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ABSTRACT

In this paper, we describe the results of three-dimensional relativistic magnetohydrodynamic
simulations aimed at probing the role of regular magnetic field on the development of the
instability that accompanies recollimation of relativistic jets. In particular, we studied the rec-
ollimation driven by the reconfinement of jets from active galactic nuclei (AGN) by the ther-
mal pressure of galactic coronas. We find that a relatively weak azimuthal magnetic field can
completely suppress the recollimation instability in such jets, with the critical magnetisation
parameter σcr < 0.01. We argue that the recollimation instability is a variant of the centrifugal
instability (CFI) and show that our results are consistent with the predictions based on the
study of magnetic CFI in rotating fluids. The results are discussed in the context of AGN jets
in general and the nature of the Fanaroff-Riley morphological division of extragalactic radio
sources in particular.

Key words: galaxies: jets — instabilities — methods: numerical — relativistic processes —
shock waves

1 INTRODUCTION

Jets from black holes of active galactic nuclei and young stars

exhibit remarkable ability to propagate over very large distances,

up to 109 of their initial radius at the jet “engine” (e.g. Porth &

Komissarov 2015). This is in contrast to the expectations based on

the linear stability analysis of cylindrical jets and laboratory ex-

periments. Cylindrical jets are subject to Kelvin-Helmholtz (KHI)

and current-driven instabilities (CDI), for magnetised flows. The e-

folding length scale for the fastest growing body modes of KHI is

lKHI ≈ MsR j, where Ms is the Mach number based on the sound

speed and R j is the initial jet radius (e.g. Hardee 1987a,b). For CDI

the corresponding length scale is lCDI ≈ 2πPMa, where Ma is the

Mach number based on the Alfvén speed and P = R jB
z
cm/B

φ
cm is the

magnetic pitch as measured in the comoving frame; Bz
cm and B

φ
cm are

the comoving axial and azimuthal components of the magnetic field

respectively (e.g. Appl et al. 2000). Both expressions apply to both

Newtonian and relativistic flows, provided one uses the relativistic

definitions of the Mach numbers in the latter case.

One obvious difference between the cylindrical jet models and

the real astrophysical jets is that the radius of the real jets is not con-

stant but grows significantly with the distance from their central en-

gine. This radial expansion of astrophysical jets can be a response

to the reduction of external pressure with the distance from their en-
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† Email: S.S.Komissarov@leeds.ac.uk
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gines. In the extreme case where the external pressure is too low for

confinement, jets expand freely and their shape becomes conical.

This complicates the problem and does not allow a straight-

forward application of the results obtained in the stability studies

of cylindrical jets. For example, which radius should we use in es-

timating the e-folding length scale? If we opted for the radius near

the jet engine we would obtain a scale which is many orders of

magnitude below the observed length of astrophysical jets for any

realistic values of the jet parameters. This would be in conflict with

the very existence of these jets. If we opted for the jet radius near

its termination, we would get amuch larger e-folding scale, making

the stability issue much less severe.

In fact, the jet radius is important for the development of the

body mode KH and CD instabilities because they rely on commu-

nication across the whole jet in order to get amplified. Since the

communication speed is limited either by the sound speed or the

Alfvén speed, an increase of the jet radius implies an increase of

the jet crossing time-scale, and hence an increase of the instability

growth length-scale. This is why in the case of cylindrical jets these

scales are proportional to the jet radius.

Hardee (1987b) modelled the spacial growth of KHI in ex-

panding jets confined by external pressure P ∝ z−a assuming that

the local growth rate is the same as in the cylindrical jet with the

same flow parameters. He found a significant reduction of the over-

all growth. Moreover, for a = 2 the perturbation amplitude is no

longer an exponential function of the distance but a power-law and

for a > 2 its growth quickly comes to halt. In fact, for a > 2 initially

pressure-matched jets eventually become free-expanding as sound
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2 J. Matsumoto et al.

waves can no longer provide causal communication across the jet

(Lyubarskij 1992).

Using the causality argument, Porth & Komissarov (2015)

concluded that a = 2 is critical for relativistic magnetised jets as

well. In order to test this conclusion, they used a 3D periodic box

setup to study the stability of expanding relativistic jets with the

magnetisation parameter σ . 1 and predominantly azimuthal mag-

netic field (σ = b2/4πw, where b is the magnetic field strength in

the fluid frame and w is the relativistic enthalpy). Within the box,

their jets had cylindrical geometry and their expansion was pro-

moted via a forced decline of the external gas pressure. The tempo-

ral rate of the decline was set to what would be seen in a reference

frame moving with relativistic speed through the atmosphere with

the gas pressure P ∝ z−a. The results showed progressively increas-

ing reduction of the instability growth rate with increasing value of

a, leading to its almost complete suppression for a > 2. A number

of other computation studies support the reduction of the instabil-

ity growth rates in expanding jets (e.g. Rosen & Hardee 2000; Moll

et al. 2008; McKinney & Blandford 2009; Porth 2013).

The large-scale radio sources created by AGN jets are roughly

divided into two classes, luminous FR-2 sources with bright outer

regions and under-luminous FR-1 sources with bright inner re-

gions (Fanaroff & Riley 1974; Owen & Ledlow 1994). These inner

regions of FR-sources are dominated by conspicuous and rather

broad jets (e.g. de Ruiter et al. 1990). In most cases, these jets seem

to enter the extended radio lobes and disappear inside them, and in

other cases the radio lobes appear as a continuation of the jets (de

Ruiter et al. 1990). The latter case includes the “prototype” FR-1

radio source 3C 31. Jets of FR-2 sources are much fainter relative to

their radio lobes then FR-1 jets. When they are visible, they can of-

ten be traced all the way from the central core to the outer hotspots

(e.g. Leahy et al. 1997). This includes the prototype FR-2 source

Cyg A (Carilli & Barthel 1996).

