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We have developed periscope, a tool for the detection and quantification of subgenomic RNA (sgRNA) in SARS-CoV-2

genomic sequence data. The translation of the SARS-CoV-2 RNA genome for most open reading frames (ORFs) occurs

via RNA intermediates termed “subgenomic RNAs.” sgRNAs are produced through discontinuous transcription, which

relies on homology between transcription regulatory sequences (TRS-B) upstream of the ORF start codons and that of

the TRS-L, which is located in the 5′ UTR. TRS-L is immediately preceded by a leader sequence. This leader sequence is there-

fore found at the 5′ end of all sgRNA.We applied periscope to 1155 SARS-CoV-2 genomes from Sheffield, United Kingdom,

and validated our findings using orthogonal data sets and in vitro cell systems. By using a simple local alignment to detect

reads that contain the leader sequence, we were able to identify and quantify reads arising from canonical and noncanonical

sgRNA. We were able to detect all canonical sgRNAs at the expected abundances, with the exception of ORF10. A number

of recurrent noncanonical sgRNAs are detected. We show that the results are reproducible using technical replicates and

determine the optimum number of reads for sgRNA analysis. In VeroE6 ACE2+/− cell lines, periscope can detect the chang-

es in the kinetics of sgRNA in orthogonal sequencing data sets. Finally, variants found in genomic RNA are transmitted to

sgRNAs with high fidelity in most cases. This tool can be applied to all sequenced COVID-19 samples worldwide to provide

comprehensive analysis of SARS-CoV-2 sgRNA.

[Supplemental material is available for this article.]

Understanding variation within subgenomic RNA (sgRNA) syn-

thesis within the human host may have important implications

for the study of SARS-CoV-2 biology and evolution. Owing to ad-

vances in sequencing technology and collaborative science,

more than 100,000 SARS-CoV-2 genomes have been sequenced

worldwide to date.

The genome of SARS-CoV-2 comprises a single positive-sense

RNA molecule of ∼29 kb in length. Although the 1a and 1b poly-

proteins are translated directly from this genomic RNA (gRNA), all
14These authors contributed equally to this work.
15Full lists of Consortium authors and affiliations are located in the
Supplemental Material.
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other proteins are translated from sgRNA

intermediates (Stern and Kennedy 1980;

Sola et al. 2015). sgRNAs are produced

through discontinuous transcription

during negative-strand synthesis fol-

lowed by positive-strand synthesis to

form mRNA. The resulting sgRNAs con-

tain a leader sequence derived from the

5′ untranslated region of the genome

and a transcription regulating sequence

(TRS) 5′ of the open reading frame

(ORF). The template switchoccurs during

sgRNA synthesis owing to a conserved

core sequence within the TRS 5′ of each

ORF (TRS-B) and the TRS within the lead-

er sequence (TRS-L) (Zúñiga et al. 2004).

The conserved core sequence leads to

base-pairing between the TRS-L and the

nascent RNA molecule transcribed from

the TRS-B, resulting in a long-range tem-

plate switch and incorporation of the 5′

leader sequence (Sola et al. 2015). SARS-

CoV-2 produces at least nine canonical

sgRNAs containing ORFs for four struc-

tural proteins (S, spike; E, envelope; M,

membrane; N, nucleocapsid) and several

accessory proteins (3a, 3b, 6, 7a, 7b, 8,

and 10) (Davidson et al. 2020; Wu et al.

2020; Zhou et al. 2020). In SARS-CoV

ORFs, 3b and 7b are considered nested

ORFs and not thought to be translated

from their own sgRNA (Inberg and

Linial 2004). Understanding variation

within sgRNA synthesis within the hu-

man host may have important implica-

tions for the study of SARS-CoV-2

biology and evolution.

Beyond the regulation of transcrip-

tion, sgRNAmayalsoplaya role in theevo-

lution of coronaviruses, and the template

switching required for sgRNA synthesis

may explain the high rate of recombina-

tion seen in coronaviruses (Wu and Brian

2010; Simon-Loriere and Holmes 2011).

Whereas the majority of sgRNA relate to

knownORFs, novel, noncanonical sgRNA

are also produced (Finkel et al. 2020; Kim

et al. 2020; Nomburg et al. 2020), al-

though the biological function of this is

unclear. sgRNAs have also been shown to

modulate host cell translational processes

(Patel et al. 2013).

It has previously been shown that

sgRNA transcript abundances can be

quantified from full RNA-seq data by

calculation of reads per kilobase of

transcript, per million mapped reads

(RPKM) or by using so-called “chimeric” fragments containing

the leader and TRS (Irigoyen et al. 2016). From two independent

repeats, the R2 between these twomeasurementmethodswas 0.99.

The ARTICNetwork (2020) protocol for the sequencing of the

SARS-CoV-2 (Fig. 1A) has been used worldwide to characterize the

genetic diversity of this novel coronavirus. The COVID-19

Genomics UK (COG-UK) Consortium (2020) in the UK, alone,

has produced 16,826 ARTIC Nanopore genome sequences (correct

October 29, 2020), whereas internationally GISAID contains thou-

sands more similar data sets (8775 with “Nanopore” in the

A

B

C

D

Figure 1. The periscope ARTIC Nanopore algorithm design details. (A) ARTIC network amplicon layout
with respect to ORF TRS positions of SARS-CoV-2. Blue and aqua at the end of each ORF signifies leader
and TRS, respectively. (B) Read pileup at ORF6 TRS showing two types of reads that support the existence
of sgRNAs. Type 1 (red) is results from3′

→5′ amplification from the closest primer to the 3′ of the TRS site,
and type 2 (green) is results from 3′

→5′ amplification from the adjacent amplicons 3′ primer (i.e., the
second closest 3′ primer). (C) Overview of the periscope workflow. (D) Decision tree for read classifica-
tion. Green arrow denotes a “yes” for the step-in question; namely, if the read is at a known ORF start
site, a green arrow is used; if not, a red arrow for “no” is used.
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metadata and 3660 list “artic,” June 14, 2020). This protocol in-

volves the amplification of 98 overlapping regions of the SARS-

CoV-2 genome in two pools of 49 amplicons to provide full

sequence coverage when sequenced with Oxford Nanopore se-

quencing devices. All known SARS-CoV-2 ORF TRS sites are con-

tained within one or more amplicons in this panel (Fig. 1A).

Other methods of enrichment and enrichment-free sequencing

of the SARS-CoV-2 genome like bait-based capture and subsequent

short-read Illumina sequencing ormetagenomics, respectively, are

also popular and hold promise for the detection of sgRNA.

