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RESEARCH Open Access

Improved prediction of fracture risk
leveraging a genome-wide polygenic risk
score
Tianyuan Lu1,2†, Vincenzo Forgetta1†, Julyan Keller-Baruch1, Maria Nethander3,4, Derrick Bennett5,6, Marie Forest1,

Sahir Bhatnagar7,8, Robin G. Walters5,9, Kuang Lin5, Zhengming Chen5,9, Liming Li10, Magnus Karlsson11,12,

Dan Mellström3, Eric Orwoll13,14, Eugene V. McCloskey15, John A. Kanis16,17, William D. Leslie18, Robert J. Clarke5,

Claes Ohlsson3,19, Celia M. T. Greenwood1,7,20,21 and J. Brent Richards1,7,20,22*

Abstract

Background: Accurately quantifying the risk of osteoporotic fracture is important for directing appropriate clinical

interventions. While skeletal measures such as heel quantitative speed of sound (SOS) and dual-energy X-ray

absorptiometry bone mineral density are able to predict the risk of osteoporotic fracture, the utility of such

measurements is subject to the availability of equipment and human resources. Using data from 341,449 individuals

of white British ancestry, we previously developed a genome-wide polygenic risk score (PRS), called gSOS, that

captured 25.0% of the total variance in SOS. Here, we test whether gSOS can improve fracture risk prediction.

Methods: We examined the predictive power of gSOS in five genome-wide genotyped cohorts, including 90,172

individuals of European ancestry and 25,034 individuals of Asian ancestry. We calculated gSOS for each individual

and tested for the association between gSOS and incident major osteoporotic fracture and hip fracture. We tested

whether adding gSOS to the risk prediction models had added value over models using other commonly used

clinical risk factors.
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Results: A standard deviation decrease in gSOS was associated with an increased odds of incident major

osteoporotic fracture in populations of European ancestry, with odds ratios ranging from 1.35 to 1.46 in four

cohorts. It was also associated with a 1.26-fold (95% confidence interval (CI) 1.13–1.41) increased odds of incident

major osteoporotic fracture in the Asian population. We demonstrated that gSOS was more predictive of incident

major osteoporotic fracture (area under the receiver operating characteristic curve (AUROC) = 0.734; 95% CI 0.727–

0.740) and incident hip fracture (AUROC = 0.798; 95% CI 0.791–0.805) than most traditional clinical risk factors,

including prior fracture, use of corticosteroids, rheumatoid arthritis, and smoking. We also showed that adding gSOS

to the Fracture Risk Assessment Tool (FRAX) could refine the risk prediction with a positive net reclassification index

ranging from 0.024 to 0.072.

Conclusions: We generated and validated a PRS for SOS which was associated with the risk of fracture. This score

was more strongly associated with the risk of fracture than many clinical risk factors and provided an improvement

in risk prediction. gSOS should be explored as a tool to improve risk stratification to identify individuals at high risk

of fracture.

Background
Osteoporosis is among the most common diseases

worldwide and is characterized by a reduction in bone

mass and microarchitectural integrity, resulting in an in-

creased predisposition to fracture [1]. In the Western

world, between one third to one half of women will ex-

perience an osteoporotic fracture in their lifetime [2].

The burden of this disease will increase substantially as

our population ages, such that by the year 2040, the an-

nual incidence of hip fractures is expected to surpass

500,000 in the USA and the direct medical costs of sur-

gery for each hip fracture will exceed $65–68,000 USD

[3]. Given this impending financial and societal burden,

efforts to improve earlier detection of those at high risk

of fracture will enable more effective intervention

strategies.

Studies based on large cohorts have shown that

skeletal measures, such as quantitative ultrasound

speed of sound (SOS) and dual-energy X-ray absorpti-

ometry (DXA) bone mineral density (BMD), can pre-

dict the risk of osteoporotic fracture with a high

specificity but poor sensitivity [1, 4]. However, the

utility of such measurements is subject to the avail-

ability of equipment and human resources and, in

some jurisdictions, can be relatively expensive [5]. Ef-

fective risk stratification relying on other clinically

relevant risk factors is available. For example, the

Fracture Risk Assessment Tool (FRAX) has been de-

veloped to predict 10-year probabilities of major

osteoporotic fracture and hip fracture by integrating

multiple clinical risk factors [6]. Combining these

clinical risk factors with femoral neck BMD in the

FRAX score has become widely accepted as a method

to appropriately stratify individuals for therapy [7–10].

With the advent of large-scale genome-wide genotyped

cohort resources, such as UK Biobank, and emerging

computational algorithms, genomic prediction of com-

plex traits and diseases may improve disease prediction

accuracy and thus potential clinical utility [11, 12]. Both

BMD and SOS are clinically used to predict fracture risk

and are moderately correlated, with high heritability

(50–85%) [13]. This suggests that polygenic risk scores

could be developed for these skeletal measures [14, 15].

Polygenic risk scores could also be developed in the

field of osteoporosis to better identify individuals at risk

for fracture. In previous work, a genetic risk score in-

cluding 21 single nucleotide polymorphisms (SNPs) in

19 genes associated with osteoporosis-related traits was

moderately associated with nonvertebral fracture risk in

Korean postmenopausal women and might slightly im-

prove clinical osteoporotic risk factor-based fracture risk

prediction [16]. Another genetic risk score based on 62

SNPs associated with femur neck or lumbar spine BMD

accounted for approximately 2% of the variance in BMD

and conferred a hazard ratio of 1.20 for incident fragility

fracture per one standard deviation increase [17]. A

similar score summarizing 63 BMD loci was associated

with BMD during childhood and was moderately associ-

ated with fracture risk in adulthood [18, 19]. Moreover,

a genetic risk score leveraging 979 SNPs in 74

osteoporosis-susceptibility genes was developed in

Japanese women and could identify individuals having

prevalent vertebral fractures with an area under the re-

ceiver operating characteristic curve (AUROC) of 0.788

[20]. More recently, using 1103 independent SNPs asso-

ciated with estimated BMD (eBMD) of the heel, a poly-

genic risk score for eBMD has been shown to be able to

predict site-specific fractures [21]. However, due to the

polygenic nature of these skeletal traits and the usually

limited study sample sizes, existing genetic risk scores

may not be able to sufficiently capture the underlying

genetic predisposition towards fracture and therefore
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may not provide optimal predictive performance. Conse-

quently, the clinical utility of genetic risk scores in frac-

ture risk prediction, especially among the elderly

population, has been questioned [22].

