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Periodic autoregressive conditional duration

Abdelhakim Aknouche∗†, Bader Almohaimeed∗, Stefanos Dimitrakopoulos‡ §

Abstract

We propose an autoregressive conditional duration (ACD) model with periodic time-

varying parameters and multiplicative error form. We name this model periodic autore-

gressive conditional duration (PACD). First, we study the stability properties and the

moment structures of it. Second, we estimate the model parameters, using (profile and

two-stage) Gamma quasi-maximum likelihood estimates (QMLEs), the asymptotic prop-

erties of which are examined under general regularity conditions. Our estimation method

encompasses the exponential QMLE, as a particular case. The proposed methodology is

illustrated with simulated data and two empirical applications on forecasting Bitcoin trad-

ing volume and realized volatility. We found that the PACD produces better in-sample

and out-of-sample forecasts than the standard ACD.

Keywords: Positive time series, autoregressive conditional duration, periodic time-

varying models, multiplicative error models, exponential QMLE, two-stage Gamma QMLE.

1 Introduction

Recent research in time series analysis tends to avoid transforming original data prior to mod-

eling and prefers to represent them directly through models that take into account the actual

support of their distributions. Such an approach parallels to that of generalized linear models

(GLM) for independent data (McCullagh and Nelder, 1989). In this way, numerous time se-

ries models with “specific values” have, recently, received great interest, such as integer-valued

models, including count and binary specifications, and positive-valued models.
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A well-known model for positive-valued time series data is the autoregressive conditional

duration (ACD), introduced by Engle and Russell (1998). Originally designed to model dura-

tions between financial events in high-frequency microstructure markets, the ACD model is also

useful for modeling a broad range of positive data, such as regularly-spaced return range series

(Chou, 2005), daily realized volatility (Lanne, 2006; Zheng et al, 2015; Aknouche and Francq,

2019) and trading volume (Li, 2020; Aknouche and Francq, 2020). Various generalizations of

the ACD model have been proposed to take into account additional facts of positive time series

data (Pacurar, 2008; Hautsch, 2012; Bhogal and Variyam, 2019).

As in the case of GARCH models, it has been documented that the high persistence observed

in empirical studies utilizing the standard ACD specification, is in fact artificial and can be

avoided by considering ACD models with time-varying parameters (Diebold, 1986; Andersen

and Bollerslev, 1997; Mikosch and Starica, 2004; Hujer and Vuletic, 2007; Caporin et al, 2017;

Gallo and Ortanto, 2018). In this paper, we are dealing with time-varying ACD models, by

proposing an ACD model, the parameters of which are allowed to evolve periodically over time.

We name this model periodic autoregressive conditional duration (PACD).

Such a model aims to represent seasonally varying positive-valued series. The observed

process is defined as the product of a unit mean independent and periodically distributed in-

novation process with the conditional mean of the model having a GARCH-type specification

with periodic time-varying parameters. We first study the stability properties of the PACD

model, such as the existence of periodically stationary and ergodic solutions with finite mo-

ments or log-moments. Such properties are needed in the estimation stage, which is the second

contribution of this paper.

To estimate the model parameters, the exponential quasi-maximum likelihood (EQMLE)

is used, since it is well-adapted to the support of the distribution of the data, and it does not

require specifying a distribution for the periodically distributed innovation sequence. However,

because of the periodicity of that sequence, the EQMLE may be less efficient than the Gamma

QMLE (GQMLE) which, in fact, can account for the periodicity of the model innovation.

Consequently, we propose a two-stage Gamma QMLE (2S-GQMLE) which i) utilizes the

EQMLE (or a profile GQMLE) in the first stage, ii) estimates the variance innovations, and

then iii) uses the latter as a by-product in the second stage of the computation of the GQMLE.
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Consistency and asymptotic normality (CAN) of the proposed QMLEs are established and the

relative efficiency of the 2S-GQMLE is studied for some specific conditional distributions.

The PACD can be used to model various seasonal positive-valued phenomena (realized

volatility, trading volumes and transaction rates). The day-of-the-week pattern may be present

in all these phenomena, which means that each day of the week may have its own distribution

(Franses and Paap, 2000; Boynton et al, 2009; Tsiakas, 2006; Charles, 2010). In that sense,

a time-invariant ACD model for daily data is just an average model that does not take into

account the specificities of the underlying measures across days. Other examples of non-financial

series that may be characterized by periodicity are wind power and wind speed series (Ambach

and Croonenbroeck, 2015; Ambach and Schmid, 2015; Ziel et al, 2016).

Our empirical applications concern Bitcoin trading volume data and the UN realized volatil-

ity. Both series are likely to be characterized by the day-of-the-week effect and we show that

the PACD produces better in-sample and out-of-sample forecasts than the benchmark ACD.

The rest of this paper is outlined as follows. In Section 2 we define the PACD and some

special cases of it, and describe the link/relationship between the PACD and the periodic

GARCH of Bollerslev and Ghysels (1996). In Section 3 we derive the stability conditions of

our model. In Section 4, various Gamma QMLEs are proposed and their asymptotic properties

are studied. In section 5 we conduct a simulation study and in section 6 we present the

empirical results from two series (Bitcoin trading volume and UN realized volatility). An

online supplementary material accompanies this paper that contains all the proofs and some

additional data results.

2 Periodic Autoregressive Conditional Duration model

All random variables and processes in this paper are defined on a probability space (Ω,F , P )

and valued in the set of positive real numbers R+ = (0,∞), which is endowed with the Borel

field B (R+). Let S ≥ 1 be a positive integer called the period, and ω0
t , α

0
t1, ..., α

0
tq, β

0
t1, ..., β

0
tp

(p, q ∈ N = {0, 1, ...}) be positive real parameters S-periodic over time, i.e. ω0
t = ω0

t+kS, α
0
ti =

α0
t+kS,i (i = 1, ..., q) and β0

tj = β0
t+kS,j (j = 1, ..., p) for all integers k and t. Let also {ξt, t ∈ Z}

be a sequence of positive random variables with Eξt = 1 for all t, and a finite V ar (ξt) =

σ2
0t > 0. Assume that {ξt, t ∈ Z} is independent and S-periodically distributed in the sense
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that {ξt, t ∈ Z} is an independent sequence and ξt
D
= ξt+S for all t, where

D
= denotes equality in

distribution.

A positive-valued stochastic process {Yt, t ∈ Z} is said to be an MEM (multiplicative error

model; Engle, 2002) periodic autoregressive conditional duration with orders p and q (henceforth

PACD(p, q)) if Yt is given for all t ∈ Z by

Yt = ψtξt (2.1a)

and

ψt = ω0
t +

q∑

i=1

α0
tiYt−i +

p∑

j=1

β0
tjψt−j, (2.1b)

where the innovation term ξt is independent of ψt−j for all j ≥ 1. To ensure the almost sure

(a.s.) positivity of ψt, it is assumed that ω0
t > 0, α0

ti ≥ 0, and β0
tj ≥ 0, for all t ∈ Z, i = 1, .., q

and j = 1, ..., p. To emphasize the periodicity of the model, let t = nS + v for n ∈ Z and

0 ≤ v ≤ S − 1. Then, equation (2.1b) can be written as follows

ψnS+v = ω0
v +

q∑

i=1

α0
viYnS+v−i +

p∑

j=1

β0
vjψnS+v−j, n ∈ Z, 0 ≤ v ≤ S − 1, (2.1c)

where by season or channel v (0 ≤ v ≤ S − 1) (sometimes in this paper we rather write

1 ≤ v ≤ S) we denote the set {..., v − S, v, v + S, v + 2S, ...} with corresponding parameters

ω0
v , α

0
vi, β

0
vj and σ

2
0v = V ar (ξnS+v). Let Ft be the σ-Algebra generated by {Yt−i, i ≥ 0}. The

conditional mean and conditional variance of the model (2.1) are given respectively by

E (Yt|Ft−1) = ψt (2.2a)

and

V ar (Yt|Ft−1) = σ2
0tψ

2
t . (2.2b)

The PACD model, thus, follows the quadratic variance-to-mean relationship (i.e. the condi-

tional variance is proportional to the squared conditional mean), where σ2
0t > 0 is the variance

of ξt and is S-periodic by construction (from the ipdS property of the innovation sequence

{ξt, t ∈ Z}). The specification (2.1) is an MEM in the sense of Engle (2002), but the condi-
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tional mean equation (2.1b) has rather periodic time-varying coefficients. For S = 1, model

(2.1) reduces to the standard autoregressive conditional duration (ACD in short) of Engle and

Russell (1998). No specification for the distribution of {ξt, t ∈ Z} is imposed apart the semi-

parametric quadratic variance-to-mean function (2.2b). However, a useful family of conditional

distributions satisfying (2.2b) is the Gamma distribution with shape 1
σ2
0t

and scale 1
σ2
0tψt

, that is

Yt|Ft−1 ∼ Γ
(

1
σ2
0t

, 1
σ2
0tψt

)
, (2.3)

where ψt satisfies (2.1b). In the latter case, the innovation term ξt in (2.1) will be marginally

Gamma distributed

ξt ∼ Γ
(

1
σ2
0t

, 1
σ2
0t

)
, (2.4)

and the process defined by (2.3) is called Gamma PACD(p, q). A notable particular case of

model (2.3) appears when the variance σ2
0t ≡ 1 is constant, so ξt ∼ Γ (1, 1), which corresponds to

the exponential PACD. Another useful and versatile family of conditional distributions we use

in this paper is the Beta prime (BP) distribution. Recall that a nonnegative random variable Y

is said to have a BP distribution with shape parameters a > 0 and b > 0, and scale parameter

c > 0 (Y ∼ BP (a, b, c)) if its probability density function is given by

f (y; a, b, c) = 1
cBeta(a,b)

(
y

c

)a−1 (
1 + y

c

)−a−b
, y ≥ 0,

where Beta (a, b) is the classical Beta function (cf. Johnson et al, 1995). In contrast with the

Gamma distribution, the BP distribution allows dealing with zero values and can be fat-tailed

(Moghaddam et al, 2019). The mean and variance of Y are respectively EY = ac
b−1

(b > 1)

and V ar (Y ) = c2a(a+b−1)

(b−2)(b−1)2
(b > 2). When c = 1, the BP (a, b, 1) is called the standard BP

distribution and simply writes BP (a, b). Naturally if X ∼ BP (a, b) then for any c > 0, Y =

cX ∼ BP (a, b, c). Thus if the innovation ξt is BP distributed with the following parametrization

ξt ∼ BP
(
2σ−2

0t + 1, 2σ−2
0t + 2

)
,

then Eξt = 1 and V ar (ξt) = σ2
0t as required by (2.1). Moreover, the conditional distribution of
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Yt = ψtξt would be

Yt|Ft−1 ∼ BP
(
2σ−2

0t + 1, 2σ−2
0t + 2, ψt

)
.