Beginning from the pioneering works by Blandford & Rees

(1974) and Scheuer (1974), the large-scale structure of FR-2

sources is explained in terms of the shock interaction between a

super-fast-magnetosonic jet and external gas. The model assumes

that these jets remain largely intact, and hence untouched by global

instabilities, until they reach the impact locations identified with the

outer hot spots. In contrast, the observed morphology of FR-1 jets

suggests turbulent dynamics with enhanced internal friction, mix-

ing, and mass entrainment (e.g. Bicknell 1984; Komissarov 1990).

Since turbulence is a common non-linear outcome of hydrody-

namic and magnetohydrodynamic instabilities, it seems reasonable

to explore if these instabilities could be behind the Fanaroff-Riley

division.

The rapid expansion of astrophysical jets can halt when they

enter regions with sufficiently high and slowly varying external

pressure. This is because the internal pressure of expanding jets

decreases very rapidly and may quickly drop below the external

pressure. In this case, the external pressure drives a shock, often

called a reconfinement shock, into the jet. This shock reheats the jet

and establishes approximate pressure balance with the external gas.

Steady-state two-dimensional models of reconfined jets predict that

they become approximately cylindrical, though with quite strong

superimposed oscillations. This creates favourable conditions for

development of the instabilities, which were previously suppressed

in the expansion zone.

For the jets confined by the interstellar gas (the so-called

“naked” jets) such conditions can be met inside the central cores

of the X-ray coronas of their parent galaxies. Porth & Komissarov

(2015) have found that the only FR-1 can be reconfined inside these

cores, whereas the reconfinent point of FR-2 jets is located on the

distances comparable with the size of their extended lobes. The co-

coons (lobes) of shocked plasma inflated by the jets is another place

where only slow variation of pressure is expected. This is because

the expansion speed of these cocoons can be highly subsonic (e.g.

Falle 1991).

Falle (1991) proposed a self-similar model for the evolution

of the large-scale structures created by FR-2 jets. This model pre-

dicts a relatively slow decrease of the cocoon pressure and hence

a gradual increase of the jet length to its radius with time (or the

source size). Falle (1991) argued that as the length to radius ratio

grows sufficiently large, the jet develops instabilities and become

turbulent, and that this results in a transition to the FR-1 morphol-

ogy. This explanation is supported by the observations showing

FR-1 jets broadening and disappearing inside the radio lobes (de

Ruiter et al. 1990). However, these jets may develop instabilities

and turbulence closer to the central source, where they may still be

naked. Recent 3D hydrodynamic (HD) and magnetohydrodynamic

(MHD) simulations of non-relativistic cylindrical jets by Massaglia

et al. (2016, 2019) also provide some support to this idea. However

in these simulations, the jets are injected into the computational

domain as already perfectly collimated flows, bypassing the initial

phase of free or almost free expansion.

Tchekhovskoy & Bromberg (2016) carried out relativistic 3D

MHD simulations of outflows generated by a rotating sphere with

monopole magnetic field. These outflows also inflated cocoons of

hot gas which provided their confinement and quasi-cylindrical col-

limation. These cylindrical flows suffered from CDI kink modes,

which in some cases led to a development of morphology reminis-

cent of FR-1 radio sources. However, these were not proper jets but

rather the so-called “magnetic towers” (Lynden-Bell 2003), as the

flow speed remained sub-fast magnetosonic.

The recollimation of supersonic (super-fast-magnetosonic in

the magnetic case) jets may be accompanied by another instabil-

ity (which we tentatively call the recollimation instability), which

is not present in cylindrical configurations. This possibility was

first recognised by Matsumoto & Masada (2013), who argued that

the accelerated transverse motion associated with the radial oscil-

lations of reconfined jets is similar to the radial oscillations of non-

equilibrium cylindrical jets. Hence they have shown that the oscil-

lations of cylindrical jets are accompanied by the Rayleigh-Taylor

instability (RTI, Rayleigh 1883; Taylor 1950) at the interface be-

tween the jet and external medium. They explored this via 2D rel-

ativistic HD simulations of oscillating cylindrical jets, which have

also demonstrated that the overall effect can be amplified via the

Richtmyer-Meshkov instability (RMI, Richtmyer 1960; Meshkov

1972) of the shocks associated with the oscillations. Matsumoto

et al. (2017) carried the linear stability analysis of the relativistic

RTI using the incompressibility approximation.

Recently, several groups carried out 2D and 3D simulations of

non-magnetic reconfined jets (Gourgouliatos & Komissarov 2018a;

Gottlieb et al. 2019, 2020b,c; Matsumoto & Masada 2019). They

have demonstrated that the recollimation instability develops only

in 3D simulations, where it can lead to a rapid transition to a fully

turbulent state soon downstream the reconfinement point, in great

contrast to the predictions of steady-state axisymmetric models.

Gourgouliatos & Komissarov (2018a,b) argued that the recollima-

tion instability is related not to RTI but to the centrifugal instabil-

ity (CFI, Rayleigh 1917). The relativistic version of this instabil-

ity in rotating flows was studied by Gourgouliatos & Komissarov

(2018b).

AGN jets carry out magnetic field, and it is known that a suf-
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ficiently strong magnetic field can inhibit various hydrodynamic

instabilities when their development lead to an increase of the field

energy. In particular, Komissarov et al. (2019) studied the role of

axial magnetic field on the development of CFI at the cylindrical in-

terface between rotating relativistic fluids. Extrapolating the results

to the problem of reconfined jets, they concluded that a relatively

weak magnetic field, with σ = 0.01− 0.1 may completely suppress

the recollimation instability in reconfined jets. Here we investigate

this problem directly, via 3D relativistic MHD simulations of AGN

jets.

The structure of the paper is as follows. In section 2, we

present our method and the setup of the simulations we performed.

Section 3 describes the results of these simulations. We discuss the

astrophysical implications of these results in section 4 and sum-

marise our conclusions in section 5.

