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Highlights

The Database of Aeolian Sedimentary Architecture (DASA) is a novel relational

database designed to record attributes of modern and ancient aeolian systems

e DASA stores data on a variety of aeolian and associated non-aeolian entities
at multiple scales

e DASA allows quantitative characterization and comparisons of modern and
ancient aeolian sedimentary systems

e DASA s a valuable tool for constraining lithological heterogeneity in subsurface

aeolian successions

Abstract

The Database of Aeolian Sedimentary Architecture (DASA) records the architecture
and spatio-temporal evolution of a broad range of modern and recently active aeolian
systems, and of their preserved deposits in ancient successions. DASA currently
stores data on >14,000 geologic and geomorphic entities (including bounding surfaces
and transition relationships) extracted from >60 case-study examples documented in
the published literature. DASA stores data on a variety of aeolian and associated non-

aeolian entities of multiple scales, including attributes that characterize their type,
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geometry, spatial relations, hierarchical relations, temporal significance, and textural

and petrophysical properties; associated metadata are also stored.

Database output describes (1) stratigraphic relationships between aeolian and
associated fluvial, lacustrine and paralic depositional systems; (2) the geometry of
aeolian architectural elements, and hierarchical and spatial relationships between
them; (3) the probabilities of vertical and lateral transition from one type of deposit or
landform to another; (4) the presence and nature of aeolian bounding surfaces at
different scales, and their nested, hierarchical relationships; (5) aeolian lithofacies

types, proportions and distributions, and (6) grain-scale textural parameters.

DASA is applied to quantitatively characterize and compare modern and ancient
aeolian sedimentary systems. Examples of database outputs demonstrate how DASA
outputs can be tailored for numerous applications, including: (1) the development of
bespoke quantitative facies models, specifically tailored for particular sets of boundary
conditions; (2) the empirical assessment of how aeolian systems, and associated
preserved sedimentary architectures, represent a response to allogenic and autogenic
forcings; and (3) the instruction of forward stratigraphic models and 3D geocellular
subsurface models. DASA is a valuable tool for the characterization of subsurface
aeolian successions, such that output can help to (1) predict three-dimensional
lithological heterogeneity in subsurface successions that are resource targets, (2)
constrain geocellular stochastic models, and (3) facilitate borehole correlations of

aeolian dune sets or associated non-aeolian elements.

Keywords
Database, sedimentary architecture, reservoir, quantitative geology, aeolian,

metadata, geomorphic, dune
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1. Introduction

The preserved aeolian sedimentary record spans over three billion years of Earth
history from the Archean to present day (e.g., Clemmensen, 1985; Dott et al., 1986;
Voss, 2002; Cather et al., 2008; Simpson et al., 2012; Rodriguez-Lépez et al., 2014).
Despite an extensive global sedimentary record (e.g., Ridgley, 1977; Ross, 1981;
Bateman et al., 2004; Holz et al., 2008; Dong et al., 2010) and recent extra-planetary
observations (e.g., Grotzinger et al., 2005; Metz et al., 2009; Banham et al., 2018),
meaningful comparisons between aeolian systems developed under differing
controlling factors are not straightforward. Traditional aeolian facies models,
developed from studies of both modern systems and ancient successions, have
attempted to capture stratigraphic complexities (e.g., McKee, 1966; Thompson,
1970a, 1970b; Brookfield, 1977, Kocurek, 1981; Loope, 1984; Langford and Chan,
1988; Mountney and Thompson, 2002; Mountney and Jagger, 2004; Mountney,
2006a; Kocurek and Day, 2018); yet, many such models are largely qualitative or — at
best — semi-quantitative, and are commonly case-specific. Thus, individual case
studies cannot adequately account for the wide variety of aeolian-system architectures
that might potentially develop through the action of a varied range of allogenic and
autogenic controls, which govern the geometry and arrangement of architectural
elements and their bounding surfaces. However, generalized models have been
proposed to explain the primary allogenic and autogenic controls that drive aeolian-
system construction, accumulation and preservation in the stratigraphic record (e.g.,
Kocurek and Havholm, 1993; Kocurek, 1999; Kocurek and Lancaster, 1999). Several
such models are quantitative in form (e.g. Rubin, 1987; Rubin and Carter, 2006;
Mountney, 2012). Moreover, some studies have generated large quantitative datasets

in the form of 3D virtual geological models assembled from mosaics of LiDAR and
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photogrammetry datasets and presented as geo-models (e.g., Pierce et al., 2016).
Numerous studies of modern systems have considerably improved our understanding
of the physical conditions that dictate aeolian bedform arrangements (e.g., Bristow et
al., 2000a, Kocurek and Ewing, 2005; Beveridge et al., 2006; Kocurek et al., 2007;

Derickson et al., 2008; Ewing and Kocurek, 2010).

Despite the above-mentioned advances, it remains difficult to make direct quantitative
comparisons between documented examples of individual case studies that describe
aeolian systems and their preserved sedimentary architectures (Rodriguez-L6pez et
al.,, 2014). To facilitate the quantitative sedimentological and stratigraphical
characterization of aeolian systems, and to enable meaningful comparisons between
systems, this study introduces and employs a novel relational database: the Database
of Aeolian Sedimentary Architecture (DASA). The use of databasing methodologies in
the broader field of sedimentology has increased in recent years (e.g., Baas et al.,
2005; Gibling, 2006; Colombera et al., 2012a, 2013, 2016; Cullis et al., 2019). DASA
represents the first example of a quantitative, relational database with global coverage,
designed specifically to investigate sedimentary relationships within and between
modern and ancient aeolian sedimentary successions (Fig. 1). Quantitative data
included in DASA are supported by associated qualitative data, including metadata
describing age, location and broader environmental setting, together with information
relating to original descriptions, interpretations and classifications of forms and

deposits.

The aim of this study is to demonstrate the efficacy of using a database-informed
approach to advance the quantitative characterization of aeolian systems for the
purpose of gaining an improved understanding of the controls that govern patterns of

aeolian sedimentation in a wide variety of settings, and over both time and space.
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Objectives of this paper are: (1) to present a detailed explanation of the structure of
DASA, including explanation of the entities and relationships defined therein; (2) to
show multiple examples of how DASA can be queried to produce quantitative data
relating to aspects of the sedimentology and sedimentary architecture of modern and
ancient aeolian systems; (3) to show examples illustrating how DASA can be
sequentially filtered by the user, to provide quantitative architectural metrics for a
specific subset of aeolian systems governed by a particular set of controlling
conditions; and (4) to show how DASA can facilitate the generation of quantitative

geological analogues to subsurface aeolian reservoir successions.

2. Methodology

The Database of Aeolian Sedimentary Architecture is a relational database (see Codd,
1970), in which data are organized into a series of tables (Fig. 2). Each table holds
data on one entity type; the rows within each table represent instances (or records) of
that entity type and the columns represent attributes (or fields) associated with each
entry. In DASA, every table has a column storing a unique numerical identifier (primary
key), assigned to each row; rows in one entity table are linked to rows in different entity
tables through columns storing the unique numerical identifier of the linked row
(foreign key; Fig. 2). This means that the tables (entities) are related by logical
connections between them, as established by primary and foreign keys (Figs. 2, 3).
The entity-relationship model of DASA is based in part on those of other
sedimentological relational databases: the Shallow-Marine Architecture Knowledge
Store (SMAKS; Colombera et al., 2016), the Deep-Marine Architecture Knowledge
Store (DMAKS; Cullis et al., 2019) and the Fluvial Architecture Knowledge Transfer

System (FAKTS; Colombera et al., 2012a).
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DASA stores data encompassing aeolian stratigraphy and sedimentology, relating to
both modern and ancient systems. A process of data standardization is applied upon
data entry to DASA to ensure the use of consistent terminology and to reconcile the
variety of source data types (e.g., outcrop, core, well-log, seismic, satellite imagery)

that were originally employed to characterize the aeolian systems.

DASA is written in SQL (Structured Query Language) and is managed via the MariaDB
(MySQL) database management system; HeidiSQL is used as a database front-end.
Information is retrieved from DASA using SQL queries, which return quantitative
outputs that can be filtered based on the parameters used to classify aeolian systems.
For example, to generate results relating specifically to wet (i.e. water-table influenced)
aeolian systems (sensu Kocurek and Havholm, 1993), or to wetting- or drying-upwards
aeolian systems (e.g., George and Berry, 1993; Howell and Mountney, 1996), or to
aeolian systems with a secondary fluvial influence (e.g., Scherer et al., 2007; Formolo
Ferronatto et al., 2019; Reis et al., 2020). Additionally, the metadata and ancillary data
accompanying each DASA entry can also be used to filter results. For example, to
return results relating only to Permian aeolian systems, or only to aeolian systems
accumulated in intra-cratonic rift settings, or only to aeolian systems that developed in
Pangaean supercontinental settings. The results of queries can be exported in a
tabulated form for later processing, using statistical software (e.g., SPSS, Minitab), or

accessed directly using a specialized programming language, such as Python or R.

3. Database Structure and Overview

Datasets entered into DASA are organized into case studies; a case study describes
a particular modern desert system (e.g., the Idhan Murzuq Desert; Table 1), or ancient

aeolian succession (e.g., Entrada Sandstone; Table 2). Case studies are associated
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with one or more sets of data that are hereafter referred to as ‘subsets’ (cf. Colombera
et al., 2012a). Each subset represents a collection of data (e.g., a sedimentary log or
architectural panel) from an original data source (e.g., a publication or thesis). The
different subsets of a case study vary in the way they are classified with respect to
geological attributes and/or metadata; they are established to facilitate database

interrogation (Fig. 3A; Fig. 4A).

Each subset is divided into depositional complexes (Fig. 3B; Fig. 4B-C), which
describe both ancient and modern environments. In ancient environments, a
depositional complex is defined as a sedimentary body, typically composed of a suite
of smaller elements that characterize a net depositional setting. In modern
environments, a depositional complex is typically a planform area characterizing a

particular depositional setting (e.g., an aeolian dune field, or a part thereof).