Note also that Eξ2t < ∞ when σ2
0t > 0, Eξ3t < ∞ when 0 < σ2

0t < 2, and Eξ4t < ∞ when

0 < σ2
0t < 1.

As in the time-invariant case, the periodic ACD model can be seen as a squared periodic

GARCH (PGARCH) model as proposed by Bollerslev and Ghysels (1996). Indeed, consider

the following real-valued PGARCH(p, q) process given by

Xt =
√
htηt (2.5a)

and

ht = ω0
t +

q∑

i=1

α0
tiX

2
t−i +

p∑

j=1

β0
tjht−j, (2.5b)

where {ηt, t ∈ Z} is an ipdS sequence with mean zero and unit variance, and the parameters

ω0
t , α

0
ti and β0

tj are defined as above. It is clear that the squared PGARCH process defined

by Yt = X2
t (t ∈ Z) satisfies the PACD equation (2.1) with ξt = η2t and ψt = ht. Conversely,

let {Yt, t ∈ Z} be a PACD model given by (2.1), and assume {zt, t ∈ Z} is an independent

and identically distributed (iid) sequence uniformly distributed in {−1, 1} (see also Francq

and Zakoian, 2019 for the non-periodic case S = 1). Assume {zt, t ∈ Z} and {ξt, t ∈ Z} are

independent and define the process {Xt, t ∈ Z} by

Xt = zt
√
Yt =

√
htηt,

where ht = ψt satisfies (2.5b) and ηt = zt
√
ξt is a term of an ipdS sequence. Hence {Xt, t ∈ Z} is

a PGARCH model in the sense (2.5). Note finally that a PACD model admits a weak periodic

ARMA (PARMA) (Lund and Basawa, 2000; Francq et al, 2011). Setting Yt = ψt + εt, the

process {Yt, t ∈ Z} may be written in the following PARMA

Yt = ω0
t +

max(p,q)∑

i=1

(
α0
ti + β0

ti

)
Yt−i + εt −

p∑

j=1

β0
tjεt−j,
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where

εt = Yt − E (Yt|Ft−1) = ψt (ξt − 1) (2.6)

is a zero-mean term of a martingale difference sequence with a finite periodic variance Eε2t =

E (ξt − 1)2Eψ2
t = σ2

0tEψ
2
t .

A more general PACD, which is not necessarily MEM is defined through a conditional

distribution of the form

Yt|Ft−1 ∼ Fψt
, (2.7)

where Fψ is a cumulative probability distribution (with positive support) with mean ψ, and

ψt is given by (2.1b). Notice finally that our PACD is a particular case of the more general

time-dependent ACD (tdACD) in which the conditional mean and variance parameters are time-

varying, but not necessarily function of the sample size. Time dependence here is understood

in the sense of Miller (1968) and Hallin (1984). In a different perspective, Bortoluzzo et al

(2010) proposed a class of slowly varying tdACD models (denoted by tvACD) in which the

coefficients are time-varying but depend on the sample size similarly to Dahlhaus and Subba

Rao (2006). The tvACD process is locally stationary in the sense of Dahlhaus (1997). Mishra

and Ramanathan (2010) established some probabilistic and asymptotic results for the tvACD

model. Our PACD model, however, is not nested within the tvACD model.

3 Periodic ergodicity and finite moment conditions

We now give necessary and/or sufficient conditions for model (2.1) to be strictly periodically

stationary and periodically ergodic. Such properties are recalled in the Supplementary material.

We also consider conditions for the existence of finite moments. Combining (2.1a) and (2.1b)

we obtain the following stochastic recurrence equation (SRE)

Y nS+v = A0
nS+vY nS+v−1 +B0

nS+v, (3.1)
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driven by the ipdS sequence
{
(A0

nS+v, B
0
nS+v), n ∈ Z, 0 ≤ v ≤ S − 1

}
, where Y nS+v = (YnS+v, ...

, YnS+v−q+1, ψnS+v, ..., ψnS+v−p+1)
′, B0

nS+v =
(
ω0
vξnS+v, 0(q−1)×1, ω

0
v , 0(p−1)×1

)′
, and

A0
nS+v =




α0
v1ξnS+v · · · α0

v,q−1ξnS+v α0
vqξnS+v β0

v1ξnS+v · · · β0
v,p−1ξnS+v β0

vpξnS+v

1 · · · 0 0 0 · · · 0 0

...
. . .

...
...

...
. . .

...
...

0 · · · 1 0 0 · · · 0 0

α0
v1 · · · α0

v,q−1 α0
vq β0

v1 · · · β0
v,p−1 β0

vp

0 · · · 0 0 1 · · · 0 0

...
. . .

...
...

...
. . .

...
...

0 · · · 0 0 0 · · · 1 0




,

0m×n being the null matrix of dimension m× n. Let

γS = inf

{
1

n
E log

∥∥A0
nS...A

0
2A

0
1

∥∥ , n ≥ 1

}

be the top Lyapunov exponent associated with the ipdS-driven SRE (3.1) (Aknouche et al,

2020). Let also

β0
nS+v =




β0
v1 · · · β0

v,p−1 β0
vp

1 · · · 0 0

...
. . .

...
...

0 · · · 1 0




,

and denote by ρ (A0) the spectral radius of the squared matrix A0, i.e. the maximum modulus

of the eigenvalues of A0. The following result gives the conditions for equation (3.1) to have a

unique strictly periodically stationary and periodically ergodic solution.

Theorem 3.1 i) Assume E (log (ξv)) < ∞ for all 1 ≤ v ≤ S. A necessary and sufficient

condition for model (2.1) to have a unique nonanticipative strictly periodically stationary and

periodically ergodic solution is that

γS < 0. (3.2)
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Such a solution is given for all n ∈ Z and 0 ≤ v ≤ S − 1 by

Y nS+v =
∞∑

j=0

j−1∏

i=0

A0
nS+v−iB

0
nS+v−j, (3.3)

where the series in the right hand side of (3.3) converges absolutely almost surely.

ii) If (2.1) admits a strictly periodically stationary solution then

ρ

(
S−1∏

v=0

β0
S−v

)
< 1. (3.4)

In the special case where p = q = 1, the periodic stationarity condition (3.2) is simplified

as follows
S∑

v=1

E
(
log
(
α0
vξv−1 + β0

v

))
< 0,

while (3.4) reduces to
S∏
v=1

β0
v < 1.

Conditions for the existence of moments of the PACD(p, q) process are given as follows.

Theorem 3.2 Assume Eξv < ∞ for all 1 ≤ v ≤ S. A sufficient condition for the process

given by (2.1) to be strictly periodically stationary and periodically ergodic with EYv < ∞

(1 ≤ v ≤ S) is that

ρ

(
S−1∏

v=0

E
(
A0
S−v

)
)
< 1. (3.5)

Some remarks are in order:

- In the case, where S = 1, the conditional mean coefficients are time-invariant, that is

ω0
v = ω0, α0

vi = α0
i and β0

vj = β0
j . Therefore, using a similar device by Chen and An (1998),

(3.5) reduces to the following stationarity in mean condition

q∑

i=1

α0
i +

p∑

j=1

β0
j < 1

as provided by Engle and Russell (1998).

- When p = q = 1, the periodic stationarity-in-mean condition (3.5) is equivalent to the

following condition
S∏

v=1

(
α0
v + β0

v

)
< 1. (3.6)
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As many time-varying models, the PACD(1, 1) model may be locally instable, i.e. α0
v + β0

v ≥ 1

for some season v, but even thought stable in the sense (3.6).

Theorem 3.3 i) Under (3.2) there exists κ > 0 such that for all 1 ≤ v ≤ S

Eψκv <∞ and EY κ
v <∞. (3.7)

ii) Let {Yt, t ∈ Z} be a strictly periodically stationary solution of (2.1) and assume that

Eξmv (m ∈ N
∗) is finite for all 1 ≤ v ≤ S. A sufficient condition for EY m

v to be finite (for all

1 ≤ v ≤ S) is that

ρ

(
S−1∏

v=0

E
(
A0⊗m
S−v

)
)
< 1, (3.8)

where A0⊗m is the Kronecker product: A0 ⊗ A0 ⊗ · · · ⊗ A0 with m factors.

In the special case of Gamma PACD with p = q = 1, explicit conditions equivalent to (3.8)

can be given. These conditions are also necessary for the existence of finite moments. For the

next Proposition and its proof, to simplify the notation, we will denote the parameters ω0
v , α

0
v

and β0
v by ω0v, α0v and β0v, respectively.