Previous studies of SARS-CoV-2 sgRNA have used methods

that specifically detect expressed RNA, such as direct RNA sequenc-

ing of cultured cells infected with SARS-CoV-2 (Davidson et al.

2020; Kim et al. 2020; Taiaroa et al. 2020) or more traditional total

poly(A) RNA-seq (Finkel et al. 2020). We hypothesized that we

could detect and quantify the levels of sgRNA to both identify nov-

el noncanonical sgRNA and provide an estimate of ORF sgRNA ex-

pression in SARS-CoV-2 sequence data. Here we present a tool for

these purposes and its application to 1155ARTICNanopore-gener-

ated SARS-CoV-2 sequences derived from clinical samples in

Sheffield, United Kingdom, and validate our findings in data

from independent SARS-CoV-2 sequences from Glasgow, United

Kingdom, in addition to Illumina data generated with bait capture

and metagenomic approaches.

Results

Evidence for sgRNA

We designed a tool, periscope, to reanalyze raw data from SARS-

CoV-2 isolates to identify sgRNA based on the detection of the

leader sequence at the 5′ end of reads as described previously

(Leary et al. 2020).

ARTIC network Nanopore sequencing data

The recommended bioinformatics standard operating procedure

to process ARTIC network sequencing data to produce a consensus

sequence involves selecting reads between 400 and 700 bp and the

trimming of the primer and adapter sequence. In most cases, this

removes reads that might provide evidence for sgRNA. Mapping

raw data from this protocol reveals the presence of reads at ORF

TRS sites, which are sometimes shorter (Supplemental Fig. S1,

sgRNA; Supplemental File S15) than the full ARTIC Network

amplicon and contain leader sequence at their 5′ end. We believe

these reads are the result, in the case of pool 1, priming from prim-

er 1 of the pool, which is homologous to most of the leader se-

quence. We also see, in both pools, unidirectional amplification

from the 3′ primer, which results in a truncated amplicon when

the template is a sgRNA (Fig. 1B). We also observe longer reads

that are the result of priming from the 3′ end of the adjacent ampli-

con (Fig. 1B).

To separate gRNA from sgRNA reads, we use the following

workflow using Snakemake (Köster and Rahmann 2012); raw

ARTIC Network Nanopore sequencing reads that pass QC are col-

lected and aligned to the SARS-CoV-2 reference; and reads are fil-

tered out if they are unmapped or supplementary alignments

(reads with an alternate mapping location). We do not perform

any length filtering. Each read is assigned an amplicon. We

search the read for the presence of the leader sequence

(5′-AACCAACTTTCGATCTCTTGTAGATCTGTTCT-3′) using a lo-

cal alignment. If we find the leader with a strongmatch, it is likely

that that read is from amplification of sgRNA. We assign reads to

an ORF. By using all of this information, we then classify each

read into genomic, canonical sgRNA or noncanonical sgRNA

(Fig. 1D) and produce summaries for each amplicon and ORF, in-

cluding normalized pseudoexpression values. sgRNA reads are

binned into either high quality (HQ), where the leader alignment

score is 50 or more; low quality (LQ), where the leader alignment

score is 30 or more; or low, low quality (LLQ), where the read still

begins at a known ORF start site (Fig. 1D).

Illumina sequencing data

Next, we wanted to investigate whether we could use a similar

method to Illumina sequencing data. Illumina sequencing data

for SARS-CoV-2 has been generated using three main approaches:

amplicon based (ARTIC Network), bait capture based, or metage-

nomics on in vitro samples. Here we describe sgRNA detection in

both Illumina bait-based capture and Illumina metagenomic

data from in vitro experiments. The reads from these techniques

tend to have differing amounts of leader at the 5′ end of the reads

(Supplemental Fig. S2A). This is owing to library preparationmeth-

ods used in these workflows. We therefore implemented a modi-

fied method for detecting sgRNA to ensure that we could capture

as many reads originating from sgRNA as possible. In our

Illumina implementation (Supplemental Fig. S2B,C), we extract

the soft-clipped bases from the 5′ end of reads and use these in a

local alignment to the leader sequence. In addition to adjusting

the leader detection method, we also process mate pairs, ensuring

both reads in the pair are assigned the same status.

Detection of sgRNA

Wewere able to detect sgRNAs with a high leader alignment score

from all canonical ORFs in multiple samples (Fig. 2; Supplemental

Table S1; Supplemental File S1). As shown in Figure 2A, sgRNA

from the N and M ORFs were the most abundant sgRNA (depen-

dent on normalization method), with N being found in 97.3% of

Sheffield samples, consistent with published reports in vitro

(Alexandersen et al. 2020; Finkel et al. 2020; Kim et al. 2020). To

show that the levels of sgRNA detected in the Sheffield data set

were not site specific, we applied periscope to an independent

data set of 55 ARTIC Network Nanopore sequenced SARS-CoV-2

samples from Glasgow, United Kingdom (Fig. 2A; Supplemental

File S7).

Like previously published reports (Alexandersen et al. 2020;

Finkel et al. 2020; Kim et al. 2020; Taiaroa et al. 2020), we were un-

able to find strong evidence of sgRNA supporting the presence of

ORF10 (Fig. 2A; Supplemental Table S2) with only 0.95% of sam-

ples containing HQ or LQ sgRNA calls at this ORF. We aligned

the 12 reads from these samples to a reference composing of

ORF10 and leader (Supplemental Fig. S3). On manual review of

these results, 10 (four HQ) of these reads are falsely classified as

sgRNA. Two reads remain: one read from each of the samples

SHEF-C0840 and SHEF-C58A5. These reads could represent

ORF10 sgRNA as they have an almost completematch to the leader

and the remainder of the reads is a strong match to ORF10.