Each depositional complex is divided into a series of architectural or geomorphic
elements (Fig. 3; Fig. 4D). Architectural elements are defined as distinct sedimentary
bodies with characteristic sedimentological properties (e.g., internal composition,
geometry) and are the products of sediment accumulation in a specific sub-
environment of deposition (e.g., a dune, a wet interdune, or a fluvial channel).
Geomorphic elements are defined as modern landforms (or their remnants) present at
the surface of the Earth, with distinctive physiographic characteristics; they are
classified by sub-environment type (e.g., a linear dune, a star dune, a zibar, a

sandsheet).

Both architectural and geomorphic elements can be subdivided further into facies
elements (Fig. 3F; Fig. 4E). Facies elements are defined as sedimentary bodies that

are distinguished from neighbouring sediments based on sediment composition,



170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

texture, structure, bedding geometry, fossil content, or by the nature of their bounding

surfaces (Fig. 3F, 4E).

DASA records the hierarchical relationships between sedimentary units of different
orders, ranging in broadly decreasing scale from depositional complexes, through
architectural or geomorphic elements, to facies elements (Fig. 4). DASA records the
containment of a lower-order (smaller-scale) element within a higher-order (larger-
scale) element (e.g., nesting of a facies element within an architectural element;
nesting of an architectural element within a depositional complex; Fig. 3). In parallel
with this rigid hierarchy, DASA adopts an open hierarchy for certain units of the same
rank: geomorphic, architectural and facies elements (cf. Colombera et al., 2016; Cullis
et al., 2019). This allows hierarchical relationships between different units of the same
rank to be stored, using parent-child relationships. This may be applicable, for
example, where a dune set (child element) is present within a dune coset (parent
element), or where a barchan dune (child element) occurs superimposed on a

megadune or draa-scale bedform (parent element).

Hard data (e.g., quantitative measurements of element dimensions, grain-size
statistics, petrophysical properties) stored in DASA are supplemented by soft
(qualitative) data (e.g., interpretations of aeolian surface types, or facies element
types). The types of data contained in each particular subset may vary markedly,
depending on the manner by which the original data were collected and in terms of the
hierarchical levels they cover. To assign a measure of quality to query outputs, data
added to DASA are classified in terms of perceived quality (cf. Baas, 2005; Colombera
et al., 2012a, 2016), based on three categories (‘A’, highest quality, to ‘C’ lowest

quality) applied on the basis of expert judgement and quality criteria.
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By utilizing this structure, DASA can effectively record all key aspects of aeolian
sedimentology and stratigraphy. The different entity types recorded in DASA are
outlined in some detail below. A full account of entity types (tables) and attributes
(columns) can be found in Supplementary Information 1. DASA is a flexible and
expandable system, which allows for the addition of new entity types (tables) or

attributes (fields) for capturing other geological entities or variables of interest.

3.1 Table (Entity) Descriptions

3.1.1 Sources

The ‘sources’ table describes the primary source of the data. This table records (1) a
full reference and (2) the data-source type (e.g., published literature, technical reports,

unpublished academic work).

3.1.2 Case Studies

The ‘case studies’ table contains metadata (i.e., data that describe and give
information about other data) relating to the geological background and geographical
setting of each entry. Examples of the metadata stored in the ‘case studies’ table
include: (1) chronostratigraphic information; (2) lithostratigraphic information; (3) the
geographical location, a broad palaeogeographical location and dune-field name; (4)

the basin name and basin type.

3.1.3 Subsets

In DASA, aeolian systems are subdivided into so-called subsets (cf. Colombera et al.,
2012a) of a particular case study. Subsets are named or numbered depictions of
collections of data within source material (Fig. 4A) and are differentiated on the basis

of attributes that describe their geological boundary conditions or context, or because
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of their suitability to yield particular types of outputs. These attributes are reflected in
the contents of the ‘subset’ table, which contains data describing the depositional
system, its allogenic controls and metadata. Subsets are established to aid querying

of the database on parameters that characterize depositional systems.

3.1.4 Subset Statistics

A table is included in DASA specifically for recording data presented as statistical
summaries, which cannot therefore be assigned to a particular geological unit (e.g., a
specific depositional complex, architectural element, geomorphic element or facies).
Such data are instead stored as statistics for the entire subset. Examples of subset
statistics include mean dune spacing, mean dune height, and mean wavelength and

amplitude of dune along-crestline sinuosity.

3.1.5 Depositional Complexes

Subsets can be subdivided into depositional complexes, either on the basis of
stratigraphic divisions (e.g., on a sedimentary graphic log; Fig. 3B) or in planform (e.g.,
on an aerial photograph). Depositional complexes are assigned a primary and — if
appropriate — a secondary complex type; depositional complex types used in DASA
are outlined in Table 3 and the application of a primary and secondary depositional
complex type is illustrated in Fig. 4B-C. The terms ‘primary’ and ‘secondary’ qualify
the relative dominance of different types of deposits of different origins within a subset.
The primary depositional complex type defines the most abundant type of deposit in
the unit (e.g., as a fraction of a stratigraphic log (Fig. 4B-C), or of a planform area); the
secondary depositional complex type defines the second most common type. This
approach enables recording the interaction between aeolian and non-aeolian systems,

and facilitates database querying based on the sedimentary environment.

10
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The ‘depositional complex’ table stores data on depositional complexes. Examples of
attributes recorded in the ‘depositional complex’ table include: (1) dimensional
parameters of the depositional complex; (2) whether the depositional complex is
indicative of a dry, wet, mixed or stabilizing aeolian system (sensu Kocurek and
Havholm, 1993); (3) whether the depositional complex has any recordable cyclicity
(e.g., wetting- or drying-upward trends; George and Berry, 1993; Howell and
Mountney, 1996); (4) the preservation mechanism of the depositional complex, for
example via bedform climbing (Rubin and Hunter, 1982; Mountney, 2012), or via
exceptional preservation following inundation by marine flooding (Glennie and Buller,
1983) or burial by extrusive igneous activity (Jerram et al., 1999, 2000a, 2000b;
Mountney et al., 1999a; Mountney and Howell, 2000); and (5) for modern depositional

complexes, the dominant wind direction and variability thereof (Fryberger, 1979).

3.1.6 Architectural and Geomorphic Elements

Depositional complexes can be subdivided into architectural or geomorphic elements
(Fig. 3D; Fig. 4D), classified to cover the variety of aeolian and associated non-aeolian
architectural and geomorphic element types that occur within aeolian systems (Table
4). In DASA, architectural elements describe the preserved 2D or pseudo-3D

architectures of specific aeolian and associated non-aeolian elements.

Architectural elements may be used to describe properties of both ancient and recent
deposits. The latter are recorded as architectural elements where the internal
structures of modern dunes are revealed, for example, in trenches or by a ground
penetrating radar (GPR) survey (Bristow et al., 2000b; Bristow, 2009; Tatum and
Francke, 2012a, 2012b). In the ancient record, architectural elements are most

commonly observed in outcrop, though are also recorded from some subsurface
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datasets, for example by using GPR (e.g., Jol et al., 2003; Bristow et al., 2005), by
using seismic methods (e.g., Story, 1998), or by correlation of well logs (e.g.,
Strémback and Howell, 2002; Besly et al., 2018). In DASA, geomorphic elements
describe the planform, 2D or 3D morphologies of landforms observed at the Earth’s
surface. DASA enables both the geomorphic expression and the deposit of an
accretionary landform (e.g., a dune) to be recorded, respectively as geomorphic and
architectural elements; this is applicable, for example, in cases where a dune is both
viewed in planform in an aerial photograph (geomorphic element) and in cross section
via dune trenching (architectural element) (e.g., McKee, 1966; Glennie, 1970, McKee

and Moiola, 1975).

The open hierarchy of DASA enables architectural and geomorphic elements to be
recorded in a way that reflects the hierarchy of sub-environments and/or of
architectures they represent (e.g., cross-strata package within a dune set). This
hierarchical arrangement is applied in the form of the relative containment of elements
within other elements. In some cases, architectural-element boundaries may be
ambiguous due to gradational element transitions between different sub-environment
types. In DASA the boundaries of architectural elements are determined from the
original source work (cf. Colombera et al., 2016).The employed data encoding
methodology, as developed and refined by Colombera et al. (2016), provides a flexible
approach to the subdivision of elements and allows DASA to be coded in a flexible
manner. However, it should be noted that this approach nevertheless relies on the
interpretations of architectural element boundaries as presented in the original

sources.

The ‘architectural element’ and ‘geomorphic element’ tables contain primary data and

metadata, including: (1) dimensional parameters; (2) element shapes and (3) element

12
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sub-environment classification (Table 4). Some additional parameters recorded for
dune-set architectural elements, where appropriate, including foreset dips and
azimuths, for example. For dune geomorphic elements, additional parameters are
used, where appropriate, to record attributes such as the number of slipfaces,
wavelength and amplitude of along-crestline sinuosity, and orientation relative to wind

direction, and the lengths and angles of inclination of bedform stoss and lee slopes.

3.1.7 Facies Elements

The ‘facies element’ table contains primary data and metadata regarding the facies
that comprise architectural and geomorphic elements, including: (1) dimensional
parameters; (2) element shapes; and (3) types of facies (Table 5). Facies-element
types are not mutually exclusive and cover deposits at different scales; this approach
to classification was chosen because the database accommodates an open hierarchy
of facies, implemented in the same manner as that outlined for geomorphic and
architectural elements. A suite of further DASA parameters describing the lithology,
grading and lamination types of facies elements are shown in Figure 4F, alongside
parameters that describe post-depositional deformation (e.g., Rodriguez-L6pez and

Wu, 2020), including physical, chemical, biogenic and structural features.

3.1.8 Transitions Tables

Any element may transition to a different element belonging to the same order (e.g.,
the architectural-element order; Fig. 3H-K) vertically or laterally; lateral transitions can
occur along a direction either parallel or perpendicular to the dominant foreset azimuth,
else to indicators of the overall (palaeo)wind direction. Transition tables record the
style of juxtaposition of neighbouring elements of the same order, and — where

appropriate — the transitions between nested parent and child elements of the same

13
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order. Transitions between elements of the same scale may occur through bounding
surfaces (see below). Additionally, gradational transitions may occur where no
bounding surface is present (e.g., from deposits of a dry-interdune element upward

into the toeset deposits of an overlying dune element).