Using data from the UK Biobank, we have previously

developed a genome-wide polygenic risk score for SOS,

called genomic SOS (gSOS), that captures 25.0% of the

total variance in SOS [23]. This largely exceeded an

existing polygenic risk score which explained 17.2% of

the total variance and achieved an AUROC of 0.570 for

identifying individuals with any type of fracture [24]. In

comparison, FRAX clinical risk factors, age, sex, and

BMI together explain 4.0% (95% confidence interval (CI)

3.7–4.2%) of the variance in SOS [23]. gSOS has been

shown to be independent of other commonly used clin-

ical risk factors and significantly associated with fracture

risk [23]. However, the clinical utility of gSOS to predict

osteoporotic fracture risk remains largely unexplored.

Here, we have assessed the predictive performance of

gSOS in 90,172 individuals of European ancestry in four

study cohorts, the UK Biobank [25], the United States-

based Osteoporotic Fractures in Men Study (MrOS US)

[26], the Sweden-based Osteoporotic Fractures in Men

Study (MrOS Sweden) [27], and the Study of Osteopor-

otic Fractures (SOF) [28, 29]. We further investigated

whether combining gSOS with FRAX could better iden-

tify individuals at high risk of osteoporotic fracture. We

also tested the generalizability of gSOS to a non-

European population consisting of 25,034 individuals,

using data from the China Kadoorie Biobank (CKB)

study [30]. Data from this study have been presented at

the American Society for Bone and Mineral Research

2020 Annual Meeting [31].

Methods
Study cohorts

This study included five cohorts: the UK Biobank [25],

the MrOS US [26], the MrOS Sweden [27], the SOF

[28], and the CKB [30].

The UK Biobank comprises more than 500,000 partici-

pants who were recruited at multiple assessment centers

in the UK and were enrolled between 2006 and 2010 at

ages ranging from 40 to 69 years. Compared to a general

population, the UK Biobank has been reported to be

healthier, less obese, and less likely to smoke and drink

alcohol [32]. Participants of the UK Biobank were

genome-wide genotyped using Affymetrix arrays, and

their genotypes were imputed to the Haplotype Refer-

ence Consortium (HRC) reference panel [25, 33]. Site-

specific major osteoporotic fractures were defined based

on ICD10 codes of primary diagnoses (M8002, M8003,

M8005, M8008, M8082, M8083, M8085, M8088, S220,

S320, S422, S423, S424, S520, S521, S522, S523, S525,

S526, S529, S720, S721, and S722) and self-reported

medical history. Since the exact cause of fracture was

not identifiable, these identified events may include trau-

matic fractures. Fracture risk factors were those captured

at the baseline visit, and incident fractures were defined

to be those occurring after the baseline visit.

The MrOS is an international multicenter longitudinal

study comprised of elderly men [27]. The MrOS US

cohort recruited 5995 men aged ≥ 65 years at multiple

assessment centers in the USA between 2000 and 2002

[26]. Baseline examinations were conducted upon re-

cruitment followed by a more extensive questionnaire

after 2–2.5 years of follow-up. After a mean follow-up of

4.5 years, a second clinic visit was completed. Tri-annual

questionnaires inquiring about the occurrence of inci-

dent falls, fractures, and fracture risk factors were col-

lected during the intervening period. In this cohort, 11%

of the participants were visible minorities. Among these

5995 men, 5130 were genotyped. After overlaying the

first two genetic principal components with those from

the 1000 Genomes Project [34], 4663 men of a genetic-

ally determined European ancestry were included in this

study. Their genotypes were imputed to the HRC refer-

ence panel. The MrOS Sweden cohort recruited 3014

men aged 69 to 81 years in three Swedish cities between

2001 and 2004 [35]. After baseline examinations, partici-

pants were followed for up to 10 years after the baseline

examination. Fracture evaluation was done by searching

digital X-ray archives and matching them with MrOS

Sweden participants using unique personal identification

number, which all Swedish citizens have. Among these

3014 men, 1880 were genotyped and included in this

study. Their genotypes were imputed to the HRC refer-

ence panel.

The SOF cohort recruited 9704 women at four assess-

ment centers in the USA who were aged ≥ 65 years at

enrollment between 1986 and 1988 [28]. Falls and

fractures were monitored every 4 months. After baseline

examinations, follow-up examinations took place ap-

proximately every 2 years during a mean follow-up of

14.5 years. Among these 9704 women, 3625 were geno-

typed, and 3615 women with a genetically determined

European ancestry with reference to the 1000 Genomes

Project [34] were included in this study. Their genotypes

were also imputed to the HRC reference panel.

To be eligible for the MrOS US, the MrOS Sweden, or

the SOF cohorts, participants were required to (1) be

able to walk without the assistance of another, (2) not

have had bilateral hip replacements, and (3) be able to

provide self-reported data [26–28]. All reported fractures

after baseline were confirmed by a physician review of

the radiology report.

The CKB cohort recruited more than 500,000 adults

aged between 30 and 79 years, from 2004 to 2008 in 10

survey sites in China [30]. After the baseline survey,
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long-term follow-up was conducted by accessing elec-

tronic records of mortality registries, morbidity regis-

tries, and all hospitalized events and procedures that are

available for 98% of the participants covered by the

nation-wide health insurance system. SOS and incident

fracture were collected for 25,034 participants during

the second survey of the CKB between 2013 and 2014.

These participants were genotyped, and their genotypes

were imputed to a 1000 Genomes Project-based refer-

ence panel for East Asian populations [34].

Each study was approved by the institutional review

boards of participating institutions and, all participants

provided informed consent to respective studies.