Normalization of subgenomic read abundance

Beyond detecting the presence of reads that are a result of amplifi-

cation of sgRNA (Fig. 2D), we hypothesized that we could quantify

the level of sgRNA present in a sample using either total mapped

reads or gRNA reads from the same amplicon as denominators

for normalization. Normalization of this kind would be analogous

Subgenomic RNA in SARS-CoV-2 genomic data
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Figure 2. In vivo and in vitro detection and quantification of canonical sgRNA in SARS-CoV-2. (A) The abundance of sgRNA detected for each ORF nor-
malized per 1000 gRNAs from Oxford Nanopore Technologies (ONT) ARTIC data from both Sheffield (n=1155) (Supplemental File S1) and Glasgow (n=
55) (Supplemental File S7). (sgRPTg) sgRNA reads per 1000 gRNA reads. Ordered by median. See Supplemental Figure S3 for ORF10 investigation.
(B) Number of reads supporting gRNA at each ORF. If multiple amplicons cover the ORF, then this represents the sum of reads for those amplicons.
(C ) gRNA reads normalized per 100,000 mapped reads (gRPHT) at each ORF. (D) Raw counts of sgRNAs. (E) sgRNA normalized to total mapped reads.
(sgRPHT) sgRNA reads per 100,000mapped reads. (F,G) In vitro infection time coursewith three SARS-CoV-2 viral isolates (GLA1, GLA2, and PHE2) in either
VeroE6 cells, VeroE6 expressing ACE2, or VeroE6 expressing ACE2 and TMPRSS2, with total RNA collected and sequenced at 24, 48, and 72 h after infection,
sequenced using either ONT ARTIC (Supplemental File S6) or Illumina Metagenomic approaches (Supplemental File S5). (F ) The sum of all normalized (to
total mapped reads to allow direct comparison across ONT ARTIC and Illumina Metagenomic methods) sgRNA in each technology scaled to one.
(G) Normalized quantity (to total mapped reads) of each canonical sgRNA in each technology. (Top) ONT ARTIC; (bottom) Illumina Metagenomic.

Parker et al.
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to traditional RNA-seq analysis in which reads per million (RPM)

are calculated to allow comparisons between data sets where the

number of reads affect the amount of each transcript detected.

In the case of ARTIC Network Nanopore sequencing data, which

involves polymerase chain reaction (PCR) of small (∼400-bp) over-

lapping regions of the SARS-CoV-2 genome, amplification efficien-

cy of each amplicon should also be taken into account. Becausewe

have a median of 258,210 mapped reads for samples from the

Sheffield data set (Supplemental Fig. S4), we normalized both

gRNA or sgRNA per 100,000 mapped reads (gRNA reads per

100,000 [gRPHT] or sgRNA reads per 100,000 [sgRPHT], respective-

ly) (Fig. 2C,E).

In our second approach, because of differences in amplicon

performance in the ARTIC PCR protocol that lead to coverage dif-

ferences in the final sequencing data (Fig. 2B,C), we determine the

amplicon from which the sgRNA has originated, using methods

from the ARTIC Network Field Bioinformatics package (2020).

We then normalize the sgRNA per 1000 gRNA reads from the

same amplicon. If a sgRNAhas resulted frommore than one ampli-

con (Fig. 1B), the resulting normalized counts from each amplicon

are summed, giving us sgRNA reads per 1000 gRNA reads (sgRPTg)

for every ORF (Fig. 2A). Periscope outputs the results from both

methods of normalization so that the user can decide which is

more appropriate in their case and determine whether the conclu-

sions of their analysis are consistent across both approaches.

For Illumina data, we applied one further normalization tech-

nique to allow the normalization of bait-based capture and meta-

genomic data. Efficiency of capture varies between probes and

designs. For metagenomic data, natural fluctuations in coverage

owing to sequence content can exist, therefore, to try and account

for this, we took the median coverage for the region around each

canonical ORF start site (±20 bp) as the denominator in the nor-

malization of these data.

sgRNA detection in vitro

The kinetics of sgRNA expression during the course of a SARS-CoV-

2 infection is still not well understood. We applied periscope to

data generated from an infection time course (Fig. 2F,G). We

used both Illumina metagenomic (Supplemental File S5) and

Nanopore ARTIC sequencing data (Supplemental File S6) from

an in vitro model of SARS-CoV-2 infection. Wild-type (WT)

VeroE6, VeroE6 expressing ACE2, and VeroE6 expressing both

ACE2 and TMPRSS2 were infected with three different SARS-

CoV-2 viral isolates—PHE2 (WT), GLA1 (D614G), and GLA2

(N439K and D614G) (Supplemental Table S9)—and RNA collected

for sequencing at 24, 48, and 72h.Wenormalized both data sets to

the total mapped reads (per 100,000) to allow direct comparison.

The scaled normalized total sgRNA level detected using periscope

on both sequencing technologies is similar (Fig. 2F), indicating

the pattern of expression is maintained between technologies.

ORF N remains one of the highest expressed ORFs in both data

sets (Fig. 2G). The addition of ACE2 and a combination of ACE2

and TMPRSS2 results in a clear difference in the kinetics of all

sgRNA overWT. These data suggest that the peak of sgRNA expres-

sion is expedited by the addition of ACE2 and TMPRSS2.

Technical replicates and batch effects

To assess the reproducibility of sgRNA analysis using ARTIC

Network Nanopore sequencing data and periscope, we analyzed

two samples that were subject to four technical replicates each;

cDNA was independently prepared from the same swab extracted

RNA, and subject to independent amplification using the recom-

mended ARTIC Network PCR and sequenced (Fig. 3A,B;

Supplemental File S4). The Pearson correlation coefficient (R) is

≥0.88 for all normalized sgRNA abundances between replicates

from the same sample.

Next, we treated our sgRNA abundance values like an RNA-

seq data set and asked whether other factors could be influencing

expression. To do this, we used an unsupervised principal compo-

nent analysis (PCA) (Fig. 3C–F; Supplemental File S8) and colored

samples by the different categorical variables that could affect ex-

pression (batch effects) like sequencing run, the ARTIC primer ver-

sion, the number ofmapped reads, andORF E gene cycle threshold

(e.g., Ct, diagnostic test, normalized to RPPH1 Ct value; see

Methods) as this is an indicator of the amount of virus present

in an isolate and a proxy for quality (Fig. 3F). There are no signifi-

cant clusters between any of the above variables and the expres-

sion values in the PCA analysis.

Lower limit of detection

Thenumber of reads generated from any sequencing experiment is

likely to vary between samples and between runs. The median

mapped read count in the Sheffield data set is 258,210 but varies

between 9105 and 3,260,686 (Supplemental Fig. S4). In our expe-

rience, we generally see much lower total amounts of sgRNA com-

pared with their genomic counterparts; therefore, its detection is

likely to suffer when a sample has lower amounts of reads

(Supplemental Fig. S5). To determine the effect of lower coverage

on the detection of sgRNA, we downsampled 23 samples that

had more than 1 million mapped reads to lower read counts

with seqtk (https://github.com/lh3/seqtk, accessed November

2020). We chose high (500,000 reads), medium (200,000 and

100,000), and low read counts (50,000, 10,000, and 5000) and

ran periscope on this downsampled data (Supplemental File S3).