3.1.9 Bounding Surfaces

Brookfield (1977) identified a hierarchy of bounding surfaces (third-, second- and first-
order), and this classification scheme was later succeeded by nomenclature
summarized by Kocurek (1996), which defined bounding-surface types of broadly
equivalent status to those of Brookfield (1977): reactivation surfaces, superposition
surfaces, interdune migration surfaces. In addition, a higher-order class of bounding
surfaces is also adopted: the supersurface (Loope, 1985; Langford and Chan, 1988;
Fryberger, 1993; Kocurek, 1988, 1996). Reactivation, superposition and interdune
surfaces are chiefly the products of autogenic bedform migration; supersurfaces are
chiefly the product of allogenic forcing (Fryberger, 1993) but can also potentially be
generated by the regional migration of a major aeolian sand-sea (or erg) system

(Porter, 1986).

The surface table records data on bounding surfaces, including the following: (1) the
length, orientation and dip of the bounding surface; (2) association of features
(sedimentary structures) indicative of substrate conditions (e.g., dry, damp, wet)
associated with the surface; (3) association of features indicative of surface
stabilization; (4) a classification of surface type (i.e., environmental significance)
according to the schemes of Fryberger (1993) and Kocurek (1996); (5) a record of
sedimentary structures associated with the surface, for example palaeosols, (Basilici

et al., 2009; Dal' Bo et al., 2010), rhizoliths (Loope, 1988) and burrows (Ahlbrandt et

14
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al., 1978; Krapovickas et al., 2016), amongst others. A ‘surfaces relationship’ table is
also present in DASA; this records any cross-cutting and truncation relationships

between two surfaces.

3.1.10 Petrophysical and Textural Properties

Instances of geomorphic, architectural or facies elements (e.g., an interdune, or a
sandsheet element) may be assigned specific petrophysical or textural properties;
these data are recorded in the ‘petrophysics’ and ‘texture’ tables. The ‘petrophysics’
table records any petrophysical attributes of a given element, such as values of
porosity and permeability. The ‘texture’ table records properties relating to grain

character, including grain size, sorting and roundness.

4. DASA Output and Applications

At the time of writing, DASA contains data on 62 case studies: 28 case studies refer
to modern aeolian systems (Table 1; Fig. 5); 34 case studies to ancient aeolian
systems (Table 2; Fig. 5). DASA contains 252 subsets, 2631 architectural elements,
3651 geomorphic elements, 1321 facies elements, 2881 architectural-element
transitions and 802 facies-element transitions. The application of DASA to fields of
both fundamental and applied research in sedimentary geology relies on the collation
of significant amounts of data; moreover, new datasets are being published frequently.
As such, database population is ongoing and open-ended. Database outputs
inevitably reflect the content of DASA at the time of database interrogation. If case-
studies representing a particular geographic location (e.g., the Colorado Plateau) or a
particular interval of geological time (e.g., Mesosozoic) are over-represented, DASA
outputs will be biased accordingly. To mitigate such sampling biases, the case studies
that have thus far been included in DASA have a global distribution and cover a wide
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span of geological time. Any sampling biases must however be considered when

interpreting the significance of databaseoutputs.

Interrogation of DASA using SQL queries generates quantitative data outputs, which
can be used to characterize the geomorphology and sedimentary architecture of
modern and ancient aeolian systems, respectively. DASA queries can be tailored to
deliver bespoke data outputs, based on the classification of the aeolian system (e.g.,
systems with damp interdunes, or systems characterized by drying-upward
successions, or systems with an associated secondary depositional complex of
lacustrine origin). Bespoke outputs can also be classified on metadata (e.g., only
Mesozoic aeolian systems, studies based on GPR data, or studies from Arizona,
USA). The ability to perform queries defined on multiple attributes (for example a
specific geological age and a specific dune-field physiographic setting) enables the
selection of data from multiple geological analogues that meet specific criteria. As
such, quantitative data can be used to construct specialized bespoke models
describing attributes of systems for which no single case-study example is wholly

representative.

Outputs of DASA vyield insights into the following: (1) the organization of aeolian
systems and their constituent architectural and geomorphic building blocks; (2) the
hierarchical containment relationships between elements of different scales; and (3)
the distribution and spatial relationships between elements from the depositional-
complex to the facies-element scale. Below, a series of example database outputs are
presented to illustrate the value of DASA as a tool for the detailed characterization of
aeolian sedimentary systems and their preserved successions. An SQL file containing
the DASA database and all of the data used to generate the following figures are

included in the supplementary information.
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4.1 Comparison of Modern and Ancient Analogues

Understanding the relationship between modern and ancient aeolian systems remains
important: modern aeolian systems are widely applied as analogues to help better
understand the palaeoenvironmental significance of subsurface successions (e.g.,
Stanistreet and Stollhofen, 2002; Tatum and Francke, 2012a; Besly et al., 2018;
Kocurek et al., 2020). In particular, compilations of cross-plots between dune height,
length and width (e.g., Finkel, 1959; Long and Sharp, 1964; McKee, 1979; Wasson
and Hyde, 1983; Bishop 1997; Lancaster, 2009; Bhadra et al., 2019) are a valuable
tool for characterizing bedform relationships and understanding patterns of dune-field
evolution. DASA provides a platform to reconcile such data from a wide variety of
published sources, derived from original studies that considered different spatio-
temporal settings and employed various methods of data collection. DASA captures
data relating to both modern systems (i.e. geomorphic elements on the Earth’s
surface) and ancient successions (i.e. architectural elements preserved in the rock
record), thereby providing a platform to make comparisons of the range of dimensions
of modern forms and of their preserved counterparts in accumulated sedimentary

successions.

DASA can be queried using nomenclature adopted in the original source work; for
example, the designated dune type. Figure 6 shows a comparison of dune scaling
relationships for modern dunes and ancient dune sets, which have been subdivided
according to identified dune type. Measurements from modern dunes record the
height, length and width of active bedforms at an instant in time. Measurements from
accumulated dune sets record the dimensions of the preserved dune elements, which
typically preserve only the lowermost parts of the original bedforms, and record the
passage or migration of those bedforms over an extended episode of time (Rubin and

17



412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

18

Hunter, 1982; Kocurek, 1991). As such, the preserved dimensions of dune sets are
related in part to the geometries (e.g., the height, length, or width) and original
morphologies of the bedforms that generated them, but also to the time interval over
which the bedforms persisted, and the speed at which those bedforms migrated,
together with other aspects of migratory behaviour, such as the angle of climb

(Kocurek, 1991; Rubin, 1987; Rubin and Carter, 2006).

Scatter plots illustrate how different modern dune types have distinct scaling
relationships (Fig. 6A-C); for example, modern parabolic dunes have the largest
average height-to-length ratio of all dune types recorded in DASA (Fig. 6A). In the
accumulated stratigraphic record, however, no clear relationship between inferred
dune type and preserved set geometry is evident (Fig. 6D-F). Dune sets interpreted to
represent accumulated deposits of the same fundamental dune type can take
markedly different forms, with highly variable relationships between dune-set
thicknesses, lengths and widths (Fig. 6D-F; cf. Bagnold 1941; Glennie 1970, Tsoar
1982; Kocurek, 1991; Romain and Mountney, 2014). Preserved dune-set scaling
relationships (e.g., relationships between preserved dune-set thickness, length and

width) are not necessarily strongly related to formative dune type.

This statement is based on the assumption that, in all source works, the original dune
type was confidently interpreted from preserved dune sets; however, interpretations
of formative dune type from evidence in the rock record are not always straightforward.
For example, the preserved deposits of linear dunes can come to resemble those of
crescentic dunes if the migrating bedforms undertook a component of lateral migration
(Rubin and Hunter, 1985; Clemmensen, 1989; Rubin, 1990; Besly et al., 2018; Scotti
and Veiga, 2019). The data presented in Figure 6A-F suggest either that dune type

has no directly quantifiable relationship with the resulting preserved dune-set
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geometry, else that our ability to interpret and reconstruct dune types from evidence

preserved in the ancient record is generally limited.

DASA also provides a unifying platform to directly compare modern and ancient
systems, and to explain mechanisms of aeolian dune accumulation to form sets of
strata. Direct comparisons of modern dune heights and ancient dune-set thicknesses
(Fig. 6G-H) show that, for all dune types, modern bedform heights are typically an
order of magnitude greater than the thicknesses of preserved dune sets. This finding
is congruous with the idea that only a small portion of the original dune height is
typically translated into the geological record and that dune-set deposition is the
product of bedform climbing at low (i.e. subcritical) angles (Rubin and Hunter, 1982;
Kocurek, 1981; Kocurek, 1991), whereby the rate of bedform migration was

considerably greater than the rate of vertical accumulation (Kocurek, 1991).

In some instances dune bedform topography can be preserved in the geological
record, to varying degrees, by geomorphic accommodation space where one set of
bedforms generates topographic relief and where local accommodation in interdune
depressions is subsequently filled by later bedforms (Langford et al., 2008; Fryberger
and Hern, 2014; Kocurek et al., 2020). In other cases, dune bedform topography can
be preserved by burial beneath extrusive volcanics (Clemmensen, 1988; Jerram et al.,
1999, 2000a, 2000b; Scherer, 2000, 2002), or by marine inundation, or other
sediments (Eshner and Kocurek, 1986, 1988; Fryberger, 1986; Chan and Kocurek,
1988; Stromback et al., 2005; Scotti and Veiga, 2019). Examples in which dune
topography is fossilized in the geological record are recorded in DASA but are not

depicted in Figure 6.
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4.2 Characterization of Aeolian Architectural Elements

Architectural elements are the fundamental building blocks of aeolian sedimentary
successions. DASA permits tailored querying to quantify the geometry of architectural
elements from subsets classified according to boundary conditions, which may
influence preserved aeolian architectures. Figure 7 illustrates an example of how filters
might be applied to DASA to determine the relative dominance of particular aeolian
architectural-element types through geological time, and for different
palaeogeographic configurations. In the depicted example, the architectural elements
are grouped according to four palaeogeographic settings associated with (1) the
Proterozoic supercontinents (Rodinia and Columbia), (2) with Gondwanaland, (3) with
Pangaea, and (4) with geological times characterized by dispersed continental
landmasses for systems that developed since 38 Ma (Fig. 7A). The relative proportions
of dune-set, sandsheet and interdune elements are plotted for the different settings
(Fig. 7B-E), allowing an evaluation of the degree to which the global palaeogeographic
configuration might have controlled the occurrence of aeolian successions
characterized by particular architectural-element types. For example, sandsheet
elements form a markedly greater proportion of Proterozoic aeolian systems (Fig. 7B),
compared to all other settings (Fig. 7C-E): 34% compared to 15% in successions
younger than 38 Ma (Fig. 7E). The relatively greater proportion of sandsheet elements
in Proterozoic aeolian systems may reflect their increased prevalence prior to the
evolution of land plants (e.g., Rainbird, 1992; Long, 2006; Davies and Gibling, 2010).
The absence of the stabilizing effects of vegetation in Proterozoic settings likely
promoted enhanced winnowing of fluvial braid plains to form aeolian sandsheet
elements (e.g., Dott and Byers, 1981; Tirsgaard and @xnevad, 1998; Erikkson and

Simpson, 1998; Abrantes, 2020). The relatively lower proportion of sandsheet
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elements in aeolian systems younger than 38 Ma may reflect the stabilizing effects of
grasses, which evolved between 60-55 Ma (Jacobs et al., 1999; Kellog, 2000), and
which act to markedly retard aeolian winnowing, thereby reducing the supply of

sediment suitable for sandsheet accumulation.

