
√

ρ∗‖1 . (G22)

Using the Fuchs-van de Graaf inequalities [82], one may

check that DG � P �

√
2DG − D2

G �
√

2DG, where DG is the

generalized trace distance [79, Def. 3.1]

DG(ρ, ρ∗) := D(ρ, ρ∗) + 1
2
|Trρ − Trρ∗|, (G23)

D(ρ, ρ∗) := 1
2
||ρ − ρ∗||1 = 1

2
Tr|ρ − ρ∗|. (G24)
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In particular, consider CQ states

ρ =
∑

x∈ℵ
P(x)|x〉C〈x| ⊗ ω(x), (G25)

ρ∗ =
∑

x∈ℵ
P∗(x)|x〉C〈x| ⊗ ω∗(x), (G26)

where the classical system C is equivalent to an alphabet ℵ
of dimension d , and the quantum system Q has dimension

dQ � d . Here P(x) and P∗(x) are probability distributions,

while ω(x) and ω∗(x) are generally subnormalized states de-

fined over system Q. In the following, we assume that the state

ρ is normalized to 1, also denoted by ρ ∈ S=(H).

For any normalized state ρ of two quantum systems A and

B, we may write [79, Def. 5.2]

H ε
min(A|B)ρ = max

ρ∗∈Bε (ρ)
Hmin(A|B)ρ∗ , (G27)

where

Bε(ρ) := {ρ ′ : Trρ ′
� 1, P(ρ ′, ρ) � ε < 1} (G28)

is a ball of generally subnormalized states around ρ. In partic-

ular, for any normalized CQ state ρ, we can find a (generally

subnormalized) CQ state ρ∗ ∈ Bε(ρ) such that [79, Prop. 5.8]

H ε
min(C|Q)ρ = Hmin(C|Q)ρ∗ . (G29)

Consider a projector � := ∑
x∈� |x〉C〈x| defined over a

reduced alphabet � ⊆ ℵ for the classical system C. Also

consider two CQ states, ρ ∈ S=(HCQ) and ρ∗ ∈ S�(HCQ), the

latter with normalization

N := Trρ∗ =
∑

x∈ℵ
P∗(x)Tr[ω∗(x)] � 1. (G30)

We may write the two projected states

σ = p−1�ρ� = p−1
∑

x∈�
P(x)|x〉C〈x| ⊗ ω(x), (G31)

σ∗ = p−1
∗ �ρ∗� = p−1

∗
∑

x∈�
P∗(x)|x〉C〈x| ⊗ ω∗(x), (G32)

with associated probabilities

p = Tr(�ρ) =
∑

x∈�
P(x), (G33)

p∗ = N−1Tr(�ρ∗) = N−1
∑

x∈�
P∗(x)Tr[ω∗(x)]. (G34)

For ρ∗, σ∗ ∈ S�(HCQ), we may then write

Hmin(C|Q)σ∗ � Hmin(C|Q)ρ∗ + log2 p∗. (G35)

To prove Eq. (G35), we adopt the approach of Ref. [80,

Lemma 1] (for normalized states) but starting from a dif-

ferent result that is valid for subnormalized states. For any

σ∗ ∈ S�(HCQ), we may write [79, Eq. (4.6)]

2−Hmin(C|Q)σ∗ = max
EQ→Q′

〈ŴCQ′ |I ⊗ E (σ∗)|ŴCQ′〉, (G36)

where E is a CPTP map (quantum channel) acting on system

Q, and

|ŴCQ′〉 :=
∑

x∈ℵ
|x〉C |x〉Q′ (G37)

is a non-normalized entangled state defined over the orthonor-

mal set of states {|x〉}. The latter is a basis for C and a set for

Q′, which is assumed to have dQ′ � d . It is easy to see that

〈Ŵ|I ⊗ E (σ∗)|Ŵ〉

= p−1
∗
∑

x∈�
P∗(x)〈Ŵ|{|x〉C〈x| ⊗ E[ω∗(x)]}|Ŵ〉

� p−1
∗
∑

x∈ℵ
P∗(x)〈Ŵ|{|x〉C〈x| ⊗ E[ω∗(x)]}|Ŵ〉

= p−1
∗ 〈Ŵ|I ⊗ E (ρ∗)|Ŵ〉. (G38)

This leads to

2−Hmin(C|Q)σ∗ � p−1
∗ max

EQ→Q′
〈ŴCQ′ |I ⊗ E (ρ∗)|ŴCQ′〉

= p−1
∗ 2−Hmin(C|Q)ρ∗ . (G39)

Taking the log, we obtain Eq. (G35).