2 METHOD

2.1 Overview

In this study, we use computer simulations to investigate the role

of the magnetic field on the stability of relativistic jets undergo-

ing reconfinement by the thermal pressure of external gas. In order

to ensure the continuity with the previous studies and allow for di-

rect comparison, we use as a starting point the non-magnetic model

C1 of Gourgouliatos & Komissarov (2018a). In this model, an ini-

tially conical jet propagates through the X-ray corona of the parent

galaxy. The pressure distribution of the corona is modelled with the

isothermal King law. The initial solution describes a steady-state jet

in direct contact with the external gas. There is no cocoon separat-

ing the jet from the external gas. This configuration corresponds to

the sub-group of FR-1 jets whose morphology is similar to the jets

of the radio source 3C31 (the so-called naked jets).

The C1 jet exhibits rapid development of the recollimation in-

stability and hence this model provides a good reference for study-

ing the role of magnetic field in this process. To this aim, we modify

the C1 model by adding a purely azimuthal magnetic field, while

keeping other parameters unchanged. On the scale of galactic coro-

nae, the azimuthal component is expected to dominate over the

poloidal magnetic field emerging from the jet engine. The polar-

isation observations of FR-1 jets also indicate the presence of a

longitudinal component. However it is normally attributed to the

small scale irregular magnetic field (e.g. Laing 1981; Begelman

et al. 1984; Wardle 2013), which is unlikely to influence long wave-

length instabilities.

The overall strategy of our computational experiments is

the same as in Gourgouliatos & Komissarov (2018a). First, we

find an approximate axisymmetric steady-state solution using the

method described in Matsumoto et al. (2012); Komissarov et al.

(2015). Next, we use the result to setup initial conditions for time-

dependent axisymmetric simulations. The purpose of these 2D sim-

ulations is 1) to check that the steady-state solutions are sufficiently

accurate and 2) to see if they develop axisymmetric instabilities. Fi-

nally, we use the steady-state solution to setup initial conditions for

fully three-dimensional simulations.

2.2 Governing equations

We solve the equation of ideal special relativistic MHD. These are

the continuity equation

∂α(ρu
α) = 0 , (1)

10−7

10−6

10−5

10−4

10−3

10−2

10−1

0 0.05 0.1 0.15 0.2 0.25

σ

R

MHD1

MHD2

MHD3

Figure 1. Distribution of the magnetisation parameter σ at the jet nozzle.

the energy-momentum equation

∂α

[

(

w +
b2

4π

)

uαuβ −
bαbβ

4π
+

(

P +
b2

8π

)

gαβ
]

= 0 , (2)

and the Faraday equation

∂α(u
αbβ − uβbα) = 0 . (3)

Here ρ is the rest-mass density, uα is the four-velocity, w = ρc2 +

γ/(γ − 1)P is the relativistic enthalpy of ideal gas, P is the gas

pressure, bα is the 4-vector of magnetic field, and gαβ is the metric

tensor of Minkowski spacetime. In the simulations we use the ratio

of specific heats γ = 4/3.

The 3+1 decomposition of uα and bα is

uα = Γ(c, v) , (4)

bα = Γ

(

(v·B),
B

Γ2
+ v(v·B)

)

, (5)

where, Γ is the Lorentz factor and v is the 3-velocity, and B is

the magnetic field vector as measured in the laboratory frame. The

strength of the magnetic field in the fluid frame is Bcm = b, where

b2 = bαb
α =

B2

Γ2
+ (v·B)2 , (6)

In order to simplify identification of the jet plasma we intro-

duce a passive tracer, τ, governed by the equation

∂α(ρτu
α) = 0 . (7)

In the initial solution, τ is set to unity inside the jet and to zero in

the external medium. Moreover, it is kept at unity in the ghost cells

of the nozzle boundary, so that the injected flow carries this value

of the tracer into the computational domain.

The equations are integrated using the AMR-VAC code as de-

scribed in Keppens et al. (2012) and Porth et al. (2014). The rel-

ativistic HLLC scheme, Koren flux limiter and two-step Runge-

Kutta for time integration are selected for the simulations.

2.3 Jet setup

The external gas is assumed to be isothermal, with a spherically-

symmetric mass density distribution described by the King law

ρe(r) = ρe,0

(

1 +
r2

r2
c

)−a/2

, (8)
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4 J. Matsumoto et al.

Table 1. Physical parameters of simulations

Coronal core radius rc = 1 kpc

Coronal core density ρe,0 = 3.3 × 10−27g cm−3

Coronal core pressure Pe,0 = 3 × 10−10dyn cm−2

Jet nozzle position z0 = 0.1rc

Jet nozzle radius R0 = 0.02rc

Initial jet half-opening angle θ0 = 0.2

Initial jet Lorentz factor Γ0 = 5

Initial jet density ρ j,0 = 5.3 × 10−29g cm−3

Initial jet magnetization σmax = 0 (HD), 10−4 (MHD1),

10−3 (MHD2), 10−2 (MHD3)

Jet power L = 2 × 1044erg s−1

where r is the spherical radial coordinate, rc is the core radius, and

ρe,0 is the central density. The power-law index of the density dis-

tribution is set to a = 1.25, the typical value for giant elliptical

galaxies.

The jet nozzle is located at the distance z0 = 0.1rc from the ori-

gin, with the initial radius R0 = 0.02rc. The jet density distribution

at the nozzle is uniform ρ = ρ j,0. Initially, the jet is relativistically

cold, with P ≪ ρc2 and hence w ≈ ρc2.

The velocity distribution over the nozzle corresponds to a con-

ical flow of the half-opening angle θ0 = 0.2 emerging from the

origin:

(vR, vφ, vz) = v(sin θ, 0, cos θ) , (9)

where {R, φ, z} are cylindrical coordinates aligned with the jet axis

and θ = arctan (R/z0). The corresponding Lorentz factor depends

only the cylindrical radius,

Γ = Γ0

[

1 −

(

R

R0

)4]

+

(

R

R0

)4

. (10)

This is a smooth approximation of the top-hat profile with Γ = Γ0

at R = 0 and Γ = 1 at R = R0. In the simulations, we used Γ0 = 5.