Proterozoic dune-set element thicknesses (median = 1.2 m) and sandsheet element
thicknesses (median = 0.4 m) are markedly less than those of equivalent elements
known from successions of the Gondawanan (dune set median thickness = 5 m;
sandsheet median thickness = 2.0 m) and Pangaean (dune set median thickness = 2
m; sandsheet median thickness = 2.0 m) supercontinents (Fig. 7F and 71-K). This may
reflect the fact that the majority of Proterozoic successions are recorded from
intracratonic basin settings, which are preferentially preserved in the central parts of
stable ancient cratons (e.g., Shaw et al., 1991; Aspler and Chiarenzelli, 1997; Deb and
Pal, 2015), and which typically experienced low rates of subsidence compared to other
basin types (e.g., Bethke, 1985; Aspler and Chiarenzelli, 1997). This might have
favoured the accumulation and preservation of relatively thin genetic aeolian units, in
which aeolian dune-sets likely climbed at low-angles and accumulated sporadically
between long episodes of sediment bypass under conditions of low rates of
accommodation generation. Although the size of dune-sets could also be related the
size of the formative dunes, this is not likely related to the effects of accommodation
generation. The presence of vegetation in Gondwanan and Pangaean settings may
have also acted to facilitate preservation of aeolian dune and sandsheet elements by
limiting the mobility of river systems that could have wandered across and largely
reworked aeolian sediments (Davis and Gibling, 2010; Reis et al., 2020). By contrast,
Proterozoic fluvio-aeolian systems that lacked vegetated floodplains were instead

more likely to be reworked by mobile rivers (Clemmensen and Dam, 1993; Aspler and
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Chiarenzelli, 1997; Eriksson and Simpson, 1998; Els, 1998). Mixed fluvial-aeolian
successions of Proterozoic age are typically only preserved where high water tables

acted to retard and limit aeolian erosion (Trewin, 1993; Tirsgaard and @xnevad, 1998).

Figure 7 shows just one example of how DASA can be used to determine the manner
in which aeolian sub-environments variably develop and are preserved as a function
of their specific spatio-temporal settings, possibly because of controls exerted by
regional or global palaeogeographic configurations. Examples of other potential
applications of this type of architectural-element characterisation are outlined below.
(1) The compilation of foreset-azimuth data for specific supercontinental or basin
settings; such datasets may be applied to aid the reconstruction of regional or localised
paleowind directions (e.g. Bigarella and Salumni, 1961, 1964; Glennie, 1983; Parrish
and Peterson, 1988; Scherer and Goldberg, 2007; Ballico et al., 2017; Scherer et al.,
2020). (2) The compilation of architectural element data for specific
paleoclimatological settings; such datasets may be applied to build quantitative facies
models describing aeolian accumulation under icehouse and greenhouse climate

conditions (e.g., Cosgrove et al., 2021)

4.3 Characterization of Aeolian Lithofacies

Aeolian lithofacies have variable sedimentological and petrophysical properties;
understanding facies distribution, geometry and internal textural characteristics is
important for gaining insight into depositional processes (Hunter, 1977). Figure 8
illustrates how DASA can be used to analyse quantitative facies metrics statistically,
and to compare the geometries and grain-size characteristics of different aeolian
facies. The ranges of thickness (Fig. 8B, C, E), length (Fig. 8B) and width (Fig. 8C),

and the textural properties (Fig. 8D) of facies elements can be quantified and used in
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the generation of bespoke quantitative facies models. Database queries can be

tailored to specific allogenic boundary conditions.

In Figure 9, three patrticular facies types are considered: (1) adhesion strata, (2) strata
of interfingered grainflow, grainfall and/or wind-ripple origin, and (3) wind-ripple strata
(Fig. 9A-C). DASA enables quantification of the architectures and of the sub-
environments with which these facies are most closely associated (Fig. 9D-F). For
example, itis possible to determine the proportions of the following: (1) adhesion strata
that occur in damp and wet interdune environments (Fig. 9D); (2) interfingered strata
that occur in aeolian dune environments (Fig. 9E), and wind-ripple strata that occur in

sandsheet, or dry interdune, or water-table-influenced interdune settings (Fig. 9F).

The proportions of modal sand granulometric classes for the three example facies
units are also shown (Fig. 9G-I); all facies types are dominated by fine- and medium-
grained sand, which together form 91%, 75% and 65% of recorded modal grain sizes
in adhesion strata, interfingered strata, and wind-ripple strata, respectively. This
reflects the highly discriminant nature of sediment transport by the wind (Bagnold,
1941). Of note, the wind-ripple facies contains the largest proportions of coarse- and
very coarse-grained sand (modal grain size in 33% of recorded instances). Coarse-
grained wind-ripple deposits are especially common in aeolian sandsheet settings.
This is notably the case for sandsheets that represent remnants of eroded landforms
of original higher relief. The coarser grain-sizes found in sandsheet settings partly
reflects the effects of aeolian deflation, whereby the winnowing of finer-grained sand
leaves behind a coarser lag (Neilsen and Kocurek, 1986; Pye and Tsoar, 1990;

Mountney and Russell, 2004, 2006; Mountney 2006b).

Quantitative output from DASA can be applied to elucidate understanding of the

hierarchical arrangement, geometry and textural properties of a broad range of aeolian
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and associated non-aeolian facies types. The configuration of stratal packages
comprising common aeolian facies (e.g., wind-ripple, grainfall and grainflow strata)
can significantly impact horizontal and vertical permeability due to inter-facies
variability in grain-size, sorting and packing (Hunter, 1977; Chandler et al., 1989;
Prosser and Maskall, 1993). As such, DASA can be applied to better constrain facies-

scale heterogeneity in aeolian reservoirs.

4.4 Element Transitions

The construction of meaningful facies models requires a quantitative understanding of
the expected vertical arrangement and ordering (i.e. stacking) and lateral juxtaposition
of elements. To this end, DASA can return statistics on transitions between elements
of the same rank (e.g., depositional complexes and architectural and facies elements),
and also between elements of different hierarchical scales (e.g., transitions from an
underlying depositional complex of a given type to an overlying facies type, which is
itself contained within a parent element of higher hierarchical order). The architectural,
facies and textural information described in the examples presented above can be
coupled with DASA outputs describing the mutual association of element types in

lateral and vertical directions.

Figure 10 illustrates vertical transition statistics between types of architectural
elements recorded in DASA. This type of information can be synthesized in transition
probability matrices, in this example depicted as a heatmap (Figure 10D), or as
stacked bar charts (Fig. 10E-F) to show the probability of transitioning from one
element type to another. Specific architectural element types can be considered in
terms of their probability or frequency of transition (vertically, or laterally along a

direction either parallel or perpendicular to the dominant foreset azimuth) into another
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architectural-element type. This makes it possible, for example, to determine that: (1)
aeolian sandsheet elements are most frequently seen to transition vertically to
overlying dune sets (36% probability), or that (2) the probability of passing vertically
from an aeolian dune set, below, directly to a non-aeolian architectural element above
is 13% (Fig. 10E), and that this non-aeolian element has a 25% chance of being a
fluvial channel deposit (Fig. 10F). Transition statistics can also be derived for facies
and grain-size categories. These statistics can be used to characterize the internal
facies organization of particular sub-environments and to quantify stratigraphic trends,
through statistical evaluation (e.g. employing Markov-chain analysis; cf. Harper, 1984;
Brierley, 1989) of the most likely vertical or lateral successions of facies elements.
Understanding the vertical and lateral stacking (i.e. order of juxtaposition) of different
element types is especially important in the interpretation of subsurface aeolian
successions known only from core or wireline-log records (e.g., Chandler et al., 1989;

Krystinik, 1990; Prosser and Maskall, 1993; Shebi, 1995; Besly et al. 2018).

4.5 Characterization of Aeolian Bounding Surfaces

Within aeolian systems, bounding surfaces separate elements at multiple scales and
can demarcate prominent changes in sedimentological character. Such surfaces
might signify the juxtaposition of separate aeolian sequences representing entirely
different episodes of aeolian system construction and accumulation (e.g., Crabaugh
and Kocurek, 1993), else they might record subtle changes between alternating
episodes of dune accumulation via positive climb (e.g., Herries, 1993), non-climbing
bypass (e.g. Langford and Chan, 1988), and erosion through negative climb (e.g.,

Kourek and Day, 2018; cf. Loope, 1985; Mountney, 2012).
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DASA records both quantitative and qualitative data for all prominent surface types,
and allows bespoke queries to be made on specific surface types and on any other
higher-level filters. Two examples of how bounding-surface data can be sequentially
filtered to meet particular specifications are shown in Figure 11A-B. Fig. 11A presents
output on the percentage of supersurfaces (20% of all recorded bounding-surface
types) that are Mesozoic in age (52% of supersurfaces), and that are wet (90% of
Mesozoic supersurfaces), and that are bypass surfaces (48% of wet, Mesozoic
supersurfaces). Fig. 11B presents output showing the percentage of interdune
surfaces (50% of all recorded bounding-surface types) found at palaeolatitudes in the
15-30° range (42% of interdune surfaces), and that are curved in shape (54% of
interdune surfaces from 15-30° latitude), and that are of a damp type (14% of curved
interdune surfaces from 15-30° latitude). Such bespoke queries demonstrate the
power of a databasing approach for enhancing our understanding of the timing and
mechanism of preservation of surfaces of different types in the geological record, and
of the characteristics that particular classes of bounding surface are likely to possess;
such output can be used to build representative models of aeolian systems for different

settings.