For the projected states, σ and σ∗, and their probabilities,

p and p∗, we may write the following inequalities (proven

below):

|p − p∗| � DG(ρ, ρ∗), (G40)

DG(σ, σ∗) �
3

2p
DG(ρ, ρ∗). (G41)

In fact, consider the normalized state ρ∗N := N−1ρ∗ with

p∗ = Tr(�ρ∗N ). Recall that the trace distance between two

normalized states ρ and ρ∗N is equal to the maximum

Kolmogorov distance between the probability distributions

generated by the application of a POVM. Considering the

(generally nonoptimal) POVM {�k} = {�, I − �}, we may

write

‖ρ − ρ∗N‖1 �
∑

k

|Tr(�kρ) − Tr(�kρ∗N )| = 2|p − p∗|.

(G42)

Using the result above and the triangle inequality, we get

|p − p∗| � D(ρ, ρ∗N ) � D(ρ, ρ∗) + D(ρ∗, ρ∗N ). (G43)

It is easy to check that

D(ρ∗, ρ∗N ) = D(ρ∗,N
−1ρ∗) = 1

2
Tr
∣∣(1 − N−1)ρ∗

∣∣

= N−1 − 1

2
Trρ∗ = 1 − Trρ∗

2
, (G44)

which leads to

|p − p∗| � D(ρ, ρ∗) + 1 − Trρ∗
2

= DG(ρ, ρ∗). (G45)

To prove Eq. (G41), we suitably extend the approach of

Ref. [80, Lemma 2] to include subnormalized states. First,
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observe that

D(ρ, ρ∗) =
∑

x ∈ ℵ
D[P(x)ω(x), P∗(x)ω∗(x)], (G46)

D(σ, σ∗) =
∑

x∈�
D[p−1P(x)ω(x), p−1

∗ P∗(x)ω∗(x)] (G47)

� p−1
∑

x∈�
D[P(x)ω(x), P∗(x)ω∗(x)] (G48)

+
∑

x∈�
D[p−1P∗(x)ω∗(x), p−1

∗ P∗(x)ω∗(x)],

(G49)

where we have used the triangle inequality for the trace dis-

tance (here applied to Hermitian operators). It is easy to show

that the term in Eq. (G48) can be bounded as follows:

p−1
∑

x∈�
D(...) � p−1

∑

x∈ℵ
D(...) (G50)

= p−1D(ρ, ρ∗). (G51)

For the second term in Eq. (G49), we write
∑

x∈�
D[p−1P∗(x)ω∗(x), p−1

∗ P∗(x)ω∗(x)] (G52)

=
∑

x∈�

1

2
Tr|(p−1 − p−1

∗ )P∗(x)ω∗(x)| (G53)

= 1

2
|p−1 − p−1

∗ |
∑

x∈�
P∗(x)Tr[ω∗(x)] (G54)

= 1

2
p−1 p−1

∗ |p − p∗|N p∗ �
|p − p∗|

2p
(G55)

�
1

2p
DG(ρ, ρ∗). (G56)

By combining the two terms, we find

D(σ, σ∗) �
1

p
D(ρ, ρ∗) + 1

2p
DG(ρ, ρ∗). (G57)

From the inequality above and the fact that Trσ∗ = Trρ∗, we

may derive the following:

DG(σ, σ∗) �
1

p
D(ρ, ρ∗) + 1 − Trρ∗

2
+ 1

2p
DG(ρ, ρ∗)

= 3

2p
DG(ρ, ρ∗) − (1 − p)

1 − Trρ∗
2p

, (G58)

which leads to Eq. (G41).

We now have all the ingredients to conclude the proof.

Given a normalized CQ state ρ, take a generally subnormal-

ized CQ state ρ∗ ∈ Bε(ρ) which realizes Eq. (G29), i.e.,

Hmin(C|Q)ρ∗ = H ε
min(C|Q)ρ . (G59)

For the projected states σ and σ∗, we may replace

DG(ρ∗, ρ) � P(ρ∗, ρ) � ε in Eqs. (G40) and (G41), and write

p∗ � p − ε, (G60)

DG(σ, σ∗) �
3ε

2p
. (G61)

From Eq. (G61), we see that P(σ, σ∗) �
√

3ε/p := ε′, so

that σ∗ ∈ Bε′
(σ ). Assume that p > 0 and ε < p/3 so that ε′ <

1 and the ε′ ball is well defined (this is typically the case be-

cause p = O(1) and ε ≃ 10−10). Therefore, from Eq. (G27),

we derive

H ε′
min(C|Q)σ � Hmin(C|Q)σ∗ . (G62)

We can combine the inequality above with Eq. (G35), which

leads to

H ε′
min(C|Q)σ � Hmin(C|Q)ρ∗ + log2 p∗. (G63)

Now using Eqs. (G59) and (G60), we get

H ε′
min(C|Q)σ � H ε

min(C|Q)ρ + log2(p − ε). (G64)

Finally, by replacing ε → pε2/3 so that ε′ → ε, we write

H ε
min(C|Q)σ � H

pε2/3

min (C|Q)ρ + log2[p(1 − ε2/3)]. (G65)

The latter inequality provides Eq. (G9) up to performing the

correct replacements (σ → ρ̃n, ρ → ρ⊗n, C → ln, Q → En,

etc.)
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