The magnetic field is assumed to be purely azimuthal. At the

nozzle it has the core-envelope distribution

bφ(R) =























b
φ
m(R/Rm) if R < Rm ,

b
φ
m(Rm/R) if Rm 6 R 6 R0 ,

0 if R0 < R ,

(11)

where Rm is the core radius. The electric current is uniform inside

the core and vanishes in the envelope. The return current flows over

the jet surface R = R0. All our models have Rm = R0/2.

The relativistic magnetisation parameter σ is maximum at the

magnetic core radius, where it reaches the value

σmax =
b
φ
m

2

4πw
. (12)

We have studied four models with σmax = 0 (HD), 10−4 (MHD1),

10−3 (MHD2), and 10−2 (MHD3). This range was found to be suf-

ficient for the purpose of the study. Figure 1 shows the radial dis-

tribution of σ at the nozzle.

Table 1 summarises the physical parameters of our numerical

models. The dimensional parameters are scaled to yield c = 3 ×

1010cm s−1, rc = 1 kpc, and the jet power L = 2 × 1044erg s−1. The

latter roughly corresponds to the boundary between FR-1 and FR-2

sources.

2.4 Steady-state solutions

The complex steady-state solutions describing reconfined jets were

constructed using one-dimensional simulations of flows with cylin-

drical symmetry, following the technique developed in (Matsumoto

et al. 2012; Komissarov et al. 2015). Standard time-dependent two-

dimensional axisymmetric simulations were used to verify their

suitability as initial solutions for the instability study.

2.4.1 “One-dimensional” models

In the approach of Matsumoto et al. (2012); Komissarov et al.

(2015), equilibria solutions of two-dimensional axisymmetric rel-

ativistic jet problems are approximated by solutions of time-

dependent one-dimensional axisymmetric problems (in the radial

direction). According to this approach, 1) the initial configura-

tion of the time-dependent problem describes the distribution of

the flow variables at the nozzle, and 2) the time evolution is trig-

gered via forced variation of the external pressure. The approx-

imate steady-state solutions A(z,R) are obtained from the corre-

sponding time-dependent solution Ā(t,R) via the transformation

A(z,R) = Ā((z − z0)/c,R). For further details see Komissarov et al.

(2015).

In our case, the external pressure was varied according to the

prescription

Pe(r(t)) = Pe,0

(

1 +
r(t)2

r2
c

)−a/2

(13)

every time step, where

r(t) =

√

R j(t)2 + (z0 + ct)2 , (14)

where R j(t) is the jet radius at time t. For these simulations we used

a uniform grid with the cell size ∆R = 0.05R0, corresponding to 20

cells per initial jet radius at the nozzle.

Figure 2 illustrates the properties of the approximate steady-

state solutions obtained using this approach, with the model MHD3

used as an example. Given the relative weakness of the magnetic

field, the global structure of the solutions for other models are not

much different, except for the strength of the magnetic field itself.

The most important feature of the solution is the reconfinement

shock driven into the jet by the external gas pressure. Initially, both

its radius and the jet radius increase but eventually the jet ram pres-

sure drops too low and both radii begin to contract. At zRP ≈ 17

( in the units of z0 = 0.1rc) the reconfinement shock converges at

the jet axis (the reconfinement point) and gets reflected as a decol-

limation shock. In the unshocked inner part of the jet, its mass den-

sity and magnetic energy density decrease approximately as z−2.

At the reconfinement shock both these parameters increase and in

the shocked outer layer they evolve relatively slowly. As the result,

the jet is almost hollow. The distance to the recollimation point de-

creases with the jet magnetization. In the HD and MHD1 models it

is zRP ≈ 23, and in the MHD2 model zRP ≈ 22. The same trend, but

at much higher σ, has been seen by Fromm et al. (2017).

Figure 3 shows the distribution of σ in two cross-sections, one

at about half way to the reconfinement point (z = 10) and another

well downstream of this point and near the far boundary of the com-

putational domain (z = 40). One can see that the magnetisation

peaks inside the shocked outer layer, where its value exceeds σmax

at the jet nozzle. This is consisted with the increase of σ at fast

shocks (reference).

c© 0000 RAS, MNRAS 000, 000–000
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MHD3 t = 0 MHD3 t = 0 MHD3 t = 0

(a) (c)(b)

MHD3 t = 0 MHD3 t = 0 MHD3 t = 0

(d) (f)(e)

Figure 2. Steady-state solution of the model MHD3. The plots show the distributions of the density ρ (panel a), gas pressure P (panel b), effective gas inertia

wΓ2 (panel c), magnetic field bφ (panel d), Lorentz factor Γ (panel e), and tracer τ (panel f).
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(a) t = 0, z = 10
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Figure 3. Radial distribution of the magnetisation parameter σ for the steady-state solutions at z = 10 and 40.

2.4.2 Two-dimensional models

The initial solutions for the 2D simulations were set via projecting

the approximate steady-state solutions (obtained as described in the

previous section) on the computational grid of cylindrical coordi-

nates {R, z}. Prior to their projection, the density distribution of the

steady-state solutions was modified. Following Gourgouliatos &

Komissarov (2018a), its step-like transition between the jet and the

external was replaced with a tanh-profile of thickness δR = 0.1R0,

where R0 is the jet radius at the nozzle. This allowed us to sub-

stantially reduce the numerical dissipation at the interface, which

otherwise would be too strong and corrupted the solution.

The computational domain was [0, 6]× [1, 41], with a uniform

grid of 600 × 200 cells (the cell sizes ∆R = 0.01 and ∆z = 0.2).

This gives the same radial resolution as in the 1D simulations.

The lower z boundary (z = 1) was divided into the nozzle sec-

tion (0 < R < 0.2) and the corona section (R > 0.2). The val-

ues of the physical variables in the ghost cells of the nozzle sec-

tion were fixed, which is allowed because the jets are super-fast-

magnetosonic. In the corona section, we used reflective boundary

conditions. Outflow (zero gradient) boundary conditions were im-

posed at the z = 41 and R = 6 boundaries, and reflective boundary

conditions at R = 0.