DASA can be applied to compare attributes of bounding surfaces of different order;
examples of quantitative data output for the four main aeolian bounding-surface types
(supersurfaces, and interdune migration, superposition and reactivation surfaces) are
shown in Figure 12. Quantitative statistical summaries describing the lengths of
different surface types, along directions that are both parallel and perpendicular to the
azimuth of mean foreset dip in aeolian dune sets, are shown in Figure 12B-C; such

statistical distributions of surface length can be used to guide stratigraphic correlations
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in aeolian successions, where limited exposure precludes direct walking-out of key

stratal surfaces and across well arrays in the subsurface.
Data recorded in DASA reveal the following.

(1) Supersurfaces are twice more likely to be of deflationary type than of bypass type
(Fig. 12D). Deflationary and bypass supersurfaces represent negative and neutral
sediment budgets, respectively (Kocurek, 1988). The dominantly deflationary nature
of supersurfaces is not surprising, as sustained sediment bypass (where dunes remain
active but do not climb; e.g., Langford and Chan, 1988 requires sustaining a fine
balance between sediment supply and downwind bedform migration. Under these
conditions sediment supply is sufficient to maintain dune migration and to prevent
dunes from cannibalizing their accumulation surface, but insufficient to promote the

onset of bedform climbing (Mountney, 2012; “line of bypass” in his Figure 6).

(2) Supersurfaces are most likely to be associated with a ‘wet’ substrate (70%),
compared to a ‘dry’ (10%) or ‘damp’ (20%) substrate (Fig. 12E). Such relations indicate
the proximity of the water table at the time of supersurface development, which itself
might be related to aeolian system interactions with adjoining fluvial and marine
environments (Mountney et al., 1999b; Veiga et al., 2002; Scherer and Lavina, 2005,
2006; Scherer et al., 2007; Rodriguez-Lopez et al., 2012; Basilici and Dal' Bo, 2014;

Ferronatto et al., 2019; Reis et al., 2020).

(3) Twenty-five per cent of supersurfaces display evidence of surface stabilization,
whereas 75% are unstabilized (Fig. 12F). Supersurfaces typically record substantial
hiatuses in erg development and many are associated with sedimentary features
indicative of long-term substrate stabilization, including rhizoliths, deflationary pebble

lags and chemical cementation (Loope, 1985; Loope, 1988; Kocurek, 1991; Scherer
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and Lavina, 2006; Basilici et al., 2009; Dal' Bo et al., 2010). However, such associated
features are not ubiquitous and cannot be relied upon to assist in the identification of
all supersurfaces. The lack of evidence for substrate stabilization for many
supersurfaces may reflect the large time scales required for the development of some
stabilizing features. For example, supersurfaces with abundant and prominent
rhizoliths in the Permian Cedar Mesa Sandstone of Utah are thought to have taken
104-10° years to develop (Loope, 1985; Mountney, 2006a). The dominance of
supersurfaces that lack evidence for significant substrate stabilization might indicate
that resumption of aeolian accumulation prior to the development of stabilizing
features was common in ancient systems. The lack of available tools with which to
effectively date aeolian successions means that determining the length of time
encapsulated by supersurfaces is, however, problematic. Additionally, the lack of
stabilizing features may also reflect the prevailing climatic conditions. For example,
the relatively rapid development of a protective mantle of vegetation is dependent on
the establishment of relatively more humid climatic conditions; this may have been

relatively rare in ancient systems preserved in the geological record.

(4) The substantial majority of supersurfaces (85%) have no appreciable relief and are
classed as planar (Fig. 12G); this reflects their mode of formation over regional extents
(Kocurek, 1991; Havholm et al., 1993); the majority of recorded supersurfaces are
both deflationary and wet, and deflation to a “flat” regional water table would typically

result in a planar surface (Stokes, 1968).

Bounding surfaces can potentially exert significant effects on reservoir heterogeneity
due to the juxtaposition of facies of different lithologies and permeabilities; the lateral
extent of facies-driven permeability contrasts across aeolian bounding surfaces can

fundamentally influence fluid-flow in reservoirs where a facies unit on either side of the
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bounding surface has a permeability low enough to act to as baffle or barrier to fluid
flow (Nagtegaal, 1979; Lindquist, 1983; Krystinik, 1990; Crabaugh and Kocurek, 1993;
Herries, 1993; Shebi, 1995; Taggart et al., 2012). Additionally, the presence carbonate
and siliceous cements on some bounding surfaces can generate low-permeability
horizons within aeolian successions, which may be otherwise characterised by high

net to gross ratios (Driese, 1985; Chandler et al., 1989; Kocurek and Havholm, 1993).

4.6 Creation of Quantitative Facies Models

DASA queries can be filtered to yield quantitative outputs on aeolian elements at
multiple hierarchical orders, associated with different observational scales (Figs. 13
and 14). Two examples of how filters can be applied to DASA to produce bespoke

quantitative aeolian facies models are outlined below.

To produce a facies model that quantifies architectural-element properties (Figure 13),

filters can be applied in the following way.

(1) All recorded aeolian and non-aeolian architectural elements are considered
according to their physiographic setting within a major aeolian sand sea (sensu Porter,
1986; Fig. 13A) to yield outputs on their geometric properties (Fig. 13B), and on their

distribution within different dune-field settings (Fig. 13C).

(2) The properties of selected architectural-element types within a central-erg setting
(Fig. 13D) are summarized; results demonstrate the relationships between recorded
element length and thickness (Fig. 13E), and the range of recorded thicknesses, for

these element types (Fig. 13F).

(3) An individual element type within a central-erg setting is considered (Fig. 13G).

The thickness (Fig. 13H), length and width (Fig. 13l) of dune sets are reported.
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(4) The internal properties of dune-set elements within central-erg settings are
considered (Fig. 13J). Quantitative outputs (Fig. 13K-M) are reported, such as the
relative proportions of single vs compound dune sets (Fig. 13M), the proportions of
different facies type found in cross-bedded dune sets, and the proportions of different

classes of modal sand grain-size (Fig. 13N-O).

To produce a facies model that quantifies facies properties of types of deposits (Figure

14), filters can be applied sequentially as follows.

(1) All recorded elements are considered according to depositional-complex type (Fig.
14A); the thickness distributions of all primary (Fig. 14B) and all secondary (Fig. 14C)

depositional complex types are reported.

(2) The properties of architectural elements are filtered for a specific depositional-
complex type, to characterize dune-set, sandsheet and interdune architectural
elements from exclusively aeolian settings (Fig. 14D); the relationship between
element lengths and thicknesses is reported (Fig. 14E), as are the thickness

distributions of different element types (Fig. 14F).

(3) An individual architectural-element type present in aeolian systems is depicted; the
element type is viewed in the context of its palaeogeographic and tectonic setting (Fig.
14G). In this example, interdunes are considered, for which thickness distributions are
reported according to classes of supercontinental setting (Fig. 14H) and basin type

(Fig. 141).

(4) The facies properties of an individual element type are examined in the context of
a specific supercontinental setting; in this case interdunes from Pangaea are

considered. The proportion of dry, damp and wet interdune elements are reported (Fig.
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14K), together with facies proportions shown for dry, damp, and wet interdunes (Fig.

14L-N).

The examples shown in Figures 13 and 14 demonstrate how outputs from DASA can
be filtered from the scale of entire depositional systems representative of large-scale
sedimentary environments (e.g., information regarding dune-field position or primary
depositional complex type), down to the scale of individual lithofacies units (e.g., the
facies and textural properties of particular types of bed sets). The examples described

here merely depict a small number of filters that might be applied.

4.7 Characterizing Heterogeneities in Subsurface Aeolian

Successions

The preceding examples illustrate how a database approach can be used to provide
highly specific outputs based on particular sets of criteria. DASA can be applied as
both a research tool to gain improved understanding of the controls that influence
aeolian systems and their preserved successions, and as a resource to aid subsurface
characterization The characterization of subsurface aeolian reservoirs requires the
accurate determination of key reservoir parameters, including the lithology, geometry,
dimensions and spatial distributions of aeolian, and associated non-aeolian elements
(e.g., fluvial, playa-lake, and marine deposits, amongst others). Such key reservoir
parameters can be determined from DASA output. Additionally. the synthesis of data
from a large number of case studies permits the development of composite geological
analogues that capture stratigraphic and sedimentological variability. These
analogues can be applied to quantify uncertainty in subsurface aeolian successions
Output from DASA can be applied, for example, in the fields of hydrocarbon

exploration, development and production, carbon capture and storage (CCS), deep
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geothermal reservoir development, and in aquifer management (e.g., Medici et al.,
2016, 2019a, 2019b). DASA can be used for a number of applied purposes, examples
of which are as follows. First, to quantify the interdigitation and 3D stacking of relatively
more porous and permeable aeolian dune elements (dominated by packages of
grainflow strata) with non-dune elements (including interdune, fluvial and sabkha
deposits) that tend to have poorer flow properties (cf. Fig. 10; Nagtegaal, 1979;
Lindquist, 1983; Krystinik, 1990; Crabaugh and Kocurek, 1993; Herries, 1993; Shebi,

1995).

Second, to record the presence and nature of aeolian bounding surfaces at different
scales, and their occurrence between and within specific depositional complexes and
architectural and facies elements (Figs. 11 and 12). Aeolian bounding surfaces can
act as barriers to fluid migration, by exhibiting prominent grain-size contrasts (e.qg.,
Shebi, 1995; Ciftci et al., 2004). Bounding surfaces can also transmit percolating
meteoric waters, resulting in the precipitation of carbonate and silicate cements (e.g.,
Chandler et al., 1989; North and Prosser, 1993), and in the acceleration of other
diagenetic processes, such as the compaction and mechanical infiltration of clays and

chlorite cementation (e.g., Bongiolo and Scherer, 2010; Dos Ros and Scherer, 2013).