Risk factor measurement

Clinically relevant risk factors were measured at the

baseline visit for these cohorts, including FRAX clinical

risk factors, such as age, sex, BMI (in the unit of kg/m2),

prior fractures (hip fractures and other osteoporotic

fractures), smoking, glucocorticoid use, rheumatoid arth-

ritis, and femoral neck BMD based on DXA scan. Diag-

nosis of secondary causes of osteoporosis (type 1

diabetes, osteogenesis imperfecta in adults, untreated

long-standing hyperthyroidism, hypogonadism or pre-

mature menopause, chronic malnutrition, or malabsorp-

tion and chronic liver disease) was available only in the

UK Biobank. Parental history of fracture, at-risk drinking

(≥ 3 units per day), and self-reported falls (a risk factor

independent of FRAX probability [36]) based on inter-

views or questionnaires were available in the MrOS US,

the MrOS Sweden, and the SOF cohorts. Cohorts with

missing risk factor measurements were considered free

of the corresponding risk factors for the derivation of

FRAX probability, as suggested by the FRAX model

(https://www.sheffield.ac.uk/FRAX/faq.aspx).

Development of a polygenic risk score

As described previously [23], we developed a polygenic

risk score using a statistical learning approach to predict

SOS, a risk factor for osteoporotic fracture in the UK

Biobank. The polygenic risk score for FRAX is referred

to here as “gSOS.”

There were 426,811 participants in the UK Biobank of

white British ancestry who had measured SOS and had

undergone genome-wide genotyping. We first assigned

these individuals to a training dataset (N = 341,449, 80%

of the total cohort), a model selection dataset (N = 5335,

1.25% of the total cohort), and a test dataset (N = 80,014,

18.75% of the total cohort). All 4717 individuals with

femoral neck BMD measurements were assigned to the

test dataset in order to compare the fracture predictive

performance of gSOS with BMD. We performed a

genome-wide association study on the training dataset

using a linear mixed model adjusting for age, sex,

assessment center, genotyping array, and the top 20 gen-

etic principal components. We next performed a series

of least absolute shrinkage and selection operator

(LASSO) regressions [37] in the training dataset using

SOS as an outcome and SNPs as predictors, applying

different p value thresholds (p ≤ 5 × 10−3, p ≤ 5 × 10−4,

p ≤ 5 × 10−5, p ≤ 5 × 10−6, p ≤ 5 × 10−7, and p ≤ 5 × 10−8)

after removing SNPs demonstrating linkage disequilib-

rium (r2 > 0.05) with other SNPs. Each LASSO regres-

sion model thus yielded a polygenic risk score with

tuned coefficients associated with different subsets of

SNPs. We selected the best-performing model as that

with the highest proportion of variance explained in the

model selection dataset (Additional file 1: Table S1).

This model included 21,717 activated SNPs with a p

value ≤ 5 × 10−4 and was able to explain 23.18% (95% CI

22.66%–23.69%) of the total variance in the test dataset

[23]. Since all SNPs employed in the optimized poly-

genic risk score were present in all European ancestry

cohorts under investigation, we obtained a genetically

predicted SOS (gSOS) for each individual in the UK Bio-

bank test dataset as well as the other three cohorts. We

did not perform downstream analyses on the UK Bio-

bank training and model selection datasets, since these

datasets were used to generate and select gSOS, respect-

ively, and could therefore be prone to biased estimates

due to model over-fitting.

Because the genotypes of CKB participants were im-

puted to a different reference panel, only 13,848 acti-

vated SNPs were available in the CKB. Using these

available SNPs, we derived a gSOS estimate for each

CKB participant. Differences in minor allele frequencies

between the CKB and the UK Biobank are summarized

in Additional file 1: Fig. S1.

Derivation of FRAX-based risk scores

The country-specific FRAX tool (https://www.sheffield.

ac.uk/FRAX/) incorporating clinically relevant risk

factors was used to calculate the 10-year probability of

experiencing a major osteoporotic fracture or a hip frac-

ture [6]. For individuals whose femoral neck BMD was

available, a FRAX score including BMD was also calcu-

lated using this algorithm.

We also developed a clinical risk factor plus gSOS-

based FRAX (FRAX-gSOS). The largest meta-analysis of

osteoporosis cohorts to date, which did not include the

UK Biobank, estimated that one standard deviation de-

crease in SOS was associated with 1.42-fold increased

odds of experiencing major osteoporotic fracture [4].

Therefore, to generate a gSOS-adjusted FRAX score for

major osteoporotic fracture, we first converted the

FRAX algorithm-derived fracture probabilities to odds of

fracture. We divided the odds by 1.42 to the power of

standardized gSOS, such that an individual with a
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standardized gSOS of 1 would have a 1.42-fold de-

creased odds; an individual with a standardized gSOS of

− 1 would have a 1.42-fold increased odds. The adjusted

odds were then converted back to fracture probabilities.

For hip fractures, the same transformation was per-

formed, except that the increase in risk per standard de-

viation decrease in SOS was previously demonstrated to

be 1.80-fold [4].

Thus, for each individual, three FRAX scores were

generated: a clinical risk factor-based FRAX (FRAX-

CRF), a clinical risk factor plus BMD-based FRAX

(FRAX-BMD), and a FRAX-gSOS. This allowed a direct

comparison of the predictive accuracy of each of these

three methods.

Due to the missingness of several FRAX clinical risk

factors in the CKB cohort (Table 1), we did not generate

FRAX scores for CKB participants. Analyses were thus

restricted to testing the association (described below) be-

tween gSOS and incident major osteoporotic fracture or

hip fracture risk adjusted for age and sex in the CKB co-

hort. We then compared the effect size of gSOS with

those obtained in European populations based on the

other cohorts.

Statistical analysis in European ancestry-based cohorts

We first standardized gSOS scores for each cohort sep-

arately to have a mean of zero and a standard deviation

of one. This enables a more standardized comparison of

effects across cohorts. Since risk predictors are more

useful if they are independent of known risk factors, we

assessed linear correlations between gSOS and clinically

relevant risk factors of fracture using the Pearson correl-

ation coefficient. We next quantified incident major

osteoporotic fractures and binomial proportion CIs

among individuals grouped with respect to different

quantile ranges of gSOS: ≤ 1%, 1–5%, 5–20%, 20–40%,

40–60%, 60–80%, 80–95%, 95–99%, and > 99%.

We tested the association between the risk of incident

major osteoporotic fracture and gSOS as well as other

clinically relevant risk factors using logistic regression

adjusted for age and sex. We also tested the association

between the risk of incident major osteoporotic fracture

and each of the three FRAX scores using logistic regres-

sion without adjusting for age and sex since they are in-

cluded in the FRAX algorithm. Model comparison was

performed by the likelihood ratio test. We assessed the

predictive performance of each of the three FRAX scores

using the AUROC or the area under the precision-recall

curve (AUPRC) for major osteoporotic fractures.