In the absence of a ground truth, we performed pairwise correla-

tion on the abundance of sgRNA between downsampled data

sets (Fig. 3G; Supplemental File S3). If coverage did not affect the

abundance estimates, then all coverage levels would show a high

correlation coefficient (Pearson) when compared with each other

(R> 0.7, adjusted P<0.01). As expected, lower counts of the 5000

and 10,000 reads do not correlate with those generated from

100,000, 200,000, and 500,000 reads (R2<0.7). Samples with

50,000 reads seem to perform well compared with 100,000,

200,000, and 500,000 reads, with an R2 of 0.94, 0.89, and 0.89,

respectively.

Noncanonical sgRNA

In addition to estimating sgRNA for known ORFs, we can use peri-

scope to detect novel, noncanonical sgRNA (Fig. 4; Supplemental

File S2). We previously applied periscope to detect one such novel

sgRNA (N∗), which is a result of the creation of a new TRS site by a

triplet variation at position 28881 to 28883, which results in pro-

duction of a truncated N ORF (Leary et al. 2020). To classify sgRNA

as noncanonical, supporting reads must fulfill two criteria: First,

the start position does not fall in a known TRS-B region (±20 bp

from the leader junction); and second, in Oxford Nanopore

Technologies (ONT) data, the start position must not fall within

±5 bp from a primer sequence. We chose to implement the second

criteria becausewe noticed a pattern of novel sgRNAs being detect-

ed at amplicon edges owing to erroneous leader matches to the

primer sites.

Subgenomic RNA in SARS-CoV-2 genomic data
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We found evidence of noncanonical sgRNAs supported by

two or more reads in 913 samples (Supplemental Fig. S6). A large

quantity of these recurrent noncanonical sgRNAs cluster around

known TRS-B sites (Fig. 4A), although we see enrichment of non-

canonical sgRNAs at other sites throughout the genome (Fig. 4A;

Supplemental Fig. S6).

A B

C D E F

G

Figure 3. Technical replicates, detection limit, and batch effects. (A,B) Four technical replicates of two samples additional to the Sheffield cohort
(Supplemental File S4). Pearson correlation coefficients between sgRPTg P-values adjusted with Bonferroni correction. (ORFs colored according to legend
inG.) (C–F) Unsupervised principal component analysis (Supplemental File S8) colored by ARTIC primer version V1 or V3 (C), sequencing run (D) where the
color denotes a different run, total mapped read count (scale = 100,000 reads; E), or normalized E gene cycle threshold (Ct) value (F ). (G) Downsampling of
reads from 23 high-coverage (more than 1million mapped reads) (Supplemental File S3) samples. The number of reads provided as input to periscope was
downsampled with seqtk to 5, 10, 50, 100, 200, and 500 thousand reads.

Parker et al.
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A

B C

E

Figure 4. Noncanonical sgRNA.We classified reads as supporting noncanonical sgRNA as described in Figure 1D (Supplemental File S2). (A) Plot showing
the number of samples with each noncanonical sgRNA detected in the ARTIC Nanopore data. Size of the point represents the number of reads, and the
color indicates the number of samples in which noncanonical sgRNA was found. Lines connecting points represent the sgRNA product of discontinuous
transcription. Those detected in Sheffield samples are above the genome schematic; in Glasgow, below. (Inset) Zoomed-in region between nucleotides
22,000 and 30,000. (B) Noncanonical sgRNA with strong support in SHEF-C0118 at position 25,744. (C) Raw sgRNA levels (HQ and LQ) in SHEF-
C0118 show high relative amounts of this noncanonical sgRNA at position 25,744. (D) Zoomed-in region between nucleotides 22,000 and 30,000 of
the SARS-Cov-2 genome, showing noncanonical sgRNA in the Sheffield ONT data set (top) compared with the noncanonical sgRNA detected in the
Illumina bait capture data from Glasgow (Supplemental File S11). (E) Noncanonical sgRNA levels (solid lines) compared with canonical (dashed lines)
in an in vitro model of SARS-CoV-2 infection measured with both Illumina metagenomic sequencing (orange) and ONT Artic (blue). Total sgRNA levels
are normalized per 100,000 mapped reads and scaled within each data set for comparison.
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In particular, SHEF-C0118 contains 177 reads (HQ and LQ)

that support a noncanonical sgRNA at position 25,744 between

ORFs 3a and E (Fig. 4B,C). The number of reads for this noncanon-

ical sgRNA at 25,744 is high compared with canonical sgRNA from

the same sample (Fig. 4C; Supplemental Tables S3, S4). Twenty-six

samples contain one read supporting this noncanonical sgRNA,

with four samples with more than one read. In another example,

there are 377 samples that have evidence of one or more reads for

a noncanonical sgRNA at position 10,639 (HQ or LQ; of these 155

have evidence for two or more reads ±5 bp from 10,639)

(Supplemental Fig. S7A,B). In this case, there is a TRS-like sequence

close to the leader in this noncanonical sgRNA; ACGAAC →

ACGGAC. Two samples have significant support with 103HQ reads

each (SHEF-CE04A, SHEF-CA0D5 (Supplemental Tables S5, S8). It is

possible that this represents an independent ORF1b sgRNA.

Furthermore, there are 226 samples that have evidence for a nonca-

nonical sgRNA at position 5785 (one or more reads; 62 with two or

more reads, ±5 from5785) (Supplemental Fig. S7C,D),where there is

no core TRS sequence present and there does not appear to be a pro-

ductive start codon.

Noncanonical sgRNAs across centers and technologies

To show the detection of noncanonical sgRNAwas not a phenom-

enon of the Sheffield data set and ARTICNanoporemethod alone,

we repeated the above analysis on both Nanopore and Illumina

data from Glasgow, United Kingdom (Fig. 4A,D; Supplemental

Fig. S8E; Supplemental Files S10, S11).

The noncanonical sgRNA at 5785 is found in 15/55 samples

from this data set, and seven of those have multiple read support

(Supplemental Table S6). This sgNA is also found with three reads

in the Illumina sample CVR201. The noncanonical sgRNA found

at 10,639 is found in 13/55 samples, and five of those have multi-

ple read support (Supplemental Table S7); 10,639 is also found in

Illumina sample CV196 with one read supporting; and 25,744 is

supported by one HQ sgRNA read in one sample (CVR2185)

from the Glasgow ONT data set.