Third, to characterize the statistically most likely configuration and orientation of
aeolian facies units (e.g., Figs. 8 and 9), such as those composed of packages of wind-
ripple, grainfall and grainflow strata. The three-dimensional arrangement of these
aeolian facies elementscan significantly impact horizontal and vertical permeability
due to inter-facies variability in grain size, sorting and packing (Hunter, 1977; Chandler
et al., 1989; Prosser and Maskall, 1993; Howell and Mountney, 2001; Pickup and

Hern, 2002).
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Some aeolian successions have historically been considered to form relatively
homogeneous tanks of sand due to inherent high net-to-gross ratios (e.g., Glennie,
1972). However, focused research has revealed many aeolian successions to be
highly lithologically heterogeneous at multiple scales (e.g., McCaleb, 1979; Weber,
1987; Fryberger, 1990; Prosser and Maskall, 1993; Taggart et al., 2012; Godo, 2017).

Such heterogeneity can be quantified by careful application of the database.

Aeolian successions are shown here to exhibit complex architectural arrangements of
aeolian and associated non-aeolian elements, and to be lithologically heterogeneous,
across a variety of scales (cf. McCaleb, 1979; Weber, 1987; Prosser and Maskall,
1993; Godo, 2017). Composite analogues derived from DASA can be employed as
quantitative facies models (cf. Colombera et al., 2013), applicable (1) to predict three-
dimensional lithological heterogeneity in subsurface successions that are resource
targets; (2) to constrain geocellular stochastic models (cf. Enge et al.,, 2007;
Colombera et al., 2012b; Howell et al., 2014), and (3) to facilitate borehole correlations
of aeolian dune sets or associated non-aeolian elements (e.g., Lallier et al., 2012;

Colombera et al., 2014).

5. Conclusions

DASA is the first integrated large-scale relational database specifically designed to
store quantitative data on the geomorphology, sedimentology and stratigraphy of
modern and ancient aeolian systems, and their preserved successions. The flexible
structure of DASA and the associated standardization of data types and terminology
allow the synthesis of data from multiple sources (e.g., published and unpublished

literature, technical reports and bespoke studies), of different types (e.g., modern vs

33



797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

34

ancient; outcrop vs subsurface), and collected using different methods (e.g., vertical

measured sections, architectural correlation panels, and virtual outcrop models).

DASA has been designed to capture all the fundamental attributes of aeolian
architecture, including but not limited to: (1) the geometric properties of aeolian and
associated non-aeolian bodies; (2) the spatial configuration of aeolian and related
sedimentary and geomorphic units, including their vertical and lateral transitions; and
(3) the nature of bounding surfaces that separate aeolian and non-aeolian bodies.
Quantitative data incorporated within DASA are supported by associated qualitative
data, including metadata describing age, location and broader environmental setting,
together with information relating to original descriptions, interpretations and
classifications of forms and deposits. Data on geological boundary conditions, such as
tectonic setting and climatic conditions, are also stored to frame aeolian systems in

time and space.

The digitization of aeolian architecture allows DASA to output quantitative metrics that
span multiple scales, from larger-scale depositional complexes to smaller-scale facies
elements and sediment texture. Tailored quantitative outputs describing aeolian
architectures can be filtered to enable comparisons between aeolian systems
deposited under different boundary conditions. Some potential applications of DASA
to future research developments in aeolian sedimentology and stratigraphy include:
(1) the development of quantitative facies models, specifically tailored for parameters
describing spatio-temporal and environmental context; (2) the instruction of forward
stratigraphic models and 3D geocellular subsurface models; and (3) the empirical
assessment of how aeolian systems respond to — and how associated architectures
record — allogenic and autogenic forcings. DASA serves as a valuable tool for

quantitative subsurface characterization.
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Data population is on-going as more studies of aeolian systems are published. The
database-informed approach to research that DASA enables has the potential to
revolutionize our understanding of processes and controls on aeolian sedimentary

systems, both modern and ancient.
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Figure Captions

Figure Captions

1. Schematic diagram illustrating subdivisions of major aeolian dune-field (erg)
systems, the scales of elements, entities and relationships stored in DASA, and
some of its variables. Geomorphic elements represent modern aeolian landforms
(i.e. those which are present intact or as remnant forms on the Earth’s surface).
Architectural elements predominantly represent aeolian and associated non-
aeolian deposits preserved in the geological record. DASA stores information on

both modern and ancient deposits at a variety of spatial scales. Within a subset
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(i.e. a collection of related data), larger scale depositional complex (e.g., a mixed
aeolian-fluvial succession) contain individual architectural elements (e.g., a cross-
bed dune set), which in turn contain lithofacies (e.g., wind-ripple lamination), which
themselves have specific textural and petrophysical properties.

Entity-relationship diagram illustrating the tables (entities) of DASA; the
relationships between the tables are illustrated by the arrows. The name of each
table is shown in capital letters; for each table, primary keys are shown in grey and
foreign keys are shown in black. See text for further explanation.

Schematic illustration of how subsets, depositional complexes, architectural
elements and facies are uniquely indexed in DASA. Each progressively lower-order
element is contained (nested) within a higher-order element. A) Subset (original
data source); B) depositional complexes are associated with a subset; C) each
depositional complex is assigned a unique identifier and recorded in the
‘depositional complex’ table; D) architectural elements are contained within larger-
scale depositional complexes; E) each architectural element is assigned a unique
identifier and recorded in the ‘architectural element’ table; F) facies are contained
within larger-scale architectural elements; G) each facies element is assigned a
unique identifier and recorded in the ‘facies element’ table; H) schematic diagram
illustrating how transitions between architectural elements are recorded in DASA;
[) each architectural element is assigned a unique numerical identifier; J) each
element may transition vertically or laterally (lateral transitions are recorded along
a direction either parallel or perpendicular to the dominant foreset azimuth) to a
different architectural element; each transition is uniquely numbered and the
orientation of that transition is recorded; K) the spatial transition between

architectural elements may occur across a surface (e.g., an interdune migration
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bounding surface); each surface is assigned a unique numerical identifier and
various attributes associated with each surface are recorded. The methodology of
recording architectural-element transitions and bounding surfaces is shown in
parts H-K; an equivalent methodology is also employed for both depositional
complexes and facies elements, and their transitions.

Schematic diagram illustrating how subsets, depositional complexes, architectural
elements and facies elements are recorded in DASA. A) Example of a subset
(stratigraphic log); subsets are subdivided into primary and secondary depositional
complex types. B) Example of a depositional complex with marine primary type and
aeolian secondary type. C) Example of a depositional complex with aeolian primary
type and fluvial secondary type. D) Depositional complexes are subdivided into
architectural elements of different types. E) Architectural elements are subdivided
into facies of different types. F) For each facies, different types of data are
recorded, for example on dominant lamination types and on any secondary
physical, biogenic or chemical disturbance or alteration.

A) Global map illustrating the location of all modern case studies currently
contained within DASA; B) bar chart displaying the various data types associated
with modern subsets; C) bar chart displaying the latitudinal range of each of the
modern case studies within DASA; D) Global map illustrating the location of all
ancient case studies currently contained within DASA; E) bar chart displaying the
various data types associated with ancient subsets; categories for additional
source-data types are already enabled; the classification can be extended further,
should new data types be incorporated; F) bar chart displaying the palaeo-
latitudinal range of each of the ancient case-studies within DASA. The numbered

locations shown in part A and D are outlined in Tables 1 and 2, respectively.
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A-F) Scatter plots displaying relationships between pairs of geometric parameters
of modern (geomorphic) dune elements (A-C), and ancient dune-set elements (D-
F), coloured by interpreted dune type. G) Box-and-whisker plots comparing various
heights of modern dunes and thicknesses of ancient dune sets, for various
interpreted dune types. H) Scatter plot showing the mean height (modern dune)
and mean thickness (ancient dune sets) for all dune elements in DASA, coloured
by interpreted dune type. The grey crosses for each data point indicate one
standard deviation from the mean; the ‘n = refers to the total number of modern
and ancient dunes. I) Schematic diagram illustrating the dune types as defined in
DASA. Blue arrows indicate significant wind directions relative to bedform
orientation.

A) Schematic diagram illustrating palaeogeographic configurations of selected
times of supercontinent assemblage, denoted as follows: 1 = Proterozoic
Supercontinent; 2 = Gondwanaland; 3 = Pangaea; 4 = dispersed continental
setting. B-E) Pie charts showing the proportions of dune set, sandsheet and
interdune elements for each supercontinental setting. F) Box-and-whisker plot
illustrating distributions in dune-set thickness for each supercontinental setting. G-
H) Scatter plots displaying relationships between geometric parameters of dune
set elements, coloured by supercontinental setting. |) Box-and-whisker plot
illustrating distributions of sandsheet thickness for each supercontinental setting.
J) Probability density function and K) cumulative density plots showing sandsheet
thicknesses within each supercontinental setting. L) Box-and-whisker plot
illustrating distributions in interdune thickness for each supercontinental setting. M-

P) Pie charts illustrating the proportions of wet, dry and damp interdunes for each
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supercontinental setting. Q) Scatter plots displaying interdune thickness vs.
palaeolatitude, coloured by supercontinental setting.

A) Examples of various facies types recorded within DASA and some of the larger-
scale architectural elements in which the various facies occur most commonly;
each facies is numbered and corresponds with the presented legend. B-C) Scatter
plots between geometric parameters of facies elements, coloured by facies type.
D-E) Box-and-whisker plots illustrating distributions in: D) the modal grain size and
E) thickness of each facies type.

A-C) Idealized block models of: A) adhesion strata, B) interfingered strata and C)
wind-ripple strata. D-F) Stacked bar charts illustrating the relative proportion of
different architectural-element types in which the above facies are most likely to
occur. G-I) Stacked bar charts illustrating the relative frequency of different modal
sand grain-size classes of the above facies types. DASA can also record
intermediate grain-size classes (e.g., lower-fine, upper-fine etc.), but these are not
reported here.