AUROC and CIs were computed using the R package

“pROC” version 1.15.3 [38]. DeLong’s test was per-

formed to compare AUROC [39]. AUPRC and boot-

strapped CIs were computed using the R package

“PRROC” version 1.3.1 [40].

Further, we evaluated the cumulative incidence of

major osteoporotic fracture in the MrOS US and SOF

cohorts separately by Kaplan-Meier estimates, censored

at 90 years. These studies were selected because of their

longer length of follow-up. We also assessed the

cumulative risk of incident major osteoporotic fracture

associated with gSOS, FRAX clinical risk factors, and

FRAX-based scores by Cox proportional hazards regres-

sion using age at the time of fracture as the time scale.

Timing of fracture was not available for other cohorts.

The MrOS US and SOF cohorts were combined in the

Cox models which were then sex-stratified. We assessed

the predictive performance of each model using C-index

(a generalization of the AUROC considering censored

data in Cox models). Survival analyses were performed

using the R package “rms” version 5.1-3.1 [41, 42]. C-

indices and 95% CIs were computed using the R package

“Hmisc” version 4.2-0 [41, 43]. The above analyses were

repeated for incident hip fracture.

Lastly, we examined whether a FRAX-gSOS score can

improve clinical screening by net reclassification index

(NRI) and integrated discrimination index (IDI) [44].

The NRI measures how well a new predictive model cor-

rectly categorizes individuals into their corresponding

groups, while the IDI quantifies changes in the average

discriminative power. We compared the gSOS-FRAX

score to the CRF-FRAX score. The clinical cutoff was

set at 20% and 3% (above which pharmacological treat-

ment is recommended by the National Osteoporosis

Foundation [45]) respectively for predicted 10-year

major osteoporotic fracture risk and hip fracture risk.

NRIs and IDIs were computed using the R package “Pre-

dictABEL” version 1.2-2 [46].

Results
Study characteristics

Demographic features, incidence of major osteoporotic

fracture and hip fracture, prevalence of each FRAX risk

factor, and FRAX-based scores are summarized for each

of the five cohorts used in Table 1. Among the European

ancestry cohorts, the MrOS US, the MrOS Sweden, and

the SOF cohorts comprised elderly men or women,

while individuals in the UK Biobank test dataset were

comparatively younger with lower FRAX scores. Like the

UK Biobank, the CKB cohort was also younger and prior

fracture, an age-related risk factor, was less prevalent in

these two cohorts. In contrast, the SOF cohort,

comprised entirely of elderly women, had the highest

prevalence of prior fracture, corticosteroids use, and

rheumatoid arthritis, as well as the highest average

FRAX-based scores. Thus, the five cohorts analyzed pro-

vide different populations within which to evaluate frac-

ture prediction performance, providing a more thorough

assessment of its generalizability.
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Table 1 Study characteristics

Characteristic UK Biobank test dataset MrOS US MrOS Sweden SOF CKB

Mean/N Missing/N Mean/N Missing/N Mean/N Missing/N Mean/N Missing/N Mean/N Missing/N

Sample size 80,014 4663 1880 3615 25,034

Baseline age (SD) 56.8 (8.0) 74.0 (6.0) 75.4 (3.2) 71.5 (5.3) 53.7 (11.0)

Women (%) 43,723 (54.6) 0 0 3615 (100) 14,334 (57.3)

Baseline BMI (SD) 27.3 (4.7) 4 27.4 (3.8) 1 26.4 (3.5) 26.7 (4.6) 23.7 (3.5)

Prior fracture (%) 8008 (10.0) 21 1087 (23.3) 4 637 (33.9) 1 1274 (35.4) 17 2290 (9.2)

Smoking (%) 6908 (8.6) 146 (3.1) 1 178 (9.5) 6 285 (7.9) 13 7957 (31.8)

Corticosteroids use (%) 923 (1.2) 98 (2.2) 164 34 (1.8) 6 387 (10.9) 62 25,034

Rheumatoid arthritis (%) 758 (1.0) 226 (4.8) 27 (1.5) 23 252 (7.1) 74 572 (2.3)

Parental fracture (%) 80,014 600 (16.8) 1098 164 (13.7) 686 424 (14.3) 646 25,034

At-risk drinking* (%) 80,014 182 (3.9) 6 52 (2.8) 27 102 (2.8) 1 25,034

Baseline falls§ (%) 80,014 984 (21.1) 298 (15.9) 6 1021 (28.3) 6 25,034

Secondary osteoporosis (%) 3352 (4.2) 4663 1880 3615 25,034

FRAX for MOF (SD) 5.1 (3.1) 9.5 (4.7) 1 13.1 (5.6) 18.7 (9.5)

FRAX for hip fracture (SD) 0.7 (0.9) 3.8 (3.8) 1 7.0 (4.9) 6.4 (7.0)

FRAX-gSOS for MOF (SD) 5.4 (3.9) 10.1 (6.0) 6 13.7 (7.3) 19.3 (11.2) 38

FRAX-gSOS for hip fracture (SD) 0.9 (1.2) 4.2 (4.8) 6 7.7 (6.5) 7.0 (8.1) 38

FRAX-BMD for MOF (SD) 4.9 (2.6) 75,273 8.1 (4.4) 2 11.1 (6.3) 19 17.1 (9.5) 151

FRAX-BMD for hip fracture (SD) 0.7 (1.0) 75,273 2.5 (3.3) 2 5.3 (5.5) 19 5.0 (6.7) 151

Incident major osteoporotic fracture (incidence proportion) 1189 (1.5) 560 (12.0) 337 (17.9) 707 (20.6) 323 (1.3)

Incident hip fracture (incidence proportion) 209 (0.3) 273 (5.9) 129 (6.9) 556 (15.6) 67 (0.3)

*Though alcohol use is available in the UK Biobank and the CKB, no information regarding the frequency of drinking to determine at-risk drinking (≥ 3 drinks per day)
§The UK Biobank only records self-reported falls in the past 12 months at the baseline visit
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gSOS is largely independent of clinical risk factors

gSOS demonstrated negligible correlations with FRAX

clinical risk factors examined, and this lack of correlation

was observed in each cohort separately (Additional file 1:

Table S2). However, there was a correlation between

gSOS and prior fracture (Pearson correlation ranged from

− 0.12 to − 0.07 across different European ancestry cohorts

and was − 0.05 in the CKB cohort). These findings suggest

that gSOS might be a predictor of incident fracture, inde-

pendent of FRAX clinical risk factors.