Proposition 3.1 The Gamma PACD (1, 1) model (2.3) admits a unique nonanticipative

periodically ergodic solution {Yt, t ∈ Z} such that:

i) EYv <∞ (1 ≤ v ≤ S) if and only if (3.6) holds.

ii) EY 2
v <∞ ( 1 ≤ v ≤ S) if and only if Eξ2v <∞ (1 ≤ v ≤ S), (3.6) and

S∏

v=1

(
α2
0vEξ

2
v−1 + 2α0vβ0v + β2

0v

)
< 1. (3.9)

iii) EY 3
v <∞ (1 ≤ v ≤ S) if and only if Eξ3v <∞ ( 1 ≤ v ≤ S), (3.6), (3.9) and

S∏

v=1

(
α3
0vEξ

3
v−1 + 3

(
σ2
0,v−1 + 1

)
α2
0vβ0v + 3α0vβ

2
0v + β3

0v

)
< 1. (3.10)

iv) EY 4
v <∞ (1 ≤ v ≤ S) if and only if Eξ4v <∞ (1 ≤ v ≤ S), (3.6), (3.9), (3.10) and the

following hold

S∏

v=1

(
α4
0vEξ

4
v−1 + 4

(
1 + σ2

0,v−1

) (
1 + 2σ2

0,v−1

)
α3
0vβ0v + 6

(
1 + σ2

0,v−1

)
α2
0vβ

2
0v + 4α0vβ

3
0v + β4

0v

)
< 1.

(3.11)

10



For the particular exponential PACD(1, 1) model, YnS+v|FnS+v−1 ∼ Γ
(
1, 1

ψnS+v

)
, just re-

place in Proposition 3.1 the moments Eξ2v , Eξ
3
v and Eξ4v by 1, 6 and 24 respectively, and σ2

0v

by 1 for all 1 ≤ v ≤ S.

4 Gamma quasi-maximum likelihood estimates

Let Y1, Y2, ..., YT be a series generated from the PACD(p, q) model, which we can rewrite in the

following form

YnS+v = ψnS+vξnS+v

ψnS+v = ψnS+v (θ0) = ω0
v +

q∑
i=1

α0
viYnS+v−i +

p∑
j=1

β0
vjψnS+v−j

n ∈ Z, 0 ≤ v ≤ S − 1, (4.1)

where the true parameter θ0 = (θ0′1 , θ
0′
2 , ..., θ

0′
S )

′ with θ0v = (ω0
v , α

0
v1, ..., α

0
vq, β

0
v1, ..., β

0
vp)

′ (1 ≤ v ≤

S) belongs to a parameter space Θ ⊂
(
(0,∞)× [0,∞)(p+q)

)S
. The true innovation variance

parameter, which is denoted by σ2
0 = (σ2

01, ..., σ
2
0S)

′
, belongs to a parametric space ∆ ⊂ (0,∞)S.

The sample size T = NS (N ≥ 1) is assumed without loss of generality a multiple of S. Given

initial values Y0, ..., Y1−q, ψ̃0, ..., ψ̃1−p and a generic parameter θ ∈ Θ define

ψ̃nS+v (θ) = ωv +

q∑

i=1

αviYnS+v−i +

p∑

j=1

βvjψ̃nS+v−j (θ) , 1 ≤ v ≤ S, n ≥ 0, (4.2a)

as an observable proxy for ψnS+v (θ). The latter is defined as a periodically stationary solution

of the following generic model (θ ∈ Θ)

ψnS+v (θ) = ωv +

q∑

i=1

αviYnS+v−i +

p∑

j=1

βvjψnS+v−j (θ) , 0 ≤ v ≤ S − 1, n ∈ Z. (4.2b)

4.1 Exponential and profile Gamma QMLEs

The true conditional distribution of (4.1) is unknown due to the unspecification of the law of

ξv (1 ≤ v ≤ S). Thus, a quasi-maximum likelihood estimate (QMLE) which does not require

any precise knowledge of the conditional distribution is suitable for estimating the parameter

θ0 involved in the conditional mean. Among many possible QMLEs, the one computed on

the basis of the exponential distribution (EQMLE in short) is especially useful for positive

11



duration data because it reduces to the maximum likelihood estimate when ξv is exponentially

distributed (Aknouche and Francq, 2020). A more general QMLE, which can be more efficient

than the EQMLE in the periodic time-varying innovation context, is the one computed on the

basis of the Gamma distribution with arbitrary fixed variance parameters. Let (σ2
t )t be fixed

known positive numbers, S-periodic over t, i.e. σ2
nS+v = σ2

v , for all n ∈ {0, ..., N − 1}. (This

does not be confused with the unknown true σ2
0t). The profile Gamma likelihood associated

with σ2 = (σ2
1, ..., σ

2
S)

′
> 0 is given, ignoring constants, by

L̃T
(
θ,σ2

)
= 1

T

T∑

t=1

l̃t
(
θ, σ2

t

)
= 1

NS

S∑

v=1

N−1∑

n=0

l̃nS+v
(
θ, σ2

v

)
, (4.3a)

l̃nS+v
(
θ, σ2

v

)
= 1

σ2
v

(
YnS+v

ψ̃nS+v(θ)
+ log ψ̃nS+v (θ)

)
. (4.3b)

The profile Gamma QMLE (GQMLE) θ̂G of θ0 is, then, the minimizer of L̃T (θ,σ
2) over Θ,

θ̂G = argmin
θ∈Θ

L̃T
(
θ,σ2

)
, (4.4)

for some arbitrarily fixed and known σ2.

When σ2 = (1, ..., 1)′, the GQMLE defined by (4.4) reduces to the EQMLE denoted by

θ̂E = argminθ∈Θ L̃T (θ,1) (Aknouche and Francq, 2020), that is

θ̂E = argmin
θ∈Θ

1
NS

S∑

v=1

N−1∑

n=0

YnS+v

ψ̃nS+v(θ)
+ log ψ̃nS+v (θ) .

Let γS (A0) be the top Lyapunov exponent associated with
(
A0
nS+v

)
n,v

in (3.1). Let also βv

defined as in (3.1) with βvj in place of β0
vj. To establish the strong consistency of θ̂G we need

the following assumptions.

A1 γS (A0) < 0 and ∀θ ∈ Θ, ρ

(
S−1∏
v=0

βS−v

)
< 1.

A2 θ0 ∈ Θ and Θ is compact.

A3 The polynomials α0
v (z) =

q∑
i=1

α0
viz

i and β0
v (z) = 1 −

p∑
j=1

β0
vjz

j have no common root,

α0
v (1) 6= 0, and α0

vq + β0
vp 6= 0 for all 1 ≤ v ≤ S.

A4 ξv is non-degenerate and Eξv = 1 for all 1 ≤ v ≤ S.

As seen in Section 3, γS (A0) < 0 in A1 ensures periodic stationarity and periodic ergodicity

of the PACD model (4.1). The condition ρ

(
S−1∏
v=0

βS−v

)
< 1 is imposed for the invertibility of

12



equation (4.2b) for any θ ∈ Θ. The compactness assumption A2 is standard while A3 and A4

are made to guarantee the identifiability of the model.

Theorem 4.1 Let
(
θ̂G

)
be a sequence of GQMLEs defined by (4.4). Under A1-A4,

θ̂G → θ0 a.s. as N → ∞ for all σ2 > 0.

Turn now to the asymptotic normality property of θ̂G. The following assumptions are to be

considered.

A5 θ0 belongs to the interior of Θ.

A6 Eξ2v = σ2
0v ∈ (0,∞) for all 1 ≤ v ≤ S, the matrices

I
(
θ0,σ

2
0,σ

2
)
=

S∑

v=1

σ2
0v

σ4
v
E
(

1
ψ2
v(θ0)

∂ψv(θ0)
∂θ

∂ψv(θ0)
∂θ′

)
and J

(
θ0,σ

2
)
=

S∑

v=1

1
σ2
v
E
(

1
ψ2
v(θ0)

∂ψv(θ0)
∂θ

∂ψv(θ0)
∂θ′

)

(4.5)

are finite, and J (θ0,σ
2) is nonsingular for all σ2 > 0.

Theorem 4.2 Under A1-A6 we have

√
N
(
θ̂G − θ0

)
D→ N

(
0,Σ

(
θ0,σ

2
0,σ

2
))

as N → ∞ for all σ2 > 0, (4.6a)

where

Σ
(
θ0,σ

2
0,σ

2
)
= J

(
θ0,σ

2
)−1

I
(
θ0,σ

2
0,σ

2
)
J
(
θ0,σ

2
)−1

(4.6b)

is block-diagonal and
D→ stands for convergence in distribution.