To determine if there were any differences in noncanonical

sgRNA over time, we applied the same analysis to the in vitro sys-

tem described earlier (Fig. 4E; Supplemental Fig. S9; Supplemental

Files S12, S13). Normalized and scaled noncanonical (solid lines)

show that noncanonical sgRNA has comparable kinetics to canon-

ical sgRNA (dashed lines), which appear to be dependent on the vi-

rus, cell line, and time since infection. This data set shows that

although proportions of noncanonical sgRNA are similar

(Supplemental Fig. S5), Illumina metagenomic data appear to be

more sensitive (Supplemental Figs. S5, S9, S10) with a greater num-

ber of noncanonical sgRNAs detected.

Variants in sgRNA

An advantage of having reads from both gRNA and sgRNA is the

ability to examine how genomic variants are represented in

sgRNAs. For variants found in our isolates by the ARTIC Network

nanopolish (Simpson 2018) pipeline, we interrogated the bases

called (pysam [Gilman et al. 2019] pileup) at the variant position

in gRNA and sgRNA to determine if there were detectable dif-

ferences (this tool is integrated into periscope) (Fig. 5A;

Supplemental Fig. S12; Supplemental File S16). As we can only dis-

cern gRNA and sgRNA from a small subset of amplicons, the

chance that a variant falls within these amplicons is low, but

when the two do coincide, variants called in gRNAwere supported

in reads from sgRNA.

In a small subset of samples, wehave identified variants in the

TRS sequence of some ORFs. One sample (Fig. 5B) has a variant in

the N ORF TRS (SHEF-C0F96, 28256C>T. CTAAACGAAC to

TTAAACGAAC), which is found only in gRNA but not sgRNA

reads. This sample has low expression ofmost ORFs (ORF N shown

in Fig. 5C) and has 233,127 reads, which is around the median of

the cohort. However, this mutation falls outside the core TRS and

read counts for sgRNA are low so this result should be treated with

caution. It is possible that this represents a sequencing error in the

gRNA that is not found in the sgRNA owing to the context around

that position changing as a result of the inclusion of the leader

sequence.

In addition, we detected a variant at 27,046C>T (ACGAAC to

ACGAAT) in the TRS of ORF6 in six samples (Fig. 5D); this variant

is present in both the gRNA and sgRNA reads. Four of these sam-

ples have low expression of ORF6 compared to the rest of the co-

hort (Fig. 5E), although numbers are too low to compute

statistical significance.

Discussion

We have developed periscope, a tool that can be used on nearly all

publically available SARS-CoV-2 sequence data sets worldwide to

detect and quantify sgRNA. Here we applied periscope to 1155

SARS-CoV-2 sequences from Sheffield, United Kingdom, and three

data sets from Glasgow; 55 ARTIC network Nanopore sequences;

five bait captured Illumina sequenced samples (Supplemental

File S14); and Illumina metagenomic data from an in vitro SARS-

CoV-2 infection model. The development of periscope was initial-

ly motivated to aid in the detection of a novel, noncanonical,

sgRNA generated (N∗) from a de novo TRS site as a result of the trip-

let mutation 28,881G>A, 28,882G>A, and 28,883G>C found in

a large number of worldwide SARS-CoV-2 isolates (Leary et al.

2020).

By searching for reads containing the SARS-CoV-2 leader se-

quence, incorporated into all sgRNA at their 3′ ends by the SARS-

CoV-2 RNA-dependent RNA polymerase, we were able to detect

sgRNA representing all annotated canonical ORFs of SARS-CoV-

2. ORF10 sgRNA, however, was supported by only two reads in

all 1155 samples in the Sheffield data set (Supplemental Table

S1). By using an in vitro SARS-CoV-2 infection system Illumina

data set, we identified a further eight reads in total supporting an

ORF10 sgRNA. Seven of these reads were present at 72 h after infec-

tion, the remaining read was found at 48 h. The inability to find

significant support for ORF10 mirrors previous findings

(Alexandersen et al. 2020; Davidson et al. 2020; Finkel et al.

2020; Kim et al. 2020) and is perhaps expected if ORF10 is indeed

nonessential (Pancer et al. 2020). The abundance of other sgRNAs

is in line with previously published reports of protein levels in

SARS-CoV-2, with M and N showing the highest expression levels

after normalization (Bouhaddou et al. 2020; Finkel et al. 2020). In

the Sheffield data set, the median proportion of total sgRNA is

1.2% (Supplemental Fig. S4), which is in broad agreement with

published reports, based on ORF E, that sgRNA represented 0.4%

of total viral RNA (Wölfel et al. 2020). These findings were replicat-

ed in an equivalent data set of 55 ONT ARTIC samples from

Glasgow. We were able to show that sgRNA analysis using peri-

scope is reproducible, with strong correlations between sgRNA

abundance levels between technical replicates.

It has been suggested that sgRNA abundance estimates from

amplicon-based sequencing data are largely a function of the qual-

ity of the RNA in the initial sample, defined in one study by

Parker et al.
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Figure 5. Variants in sgRNA. (A) Base frequencies at each of the variant positions called by ARTIC in each sample (multiple samples can be represented at
one position), split by read class. White rectangles represent variants detailed in B and C. (B) SHEF-C0F96 has a 28,256C >T variant, of high quality that sits
in the ORF N TRS sequence. This variant is not present in sgreads. (C) Normalized sgRNA expression (sgRPTg) for the NORF in samples with the variant and
without. N expression is one of the lowest in the cohort. (D) SHEF-C0C35 has 27,046C>T variant of high quality that sits in the TRS sequence. This variant is
present in both gRNA and sgRNA. (E) ORF6 expression levels in samples with 27046C>T.
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average read length (Alexandersen et al. 2020). The advantage of

the ARTIC Network protocol over the AmpliSeq IonTorrent pro-

tocol used by the aforementioned study is that the ARTIC

Network protocol has a short, consistent amplicon length

(mean is 389 and standard deviation is 11.2) (Supplemental Fig.

S1, gRNA). The assay is designed inherently to deal with samples

with degraded RNA. Because sgRNA reads are a product of these

amplicons, we do not believe degradation plays a significant

role in the determination of abundance levels in our data set.

Furthermore, by using E gene Ct value as a surrogate for viral

load, we find only a weak correlation with the total amount of

sgRNA detected (Spearman’s rank correlation, rho=0.268)

(Supplemental Fig. S13A; Supplemental File S9), and this was

mainly driven by outliers. Furthermore, sequence coverage across

the genome (which is affected by low viral load and poor-quality

RNA) is also not correlated with sgRNA amount (Spearman’s rank

correlation, rho=−0.012) (Supplemental Fig. S13B; Supplemental

File S17). Finally on comparison with amplification-free ap-

proaches like metagenomics, we see a similar pattern of sgRNA

expression.