Extremes of gSOS have large differences in incidence of

major osteoporotic fracture and hip fracture

In all European ancestry cohorts, a lower gSOS, which

predicts a lower SOS, was associated with a higher

incidence of major osteoporotic and hip fractures

(Fig. 1a, b). For example, among individuals with a gSOS

below the first percentile (1%), 6.0% (95% CI 4.5–7.6%)

experienced an incident major osteoporotic fracture and

2.5% (95% CI 1.5–3.6%) experienced an incident hip

fracture. In contrast, the incidence was only 0.7% (95%

CI 0.2–1.4%) and 0.3% (95% CI 0–0.7%) for major osteo-

porotic fracture and hip fracture, respectively, among in-

dividuals with a gSOS above the 99th percentile. This

represents an 8.6-fold and 8.3-fold higher incidence of

major osteoporotic and hip fracture, respectively. Similar

or more pronounced risk stratifications were achieved in

all cohorts; the discrepancies were even larger among

older individuals in the MrOS US, the MrOS Sweden,

and the SOF cohorts (Additional file 1: Table S3).

Fig. 1 Higher incidence of a major osteoporotic fracture and b hip fracture is associated with lower gSOS. All 90,172 individuals from four

European ancestry cohorts were grouped into nine groups with respect to gSOS percentiles: ≤ 1%, 1–5%, 5–20%, 20–40%, 40–60%, 60–80%, 80–

95%, 95–99%, and > 99%. Diamonds denote observed incidence in each gSOS group with darker colors representing higher incidence. Vertical

lines denote corresponding binomial proportion CIs. Summaries of cohort-specific incidence in each gSOS group are provided in Additional file 1:

Table S2
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Overall, individuals who experienced incident major

osteoporotic fracture or hip fracture had lower gSOS

(Additional file 1: Fig. S2).

gSOS was more strongly associated with fracture risk

than most clinical risk factors in European populations

To compare the strength of gSOS as a predictor of frac-

ture to standard risk factors used clinically and in the

FRAX score, we chose a series of cut-points to binarize

gSOS while matching the frequency of each clinical risk

factor. For example, 24.2% of the population across the

four European ancestry cohorts reported falls. We there-

fore identified individuals in the lowest 25.0% of the dis-

tribution of gSOS. We then examined whether the

association between fracture and falls was stronger than

that between fracture and having a gSOS among the

25% lowest in the population.

After aligning prevalence rates of risk factors, binar-

ized gSOS indicators had a stronger association with the

odds of major osteoporotic fracture and hip fracture,

Fig. 2 gSOS is more strongly associated with fracture risk than most clinical risk factors. a Comparison of associations between incident major

osteoporotic fracture risk and risk factors. Different thresholds of gSOS were selected such that a similar proportion of the population would be

affected by one of the clinical risk factors. b Comparison of the predictive performance of gSOS (red) and clinical risk factors (blue) in identifying

individuals that experienced incident major osteoporotic fracture. c Comparison of associations between incident hip fracture risk and risk factors.

d Comparison of the predictive performance of gSOS (red) and clinical risk factors (blue) in identifying individuals that experienced incident hip

fracture. Comparison of each clinical risk factor AUROC to gSOS AUROC was based on DeLong’s test; p values are presented in b and d. All

association tests were based on logistic regression models, adjusted for age and sex in individuals from four European ancestry cohorts. Only

clinical risk factors available in all cohorts are presented in b and d, based on 12,359 individuals with complete data. 95% CIs of AUROC were

derived from 200 bootstrap replicates. Summaries of the cohort-specific predictive performance of all risk factors are provided in Additional file 1:

Table S4
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than most of the other clinical risk factors, except for

prior fracture (Fig. 2a, c). For instance, 25.0% of the

population with the lowest gSOS had a 1.68-fold (95%

CI 1.47–1.89) increased odds of major osteoporotic frac-

ture and a 1.57-fold (95% CI 1.34–1.84) increased odds

of hip fracture, whereas falls affected 24.2% of the popu-

lation, but only increased the major osteoporotic frac-

ture risk by 1.24-fold (95% CI 1.08–1.42) and the hip

fracture risk by 1.20-fold (95% CI 1.02–1.41). We note,

however, that the 95% CIs of these risk factors over-

lapped to some degree. In addition, a continuous gSOS

exhibited moderately enhanced or similar predictive

power for incident fracture, as measured by the AUROC

(0.734 (95% CI 0.727–0.740) for incident major osteo-

porotic fracture; 0.798 (95% CI 0.791–0.805) for incident

hip fracture) as other clinically relevant risk factors (Fig. 2b,

d; Additional file 1: Table S4), except measured femoral

neck BMD. This enhanced performance was consistent

across all study cohorts (Additional file 1: Table S4).

Furthermore, gSOS provided a means of stratification

of cumulative risk of both incident major osteoporotic

fracture and hip fracture. In the MrOS and the SOF

Fig. 3 gSOS effectively stratifies cumulative fracture risk. a Lower gSOS is associated with a higher cumulative incidence of major osteoporotic

fracture. b Comparison of the age-dependent predictive performance of gSOS (red) and clinical risk factors (blue) in identifying individuals that

experienced incident major osteoporotic fracture. c Lower gSOS is associated with a higher cumulative incidence of hip fracture. d Comparison

of the age-dependent predictive performance of gSOS (red) and clinical risk factors (blue) in identifying individuals that experienced incident hip

fracture. All association tests were based on 4663 men from the MrOS US and 3615 women from the SOF cohorts using Cox proportional hazard

models adjusted for sex. Only clinical risk factors available in both cohorts are presented. CIs of C-index were derived from 200

bootstrap replicates
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cohorts, substantial stratification in cumulative incidence

of fracture was observed especially among individuals

aged > 75 years (Fig. 3a, c), and this finding was consist-

ent if these cohorts were examined separately (Add-

itional file 1: Fig. S3).