The Newtonian gravity model was used to maintain the hydro-

static equilibrium of the unperturbed coronal gas (Perucho & Martı́

2007). This involved an introduction of source terms both in the

energy equation and in the momentum equations. These had a little

effect on our relativistic jets.

The 2D simulations were run for 2.5 light-crossing times of

the computational domain in the z direction. During this time the

solution evolved but its deviation from the initial solution was rel-

atively mild. There were no signs of instabilities. This had allowed

us to conclude that the initial solutions were close to a steady-state,

stable to axisymmetric perturbations, and hence suitable for use in

3D simulations.

2.5 3D time-dependent simulations

The 3D simulations were carried out on the Cartesian grid of

{x, y, z} coordinates, with the computational domain [−4, 4] ×

[−4, 4] × [1, 41]. In order to reduce the computational cost of the

simulations, we capitalised on the adaptive mesh capabilities of the

AMRVAC code. We used four levels of adaptive mesh refinement,

with 1003 cells at the base level. The corresponding cell sizes are

∆z = 5∆x = 5∆y. At the finest mesh, this was equivalent to the

same resolution of 20 cells per nozzle radius at the finest grid as

in the auxiliary 1D and 2D simulations. The refinement was con-

trolled according to the Lohner criterion, with the Lorentz factor as

a reference parameter.

We used the same boundary conditions as in the 2D simula-

tions, slightly adjusted to the different grid geometry (Obviously,

the jet axis is no longer a boundary of the simulation domain, and

hence no boundary conditions are needed there.). The same applies

to the initial setup and the use of Newtonian gravity. Following

Gourgouliatos & Komissarov (2018a), the initial distributions of

jet density and pressure were perturbed as

ρ(x, y, z) = ρs(x, y, z)(1 + 10−2 cos φ) , (15)

P(x, y, z) = Ps(x, y, z)(1 + 10−2 sin φ) , (16)

where ρs(x, y, z) and Ps(x, y, z) describe the steady-state solution

and φ is the azimuthal angle. If such perturbations are not intro-

duced, the growing perturbations are dominated by the mode with

the azimuthal number m = 4. This mode is aligned with the Cartre-

sian grid, which is consistent with perturbations arising due to the

discretisation errors of the numerical scheme (Gourgouliatos &

Komissarov 2018a).

3 RESULTS

The key result of the 3D simulations is illustrated in Figures 4-7.

Figure 4 shows the distribution of the Lorentz factor in all three

magnetic models by the end of the simulations, mostly in the lon-

gitudinal plane inclined to the x axis at 45◦. The solution for the

unmagnetised jet is also shown as a reference model. Figures 5-7,

complement these plots by showing the Lorentz factor distribution

in the cross-sections z = 5, 12, 15 and 40. The final time for all runs

is t = 40, which is one light crossing time of the domain in the z

direction. Since the flow velocity of the jet is almost equal to the

speed of light, this is almost the same as the jet crossing time.

The structure of the jet in the model MHD1, where the

strength of the magnetic field of the jet is the weakest, is almost

c© 0000 RAS, MNRAS 000, 000–000
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Figure 4. 3D rendering of the Lorentz factor in 3D solutions at t = 40.

same as the pure hydro model (HD). It exhibits transition from a

laminar to a fully turbulent flow at around z = 10, which is some-

what upstream of the reconfinement point in the steady-state solu-

tion, which is located at z ≈ 23 . The turbulence promotes entrain-

ment of the external gas, mixing, and jet deceleration. The Lorentz

factor reduces from Γ = 5 down to 2 . Γ . 3.

The recollimation instability also develops in the MHD2

model, but in contrast to MHD1 the transition to a turbulent state

is not observed. A closer inspection of the flow structure in the jet

cross-section (see figure 6) reveals that the azimuthal number of the

dominant mode gradually reduces from m ≈ 20 at z = 10 to m = 4

at z = 40. Presumably, once the growth of higher order modes satu-

rates, they get erased by numerical diffusion and the resultant flow

with a thicker transition layer between the jet and the external gas

can support only the modes of lowest order. At z = 40, the non-

linear m = 4 mode clearly dominates other modes (figure 6). One

can see that it is aligned with the Cartesian grid, and this implies a

strong bias due to the anisotropy of the numerical scheme.

c© 0000 RAS, MNRAS 000, 000–000
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(a) MHD1 z = 5 (b) MHD1 z = 12

(c) MHD1 z = 15 (d) MHD1 z = 35

4

4

Figure 5. Distribution of the Lorentz factor in the model MHD1 at t = 40

in the cross-sections z = 5, 12, 15, and 35.

(a) MHD2 z = 10 (b) MHD2 z = 20

(c) MHD2 z = 25 (d) MHD2 z = 40

4

4

Figure 6. The same as in figure 5 but for the model MHD2.

In the MHD3 model, the magnetic field is sufficiently strong

to completely suppress the recollimation instability. The shape of

the jet cross-section shows a gradual transformation from the initial

circular geometry to a square-like one near the far end of the com-

putational domain. This square is also aligned with the Cartesian

grid, which again suggests the numerical nature of this deforma-

tion. This numerical effect is likely to be exacerbated by the fact

that the jet radius strongly reduces at the reconfinement point.

4 DISCUSSION

4.1 The nature of the instability

Several researches interpreted the recollimation instability as a

particular form of the Rayleigh-Taylor instability (Matsumoto &

Masada 2013; Matsumoto et al. 2017; Toma et al. 2017; Gottlieb

et al. 2020c). In order to understand the arguments in favour of this

(a) MHD3 z = 5 (b) MHD3 z = 15

(c) MHD3 z = 25 (d) MHD3 z = 35

4

4

Figure 7. The same as in figure 5 but for the model MHD3.

interpretation, it is perhaps most revealing to consider the evolu-

tion of the radial structure of a steady-state jet in an inertial frame

moving with the jet speed along its axis. In this frame, the interface

moves up and down relative to the jet axis and appears similar to the

accelerated interface between two fluids in the problem considered

by Taylor (1950). Moreover, the structures formed at the nonlinear

phase of the instability, but before the turbulent regime, are remi-

niscent of the fingers and bubbles characteristic to RTI. That is, if

they are viewed in the jet cross section (e.g. see figures 5 and 6).