To show the utility of periscope for the investigation of im-

portant biological questions, we applied it to sequencing data

from an in vitro infection time course using VeroE6 cells that

were either WT, overexpressing ACE2, or overexpressing ACE2

and TMPRSS2 (Hoffmann et al. 2020). ACE2 and TMPRSS2 coex-

pressing cells have the most obviously altered sgRNA kinetics,

with the peak level of sgRNA occurring at 48 h followed by a reduc-

tion at 72 h, which is in contrast with WT cells in which sgRNA is

still accumulating after 48 h. This may indicate an expedited

course of active replication allowed by greater cellular permissibil-

ity with ACE2 and TMPRSS2, followed by attenuated replication in

a closed in vitro model. Of note, a greater quantity of reads from

the Illumina metagenomic data are classified as sgRNA compared

with ONT ARTIC data (Supplemental Fig. S4), and there are some

differences between the quantities of each ORF when considered

individually.

Noncanonical sgRNAs are readily detected by periscope, and

we present examples in which periscope was able to detect high

abundances of specific noncanonical sgRNAs in a number of iso-

lates, which could indicate some functional significance. It has

previously been observed that noncanonical sgRNAs are not

formed owing to a TRS-like homology (Nomburg et al. 2020).

The noncanonical sgRNA at position 25,744 in SHEF-C0118 has

a high relative abundance compared with the canonical sgRNAs

in the same sample. There does not appear to be a canonical TRS

sequence in close proximity to the leader junction, but there exists

a motif that has two mismatches to the canonical TRS, AAGAAT.

An ATG downstream from the leader in these reads would result in

an N-terminal truncated 3a protein. Two forms of 3a protein in

SARS-CoV have been noted in the literature (Huang et al. 2006).

Alternatively, SARS-CoV contains a nested ORF within the 3a

sgRNA, 3b (Supplemental Fig. S11), but the homolog of this pro-

tein is truncated early in SARS-CoV-2; however, others note that

a protein from this truncated 3b, of only 22 amino acids in length,

could have an immune regulatory function (Konno et al. 2020).

This noncanonical sgRNA could indicate production of this novel

3b protein in SARS-CoV-2 independent from the 3a sgRNA, a phe-

nomenon that has been shown to occur in SARS-CoV (Hussain

et al. 2005). We cannot explain why, in this sample, this nonca-

nonical sgRNA is present in such high abundance. There are no ge-

nomic variants that contribute to a TRS sequence, for example.We

also find evidence of highly recurrent noncanonical sgRNAs that

have weaker evidence like those at 10,639, which could represent

an independent sgRNA for ORF 1b. Others, like those at 5785 have

no apparent related ORF.

Some studies have detected the presence of an sgRNA for

ORF7b (Finkel et al. 2020; Kim et al. 2020); we also explored this

possibility (Supplemental Fig. S11C–E). We are able to detect non-

canonical sgRNAs just 3′ of the predicted start codon of ORF7b

(27,760 and 27,761) and at least 10 bases downstream from a pre-

dicted TRS-B site (Yang et al. 2020). These sgRNAs have strong sup-

port in both the Sheffield (Supplemental Fig. S11D), 668/1155

samples (one or more HQ sgRNA, median of two reads per sample,

and a maximum of 133), and Glasgow data sets, 44/55 samples

(one or more HQ sgRNA, median of 1.5 reads per sample, and a

maximumof 12). Raw reads fromSHEF-BFF12 show that the leader

body junction in these sgRNAs does indeed exclude the start co-

don and in fact includes four additional bases not present in the

genome (Supplemental Fig. S11E). It is possible that this sgRNA en-

codes a protein from another ATG site downstream from the lead-

er–body junction.

We were able to detect a number of these recurrent nonca-

nonical sgRNAs in the data from Glasgow, showing that these

noncanonical sgRNAs are unlikely to be sequencing artifacts and

may represent favored sites for noncanonical sgRNA generation

during SARS-CoV-2 replication for as yet unexplained reasons.

We speculate that the diversity of noncanonical sgRNA seen in

our data set, which is most comparable to total RNA-seq (Wyler

et al. 2021) than direct RNA-seq, is a function of (1) the number

of samples analyzed and (2) the varied and unknown length of

the infection at the time of sampling. These findings illustrate

that although much is not known about the expression of nonca-

nonical sgRNA, periscope could help define and quantify these

noncanonical transcripts in order to explore their relevance in

SARS-CoV-2 pathogenesis.

The COVID-19 Genomics UK (COG-UK) Consortium (2020)

in the UK, alone, has 16,826 ARTIC Nanopore and 69,969

Illumina sequences (correct October 29, 2020), whereas interna-

tionally GISAID contains thousands more similar data sets (8775

with “Nanopore” in the metadata and 3660 list “ARTIC” as of

June 14, 2020). The application of periscope could therefore pro-

vide significant insights into the sgRNA architecture of SARS-

CoV-2 at an unprecedented scale. Furthermore, periscope can be

provided new primer/amplicon locations for PCR-based genomic

analysis protocols, and we have shown that it can be applied to

metagenomic sequencing methods without prior species-specific

genome amplification. Periscope could also be applied to sequenc-

ing data from other viruses where discontinuous transcription is

the method of gene expression.

Periscope offers an opportunity to further understand the reg-

ulation of the SARS-CoV-2 genome by identifying and quantifying

sgRNA. Applying it to the vast amount of SARS-CoV-2 sequencing

data sets that have been generated worldwide during this unprec-

edented public health crisis could uncover critical insights into the

role of sgRNA in SARS-CoV-2 pathogenesis.

Methods

Sheffield SARS-CoV-2 sample collection and processing

One thousand one hundred fifty-five samples from 1155 SARS-

CoV-2-positive individuals were obtained from either throat or

combined nose/throat swabs. Nucleic acids were extracted from

200 µL of each sample using MagNA Pure extraction platform
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(Roche Diagnostics). SARS-CoV-2 RNA was detected using prim-

ers and probes targeting the E gene and the RdRp genes of

SARS-CoV-2 and the human gene RPPH1 to allow normalization,

for routine clinical diagnostic purposes, with thermocycling and

fluorescence detection on ABI Thermal Cycler (Applied

Biosystems) using previously described primer and probe sets

(Corman et al. 2020).