The predictive performance of gSOS also surpassed

all clinical risk factors (Fig. 3b, d), except measured

femoral neck BMD and prior fracture, with a Cox-

model concordance index (C-index) of 0.623 (95% CI

0.603–0.642) for incident major osteoporotic fracture

and 0.672 (95% CI 0.650–0.695) for incident hip frac-

ture. We note that the C-index for prior fracture was

0.619 (95% CI 0.600–0.637) for incident major osteo-

porotic fracture and 0.669 (95% C: 0.647–0.691) for

incident hip fracture. Both indices were similar to

those of gSOS.

gSOS improved predictive performance when combined

with FRAX clinical risk factors in European populations

We found that combining gSOS with the clinical risk

factor-based FRAX (FRAX-CRF) score in all four Euro-

pean ancestry cohorts significantly improved the risk

prediction for both incident major osteoporotic fracture

and hip fracture (likelihood ratio test p values < 0.05;

Table 2), without largely modifying the effect size of the

FRAX-CRF score. Interestingly, combining gSOS with

measured femoral neck BMD or a clinical risk factor and

BMD-based FRAX (FRAX-BMD) also significantly

Table 2 gSOS is associated with fracture in addition to FRAX-CRF and FRAX-BMD. Odds ratios associated with risk predictors of

interest were based on logistic regression

Cohort UK Biobank test dataset
(N = 4717)*

MrOS US (N = 4663) MrOS Sweden
(N = 1880)

SOF (N = 3615)

Model Odds ratio
(95% CI)

Major osteoporotic fracture

Fracture ~ FRAX-CRF FRAX-CRF§ 1.15 (1.10–1.20) 1.06 (1.04–1.08) 1.04 (1.02–1.06) 1.04 (1.03–1.05)

Fracture ~ FRAX-CRF + gSOS FRAX-CRF 1.14 (1.09–1.19) 1.06 (1.04–1.08) 1.04 (1.02–1.06) 1.04 (1.03–1.05)

gSOS 1.41 (1.18–1.69) 1.36 (1.24–1.49) 1.39 (1.23–1.58) 1.30 (1.19–1.42)

Likelihood ratio test p value 1.4 × 10−4 3.1 × 10−11 6.9 × 10−8 2.5 × 10−9

Fracture ~ age + sex + BMD BMD¶ 1.66 (1.35–2.05) 1.79 (1.64–1.97) 1.86 (1.62–2.15) 2.02 (1.80–2.27)

Fracture ~ age + sex + BMD + gSOS BMD 1.53 (1.24–1.90) 1.72 (1.56–1.89) 1.79 (1.55–2.07) 1.93 (1.72–2.17)

gSOS 1.33 (1.11–1.59) 1.22 (1.11–1.34) 1.29 (1.14–1.47) 1.22 (1.11–1.33)

Likelihood ratio test p value 2.4 × 10−3 3.4 × 10−5 6.0 × 10−5 2.1 × 10−5

Fracture ~ FRAX-BMD FRAX-BMD§ 1.17 (1.12–1.22) 1.10 (1.08–1.12) 1.07 (1.05–1.08) 1.06 (1.05–1.07)

Fracture ~ FRAX-BMD + gSOS FRAX-BMD 1.16 (1.11–1.21) 1.09 (1.08–1.11) 1.06 (1.04–1.08) 1.06 (1.05–1.07)

gSOS 1.34 (1.12–1.60) 1.28 (1.17–1.40) 1.33 (1.18–1.51) 1.22 (1.12–1.34)

Likelihood ratio test p value 1.5 × 10−3 1.5 × 10−7 4.5 × 10−6 1.1 × 10−5

Hip fracture

Fracture ~ FRAX-CRF FRAX-CRF 1.06 (1.04–1.09) 1.02 (0.98–1.05) 1.05 (1.04–1.06)

Fracture ~ FRAX-CRF + gSOS FRAX-CRF 1.06 (1.04–1.09) 1.02 (0.98–1.05) 1.05 (1.04–1.06)

gSOS 1.36 (1.20–1.54) 1.25 (1.04–1.50) 1.31 (1.19–1.44)

Likelihood ratio test p value 1.1 × 10−6 1.6 × 10−2 4.2 × 10−8

Fracture ~ age + sex + BMD BMD 2.08 (1.83–2.38) 2.45 (1.96–3.08) 2.04 (1.80–2.32)

Fracture ~ age + sex + BMD + gSOS BMD 2.01 (1.76–2.31) 2.41 (1.92–3.04) 1.95 (1.72–2.22)

gSOS 1.17 (1.03–1.33) 1.11 (0.92–1.34) 1.20 (1.08–1.32)

Likelihood ratio test p value 1.7 × 10−2 2.7 × 10−1 3.7 × 10−4

Fracture ~ FRAX-BMD FRAX-BMD 1.10 (1.08–1.13) 1.06 (1.04–1.09) 1.07 (1.05–1.08)

Fracture ~ FRAX-BMD + gSOS FRAX-BMD 1.10 (1.07–1.12) 1.06 (1.04–1.09) 1.06 (1.05–1.08)

gSOS 1.31 (1.15–1.48) 1.20 (1.00–1.44) 1.25 (1.13–1.37)

Likelihood ratio test p value 3.0 × 10−5 5.3 × 10−2 1.1 × 10−5

*Only 4717 individuals in the UK Biobank had measured femoral neck BMD and were included; 125 individuals experienced incident major osteoporotic fracture;

only one individual experienced incident hip fracture; thus, model comparison was not conducted
§Based on one unit (percent of 10-year fracture probability) increase in FRAX-CRF or FRAX-BMD
¶Based on one standard deviation decrease in measured femoral neck BMD
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enhanced risk prediction (likelihood ratio test p values <

0.05; Table 2).