Remark 4.1

i) When σ2 = (1, ..., 1)′ := 1, the EQMLE has a covariance matrix in a ”sandwich” form

and is, in general, not asymptotically efficient unless σ2
0 = 1 and the conditional distribution

is exponential.

ii) For the special exponential PACD(p, q) model corresponding to V ar (ξv) = 1 for all

1 ≤ v ≤ S, if we set σ2 = 1 then J (θ0,1) = I (θ0,1,1) and the asymptotic covariance matrix

of the EQMLE reduces to Σ = J (θ0,1)
−1. The EQMLE is thus asymptotically efficient.

iii) If ξv has a constant variance, i.e. σ2
0v = V ar (ξv) = σ2

0 for all 1 ≤ v ≤ S, then it suffices

to take σ2 = (1, ..., 1)′ and apply the EQMLE. We would have I (θ0,σ
2
0,1) = σ2

0J (θ0,1) and

the covariance matrix would be equal to Σ = σ2
0J (θ0,1)

−1. In this case, the EQMLE is the

13



best QMLE among all QMLEs belonging to the linear exponential family.

iv) For the non-periodic ACD corresponding to S = 1 and then σ2
0v = σ2

0 for all 1 ≤ v ≤ S,

it is natural to take σ2
v = σ2 for all 1 ≤ v ≤ S. In this case, the profile likelihood (4.3) would

be given by L̃T (θ,σ
2) = 1

σ2

1
T

T∑
t=1

Yt

ψ̃t(θ)
+ log ψ̃t (θ) and the resulting GQMLE then amounts to

maximizing 1
T

T∑
t=1

Yt

ψ̃t(θ)
+ log ψ̃t (θ) which is nothing else but the EQMLE criterion. This is why,

in general, the EQMLE is the most used QMLE for non-periodic ACD even when the latter is

strictly (conditionally) Gamma distributed.

v) Although θ̂G is consistent and asymptotically Gaussian for all fixed known σ2, and thus

can be used in applications, it is generally inefficient unless σ2 is fixed to the true variance

parameter σ2
0 = (σ2

01, ..., σ
2
0S)

′
which is generally unknown.

vi) When the profile variance σ2 coincides with the true variance σ2
0 we would have J (θ0,σ

2
0) =

I (θ0,σ
2
0,σ

2
0) and Σ = J (θ0,σ

2
0)

−1
, where the GQMLE is the most efficient among all QMLEs

belonging to the exponential family. As σ2
0 is generally unknown, a crucial step is to get a

consistent estimate σ̂
2 and construct with it an estimated (profile) log-likelihood from which

a new Gamma QMLE, called the two-stage Gamma QMLE (2S-GQMLE), is computed. The

resulting estimate would have the aforementioned efficiency property.

vii) As for the Gaussian QMLE of GARCH models, the GQMLEs do not require any

moment condition on the observed process (Yt), but only on the innovation process (ξv), which

is a desirable property for any QMLE.

viii) Theorem 4.1 also holds for the non-MEM PACD (2.7). It suffices to replace the as-

sumptions A1-A4 by the following:

A1’ The process {Yt, t ∈ Z} is strictly periodically stationary and periodically ergodic.

A2’ EY 1+ǫ
t <∞ for some ǫ > 0.

A3’ ψt (θ) = ψt (θ0) a.s. ⇒ θ = θ0.

4.2 Estimating the innovation variances

To estimate the unknown variances σ2
0 = (σ2

01, ..., σ
2
0S)

′
under the MEM constraint recall (2.1)-

(2.2) and let

ut = (Yt − ψt)
2 − V ar (Yt|Ft−1) = ψ2

t

(
(ξt − 1)2 − σ2

0t

)
.
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Then

(Yt−ψt)
2

ψ2
t

= σ2
0t + vt, (4.7a)

where vt = ut
ψ2
t
= (ξt − 1)2 − σ2

0t. The sequence (vt) is thus zero-mean ipdS with variance

E
(
(ξt − 1)2 − σ2

0t

)2
, which is finite under the following assumption.

A7 Eξ4v <∞ for all v = 1, ..., S.

Since ψt = ψt (θ0) depends on the unknown parameter θ0, the regressand in (4.7a) is unob-

servable. If we replace θ0 by a consistent estimate, say the GQMLE in (4.4), then we get the

following approximate regression but with observable regressand

(Yt−ψ̂t)
2

ψ̂2
t

= σ2
0t + v̂t, (4.7b)

where ψ̂t = ψt

(
θ̂G

)
. From (4.7b) a feasible OLS estimate (OLSE) of σ2

0 is given by

σ̂2
v =

1
N

N−1∑

n=0

(YnS+v−ψ̂nS+v)
2

ψ̂2
nS+v

, for all v = 1, ..., S. (4.8)

The following result shows that the OLSE σ̂2
v (1 ≤ v ≤ S) is consistent and asymptotically

Gaussian.

Theorem 4.3 Under A1-A4

σ̂2
v → σ2

0v a.s. as N → ∞, for all v = 1, ..., S. (4.9a)

If in addition A7 holds then for all v = 1, ..., S

√
N
(
σ̂2
v − σ2

0v

) D→ N (0,Λv) as N → ∞, (4.9b)

where Λv = E
(
(ξv − 1)2 − σ2

0v

)2
.

An immediate stronger consequence of the latter Theorem is that

√
N
(
σ̂

2 − σ2
0

) D→ N (0,Λ) ,

where σ̂
2 = (σ̂2

1, ..., σ̂
2
S)

′
and Λ = diag (Λ1, ...,ΛS). This means that σ̂2

v is asymptotically
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independent of σ̂2
s for all v 6= s. A consistent estimate of the limiting variance Λv in (4.9b) is

given by

Λ̂v =
1
N

N−1∑

n=0

((
ξ̂nS+v − 1

)2
− σ̂2

v

)2

, v = 1, ..., S, (4.10)

where ξ̂nS+v = YnS+v

ψ̂nS+v

is the residual of model (2.1). With (4.9b) and (4.10), the asymptotic

matrices in (4.5) may also be estimated. A consistent estimate of Σ, while replacing the true

parameters θ0 and σ2
0 = (σ2

01, ..., σ
2
0S)

′
by their respective estimates θ̂G and σ̂

2 = (σ̂2
1, ..., σ̂

2
S)

′
, is

Σ̂
(
σ2
)
:= Σ̂

(
σ2, θ̂G

)
= Ĵ−1

(
σ2
)
Î−1

(
σ2
)
Ĵ−1

(
σ2
)
, (4.11)

where

Ĵ
(
σ2
)

: = Ĵ(θ̂G,σ
2) = 1

N

N−1∑

n=0

S∑

v=1

1

σ2
vψ

2
nS+v(θ̂G)

∂ψnS+v(θ̂G)
∂θ

∂ψnS+v(θ̂G)
∂θ′

,

Î
(
σ2
)

: = Î
(
θ̂G,σ

2
)
= 1

N

N−1∑

n=0

S∑

v=1

σ̂2
v

σ4
vψ

2
nS+v(θ̂G)

∂ψnS+v(θ̂G)
∂θ

∂ψnS+v(θ̂G)
∂θ′

.

4.3 Two-stage Gamma QMLE

We have seen above that the asymptotic distribution and then the asymptotic efficiency of the

profile GQMLE depend on the choice of the profile variance σ2. To improve the asymptotic

efficiency of the GQMLE, we can replace in (4.4) the profile variances σ2 by the OLS estimates

σ̂
2 = (σ̂2

1, ..., σ̂
2
S)

′
given by (4.8). The resulting estimate is denoted by 2S-GQMLE and is given

by the following steps.

Algorithm 4.1 Two-stage GQMLE

i) Fix an arbitrarily known σ2 > 0, for example σ2 = (1, ..., 1)′.

ii) Get the profile GQMLE θ̂G from (4.4).

iii) Estimate the innovation variance σ2
0 using σ̂

2 in (4.8).

iv) Consider the 2S-GQMLE as a solution of the following problem

θ̂∗G = argmin
θ∈Θ

L̃T
(
θ, σ̂2

)
= argmin

θ∈Θ

N−1∑

n=0

S∑

v=1

YnS+v

σ̂2
vψ̃nS+v(θ)

+ 1
σ̂2
v
log ψ̃nS+v (θ) . (4.12)

Consistency of asymptotic normality of θ̂∗G are a by-product of Theorems 4.1-4.2.
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Corollary 4.1 Under A1-A4

θ̂∗G → θ0 a.s. as N → ∞.

If in addition A5-A6 hold then

√
N
(
θ̂∗G − θ0

)
D→ N

(
0,Σ

(
θ0,σ

2
0,σ

2
0

))
as N → ∞, (4.13)

where

Σ
(
θ0,σ

2
0,σ

2
0

)
= J

(
θ0,σ

2
0

)−1
=

(
S∑

v=1

1
σ2
0v

E
(

1
ψ2
v(θ0)

∂ψv(θ0)
∂θ

∂ψv(θ0)
∂θ′

))−1

.

The latter result shows that whatever the distribution of (ξv)v is, the 2S-GQMLE θ̂∗G is

asymptotically the most efficient one among all QMLEs belonging to the linear exponential

family (cf. Gourieroux et al, 1984; Wooldridge, 1999). In particular, θ̂∗G in never asymptotically

less efficient than the profile GQMLE θ̂G and therefore than the EQMLE θ̂E. Similarly to (4.11),

a consistent estimate of J (θ0,σ
2
0) in Corollary 4.1 is

Ĵ := Ĵ(θ̂∗G, σ̂
2) = 1

N

N−1∑

n=0

S∑

v=1

1

σ̂2
vψ

2
nS+v(θ̂∗G)

∂ψnS+v(θ̂∗G)
∂θ

∂ψnS+v(θ̂∗G)
∂θ′

. (4.14)

4.4 Testing for periodic parameter variation

4.4.1 Conditional mean parameters

As for any periodic time-varying model, an important issue in building a PACD model is to

test for the periodic variation of its parameters. This may validate the periodic structure of the

model and also reduce the complexity of the model and thus simplify its estimation procedure.

For specified (Gaussian) periodic ARMA and (conditionally Gaussian) GARCHmodels, Franses

and co-workers (e.g. Boswijk and Franses, 1995,1996; Franses and Paap, 2000,2004) among

others (see also Aknouche 2015) employed likelihood ratio (LR), Lagrange Multiplier (LM),

Fisher (F), or Wald tests for the null hypothesis of no periodic parameter variation against its

opposite as alternative. For our PACD model, such a null hypothesis writes for the conditional
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mean parameter as follows

Hθ
0 : θ01 = θ02 = .... = θ0S, i.e. Mθ0 = 0, (4.15)

where

M =




Ik −Ik 0k · · · 0k

0k Ik −Ik · · · 0k
...