Matsumoto & Masada (2013) assumed that the spatial oscil-

lations of steady-state axisymmetric jets are equivalent to the tem-

poral oscillations of under-expanded cylindrical (∂z = 0) jets. They

studied the temporal oscillations of such jets and observed an in-

stability when the jet was heavier than the external gas (cf. Toma

et al. 2017). Hence they identified this instability as RTI. This iden-

tification makes sense, as in this problem both fluids are accelerated

in the direction normal to the interface. However, the similarity be-

tween the temporal oscillations of cylindrical jets and the spatial

oscillations of steady-state jets is not sufficiently close to ensure

the same nature of the instabilities observed in these problems. In

particular, Gourgouliatos & Komissarov (2018a) have shown that

the oscillating solutions for stationary jets are unstable not only

when the jets are heavier than the external medium but also when

they are lighter, and that in both these cases the instability looks the

same.

From the theoretical viewpoint, the key feature of the Taylor’s

setup is the same acceleration of both fluids in the direction normal

to the interface between them. Hence in the non-inertial frame of

the interface, the problem is identical to that studied by Rayleigh

(1883), where the initial steady-state configuration describes a hy-

drostatic equilibrium in gravitational field. However, in the case of

an oscillating steady-state jet this condition is not satisfied. Indeed,

whereas the jet fluid moves along curved streamlines and hence ex-

periences the centripetal accelleration, the external medium is at

rest and hence has vanishing acceleration. Thus the jet problem is

not a variant of the Taylor’s problem.

Locally, the motion of jet fluid along the curved interface be-

tween a steady-state oscillating jet and external gas is reminiscent

of rotation. Rayleigh (1917) established that rotating fluids may be

subject to what is now known as the centrifugal instability (CFI).

c© 0000 RAS, MNRAS 000, 000–000



Magnetic inhibition of recollimation instability 9

Like RTI, this instability is local and hence the steady-state flow

does not have to be a proper rotation (Bayly 1988). In the plane

normal to the streamlines, the structures produced by CFI may look

very similar to fingers and bubbles of RTI (e.g. Gourgouliatos &

Komissarov 2018b). However, in 3D they look more like ridges and

trenches aligned with the flow streamlines. This is exactly what was

observed in the simulations of reconfined jets by Gourgouliatos &

Komissarov (2018a) and is seen in our simulations as well. This

suggests that the recollimation instability is an inertial instability

closely related to the centrifugal instability of rotating fluids.

Using heuristic approach, Gourgouliatos & Komissarov

(2018b) derived a generalised Rayleigh instability criterion for rel-

ativistic rotating fluids. In the case of a discontinuity between two

rotating fluids, it reduces to

[Ψ] < 0 , (17)

where Ψ = wΓ2Ω2, Ω is the angular velocity of rotation, and [Ψ] =

Ψo − Ψi where suffices “i” and “o” stand for the inner and outer

sides of the discontinuity respectively.

In the Newtonian limit, Ψ = ρΩ2 and the criterion reads

[ρ]Ω2
o + ρi(Ωi + Ωo)[Ω] < 0 . (18)

In the case of uniform density, this reduces to

[Ω2] < 0 , (19)

which is the same as the Rayleigh criterion for CFI in incompress-

ible fluid. In the case of solid body rotation law ([Ω] = 0), (18)

reduces to

[ρ] < 0 , (20)

which is the same as the instability criterion for RTI. Indeed, in

the frame rotating with the fluid, this case is equivalent to the

equilibrium in the radial “gravitational field” with the acceleration

g = Ω2
r, where r is the radius vector of cylindrical coordinates

aligned with the axis of rotation (cf. Scase & Hill 2018).

In the problem of a steady-state reconfined jet, the external gas

is at rest. This corresponds to the rotation problem with Ωo = 0.

Hence, the instability criterion (17) reduces to

−wiΓ
2
iΩ

2
i < 0 ,

which is satisfied independently of the inertia of the external gas.

This is in total agreement which is in agreement with results of

jet simulations by Gourgouliatos & Komissarov (2018a). Thus we

conclude that the recollimation instability is a variant of CFI.

Komissarov et al. (2019) studied the role of axial magnetic

field on the development of CFI at the interface between rotating

relativistic fluids. Using heuristic approach, they concluded that the

magnetic field suppresses the CFI modes with the wavelength be-

low

λc =
b2

w1u2
1
− w2u2

2

rin , (21)

where b is the magnetic field strength as measured in the fluid

frame, w = ρc2 + (γ/γ + 1)P is the relativistic enthalpy and u = vΓ,

where v is the flow rotational velocity and Γ is the corresponding

Lorentz factor. Indices “1” and “2” denote the fluids inside and

outside of the interface with the curvature radius rin respectively.

This criterion was in good agreement both with their Newtonian

and relativistic simulations. Based on these results, they predicted

complete suppression of CFI modes with the azimuthal wave num-

ber m > 4 at the interface between reconfined jets and external gas
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/
1
6
,
σ

R

black: MHD1

red: MHD2

blue: MHD3

solid lines: σ

dashed lines: (θ0Γ)
2/16

Figure 8. The radial distribution of (θ0Γ)
2/16 and σ in the steady-state

solutions.

provided

σ

1 + σ
>

(θ0Γ)
2

16
, (22)

where θ0 is the initial half-opening angle of the jet and Γ is its

Lorentz factor.