We therefore developed a combined score including

gSOS and the FRAX score with clinical risk factors

(FRAX-gSOS; the “Methods” section). Although the

FRAX-BMD score remained the best predictor for both

major osteoporotic fracture (AUROC 0.756 (95% CI

0.749–0.762); AUPRC 0.275 (95% CI 0.268–0.285); C-

index 0.689 (95% CI 0.670–0.707)) and hip fracture

(AUROC 0.806 (95% CI 0.799–0.813); AUPRC 0.211

(95% CI 0.203–0.222); C-index 0.722 (95% CI 0.701–

0.742)), the FRAX-gSOS score had a modestly improved

predictive performance compared to the FRAX-CRF

score. Specifically, the FRAX-gSOS offered a higher true

positive rate at most given false positive rates, as well as

greater positive predictive value at most levels of sensi-

tivity, as indicated by the ROCs and PRCs (Fig. 4a, b, d,

e) although the magnitude of these differences was not

large. Correspondingly, the FRAX-gSOS score had a

modestly higher AUROC (0.741 (95% CI 0.734–0.737)

vs. 0.733 (95% CI 0.727–0.740), DeLong’s test p value =

1.9 × 10−2, for major osteoporotic fracture; 0.791 (95%

CI 0.784–0.797) vs. 0.787 (95% CI 0.780–0.793),

DeLong’s test p value = 0.23, for hip fracture), AUPRC

(0.250 (95% CI 0.242–0.258) vs. 0.233 (95% CI 0.227–

0.240) for major osteoporotic fracture; 0.185 (95% CI

0.178–0.194) vs. 0.172 (95% CI 0.166–0.180) for hip frac-

ture), and C-index (0.660 (95% CI 0.641–0.679) vs. 0.647

(95% CI 0.603–0.642) for major osteoporotic fracture;

0.682 (95% CI 0.660–0.704) vs. 0.666 (95% CI 0.644–

0.688) for hip fracture) than the FRAX-CRF score

(Fig. 4c, f).

In all four study cohorts, including gSOS in the FRAX

score generally increased the predicted probability of

Fig. 4 Comparison of the predictive performance of FRAX-CRF, FRAX-BMD, and FRAX-gSOS. a Receiver operating characteristic curves, b

precision-recall curves, and c summaries of the predictive performance of FRAX-based scores for predicting incident major osteoporotic fracture

risk. d Receiver operating characteristic curves, e precision-recall curves, and f summaries of the predictive performance of FRAX-based scores for

predicting incident hip fracture risk. AUROC and AUPRC were derived based on all 90,172 individuals from four cohorts. C-indices were derived

based on 4663 men from the MrOS US and 3615 women from the SOF cohorts using Cox proportional hazard models. All CIs were derived from

200 bootstrap replicates
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future fracture (Table 1), and more individuals were

classified as having higher major osteoporotic fracture

risk or hip fracture risk (Table 3, Additional file 1: Table

S5, and Additional file 1: Table S6). Furthermore, the

positive overall NRIs and IDIs suggested that this could

refine the risk screening (Table 3, Additional file 1:

Table S5, and Additional file 1: Table S6). For instance,

adding gSOS to the FRAX score refined the prediction

of major osteoporotic fracture risk with NRIs being

0.028 in the UK Biobank test dataset, 0.043 in the MrOS

US, 0.072 in the MrOS Sweden, and 0.024 in the SOF.

Improvements were also observed for re-classifying the

risk of hip fracture across all cohorts, with the exception

that, in the SOF cohort, FRAX-gSOS did not better

identify individuals at higher risk of hip fracture.

gSOS was associated with fracture risk at an attenuated

magnitude in an Asian population

A standard deviation decrease in gSOS was associated

with an increased odds of incident major osteoporotic

fracture in the UK Biobank, MrOS US, MrOS Sweden,

and SOF cohorts, ranging from 1.35 to 1.46 (Table 4). In

contrast, this decrease was associated with an attenuated

1.26-fold (95% CI 1.13–1.41) increased odds of incident

major osteoporotic fracture in the CKB cohort (Table 4).

Similarly, the association between a decrease in gSOS

and increase in incident hip fracture risk was also

slightly smaller in the CKB cohort, compared to those of

European ancestry (Table 4). This attenuation was not

modified by consideration of other risk factors (Table 4).

Discussion
Here, we generated a genome-wide polygenic risk score

for SOS, gSOS, from 341,449 individuals of European

ancestry and tested its performance characteristics for

predicting incident fracture in four European ancestry

cohorts comprising 90,172 individuals. While the source

population, the UK Biobank, which we used to develop

the polygenic risk score was not completely representa-

tive of a general population, we provide evidence that

gSOS, particularly at its extremes, is consistently

associated with risk of major osteoporotic and hip frac-

ture across multiple cohorts. Since gSOS does not cap-

ture all variance in measured BMD, it does not predict

fracture as accurately as the latter. However, gSOS has a

moderately higher associated odds of incident fracture

and a better predictive performance of incident fracture

risk than many traditional clinical risk factors. Indeed,

gSOS remained associated with incident fracture, even

after accounting for FRAX-CRF and FRAX-BMD. Fur-

ther, gSOS improved the clinical risk factor-based FRAX

score and resulted in modestly better risk stratification

for fracture.

By summarizing genetic predisposition conferred by

polymorphisms throughout the human genome, poly-

genic risk scores can now be tested for their ability to

predict common disease outcomes and their risk factors.

For instance, a polygenic risk score for breast cancer is

able to identify 10% of the population having a 32.6%

lifetime risk [47]. These polygenic risk scores can be

generated from one single investment in genome-wide

genotyping, the cost of which is now approximately $40

USD in a research context [48]. However, sample collec-

tion, DNA extraction, and technical support will also

incur additional costs. Though technologies for measur-

ing BMD, such as DXA scan, are well-developed and of

clinical utility [49], their cost and restricted accessibility

currently limits risk screening to only a proportion of

the population. Therefore, as polygenic risk scores con-

tinue to improve, with larger sample sizes providing bet-

ter estimates of SOS and BMD, such polygenic risk

scores may find a clinical utility to assist in fracture

prediction.

Using FRAX-gSOS modestly improved predictive

performance over a FRAX-CRF score. Specifically, a

small proportion of the population at high fracture

risk were correctly re-classified using FRAX-gSOS.