. . . . . . . . .
...

0k 0k · · · Ik −Ik




is of dimension (S − 1) k × Sk with Ik and 0k being respectively the identity matrix and the

null square matrix of dimension k = p+ q + 1. Note that the matrix M is not unique and can

be replaced by any appropriate block-permutation of it. Since we do not specify a distribution

for the PACD model, quasi- versions of the LR and the LM statistics might be derived to test

(4.15), but they would depend on the nuisance parameter σ2
0, which is a complicated task.

We thus alternatively use the Wald test which is more simple since it does not rely on the

conditional distribution of the PACD model. A feasible Wald statistic for (4.15), based on the

asymptotic distribution of the 2S-GQMLE as given by (4.13), is defined by

W θ =
(
Mθ̂∗G

)′ (
M 1

N
Ĵ−1M ′

)−1

Mθ̂∗G, (4.16)

where Ĵ is given by (4.14). The use of the 2S-GQMLE rather than a profile GQMLE is made

because the latter is never asymptotically more efficient than the former. Under Hθ
0 in (4.15)

and the assumptions of Corollary 4.1 it can be seen that

W θ D→ χ2
((S−1)(p+q+1)) as N → ∞.

Given a size α∈ (0, 1), let χα be the critical value such that P
(
W θ > χα

)
→ α as N → ∞.

The null Hθ
0 is thus rejected if W θ > χα.

Note that if the null (4.15) is rejected, this does not imply that all parameters across season

are different, and it may be possible that at least two seasonal parameters are significantly

equal. In lieu of a global hypothesis over all seasons as in (4.15), we can also consider the
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following pairwise null hypothesis

Hθ,vs
0 : θ0v − θ0s = 0 for some v 6= s (4.17)

for which we use again the Wald test. As the asymptotic variance in (4.13) is block diagonal,

the limiting result (4.13) can be rewritten in the following reduced form

√
N
(
θ̂∗v − θ0v

)
D→ N

(
0, Jv

(
θ0v, σ

2
0v

)−1
)

as N → ∞ for all 1 ≤ v ≤ S,

where Jv (θ
0
v, σ

2
0v) =

1
σ2
0v

E
(

1
ψ2
v(θ0)

∂ψv(θ0)
∂θ

∂ψv(θ0)
∂θ′

)
and θ̂∗v is the subvector of θ̂∗G corresponding to

the parameter θ0v over the vth season. For all v 6= s, the estimates θ̂∗v and θ̂
∗

s are asymptotically

independent, implying that
√
N
(
θ̂∗v − θ̂∗s

)
D→ N (0, Jvs) ,

where Jvs = Jv (θ
0
v, σ

2
0v)

−1
+ Js (θ

0
s , σ

2
0s)

−1
. A Wald statistic for testing (4.17) is given by

W θ
vs =

(
θ̂∗v − θ̂∗s

)′ (
1
N
Ĵvs

)−1 (
θ̂∗v − θ̂∗s

)
, (4.18)

where from (4.14)

Ĵvs =

(
1
N

N−1∑

n=0

1

σ̂2
vψ

2
nS+v(θ̂∗G)

∂ψnS+v(θ̂∗G)
∂θ

∂ψnS+v(θ̂∗G)
∂θ′

)−1

+

(
1
N

N−1∑

n=0

1

σ̂2
sψ

2
nS+s(θ̂∗G)

∂ψnS+s(θ̂∗G)
∂θ

∂ψnS+s(θ̂∗G)
∂θ′

)−1

is a consistent estimate of Jvs. Under the assumptions of Corollary 4.1 and Hθ,vs
0 in (4.17) we

have

W θ
vs

D→ χ2
(p+q+1) as N → ∞.

4.4.2 Innovation variances

We can also test for the periodicity of the innovation sequence (ξt). For this we consider a

similar null hypothesis to (4.15)

Hσ
0 : σ2

01 = σ2
02 = .... = σ2

0S i.e. Lσ2
0 = 0, (4.19)
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where the (S − 1) × S matrix L is equal to M in (4.15) when k = 1. The Wald statistic for

testing (4.19) is given by

W σ =
(
Lσ̂2

)′ (
L 1
N
Λ̂L′

)−1

Lσ̂2, (4.20)

where Λ̂ = diag
(
Λ̂1, ..., Λ̂1

)′
is the diagonal matrix formed by Λ̂v given by (4.10). Under the

assumptions of Theorem 4.3 we have

W σ D→ χ2
(S−1) as N → ∞.

A pairwise null hypothesis for the innovation variances can also be considered

Hσ,vs
0 : σ2

0v − σ2
0s = 0 for some v 6= s.

The corresponding Wald statistic,

W σ
vs = N∆̂−1

vs

(
σ̂2
0v − σ̂2

0s

)2
, (4.21)

satisfies

W σ
vs

D→ χ2
(1) as N → ∞,

where ∆̂vs = ∆̂v + ∆̂s follows from the asymptotic independence between σ̂2
v and σ̂2

s (v 6= s).

5 Simulation study

We examine the finite-sample behavior of the Gamma QMLEs, as defined above, using many

simulated PACD(1,1) series with sample size T = 2000. We consider three distributions for

the innovation (ξt) in (2.1), namely i) the exponential distribution (ξt ∼ E (1) ≡ Γ (1, 1)) so

that Yt|Ft−1 ∼ Γ (1, 1/ψt) (cf. Table 5.1), ii) the Gamma distribution (ξt ∼ Γ
(
σ−2
0t , σ

−2
0t

)
)

which entails Yt|Ft−1 ∼ Γ
(
σ−2
0t , σ

−2
0t /ψt

)
, where σ−2

0v (1 ≤ v ≤ S) are given in Tables 5.2, and

iii) the beta prime distribution, i.e. ξt ∼ BP
(
2σ−2

0t + 1, 2σ−2
0t + 2

)
(cf. Tables 5.3-5.4) so that

Yt|Ft−1 ∼ GBP
(
2σ−2

0t + 1, 2σ−2
0t + 2, ψt

)
.

We take S = 5 for the two Gamma cases (Tables 5.1-5.2) and S = 4 for the Beta prime

distribution (Tables 5.3-5.4). Such choices are representative of numerous real daily trading
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measurements for S = 5, such as trading volumes and realized volatilities, and quarterly data

when S = 4. The true conditional mean parameters, which are reported in Tables 5.1-5.4,

are chosen so that the PACD model is stable in the sense of Section 3, while implying fairly

persistent series that are in accordance with the empirical evidence. For each case and each

series we compute the profile GQMLE and the two-stage GQMLE (2S-GQMLE), using 1000

Monte Carlo replications. In Tables 5.1-5.3 we take the profile variance σ2 = 1 so that the

profile GQMLE reduces to the EQMLE. In Table 5.4 the profile variance of the first stage

profile GQMLE is σ2 = (1, 1.5, 2, 0.8)′.

The starting parameter value in the nonlinear optimization routines (4.4) and (4.12) is set to

the true value, while the unobservable starting values Y0 and ψ0 (θ) of the PACD(1, 1) equation

are set to the intercept ω0
0. The two-stage GQMLE is calculated, with the mentioned profile

GQMLE computed in the first stage.

Means, standard deviations and (estimated) asymptotic standard errors (ASE) of the es-

timates θ̂G and θ̂∗G over the 1000 replications are reported in Table 5.1 for the exponential

PACD(1,1) model, in Table 5.2 for the homolog Gamma PACD(1,1) model, and in Tables

5.3-5.4 for the Beta prime model. It can be observed from Tables 5.1-5.4 that the results are

consistent with asymptotic theory. They are indeed almost identical in the exponential case

with a slight superiority of the EQMLE over the 2S-GQMLE (cf. Table 5.1). The two estimates

are, in fact, asymptotically efficient in this case but the EQMLE is much simpler to compute.

For the Gamma PACD model in Table 5.2, θ̂∗G outperforms θ̂E in terms of bias and variability,

as expected. In all cases, the 2S-GQMLE is the least risky one in the misspecification case. In

the Beta prime case, the 2S-GQMLE θ̂∗G still dominates its competing estimates θ̂E (Table 5.3)

and θ̂G (Table 5.4), even with some σ2
0v exceeding 1 which implies that E (ξ4v) = ∞. In fact, we

have seen from Theorem 4.3 that for the consistency of σ̂2
v (and thus for that the asymptotic

normality of θ̂∗G) we only need E (ξ2v) < ∞, i.e. σ2
0v > 0. However, when σ2

0v > 1 the ASE of

σ̂2
v is arbitrary since E (ξ4v) < ∞, a necessary condition for asymptotic normality of σ̂2

v , is no

longer satisfied.

On the other hand, the ASEs estimated from (4.10)-(4.11) and (4.13) are close to the

standard deviations of the estimates and are consistent with asymptotic theory. In particular,

it can be seen that the ASEs of θ̂∗G are in general (slightly) smaller than θ̂E and θ̂G (Tables
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5.2-5.4).