Given the jet half-opening angle θ0 = 0.2 and the Lorentz fac-

tor Γ = 5 of our jet models, equation (22) predicts suppression

of the recollimation instability for σ > 0.06. Given the maximum

magnetisation of the jet plasma σmax 6 0.01 at the nozzle, one

would expect the instability to develop in all three models. How-

ever, we find that in MHD3 with σmax = 0.01 it is completely sup-

pressed. One factor promoting this suppression is the increase of

σ at the reconfinement shock. Figure 3 shows that in the shocked

layer the magnetisation increased up to σ ≈ 0.04. Another factor is

the decrease of the jet Lorentz factor at the interface with the exter-

nal gas. It is introduced already at the nozzle via boundary condi-

tions, and downstream it is further amplified by the reconfinement

shock. Figure 8 shows the radial distribution of (θ0Γ)
2/16 and σ

at z=10 in all magnetic models. One can see that the suppression

criterion is not satisfied for the shocked layer in the MHD1 and

MHD2 models, but it is marginally satisfied in the MHD3 model.

Thus the results of our jet simulations are in a good agreement with

the predictions based on the study of magnetic CFI in rotating flu-

ids.

When we were working on this paper, the results of a related

numerical study of relativistic jets was published by Gottlieb et al.

(2020a). They also investigated the impact of magnetic field on the

recollimation instability of relativistic jets, but in the context of

gamma ray bursts (GRB), and concluded that σ > 10−2 leads to

a suppression of the instability. Apparently, they were unaware of

our study of the magnetic CFI in rotating flows and did not com-

pared their results with the criterion (22).

When comparing with the criterion (22), one have to keep in

mind that they consider relativistically hot jets, which can be ther-

mally accelerated. Indeed, the thermal acceleration of weakly mag-

netised jets leads to Γ ∝ R j where R j is the jet radius (e.g. Komis-

sarov 2011). Hence, the flow Lorentz factor may significantly in-

crease compared to its value at the nozzle. Although Gottlieb et al.

(2020a) do not show the variation of jet Lorentz factor, this cannot

c© 0000 RAS, MNRAS 000, 000–000
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be large as the jet radius prior to the reconfinement point increases

only slightly in models for long GRB and only by a factor of few

in their setup for short GRBs. At the nozzle, they set Γ0θ0 = 0.7,

which is only slightly below of Γθ0 = 1 in our simulations. Thus,

at least in the case of long GRBs, their results are consistent with

ours and with the criterion (22).

4.2 Implications to AGN jets

According to the VLBI observations of AGN jets, the mean value of

θ jΓ is about 0.2 (Jorstad et al. 2005; Pushkarev et al. 2009; Clausen-

Brown et al. 2013). For such jets, the criterion (22) gives the criti-

cal value σcr ≈ 0.0025. Such a small value is very problematic for

the magnetic collimation-acceleration mechanism because it dra-

matically loses efficiency when σ drops to the value about unity.

Based on the asymptotic solutions, Lyubarsky (2010) gives σ = 1

at the distance z1 = 102 − 103rg (see also Komissarov et al. (2007))

and σ = 0.1 at the distance z0.1 = z1Γ
4
max from the central black

hole, where rg is its gravitational radius and Γmax is the terminal jet

Lorentz factor. Repeating his calculations for σ = 0.01, we find

z0.01 = z1Γ
49
max (the power index of 49 is not a typo), which is ridicu-

lously high for any realistic value of Γmax. Hence, if AGN jets are

accelerated via this mechanism then their magnetisation never be-

comes small enough to allow the recollimation instability.

Given the jet power and radius, one can relate the strength of

its magnetic field with σ. Assuming a uniform jet, its total power

can be found as

L =

(

w +
B2

cm

4π

)

Γ2cπR2
j

and hence

B2
cm =

4L

cΓ2R2
j

σ

σ + 1
. (23)

We apply this result to the M87 jet, the best studied case of all

AGN jets. It has been suggested that its optical knot HST1 coin-

cides with the reconfinement point, the location where the recon-

finement shock reaches the jet axis (Stawarz et al. 2006; Nalewajko

2012). It is located at about 250 pc from the supermassive black

hole of M87 (Biretta et al. 1999). At around this point, the radio

observations suggest a transition from acceleration to deceleration

of the jet (Asada et al. 2014), as well as a transition from parabolic

to conical geometry (Asada & Nakamura 2012). The jet radius at

the deprojected distance z = 100 pc is R j ≈ 2 pc (Asada & Naka-

mura 2012) and the Lorentz factor Γ ≈ 5 (Asada et al. 2014). The

mean power of the M87 jet can be estimated based on the work

done by their expanding radio lobes against the thermal pressure of

the surrounding them X-ray emitting gas. This yields L ≈ 1044 erg/s

(Owen et al. 2000). Substituting these values into (23) we find

Bcm ≈ 0.11

(

σ

0.001

)1/2

mG .

This is well below the equipartition value for the HST1 knot Beq ≈

1 mG (Harris et al. 2003) and the value based on the variability

time-scale of its emission during flares, Bvar ≈ 0.6 mG (Harris et al.

2009). In fact, these observational estimates suggest σ = 0.03 −

0.08, which is well above σcr = 0.00251.

If the magnetisation of AGN jets drops well below σ = 0.1

1 Note that the data for the M87 jet suggest θ j ≈ 0.02 and Γθ j ≈ 0.1 at

z = 100 pc, in agreement with the data for other VLBI jets.

at sub-kpc scales, then their physics is significantly more compli-

cated than it is assumed in the collimation-acceleration model. In

fact, there are several indications that this may be the case. For

example, the rich morphology of AGN jets is very different from

the featureless structure of the theoretical model. The superluminal

motion in pc-scale jets and the flares of their cores are clear mani-

festations of the central engine variability. The synchrotron optical

and X-ray emission of AGN jets require in-situ particle accelera-

tion, which suggests a dissipation of either the kinetic energy of

the jet bulk motion or of its magnetic energy (see Matthews et al.

2020, and references therein). The polarisation of the jet emission

indicates the presence of a strong longitudinal component, which

is not expected in the ideal model as Bz ∝ R−2
j

and Bφ ∝ R−1
j
Γ−1. In

particular, the longitudinal component is prevalent upstream of the

HST1 knot of M87 jet (Perlman et al. 1999).