While FRAX-gSOS does not perform as well as

FRAX-BMD, given the low incremental cost of gener-

ating gSOS in individuals already genome-wide geno-

typed, FRAX-gSOS may improve risk prediction in

the proportion of the population for which BMD is

Table 3 Net reclassification improvement of fracture risk prediction using FRAX-gSOS

Cohort UKB* US§ SWE¶ SOF† UKB US SWE SOF

Major osteoporotic fracture Hip fracture

\Categorical NRI (95% CI) 0.028
(0.016–0.039)

0.043
(0.020–0.066)

0.072
(0.027–0.118)

0.024
(− 0.008–0.056)

0.055
(0.009–0.100)

0.066
(0.025–0.107)

0.037
(− 0.012–0.085)

− 0.001
(− 0.034–0.031)

Continuous NRI (95% CI) 0.300
(0.245–0.354)

0.179
(0.092–0.267)

0.232
(0.116–0.348)

0.237
(0.155–0.318)

0.206
(0.073–0.339)

0.180
(0.060–0.300)

0.132
(− 0.045–0.310)

0.205
(0.116–0.295)

IDI (95% CI) 0.010
(0.008–0.011)

0.011
(0.008–0.015)

0.014
(0.009–0.019)

0.017
(0.012–0.021)

0.003
(0.001–0.005)

0.007
(0.003–0.011)

0.004
(− 0.002–0.011)

0.011
(0.007–0.015)

*The UK Biobank test dataset (N = 80,014)
§The MrOS US cohort (N = 4663)
¶The MrOS Sweden cohort (N = 1880)
†The SOF cohort (N = 3615)
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not measured. As sample sizes increase for genomic

studies, we expect that this predictive ability will fur-

ther improve. Besides, already gSOS provides informa-

tion above FRAX-BMD (Table 2), in terms of fracture

prediction.

Our study highlights several directions for future

studies. First, further improved polygenic risk scores

for BMD, in addition to SOS, may be pursued, since

BMD is a well-used metric of fracture risk that is in-

corporated into the FRAX algorithm [6, 50]. It should

be noted that genetic risk scores for BMD based on

polymorphisms affecting several pivotal BMD genes

have already been developed and shown to be able to

predict fracture risk from different perspectives [16,

17, 21]. However, in order to generate more accurate

genome-wide polygenic risk scores that could possibly

capture a larger proportion of total variance in BMD,

very large sample sizes of genome-wide genotyped in-

dividuals are required. Such resources do not cur-

rently exist for BMD. We anticipate this will improve

as more individuals are genome-wide genotyped with

BMD measures. Second, gSOS was developed among

white British individuals and the cohorts employed in

this study include predominantly individuals of Euro-

pean ancestry. As has been widely noted, when a

polygenic risk score is applied to populations of dif-

ferent ancestries, its predictive performance may vary,

sometimes to a large extent [51]. For instance, genetic

risk factors for osteoporotic fracture and BMD char-

acterized in European populations do not improve the

prediction of fracture risk in a Chinese population

[52]. Here, although gSOS was still significantly asso-

ciated with both incident major osteoporotic fracture

risk and hip fracture risk in the CKB cohort, the

magnitude of the association was attenuated. There-

fore, we think that gSOS should not be directly ap-

plied to populations with a non-European ancestry,

especially since a large number of SNPs in gSOS were

not present in the targeted population, due to differ-

ent imputation reference panels and, potentially,

changes in minor allele frequencies. However, we ex-

pect that upcoming studies developing population-

specific polygenic risk scores, which might properly

model linkage disequilibrium, minor allele frequencies,

population-specific effect sizes, and heritability [53],

will be able to address this important issue. Lastly, it

should be noted that gSOS yielded predictive and dis-

criminative power while being independent of most

fracture risk factors. While we endeavored to combine

gSOS and other risk factors through FRAX-gSOS for

improved prediction, more rigorous approaches may

warrant further research. Meanwhile, as has been

done for the FRAX clinical risk score, absolute risks

of fracture associated with FRAX-gSOS should be cal-

ibrated in a population-specific manner, accounting

for national differences in fracture rates.

Conclusions
In conclusion, we generated and validated a polygenic

risk score for SOS which is consistently associated

with the risk of fracture. While this score provides

Table 4 Odds ratios (OR) for the association between per standard deviation decrease in gSOS and increased odds of incident

fracture

OR (95% CI)* p value OR (95% CI), adjusted for RFs§ p value, adjusted for RFs

UK Biobank test dataset (N = 80,014)

Major osteoporotic fracture 1.46 (1.38–1.55) 1.1 × 10−37 1.42 (1.34–1.51) 1.4 × 10−32

Hip fracture 1.37 (1.19–1.57) 6.3 × 10−6 1.34 (1.16–1.53) 3.7 × 10−5

MrOS US (N = 4663)

Major osteoporotic fracture 1.38 (1.26–1.51) 2.2 × 10−12 1.31 (1.17–1.45) 1.1 × 10−6

Hip fracture 1.37 (1.21–1.56) 5.5 × 10−7 1.33 (1.15–1.55) 1.4 × 10−4

MrOS Sweden (N = 1880)

Major osteoporotic fracture 1.45 (1.28–1.65) 5.3 × 10−9 1.38 (1.17–1.63) 1.3 × 10−4

Hip fracture 1.31 (1.08–1.58) 5.0 × 10−3 1.35 (1.05–1.72) 1.8 × 10−2

SOF (N = 3615)

Major osteoporotic fracture 1.35 (1.24–1.47) 1.0 × 10−11 1.34 (1.21–1.48) 7.3 × 10−9

Hip fracture 1.31 (1.19–1.43) 1.4 × 10−8 1.32 (1.19–1.47) 4.1 × 10−7

CKB (N = 25,034)

Major osteoporotic fracture 1.26 (1.13–1.41) 5.3 × 10−5 1.22 (1.09–1.36) 6.8 × 10−4

Hip fracture 1.25 (0.98–1.60) 7.1 × 10−2 1.21 (0.94–1.54) 0.14

*Derived from logistic regression models adjusted for age and sex
§Derived from logistic regression models adjusted for age, sex and other available risk factors (RFs) listed in Table 1
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modestly better fracture risk discrimination than

many clinical risk factors, it does not perform as well

as BMD. However, gSOS should be explored as a tool

to provide better risk stratification to identify individ-

uals at high risk of fracture, particularly considering

that polygenic risk scores can be generated for mul-

tiple diseases from one single investment in genome-

wide genotyping.
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