EQMLE 2S-GQMLE

v θ0v ω0
v α0

v β0
v σ2

0v ω0
v α0

v β0
v

1

True

Mean

StD

ASE

0.5

0.5126

0.3284

0.2059

0.6

0.5976

0.0693

0.0681

0.35

0.3497

0.0695

0.0579

1

0.9849

0.0948

0.0186

0.5

0.5127

0.3284

0.2059

0.6

0.5976

0.0695

0.0682

0.35

0.3497

0.0695

0.0579

2

True

Mean

StD

ASE

0.9

0.8953

0.3589

0.1992

0.4

0.3984

0.0678

0.0658

0.5

0.5030

0.0900

0.0605

1

0.9884

0.1018

0.0188

0.9

0.8955

0.3590

0.1993

0.4

0.3984

0.0677

0.0658

0.5

0.5029

0.0899

0.0605

3

True

Mean

StD

ASE

1.5

1.4735

0.4820

0.2424

0.5

0.4961

0.0797

0.0759

0.5

0.5113

0.1055

0.0697

1

0.9795

0.0951

0.0179

1.5

1.4731

0.4811

0.2424

0.5

0.4962

0.0800

0.0759

0.5

0.5112

0.1054

0.0697

4

True

Mean

StD

ASE

0.45

0.4662

0.4095

0.2298

0.45

0.4458

0.0633

0.0627

0.45

0.4479

0.0799

0.0591

1

0.9798

0.09617

0.0181

0.45

0.4664

0.4095

0.2298

0.45

0.4458

0.0633

0.0627

0.45

0.4479

0.0799

0.0591

5

True

Mean

StD

ASE

0.7

0.6865

0.3776

0.2264

0.55

0.5493

0.0723

0.0690

0.4

0.4060

0.0785

0.0617

1

0.9813

0.0934

0.0182

0.7

0.6867

0.3773

0.2264

0.55

0.5493

0.0722

0.0690

0.4

0.4060

0.0785

0.0617

Table 5.1. EQMLE and 2S-GQMLE results for 1000 PACD5(1,1) series with n = 2000

generated from the exponential Γ (1, 1/ψnS+v) distribution; σ2 = (1, 1, 1, 1, 1)′ .
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EQMLE 2S-GQMLE

v θ0v ω0
v α0

v β0
v σ2

0v ω0
v α0

v β0
v

1

True

Mean

StD

ASE

0.2

0.2036

0.1600

0.0748

0.4

0.3990

0.0412

0.0402

0.5

0.5026

0.0766

0.0395

0.5

0.4982

0.0441

0.0031

0.2

0.1957

0.1571

0.0744

0.4

0.3992

0.0398

0.0402

0.5

0.5039

0.0743

0.0395

2

True

Mean

StD

ASE

0.9

0.8855

0.1464

0.0704

0.3

0.3040

0.0669

0.0404

0.6

0.6043

0.0884

0.0443

0.3

0.2983

0.0240

0.0008

0.9

0.8942

0.1439

0.0702

0.3

0.3012

0.0560

0.0404

0.6

0.6023

0.0759

0.0442

3

True

Mean

StD

ASE

0.3

0.3328

0.2825

0.1893

0.5

0.5012

0.1088

0.1076

0.4

0.3878

0.1262

0.1160

1.5

1.4728

0.1643

0.0573

0.3

0.3389

0.2802

0.1898

0.5

0.5024

0.1073

0.1080

0.4

0.3859

0.1237

0.1164

4

True

Mean

StD

ASE

0.4

0.4127

0.2586

0.1359

0.45

0.4495

0.0680

0.0649

0.45

0.4462

0.0988

0.0659

1

0.9872

0.0979

0.0189

0.4

0.4048

0.2548

0.1358

0.45

0.4483

0.0659

0.0648

0.45

0.4488

0.0963

0.0659

5

True

Mean

StD

ASE

0.5

0.4838

0.2645

0.1945

0.55

0.5491

0.0926

0.1006

0.35

0.3602

0.0968

0.0980

2

1.9465

0.2253

0.1203

0.5

0.4799

0.2454

0.1945

0.55

0.5515

0.0828

0.1009

0.35

0.3612

0.0838

0.0985

Table 5.2. EQMLE and 2S-GQMLE results for 1000 PACD5(1,1) series with T = 2000

generated from the Gamma Γ (1/σ2
0v, 1/σ

2
0vψnS+v) distribution; σ2 = (1, 1, 1, 1, 1)′ .
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EQMLE 2S-GQMLE

v θ0v ω0
v α0

v β0
v σ2

0v ω0
v α0

v β0
v

1

True

Mean

Std

ASE

1

0.9786

0.4374

0.3498

0.6

0.6009

0.0728

0.0305

0.3

0.3065

0.0797

0.0578

1

0.9691

0.2841

0.1098

1

0.9790

0.4351

0.3498

0.6

0.6008

0.0728

0.0305

0.3

0.3065

0.0788

0.0579

2

True

Mean

Std

ASE

0.9

0.9053

0.5243

0.2228

0.3

0.2990

0.0659

0.0312

0.6

0.6037

0.1061

0.0455

1

0.9602

0.3356

0.1323

0.9

0.9065

0.5277

0.2231

0.3

0.2990

0.0662

0.0313

0.6

0.6036

0.1057

0.0456

3

True

Mean

Std

ASE

1.5

1.4776

0.6110

0.2893

0.5

0.4980

0.0800

0.0367

0.5

0.5049

0.1135

0.0561

1

0.9528

0.2767

0.1046

1.5

1.4759

0.6105

0.2889

0.5

0.4977

0.0799

0.0367

0.5

0.5054

0.1135

0.0560

4

True

Mean

Std

ASE

0.7

0.7723

0.4958

0.3069

0.4

0.4002

0.0655

0.0347

0.4

0.3889

0.0829

0.0585

1

0.9546

0.2952

0.1151

0.7

0.7700

0.4944

0.3068

0.4

0.3998

0.0648

0.0347

0.4

0.3895

0.0824

0.0585

Table 5.3. EQMLE and 2S-GQMLE results for 1000 PACD4(1,1) series with T = 2000

from the Beta Prime BP (2σ−2
0v + 1, 2σ−2

0v + 2) innovation distribution; σ2 = (1, 1, 1, 1)′ .
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GQMLE 2S-GQMLE

v θ0v ω0
v α0

v β0
v σ2

0v ω0
v α0

v β0
v

1

True

Mean

StD

ASE

1

1.0043

0.4851

0.3157

0.6

0.5976

0.0734

0.0703

0.3

0.3000

0.0816

0.0710

1

0.9428

0.2533

0.0863

1

0.9950

0.4721

0.3160

0.6

0.5978

0.0700

0.0703

0.3

0.3012

0.0760

0.0712

2

True

Mean

StD

ASE

0.9

0.9004

0.4331

0.1964

0.3

0.3000

0.0512

0.0444

0.6

0.6033

0.0893

0.0502

0.5

0.4910

0.0758

0.0083

0.9

0.8863

0.4313

0.1959

0.3

0.2981

0.0475

0.0443

0.6

0.6065

0.0860

0.0502

3

True

Mean

StD

ASE

1.5

1.4905

0.6040

0.2999

0.5

0.5020

0.1010

0.0761

0.5

0.5025

0.1345

0.0837

0.8

0.7798

0.1888

0.0474

1.5

1.4919

0.5877

0.2978

0.5

0.4970

0.0899

0.0758

0.5

0.5057

0.1182

0.0836

4

True

Mean

StD

ASE

0.7

0.7316

0.5698

0.3415

0.4

0.4026

0.0725

0.0695

0.4

0.3951

0.0923

0.0770

1.2

1.1273

0.3723

0.1732

0.7

0.7492

0.5704

0.3413

0.4

0.4030

0.0702

0.0696

0.4

0.3933

0.0902

0.0771

Table 5.4. GQMLE and 2S-GQMLE results for 1000 PACD4(1,1) series with T = 2000

from the Beta Prime BP (2σ−2
0v + 1, 2σ−2

0v + 2) innovation distribution; σ2 = (1, 1.5, 2, 0.8)′.

6 Empirical applications

6.1 Application to Bitcoin trading volume data

In our application, we fit the PACD(1,1) model to the daily Bitcoin trading volume (BTV).

The choice of p = q = 1 is made for parsimony reasons as the number of parameters highly

increases with p and q. Moreover, we found that for larger orders, the estimated parameters are

not significant, and the information criteria AIC and BIC, computed for specific conditional

distributions such as the Gamma and BP distributions, are not quite smaller. The dataset was
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Figure 6.1: Daily Bitcoin trading volume (BTV).

obtained from the webpage www.blockchain.com. This series spans from July, 3, 2017 to June,

26, 2020, with a total of T = 1092 = 7× 156 observations. Figure 6.1 displays the time series

plot of the data.

Periodicity in cryptocurrencies is a recently studied topic. For example, Mbanga (2019)

found evidence of the presence of the day-of-the-week pattern in Bitcoin prices. In our paper

we investigate time-dependent anomalies in Bitcoin trading volume. Baur et al (2019) and

Wang et al (2020) identified trading volume patterns over an average week with lower trading

activity on weekends compared with weekdays. This finding, which is consistent with that

reported for currency markets, suggests the presence of institutional investors who play an

active and important role in the trading of the Bitcoin, and that retail traders do not dominate

the Bitcoin market. In other words, the overall lower trading activity during weekend is driven

by the lower institutional trades.

Thus our aim here is to show that the Bitcoin volume data are also characterized by the

day-of-the-week effect, which implies a period of S = 7. Such a case is different from the data

usually encountered in non-cryptocurrency returns (such as stocks, exchange rates), which are

characterized by a periodicity of S = 5, due to the existence of non-trading days at each week

(Franses and Paap, 2000; Tsiakas, 2006).

Table 6.1 provides some descriptive statistics for the full sample and for each day of the week

separately. The mean of BTV series is clearly different from one day to another. The difference

is more pronounced for the Kurtosis and skewness across the days. Also, the estimated kernel

densities of the data across the days are visually different (see Supplementary material). In

that regard, we suspect that the day-of-the week effect may characterize the Bitcoin trading

volume series.
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Day Full series Mon Tue Wed Thu Fri Sat Sun

Mean 40.8394 33.3621 41.3257 42.9304 46.3669 46.7979 44.2866 30.8063

StD 47.2340 40.9090 41.2095 49.5528 52.3069 57.7127 48.9096 34.3056

Kurtosis 17.2929 9.1734 6.6888 16.2964 11.3676 25.8981 10.0401 5.8247

Skewness 2.9736 2.3813 1.9404 3.1176 2.5808 3.8368 2.3894 1.8163

Table 6.1. Day-of-the-week pattern in the BTV series.