A-C) Hypothetical example of how transitions between architectural elements of
different types are recorded in DASA. A) Hypothetical vertical log through an
aeolian succession; B) vertical section and the transitions (T1 to T8) between the
various architectural element types (no particular scale implied); C) description of
the architectural element ftransitions in the hypothetical vertical log. The
hypothetical example presented in parts A-C is for illustrative purposes only and
does not reflect the real data summarized in parts D-F. D) Heatmap showing
vertical transition probabilities between classes of architectural elements for all
data currently stored in DASA. The architectural-element types are denoted as

follows: 1 = dune set; 2 = sandsheet; 3 = dry interdune; 4 = damp interdune; 5 =
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wet interdune; 6 = all non-aeolian deposits. Underlying architectural elements are
listed on the vertical axis of the heatmap; overlying architectural elements are listed
on the horizontal axis and are additionally denoted with V' (for “vertical") in
parenthesis. E-F) stacked bar charts illustrating the percentage of vertical element
transitions from one element type to another; in Part E all transitions to non-aeolian
elements are grouped in a single category; in Part F, vertical transitions relating
exclusively to the non-aeolian element types are shown in detail.

Two examples of sequential surface filtering. A) The percentage of recorded
surfaces that are supersurfaces (A1), and are Mesozoic in age (A2), and are
associated with wet surface sedimentary features (A3), and are classed as bypass
surfaces (A4). B) The percentage of recorded surfaces that are interdunes (B1),
and are deposited in palaeolatitudes of between 15-30° (B2), and have a curved
shape (B3), and are classed as a ‘damp’ type (B4). The arrows indicate the
sequential levels of filtering.

A) Schematic diagram illustrating the occurrence of four major aeolian bounding
surface types (supersurface, interdune migration, superposition and reactivation),
their occurrence within an aeolian system, and their interactions with each other.
B-C) Box plots showing distributions of surface lengths along directions that are,
respectively, parallel (B) and perpendicular (C) to foreset dip. D-G) Bar charts
illustrating the frequency of occurrence of various properties associated with the
four surface types; D) the frequency of surfaces classified as bypass or deflation
type; E) the frequency of surfaces classified as dry, damp or wet; F) the frequency
of surfaces classified as stabilized or unstabilized; G) the frequency of surfaces
classified as having a shape that is asymptotic (curved), irregular, planar, scalloped

or trough.
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13. Example of how DASA can be applied to generate highly specific outputs suitable

for the generation of bespoke quantitative facies models. A) Schematic diagram
illustrating classes of dune-field location as recorded in DASA. “Margin” refers to
lateral dune-field (erg) margins. B) Scatter plot of architectural-element thickness
and length, for elements of any type, coloured by dune-field location. C) Stacked
bar charts showing the percentages of different architectural-element types across
different classes of dune-field location. D) Schematic diagram illustrating the erg
centre. E) Scatter plot reporting architectural-element thickness and length for
aeolian architectural element types from central-erg settings. Colours indicate
aeolian element types; all aeolian element types are defined in Table 4. F) Box-
and-whisker plot showing thickness distributions for different aeolian element types
from erg-centre settings. G) Schematic diagram illustrating cross-bedded dune
sets in central-erg settings. H-1) Probability density functions showing (H) dune-set
thickness and (l) dune-set length and width in erg-centre settings. J) Schematic
diagram illustrating some of the properties of cross-bedded dune sets recorded in
DASA. K) Scatter plot showing dune-set thickness vs. dune-set length, coloured
by the shape of the bounding surface that defines the shape of the base of the
element, for all cross-bedded dune sets from erg-centre settings. L-O) Pie-charts
showing the frequency of occurrence of various properties of cross-bedded dune
sets from erg-centre settings, as follows: L) proportion of surfaces described as
conformable or truncating; M) proportion of dune sets described as solitary or
grouped; N) proportion of various facies within dune sets; O) proportion of various

grain-size classes within dune sets.

14.Example of how DASA can be applied to generate highly specific outputs suitable

for the generation of bespoke quantitative facies models. A) Schematic diagram
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illustrating examples of various primary and secondary depositional types. Box-
and-whisker plots showing the thickness distributions of B) primary and C)
secondary depositional complexes. D) Schematic diagram showing dune-set,
sandsheet and interdune elements within an exclusively aeolian depositional
system. E) Scatter plot showing the relationship between the thickness and length
of dune-set, sandsheet and interdune elements. F) Probability density function
showing the thickness of dune set, sandsheet and interdune architectural
elements. G) Schematic diagram illustrating how DASA can be filtered for various
spatio-temporal characteristics. H-1) Box-and-whisker plots showing the thickness
distributions of interdune architectural elements from (H) different supercontinental
settings and () basin settings. The Pangaean supercontinental setting is
highlighted with a red box; this particular spatio-temporal setting is interrogated
further in parts K and L. J) Schematic diagram illustrating the texture and facies of
interdune elements. K) Proportion of dry, damp and wet interdune architectural
elements in Pangaean supercontinental settings only. L) Proportions of different
facies elements within dry, damp, and wet interdune elements in Pangaean

supercontinental settings.

Table Captions

1.

2.

79

Case study names, locations and associated references of the modern aeolian
systems included in DASA.
Case study names, locations and associated references of the ancient aeolian

systems included in DASA.
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3.

5.
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Depositional-complex types used in DASA for the classification of overall
depositional setting. Each depositional complex can be used as a primary or
secondary complex-type descriptor.

Examples of DASA sub-environment and architectural-element types for the
classification of architectural and geomorphic elements; only the aeolian
architectural and geomorphic elements discussed in this article are included here.

Examples of DASA facies types for the classification of facies units.
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Figure 3
A) subset (original data source)
| I marine strata
- fluvial strata
; WAl <—subset ID [ ] aeolian strata

C) dep. el. table B) large scale depositional elements

dep. el. D] subset ID e . [ fluvial-dominated
44 7 L4 ]%~dep.el. 1D [[] aeolian-dominated
43 7
42 7 7
41 7

E) arch. el. table

arch. el. ID| dep. el ID 43| - damp interdune
ggi :g [204/ <—arch. el. ID [ ] cross-bedded dune set
203 15 7 . 203 I channelized fluvial
202 42 42 I non-channelized fluvial
201 42

G) facies el. table / F) facies elements

fac. el. ID | arch. el. ID { | grainflow strata
ggé égg [~ ] wind-ripple strata
555 202 adhesion ripples
554 202 [ ] planar laminations

1) arch. el. table

arch. el. ID| dep. el ID
519 39
520 39
521 39
522 39
523 39
J) arch. el. trans. table
vertical lateral trans. ID ( |lateral tre;ns. ID(
trans. ID |arch. el. ID trans. ID parallel to foreset | perpendicular to
) azimuth) foreset azimuth)
619 521 525 522
620 522 525 523
621 525 526
622 519 520 527
623 520 523 528

o
52

K) surface table

- damp interdune

|:’ cross-bedded dune set

@® reactivation surface
@ interdune surface

surface. ID|arch. el. ID 1|arch. el. ID 2] type
411 521 522 R
412 521 525 |
413 525 526 R
414 522 523 R
415 519 520 1
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Table 1
Case Number Case Study Name Location Reference(s)
1 Grand Erg Oriental Algeria, Tunisia McKee (1979); Al-
Masrahy and
Mountney (2015);

Telbisz and Kesler
(2018)

2 Atlantic Sahara Morocco Elbelrhiti et al. (2008)
3 Idhan Murzuk Libya Al-Masrahy and
Mountney (2015)
4 El Djouf Mauritania, W Africa Al-Masrahy and
Mountney (2015)
5 Kalahari Desert Botswana, Namibia, | McKee (1979);
South Africa Kalahari (1988)
6 Namib Desert Angola, Namibia, | McKee (1979);
South Africa Lancaster (2009);
White et al. (2011); Al-
Masrahy and
Mountney (2015);
White et al. (2015)
7 An Nafud Saudi Arabia McKee (1979);
8 Western Desert Egypt Hamdan et al. (2016)
9 Persian Gulf United Arab Emirates | McKee (1979);
10 Wahiba Sands Oman Al-Masrahy and
Mountney (2015)
11 Rub’ Al Kali Saudi Arabia, Oman, | McKee (1979); Al-
United Arab Emirates, | Masrahy and
Yemen Mountney (2013); Al-
Masrahy and
Mountney (2015);
12 Karakum Turkmenistan McKee (1979);
13 Kharan Desert Pakistan Al-Masrahy and

Mountney (2015)
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14 Thar Desert India, Pakistan McKee (1979); Bhadra
et al. (2019)