There exists an alternative model of the jet acceleration, where

it is powered by the energy released via magnetic dissipation (e.g.

Spruit et al. 2001). In this model, the dissipated magnetic energy

is converted into heat, and as the jet expands the heat is converted

into the kinetic energy of the jet. Such magnetic dissipation may

occur even in freely expanding (unconfined) jet, provided its mag-

netic field frequently changes polarity due to some magnetic ac-

tivity of the jet engine. Suppose that the engine changes polarity

on the time scale ∆te. Then the jet contains blocks of alternating

azimuthal magnetic field of the length le = c∆te in the engine (ob-

server) frame. In the jet frame their length is l′e = Γle = Γc∆te.

If vin is the reconnection speed, then the time scale of magnetic

dissipation ∆t′
d
≈ l′e/vin ≈ Γ∆te/βin. In the observer frame, the cor-

responding time is ∆td ≈ Γ
2∆te, leading to the characteristic length

scale of magnetic dissipation

ld ≈ Γ
2c∆te/βin . (24)

Based on numerical simulations (PIC) of relativistic pair plasma

Liu et al. (2015) give

vin ≈ 0.1ca

(

1 + σ

1 + 0.01σ

)1/2

(25)

where

ca = c

(

σ

1 + σ

)1/2

is the Alfvén speed. Using σ = Γ = 5, and ∆te = 1 yr (assuming

that the polarity changes on the same time scale as the ejection of

new superluminal components in VLBI jets), we obtain ld ≈ 30 pc.

This shows that, the large-scale azimuthal magnetic field can be

destroyed well before the typical reconfinement scale of FR-1 jets.

We envisage that at z ≫ ld, the jet contains mostly small-scale

(tangled or turbulent) magnetic field and the plasma magnetisation

drops down to σ < 1. Even if the magnetisation is not as low as

σ < σcr the recollimation instability may still develop if this σ is

attributed almost entirely to the small-scale field.

If however this scenario is not followed by the AGN jets and

the recollimation instability is not the reason for the observed flar-

ing and deceleration of FR-1 jets within the framework of this

paradigm, then KHI and CFI may be the “culprits” instead. In this

regard, it is intriguing that MHD3 model shows no signs of these

instabilities. Presumably the magnetic field is sufficiently strong to

suppress KHI and not strong enough to promote a sufficiently rapid

growth of CDI. The shear layer is also known to inhibit these insta-

bilities in cylindrical jets (e.g. Martı́ et al. 2016; Kim et al. 2016).

The non-cylindrical structure of our jets may play a role too.

Future observations with ngVLA are expected to allow de-
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tailed study of some AGN jets on the reconfinement scale and ob-

servationally explore their stability properties on this scale (Lister

et al. 2018; Perlman et al. 2019). Numerical simulations can be

used to explore the reconfinement dynamics of jets with σ ≈ 0.1

and that of multi-component jets.

If the AGN jets are almost certainly produced by magnetic

central engines, the jets of gamma-ray bursts (GRB) may well be

neutrino-driven and as the result have much lower magnetisation

than the AGN jets (Woosley 1993; MacFadyen & Woosley 1999).

Hence the recollimation instability is likely to be important for

these jets.

5 CONCLUSION

Recollimation of astrophysical jets can lead to instability. This rec-

ollimation instability is powered by the centrifugal force emerging

along the curved streamlines of recollimating jets and is a variant

of the classic centrifugal instability of rotating fluids. Many types

of astrophysical jets are magnetised and strong regular magnetic

fields can be the most important component of their “jet engines”.

In this study, we explored the role played by such regular magnetic

in the development of the recollimation instability.

As an example, we considered the reconfinement of initially

free-expanding jets with purely azimuthal (toroidal) magnetic field

by the thermal pressure of external gas, using the parameters suit-

able to the so-called “naked” AGN jets. In the case of unmagne-

tised jets, we find that the recollimation instability leads to fully-

developed turbulence soon after the reconfinement point, entrain-

ment of the external gas, and rapid deceleration of the jets. This

is in agreement with the previous studies of such jets, which have

lead to the suggestion that the instability may be responsible for the

observed morphology of FR-1 extragalactic radio sources.

However, we find that even a rather weak azimuthal magnetic

field can fully suppress the development of this instability. For the

jets with the half-opening angle θ0 = 0.2 and the Lorentz factor

Γ = 5, the critical relativistic magnetisation parameter can be as

low as σcr = 0.01.

These results are in good agreement with the predictions based

of the results for magnetic centrifugal instability of rotating flows,

which relate σcr to the product θ0Γ. On one hand, this confirms the

identification of the recollimation instability as a variant of the (lo-

cal in nature) centrifugal instability. On the other hand, this allows

us to extrapolate the results to the regimes typical to parsec-scale

AGN jets where the observations suggest θ0Γ ≈ 0.2, and estimate

their critical magnetisation as σcr ≈ 0.002. Such a low magnetisa-

tion can not be reached on the scales typical for AGN jets if they

are accelerated via the ideal magnetohydrodynamic collimation-

acceleration mechanism. In this is indeed the case, the observed

disruption of FR-1 jets must have a different origin.

If however, the regular azimuthal magnetic field of AGN jets is

destroyed before the jet disruption, then the recollimation instabil-

ity may still be relevant. For example, the jet engine may change its

magnetic polarity on a regular basis, leading to a striped magnetic

structure of the jets. This creates conditions for magnetic recon-

nection at the interfaces between stripes with opposite direction of

magnetic field. Provided the characteristic time scale of this vari-

ability of the central engine is the same as for the ejection of su-

perluminal component (≈ one year), the reconnection may indeed

be completed before kpc scales, leaving behind mostly small-scale

field. In fact, this may explain why the polarisation observations of

AGN jets are often inconsistent with the predominantly azimuthal

magnetic field. The magnetic dissipation accompanying the recon-

nection may power the particle acceleration required to explain the

observed emission of the jets.
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