We first estimate a standard ACD(1,1) model (i.e. PACD with S = 1), using the EQMLE

as recommended in Remark 4.1, (iv). Parameter estimates of higher-order ACD(p, q) are not

significantly different from zero. This model is used as a competitor to our PACD(1,1). The

initial parameter values are set to θ(0) =
(
ω(0), α(0), β(0)

)′
= (0.1, 0.3, 0.5)′ and the starting

values of the conditional mean equation are fixed to Y0 = ψ0 = ω(0). The estimated parameters

and their asymptotic standard errors (ASE) in parentheses, obtained from Theorem 4.2-4.3

with S = 1, are reported in Table 6.2. In particular, the ASE of σ̂2 is computed from (4.10).

The persistence parameter estimate, α̂+ β̂ = 0.9865, indicates a strong persistence in the series,

as expected.

ω̂ α̂ β̂ σ̂2 α̂ + β̂ IMSFE IMAFE

0.8293
(0.2062)

0.4615
(0.0270)

0.5250
(0.0296)

0.3351
(0.0019)

0.9865 701.9662 14.01243

Table 6.2. EQML estimates for the ACD(1,1); BTV series.

Table 6.2 also displays the in-sample mean square (one-step ahead) forecast error (IMSFE)

and the in-sample mean absolute forecast error (IMAFE) given by IMSFE= 1
T

T∑
t=1

(Yt − ψ̂t)
2

and IMAFE= 1
T

T∑
t=1

∣∣∣Yt − ψ̂t

∣∣∣, respectively. Unreported sample autocorrelations of the residu-

als consolidate the validity of the estimated ACD(1,1). Since this model does not take into

account the day-of-the-week effect, we fit a 7-periodic PACD(1,1) to the BTV series. To this

end, we utilize the 2S-GQMLE by starting from the EQMLE in the first stage with the fol-

lowing initial parameter values for the optimization routine: ω(0) = (0.6, 0.25, 0.35, 3, 2, 4, 1.5)′,

α(0) = (0.25, 0.15, 0.1, 0.3, 0.3, 0.4, 0.35)′ and β(0) = (0.7, 0.8, 0.85, 0.4, 0.5, 0.2, 0.45)′. These ini-
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tial values are arbitrary but we checked that the estimates are robust even with other initial

values.

Day v σ̂2
v ω̂v α̂v β̂v α̂v + β̂v IMSFE IMAFE

Mon 1 0.2526
(0.0050)

0.0165
(0.3537)

0.5205
(0.0421)

0.5645
(0.0481)

1.0850

Tue 2 0.2716
(0.0102)

2.9945
(0.4361)

0.5423
(0.0379)

0.7173
(0.0430)

1.2597

Wed 3 0.3682
(0.0180)

0.3109
(0.2705)

0.1544
(0.0414)

0.8710
(0.0428)

1.0244

Thu 4 0.2839
(0.0075)

0.0125
(0.6255)

0.4951
(0.0690)

0.5641
(0.0772)

1.0591

Fri 5 0.3299
(0.0092)

0.2889
(0.5360)

0.3663
(0.0655)

0.6358
(0.0714)

1.0021

Sat 6 0.2129
(0.0014)

1.3040
(0.5645)

0.4422
(0.0724)

0.4786
(0.0810)

0.9207

Sun 7 0.2372
(0.0043)

0.3513
(0.4721)

0.4339
(0.0781)

0.2256
(0.0914)

0.6596

All φ̂ 0.9025 651.9418 13.1164

W θ 1182.382

W σ 18.5338

Table 6.3. 2S-GQML estimates for the PACD(1,1); BTV series.

The 2S-GQML estimates and their ASEs in parentheses are reported in Table 6.3. We

observe that the estimates are quite different across the days. To comfort this fact we test the

hypothesis of no conditional mean parameter variation by computing the global and pairwise

Wald statistics given by (4.16) and (4.18) respectively. We also do the same for the variance

parameters using (4.20) and (4.21). The global Wald statistics Wθ = 1182.382 and W σ =

18.5338 indicate that the null hypotheses Hθ
0 and Hσ

0 of no periodic (conditional mean and

variance) parameter variation cannot be accepted at any reasonable level. Table 6.4 displays

the pairwise Wald statistics for the conditional mean parameters (lower triangular part of table

in bold) and the variances parameters (upper triangular part of the table). For the conditional

mean variation, only the statistics W θ
41, W

θ
45 and W θ

65 are significant at the level α = 0.05. For

the pairwise variance hypothesis, only six statistics among the 21 ones are significant at 0.05

(cf. Table 6.4). Overall, the time-invariant hypothesis cannot be accepted reasonably.
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v \s 1 2 3 4 5 6 7

1 0 0.1674 4.0703 0.5489 2.9525 1.7111 0.1788

2 298.9884 0 2.3179 0.0597 1.2296 2.0815 0.5754

3 42.4191 806.5083 0 1.9502 0.3770 8.7020 5.4034

4 1.1300 270.0954 19.9804 0 0.8883 3.9490 1.2984

5 11.0859 395.3212 12.7764 5.1796 0 9.0424 4.4821

6 21.0663 387.5937 27.1226 14.0177 5.1002 0 0.7264

7 144.2691 541.4114 150.8982 95.7066 112.2777 77.5127 0

Table 6.4. Pairwise Wald statistics for BTV. W θ
vs in bold for v > s.

W σ
vs in the uper triangular part (v < s).

The persistence parameters over the days show locally explosive behaviors except for Satur-

day and Sunday. However, the whole persistence parameter, φ̂ :=
∏7

v=1(α̂v+ β̂v) = 0.9025 (also

called the monodromy estimate) is, as expected, considerably smaller than the one given by the

estimated standard ACD(1,1). All results have been obtained irrespective of any distributional

specification of the models.

Note that the ASE of estimates for the PACD are larger than those obtained for the ACD.

This is due to the fact that for the PACD the ASEs are computed for lower channel series with

sample size T
S
= 156. To get the same precision as with the ACD we should consider larger

series with the sample size multiplied at least by 7. Nevertheless, in term of in-sample forecast

ability (IMSFE and IMASE), the PACD model outperforms the standard ACD.

Figure 6.2 shows the probability integral transform (PIT) of the residuals ξ̂nS+v with re-

spect to four distributions of the innovation in the PACD framework: The exponential distri-

bution ξv ∼ Γ (1, 1) (exponential PACD), the Gamma distribution with constant variance ξv ∼

Γ
(
σ−2
0 , σ−2

0

)
(Gamma PACD), the Gamma distribution with periodic variance ξv ∼ Γ

(
σ−2
0v , σ

−2
0v

)

(Gamma PACD*), and the Beta prime distribution ξv ∼ BP (2σ−2
0v + 1, 2σ−2

0v + 2) (Beta prime

PACD). It can be seen from Figure 6.2 that the residuals fit better with the Beta prime distri-

bution, followed by the Gamma distribution. The exponential distribution seems to be a bad

model. The Gamma distribution with periodic variance is slightly preferred to the Gamma
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Figure 6.2: PITs of the residuals ξ̂t (BTV series) for four PACD innovation distributions.

distribution with a constant variance.

Finally, we compare the out-of-sample forecasting performance of the two models. We

estimate the two competing models on the basis of the first Tf observations of the series, where

1 < Tf < T . For the PACD, we use two estimates, the EQMLE, which is mainly recommended

for the PACD with constant variance, and the 2S-GQMLE. Then, we compute the one-step

ahead forecast on the period (Tf + 1, ..., T ) based on

ψ̂t = ω̂t + α̂tYt−1 + β̂tψ̂t−1 for t = Tf + 1, ..., T .

We finally calculate for each model the following three criteria: i) the mean square forecast

error MSFE= 1
T−Tf

T∑
t=Tf+1

(Yt − ψ̂t)
2, ii) the mean absolute forecast error given by MAFE =

1
T−Tf

T∑
t=Tf+1

∣∣∣Yt − ψ̂t

∣∣∣, and iii) the mean QLIKE (cf. Patton, 2011; Aknouche and Francq, 2019)

MQLI= 1
T−Tf

T∑
t=Tf+1

(log ψ̂t +
Yt

ψ̂t
).

Table 6.5 shows the computed values of these criteria for the two models and for various

truncated series with sample size Tf . For the PACD model, the forecasts based on the EQMLE

are denoted by PACDE while those computed using the 2S-GQMLE are denoted by PACDG∗
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(cf. Table 6.5). It can be observed that irrespective of the chosen time-cut Tf , the PACD

yields better out-of-sample forecasts with regard to the aforementioned criteria. Moreover, for

almost all horizons the PACD forecasts provided by 2S-GQMLE are (slightly) better than those

obtained by the EQMLE. For a significant comparison between the three model forecasts in

Table 6.5, we employ the Model Confidence Set method of Hansen et al (2011) using the R

package MCS of Bernardi and Catania (2014). For all time-cut Tf , we found that the forecasts

obtained by the PACDG∗ and PACDE models generally constitute the Superior Set Models, the

ACD model being eliminated.

Overall, the PACD(1, 1) outperforms the ACD(1, 1), both in terms of in-sample and out-of-

sample forecasting power.