15 Taklamakan Desert Xinjiang, China McKee (1979); Dong et
al. (2000)

16 Gobi Desert China, Mongolia McKee (1979); Al-
Masrahy and
Mountney (2015)

17 Mu Us Desert China Al-Masrahy and
Mountney (2015)

18 Great Sandy Desert Australia Wasson and Hyde
(1983)

19 Simpson Desert Australia McKee (1979); Nanson
and Price (1995); Al-
Masrahy and
Mountney (2015)

20 Strzelecki Desert Australia Wasson and Hyde
(1983); Bishop (1997)

21 Victoria Valley Antarctica Bourke et al. (2005)

22 Colorado Desert California, USA Long and  Sharp
(1964); Bishop (1997)

23 Algodones Dunes USA, Mexico McKee (1979);

24 Sonora Desert (Gran | Mexico McKee (1979);

Desierto)
25 Navajo Indian | Arizona, USA McKee (1979);
Reservation

26 White Sands New Mexico, USA McKee (1979); Baitis et
al. (2014); Al-Masrahy
and Mountney (2015)

27 Atacama Desert Chile, Peru Finkel (1959)

28 Monte Desert Argentina Al-Masrahy and

Mountney (2015)
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Table 2
Case Number Case Study Name Location Reference(s)
1 Eriksfjord Formation Greenland Clemmensen (1988)
2 Hopeman Sandstone Scotland, UK Clemmensen (1987)
3 Arran Red Beds Isle of Arran, Scotland, | Clemmensen and
UK Abrahamsen (1983)
4 Sherwood Sandstone | UK  (Onshore and | Cowan (1993);
Offshore England and | Meadows and Beach
Northern Ireland) (1993)
5 Rotliegendes Germany, Poland, | Ellis (1993); Newell
Sandstone Denmark, Baltic Sea, | (2001)
Netherlands
6 Boxtel Formation Netherlands, Schokker and Koster
Germany, Denmark, | (2004)
Poland
7 Sable de Fontainbleau | France Cojan and Thiry (1992)
Formation
8 Escorihuela Formation | NE Spain Liesa et al. (2016)
9 Etjo Formation Namibia Mountney and Howell
(2000)
10 Tsondab Sandstone Namibia Kocurek et al. (1999)
11 Egalapenta Formation | India Biswas (2005);
Dasgupta et al. (2005)
12 Tumblagooda Australia Trewin (1993)
Formation
13 Tamala Limestone Australia Semeniuk and
Glassford (1988)
14 Sao Sebastiao | Brazil Formolo Ferronatto et
Formation al. (2019)
15 Sergi Formation Brazil Scherer et al. (2007)
16 Mangabeira Formation | Brazil Ballico et al. (2017)
17 Caldeirao Formation Brazil Jones et al. (2015)
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18 Bandeirinha Formation | Brazil Simplicio and Basilici
(2015)
19 Guara Formation Brazil Scherer and Lavina
(2005)
20 Piramboia Formation Brazil Dias and Scherer
(2008)
21 Huitrin Formation Argentina Stromback et al. (2005)
22 Agrio Formation Argentina Veiga et al. (2002)
23 Rio Negro Formation Argentina Zavala and Frieje
(2001)
24 Copper Habor | Michigan, USA Taylor and Middleton
Formation (1990)
25 Chugwater Formation | Wyoming, USA Irmen and Vondra
(2000)
26 Arikaree Formation Wyoming, Nebraska, | Bart (1977)
USA
27 Ingleside Formation Colorado, Wyoming, | Pike and Sweet (2018)
USA
28 Lower Cutler Beds Utah, USA Jordan and Mountney
(2010)
29 Cedar Mesa | Utah, Colorado, New | Loope (1985);
Sandstone Mexico, Arizona, USA | Mountney and Jagger
(2004)
30 Navajo Sandstone Nevada, Arizona, | Loope and Rowe
Colorado, Utah, USA (2003)
31 Entrada Sandstone Wyoming, Utah, | Crabaugh and Kocurek
Arizona, New Mexico, | (1993); Benan and
Texas, USA Kocurek (2000);
Kocurek and Day
(2018);
32 Big Bear Formation California, USA Stewart (2005)
33 Wolfville Formation Nova Scotia, Canada | Leleu and Hartley

(2018)
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34 Page Sandstone Arizona, Utah, | Jones and Blakey
Wyoming, USA (1997); Kocurek et al.
(1992)
Table 3
Depositional | Description
Complexes
Aeolian Deposits arising from, or relating to, the action of wind.

Niveo-Aeolian

Deposits composed of mixed aeolian and snow deposits, typically found in cold-
climate settings (Koster and Dijkmans, 1988; McKenna-Neuman, 1990).

Fluvial Deposits arising from or relating to the action of streams and rivers.

Marine Deposits arising from or relating to the action of the sea.

Alluvial Deposits arising from, or relating to the action of streams and sediment gravity-
flow processes (cf. Melton, 1965).

Lacustrine Deposits arising from or relating to accumulation in perennial lakes.

Sabkha/Playa | Sabkhas and playa lakes describe low-relief flats where evaporites, and in some

Lake cases carbonates, accumulate. The terms sabkha and playa lake were originally
used to describe coastal and inland settings, respectively (Evans, et al., 1964;
Purser and Evans, 1973); however, the terms are now used interchangeably.

Igneous Deposits relating to intrusive or extrusive volcanic activity.

Other Any depositional element that differs in origin from those above.

Table 4

Architectural or | Description

Geomorphic

Element Type

Dune (A/G) Dunes are large (wavelengths of 5-250 m; Wilson, 1971, 1972) masses of

wind-blown sand, typically found in desert and coastal environments (McKee;
1979). Dunes are classified further according to dune type.

Draa (A/G)

Megabedform or

Megabedforms or Draas are very large (wavelengths of 500-5000 m and
heights >50 m; Wilson, 1971, 1972) bed forms that are compound or complex in
form (sensu McKee, 1979) where they support the development of
superimposed dune-scale bed forms.

Cross-strata
package (A)

Packages of aeolian stratification (typically composed of wind-ripple, grainflow
and grainfall strata; Hunter 1977, 1981); form parts of dune sets; packages of
cross-strata are typically separated by reactivation surfaces (Brookfield, 1977;
Kocurek, 1996).
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Dune set (A)

Dune-sets form the fundamental unit of deposition of an aeolian sand dune;
dune-sets are formed of packages of cross-strata (Sorby, 1859; Allen, 1963;
Rubin and Hunter 1982; Chrintz and Clemmensen, 1993); if dune sets migrate
over each other, cross-stratified packages are truncated, delineating sets that
are bounded by erosional surfaces (Brookfield, 1977; Kocurek, 1996).

Dune coset (A)

Two or more genetically related dune sets that occur in vertical succession;
both the coset and its contained sets are separated by bounding surfaces
(Brookfield, 1977; Kocurek, 1996).

Dune compound
set (A)

A specialized class of coset wherein the contained sets record the migration of
formative bed forms of a common type, for example where dunes migrate over
the flanks of a parent megabedform (draa) which is itself migrating to leave an
accumulation; both the compound set and its contained sets are separated by
bounding surfaces (Brookfield, 1977; Kocurek, 1996).

Sandsheet (A/G)

Sandsheet deposits are low-relief accumulations of aeolian sediment in areas
where dunes are generally absent (Kocurek and Nielsen, 1986; Brookfield,
1992; Rodriguez-Lopez et al., 2012); can include low-relief bedforms such as
zibar.

Interdune
(undifferentiated)
(A/G)

Interdune deposits are formed in the low-relief, flat, or gently sloping areas
between dunes; neighbouring dunes are separated by interdunes; commonly
referred to as the interdune corridors, interdune areas, or interdune hollows
(Hummel and Kocurek, 1984).

Dry interdune
(A/G)

Dry interdunes are characterized by deposits that accumulate on a substrate
where the water table is well below the ground surface, such that sedimentation
is not controlled by and is largely not influenced by the effects of moisture
(Fryberger et al., 1990).

Damp interdune
(A/G)

Damp interdunes are characterized by deposits that accumulate on a substrate
where the water table is close to the ground surface, such that sedimentation is
influenced by the presence of moisture (Fryberger et al., 1988; Lancaster and
Teller, 1988; Kocurek et al., 1992).

Wet interdune
(A/G)

Wet interdunes are characterized by deposits that accumulate on a substrate
where the water table is elevated above the ground surface such that the
interdune is episodically or continuously flooded with water (Kocurek and
Havholm, 1993; Loope et al., 1995; Garcia-Hidalgo et al., 2002).

Table 5

Facies Element
Type

Description

Wind-ripple strata

Wind-ripple lamination forms when wind-blown, saltating grains strike sand-
grains obliquely and propel other grains forward (Bagnold, 1941; Hunter,
1977). The foreset laminae of wind-ripple strata are occasionally preserved
(rippleform laminae), however, the internal laminae of wind-ripple strata are
often indistinguishable due to grain size uniformity (translatent wind-ripple

stratification; Hunter, 1977). In DASA, wind-ripples are subdivided into
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subcritically, critically and supercritically climbing ripple forms (sensu Hunter,
1977).

Grainflow strata

Grainflow strata form where a dune slipface undergoes gravitational collapse
(Hunter, 1977; Mountney, 2006b; Bristow and Mountney, 2013). Grainflow
deposits are typically erosionally based and are devoid of internal structure.
Grainflow strata typically form discrete tongues or wide sheets of inclined
strata on the lee-slope of dunes, which wedge-out towards the base of the
dune; individual grainflow strata may be indistinguishable, resulting in
amalgamated grainflow units (Howell and Mountney, 2001).

Grainfall strata

Grainfall strata are gravity-driven deposits that occur when the wind transports
saltating clouds of grains beyond a dune brink; grains settle onto the upper
portions of lee slopes as wind transport capacities reduce in the lee-side
depressions (Nickling et al., 2002). Grainfall laminae are typically thin (<1

mm), drape existing topography, else may have a wedge-shaped geometry;
grainfall lamination is generally composed of sand and silt or (rarely) clay sizes
grains (Hunter, 1977).

Interfingered
strata

Cross-bedded strata are pervasive in aeolian dune sands and form through
recurrent sedimentation on lee-slopes. Alternating processes of deposition
give rise to intercalated (interfingering) pacakges of wind-ripple, grainflow and
grainfall strata (Hunter, 1977; Hunter, 1981). Planes of stratification record the
former shape and location of the lee-slope (Kocurek and Dott, 1981; Fryberger
and Schenk, 1981). This composite facies type is used only in cases where it
is not possible to differentiate individual wind-ripple, grainflow and grainfall
facies elements.

Adhesion strata

Adhesion strata results from the adhesion of moving grains to a damp surface,
such as a damp interdune (Hummel and Kocurek, 1984). Adhesion strata
typically are low relief (several mm in height) and exhibit sub-horizontal
structures with irregular surfaces. In DASA, adhesion strata can be further
subdivided into adhesion plane beds, adhesion ripples (Kocurek and Fielder,
1982) and adhesion warts (Olsen et al., 1989), where appropriate.

Plane-bed strata

Plane-bed lamination forms when wind velocities are too high to form ripples
(Hunter 1977, 1980). Plane-bed lamination is composed of (sub)horizontally
laminated sand, which typically dips at angles of between 0 and 15° (Pye,
2009). Plane-bed laminae are typically millimetre-scale, with sharp or
gradational contacts (e.g., Clemmensen and Abrahamsen, 1983) and form
sets typically up to 100 mm (Pye, 2009).

Subaqueous
ripple strata

Subaqueous ripple lamination is generated by tractional processes and are
produced by the action of waves or currents on a sediment surface (Allen,
1978).

2038  Table Captions

2039 Table 1: Modern case-studies included in DASA

2040 Table 2: Ancient case-studies included in DASA
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2041 Table 3: Depositional complex types used in DASA for the classification of depositional
2042 settings. Each depositional complex type can be used as a primary or secondary
2043 complex type descriptor.

2044  Table 4: Examples of DASA sub-environment and architectural-element types for the
2045 classification of architectural and geomorphic elements; only the aeolian architectural
2046 and geomorphic elements discussed in this article are included here. A full account of
2047  all types of architectural and geomorphic elements included in DASA is available in
2048 the Supplementary Information.

2049 Table 5: Examples of DASA facies types for the classification of facies elements; only
2050 the facies elements discussed in this article are included here. A full account of all
2051 DASA facies types is available in the Supplementary Information.
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