Sheffield SARS-CoV-2 isolate amplification and sequencing

Nucleic acids from positive cases underwent long-read whole-

genome sequencing (ONT) using the ARTIC Network proto-

col (accessed April 19, 2020, https://artic.network/ncov-2019,

https://www.protocols.io/view/ncov-2019-sequencing-protocol-v3-

locost-bh42j8ye). In most cases, 23 isolates and one negative con-

trol were barcoded per 9.4.1D Nanopore flow cell. Following

base-calling, data were demultiplexed using ONT Guppy (‐‐re-

quire-both-ends). Reads were filtered based on quality and length

(400–700 bp) and then mapped to the Wuhan reference genome

(MN908947.3) and primer sites trimmed. Reads were then down-

sampled to 200× coverage in each direction. Variants were called

using nanopolish (Simpson 2018).

In vitro SARS-CoV-2 infection model

Two derivatives and an unaltered lineage of the VeroE6 African

green monkey kidney cell line were used in this study. One

VeroE6 cell line was manipulated to overexpress the angiotensin-

converting enzyme 2 (ACE2) receptor. In addition to ACE2 overex-

pression, a third line was also induced to overexpress the trans-

membrane serine protease 2 (TMPRSS2). These cell lines are

referred to as VeroE6, VeroE6 ACE2, and VeroE6 ACE2 TMPRSS2,

respectively. Methods for the production and the validation of

these cell lines are fully described by Rihn et al. (2021). SARS-

CoV-2 infection of these three cell lines were set upwith three viral

isolates (PHE2, GLA1, and GLA2) (Supplemental Table S9) and su-

pernatant harvested at 24, 48, and 72 h for viral RNA extraction

and sequencing.

Illumina metagenomic sequencing

This protocol was applied to virus isolates propagated in vitro.

Extracted nucleic acid was incubated with DNase I (Thermo

Fisher Scientific AM2222) for 5 min at 37°C. After DNase treat-

ment, the samples were purified using Agencourt RNA clean

AMPure XP beads (Beckman Coulter A63987), following the man-

ufacturer’s guidelines, and quantified using the Qubit dsDNA HS

Kit (Thermo Fisher Scientific Q32854). cDNA was synthesized us-

ing SuperScript III (Thermo Fisher Scientific 18080044) and a

NEBNext Ultra II non-directional RNA second strand synthesis

module (New England Biolabs E6111L), as per the manufacturer’s

guidelines.

Samples were further processed using the Kapa LTP library

preparation kit for Illumina Platforms (Kapa Biosystems

KK8232). Briefly, the cDNAwas end-repaired and the protocol fol-

lowed through to adapter ligation. At this stage, the samples were

uniquely indexed using theNEBNextmultiplex oligos for Illumina

96 unique dual index primer pairs (New England Biolabs E6442S),

with 15 cycles of PCR performed.

All amplified libraries were quantified by a Qubit dsDNA HS

Kit and run on the Agilent 4200 Tapestation system (Agilent

G2991AA) using the high-sensitivity D5000 Screentape (Agilent

5067-5592) and high-sensitivity D5000 reagents (Agilent 5067-

5593). Libraries were sequenced on an Illumina NextSeq 550

(Illumina SY-415-1002).

sgRNA detection

Periscope consists of a Python-based Snakemake (Köster and

Rahmann 2012) workflow, which runs a Python package that pro-

cesses and classifies reads based on their configuration (Fig. 1C).

Preprocessing

Nanopore

Pass reads for single isolates are concatenated and aligned to

MN908947.3 with minimap2 (v2.17) (-ax map-ont -k 15) (Li

2018). It should be noted that adapters or primers are not trimmed.

BAM files are sorted and indexed with SAMtools (Li et al. 2009).

Illumina

Paired-end reads, ideally before trimming, are aligned to

MN908974.3 with BWA-MEM (v0.7.17) (Li and Durbin 2009)

with the “Y” flag set to use soft clipping for supplementary align-

ments. BAM files are sorted and indexed with SAMtools.

Periscope: leader identification and read classification

Nanopore

Reads from the minimap2 aligned BAM file are then processed

with pysam (Gilman et al. 2019). If a read is unmapped or repre-

sents a supplementary alignment, then it is discarded. Each read

is then assigned an amplicon using the “find_primer” method of

the ARTIC field bioinformatics package. We search for the leader

sequence (5′-AACCAACTTTCGATCTCTTGTAGATCTGTTCT-3′)

with Biopython (Cock et al. 2009) local pairwise alignment

(localms) with the following settings: match +2, mismatch −2,

gap -10, and extension -0.1, with score_only set to true to speed

up computation. The read is then assigned an ORF using a pybed-

tools (Dale et al. 2011) and a BED file consisting of all knownORFs

±10 of the predicted leader/genome transition.

We classify reads as a HQ sgRNA (Fig. 1D) if the alignment

score is greater than 50 and the read is at a known ORF. If the

read starts at a primer site, then it is classified as gRNA; if not,

then it is classified as a HQ noncanonical sgRNA supporting

read. If the alignment score is greater than 30 but 50 or less and

if the read is at a known ORF, then it is classified as a LQ sgRNA.

If the read is within a primer site, it is labeled as a gRNA; if not,

then it is a LQ sgRNA. Finally, any reads with a score of 30 or

less that are at a known ORF are then classified as a LLQ sgRNA;

otherwise, they are labeled as gRNA. The following tags are added

to the reads formanual reviewof the periscope calls: XS, alignment

score; XA, amplicon; AC, read class; and XO, the read ORF. Reads

are binned into qualitative categories (HQ, LQ, LLQ, etc.) because

we noticed that some sgRNAswere not classified as such owing to a

lower match to the leader. After manual review, they are deemed

bona fide sgRNA. This quality rating negates the need to alter

alignment score cutoffs continually to find the best balance be-

tween sensitivity and specificity. Restricting to HQ data means

that sensitivity is reduced but specificity is increased, including

LQ calls will decrease specificity but increase sensitivity.

Illumina

Reads from the BWA-MEM-aligned BAM file are processed with

pysam. If a read is unmapped or represents a supplementary align-

ment, then it is discarded.

The presence of soft clipping at the 5′ end of the reads is an

indicator that the read could contain the leader sequence sowe ex-

tract all of the soft clipped bases from the 5′ end, additionally in-

cluding three further bases to account for homology between

Subgenomic RNA in SARS-CoV-2 genomic data

Genome Research 11
www.genome.org

 Cold Spring Harbor Laboratory Press on March 25, 2021 - Published by genome.cshlp.orgDownloaded from 



leader and genome at the N ORF (these bases would therefore not

be soft clipped at this ORF). If there are fewer than six extracted

bases in total, we do not process that read further as this is not

enough to determine a robust match to the leader sequence.