Tf 500 600 700 800 900 1000

ACD

MSFE

MAFE

MQLI

207.8341

8.6659

3.8983

165.8957

7.8318

3.7735

89.6771

6.9127

3.6879

88.3917

6.6050

3.6052

94.4021

6.9080

3.6959

104.8815

7.6159

3.8487

PACDE

MSFE

MAFE

MQLI

193.4029

8.0311

3.8756

153.9036

7.1461

3.7492

79.1289

6.1789

3.6605

80.8411

5.9196

3.5757

80.4482

6.0210

3.6635

93.4090

6.6975

3.8146

PACDG∗

MSFE

MAFE

MQLI

193.1508

8.0187

3.8759

151.0290

7.1074

3.7495

79.2446

6.1546

3.6605

80.8776

5.9031

3.5754

80.4284

6.02684

3.6635

93.9384

6.6908

3.8144

Table 6.5. Out-of-sample forecasting performance of the PACD and ACD; BTV series.

6.2 Application to the UN realized volatility

The second dataset is the daily UN realized volatility (RV) that covers the sample period from

January 04, 1999 to December, 31, 2008 with a total of T = 2489 observations. Realized

volatility is defined to be the integrated variability of high frequency intraday asset returns

(see e.g. Barndorff-Nielsen and Shephard, 2002). It has been extensively studied in the last

two decades. Periodicity in realized volatility has been well documented (Martens et al, 2009,

Yang and Chen, 2014) and is usually caused by macroeconomic news announcements on specific
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Figure 6.3: Daily realized volatility UN (UN-RV).

weekdays. The plot of the index series is displayed in Figure 6.3.

Table 6.6 reports some descriptive statistics concerning the whole series and the subseries

corresponding to the five trading days. It can be easily seen that these statistics strongly

indicate that the distributions of realized volatility are significantly different across the trading

days. This is also confirmed by the estimated kernel density of each trading day (Supplementary

material). These facts suggest using a 5-periodic PACD(1, 1) model for these data.

Day Full series Mon Tue Wed Thu Fri

Sample size 2489 469 511 514 504 491

Mean 1.3085 1.1674 1.2528 1.3028 1.3631 1.4511

StD 1.7699 1.4919 1.4628 1.5890 1.9073 2.2648

Kurtosis 47.1196 26.3686 13.9103 23.4364 37.6800 55.2210

Skewness 5.1689 3.9488 2.9500 3.7675 5.0477 6.0455

Table 6.6. Day-of-the-week pattern in the UN-RV series.

As a reference model, we first estimate a standard ACD(1, 1) for the data. Table 6.7 shows

the EQML estimates and their asymptotic standard errors in parenthesis. The results signal a

high persistence near to instability.

ω̂ α̂ β̂ σ̂2 α̂ + β̂ IMSFE IMAFE

0.0109
(0.0031)

0.2849
(0.0157)

0.7084
(0.0162)

0.2841
(0.0005)

0.9933 1.1122 0.4842

Table 6.7. EQML estimates for the ACD(1,1); UN-RV series.

Table 6.8 displays the 2S-GQML estimates of the PACD(1,1) based on the UN-RV series.
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These estimates are all significant and are quite different across the days. This is confirmed by

the global Wald statistic W θ = 193.9721 which suggests that the hypothesis Hθ
0 of no periodic

variation cannot be accepted at, at least, the level 0.005. Moreover, the pairwise Wald statistics

in Table 6.9 are all significant at the level 0.01 except W θ
24 = 2.4490, which only significant at

the level 0.1.

Day v σ̂2
v ω̂v α̂v β̂v α̂v + β̂v IMSFE IMAFE

Mon 1 0.3805
(0.0082)

0.0164
(0.0098)

0.2374
(0.0390)

0.6702
(0.0417)

0.9076

Tue 2 0.2597
(0.0017)

0.0154
(0.0084)

0.3320
(0.0291)

0.6903
(0.0348)

1.0222

Wed 3 0.2552
(0.0012)

0.0015
(0.0088)

0.4023
(0.0327)

0.6521
(0.0354)

1.0544

Thu 4 0.2670
(0.0019)

0.0126
(0.0078)

0.3052
(0.0359)

0.7065
(0.0388)

1.0117

Fri 5 0.2682
(0.0023)

0.0884
(0.0132)

0.4138
(0.0390)

0.4851
(0.0442)

0.8989

All φ̂ 0.8897 1.0570 0.4757

Wθ 193.9721

Wσ 9.0576

Table 6.8. 2S-GQML estimates for the PACD(1,1); UN-RV series.

For the variance parameter, the global Wald statistic W σ = 193.9721 is significant at the level

0.06 whereas six pairwise statistics W σ
vs from the tenth entail accepting Hσ,vs

0 . On the other

hand, the persistence parameter, given by
∏7

v=1(α̂v+ β̂v) = 0.8897, is significantly smaller than

that obtained from the the ACD. The ASEs of the estimates for the PACD are smaller than

those in the first application, since the series here is quite longer. Moreover, the PACD model

outperforms the standard ACD, according to the IMSFE and IMASE criteria.
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Figure 6.4: PITs of the residuals ξ̂t (UN-RV series) for four PACD innovation distributions.

v \s 1 2 3 4 5

1 0 7.8531 8.8510 6.7729 6.4023

2 123.0932 0 0.0330 0.0729 0.0889

3 119.6519 6.0346 0 0.2139 0.2315

4 87.7977 2.4490 9.5620 0 0.0016

5 55.5838 28.3102 38.6483 28.2441 0

Table 6.9. Pairwise Wald statistics for UN-RV.

W θ
vs for v > s; W σ

vs in the uper triangular part (v < s).

In an attempt to identify the distribution of the model, Figure 6.4 displays the PIT of the

residuals with respect to the four above models. It can be seen that the residuals are strongly

consistent with the BP distribution as the corresponding PIT (Beta prime PACD) is almost a

straight line. The residuals fit less better to the Gamma distribution with constant or periodic

variance as well. As in the previous application, the exponential distribution is the worst one.

We finally compare the out-of-sample forecasting performance of the two models, using the

same devices as before. Since the model with constant variance is also plausible as the variance
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Wald statistics show, we also run the EQMLE for the data. From Table 6.10 it can be concluded

that for all truncated series (with sample size Tf ), the PACD computed from both the EQMLE

and 2S-GQMLE gives the best accurate forecasts, in terms of the MSFE and MAFE values.

Regarding the mean QLIKE criterion, the PACD is clearly the best one (except for Tf = 1100

and Tf = 1200, where the models are almost comparable). The forecasts obtained by the

EQMLE and 2S-GQMLE are in general comparable, where those stemming from θ̂∗G exhibit a

slight superiority. As in the previous application, using again the Model Confidence Set test of

Hansen et al (2011), the forecasts obtained by the PACDG∗ and PACDE models still constitute

the Superior Set of Models for almost all time-cut Tf .

Tf 1100 1200 1500 1600 1800 2000

ACD

MSFE

MAFE

MQLI

1.0803

0.3662

0.4485

1.1501

0.3644

0.4534

1.4973

0.4219

0.5903

1.6645

0.4548

0.6690

2.1461

0.5509

0.9126

2.9891

0.6966

1.1470

PACDE

MSFE

MAFE

MQLI

0.9723

0.3652

0.4562

1.0230

0.3563

0.4552

1.3563

0.4092

0.5892

1.4962

0.4351

0.6685

1.9310

0.5185

0.9074

2.7311

0.6541

1.1406

PACDG∗

MSFE

MAFE

MQLI

0.9729

0.3656

0.4564

1.0299

0.3564

0.4547

1.3543

0.4094

0.5893

1.4932

0.4353

0.6686

1.9275

0.5189

0.9074

2.7234

0.6536

1.1404

Table 6.10. Out-of-sample forecasting values for the PACD and ACD (UN-RV series).

7 Conclusion and future research

A GARCH-like model for positive-valued data with seasonal behavior has been proposed. The

model consists of an ACD model with parameters evolving periodically over time. In our

methodology for studying and building such a model, we considered QML estimates that are

distribution free and are consistent and asymptotically Gaussian under general conditions. In

particular, our proposed two-stage Gamma QMLE takes into account the periodicity of the

innovation sequence, producing more accurate results compared to the exponential QMLE.

The proposed estimates are also consistent for more general non-MEM forms.
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The model was applied to two daily financial series with different periods (S = 7 and

S = 5) in an attempt to capture the day-of-the-week effect. A third application to daily

S&P 500 volumes (with S = 5) is displayed in the Supplementary material and leads to the

same conclusions. The PACD model was used for forecasting in a semi-parametric way without

assuming a specific distribution for the innovation. However, the PIT suggests that the beta

prime distribution could be a good model for the data.

Our model can be applied to other data frequencies, such as monthly data with S = 12 and

quarterly data with S = 4. Moreover, it may also be utilized as an approximate model for count

time series data with large values, such as the daily number of transactions in a market. While

we applied our model to specific financial return data, other seasonal positive data coming

from various fields such as hydrology (e.g. river flows, rainfall data) and meteorology (e.g.

wind speed, wind power) might be represented by the PACD model.

Although our model is named periodic ACD in reference to the ACD proposed by Engle

and Russell (1998), it is not recommended to model intraday durations, which are rather

characterized by a (stochastic) time-varying period, due to the irregularly-spaced nature of

durations. Furthermore, modeling intraday positive-valued series generally requires very large

periods for which the estimation of the parameters becomes very challenging.

For models with large periods, some basis functions for reducing the number of parameters,

such as Fourier approximation (Bollerslev et al, 2000; Rossi and Fantazani, 2015; Bracher and

Held, 2017), periodic B-splines (Ziel et al, 2015) or periodic wavelets (Ziel et al, 2016) could be

adapted to our model. As suggested by a referee it would be useful to give an effective method

for detecting periodicity in PACD. These issues are left for future research.
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