With a match score of two and a mismatch score of −2 (gap open-

ing penalty,−20l extension,−0.1), soft clipped bases are aligned to

the leader sequence with localms. Soft clipped bases that include

the full ≥33 bp of the leader would give an alignment score of

66. Allowing for two mismatches, this gives a “perfect” score of

60. If the number of soft clipped bases is less, then we adjust the

“perfect” score in the following way:

Perfect Score = (Number of bases soft clipped × 2)− 2.

This allows for onemismatch. The position of the alignment is

then checked; for these bases to be classed as the leader, the align-

ment of the soft clipped bases must be at the 3′ end. If this is true

and (Perfect Score −Alignment Score) ≤0, then the read is classi-

fied as sgRNA.

Periscope: sgRNA normalization

Amplicon data

Once reads have been classified, the counts are summarized and

normalized. Two normalization schemes are used.

1. Normalization to total mapped reads

Total mapped reads per sample are calculated using pysam

idxstats and used to normalize genomic, sgRNA, and nonca-

nonical sgRNA reads. Reads per hundred thousand total

mapped reads are calculated per quality group:

sgRPHT =

sgRNA Read Count × 100000

(Total Mapped Reads 100000
.

2. Normalization to genomic reads from the corresponding ampli-

con

Counts of sgRNA, noncanonical sgRNA, and gRNA are re-

corded on a per amplicon basis, and normalization occurs with-

in the same amplicon per 1000 gRNA reads. If multiple

amplicons contribute to the count of sgRNA or noncanonical

sgRNA, then the normalized values are summed:

sgRPTG =

sgRNA Read Count × 1000

Total Genomic RNA
.

Periscope outputs several useful files that are described in

more detail in the Supplemental Material; briefly, these are peri-

scope’s processed BAM file with associated tags, a per amplicons

counts file, and a summarized counts file for both canonical and

noncanonical ORFs.

Bait-based capture and metagenomic data

Again, two schemes are used, as above, to the total amount of

mapped reads and, additionally, the following is used.

3. Normalization to local coverage

For both canonical and noncanonical sgRNA normalization, we

calculate the median coverage around either (1) for canonical

ORFs, the TRS site ±20 bp or (2) the leader/genome junction ±20

bp and normalize the total sgRNA per 1000 reads of coverage.

sgRPTL =

sgRNA Read Count × 1000

Local Coverage
.

Subgenomic variant analysis

A Python script is provided “variant_expression.py” that takes the

periscope BAM file and a VCF file of variants (usually from the

ARTIC analysis pipeline). For each position in the VCF (pyvcf)

(https://github.com/jamescasbon/PyVCF, accessed November

2020) file, it extracts the counts of each base in each class of read

(i.e., genomic, sgRNA and noncanonical sgRNA) and outputs these

counts as a table. This tool also provides a useful plot (Supplemen-

tal Fig. S5) of the base counts at each position for each class.

Analysis and figure generation

Further analysis was completed in R 3.5.2 (R Core Team 2020) us-

ing Rstudio 1.1.442 (Racine 2012). In general, data were processed

using dplyr (v0.8.3) and figures were generated using ggplot2

(v3.3.1), both part of the tidyverse (Wickham et al. 2019) family

of packages (v1.2.1). Plots were themed with the ftplottools pack-

age (v0.1.5). GGally (v2.0.0) ggpairs was used for the matrix plots

for downsampling and repeats. When multiple hypothesis tests

were performed, multiple testing correction was performed using

Bonferroni. Reads were visualized in Integrative Genomics

Viewer (IGV) (Robinson et al. 2011) and annotated with Adobe

Illustrator. Code to reproduce the analyses and for figure genera-

tion is available as Supplemental File S18 and at GitHub (https://

github.com/sheffield-bioinformatics-core/periscope-publication).

Principal component analysis

PCA was performed to determine if any of the experimental vari-

ables were responsible for the differences in expression values be-

tween samples. Reads from ORF1a and ORF10 amplicons were

removed from the analysis, and expression values were normalized

within each ORF,

x−min(x)

max(x)−min(x)
,

and then rowmeans subtracted. The “PCA” function of the R pack-

age FactoMineR (v1.41) (Lê et al. 2008) was then used to perform

the PCA without further scaling and all other settings as default.

The resulting PCA was plotted using the “fviz_pca_ind” function.

Plots were colored according to the variable in question.

Data cleaning and upload to ENA

Data was uploaded to European Nucleotide Archive (ENA; https://

www.ebi.ac.uk/ena/browser/home) after removing human reads

with dehumanizer (https://github.com/SamStudio8/dehumani

zer) and then mapping the resulting reads to hg38 with BWA-

MEM for Illumina data or minimap2 for ONT data. Only those

reads that did not map were retained. Reads were converted from

BAM to FASTQ with SAMtools bam2fq. A convenient table which

converts ENA accession numbers to sample ID can be found in

Supplemental File S19.

Periscope requirements

Periscope is a wrapper for a Snakemake (Köster and Rahmann

2012) workflow with a package written in Python to implement

read filtering and classification and is provided with a conda envi-

ronment definition. It has been tested on aDell XPS, core i9, 32GB

ram, 1 TB SSD running ubuntu 18.04, and was able to process ap-

proximately 100,000 reads per minute. Periscope installation re-

quires conda (e.g., Miniconda, https://docs.conda.io/en/latest/

miniconda.html, version 3.7 or 3.8). To run periscope, you will

need the path to your raw FASTQ files from your ARTIC Network

Nanopore sequencing run or Illumina paired-end reads
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(unfiltered), as well as other variables defined in the Supplemental

Material and on the GitHub README.

Ethics approval and consent

Individuals presenting with active COVID-19 disease were sam-

pled for SARS-CoV-2 sequencing at Sheffield Teaching Hospitals

NHS Foundation Trust, United Kingdom, using samples collected

for routine clinical diagnostic use. This work was performed under

approval by the Public Health England Research Ethics and

Governance Group for the COVID-19 Genomics UK consortium

(R&D NR0195).

Data access

All raw sequencing data generated in this study have been submit-

ted to the European Nucleotide Archive (ENA; https://www.ebi.ac

.uk/ena/browser/search) under accession number PRJEB40972.

The periscope source code is available as Supplemental File S20

and at GitHub (https://github.com/sheffieldbioinformatics-core/

periscope).
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