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NDT-Transformer: Large-Scale 3D Point Cloud Localisation

using the Normal Distribution Transform Representation

Zhicheng Zhou1†, Cheng Zhao2†, Daniel Adolfsson3, Songzhi Su4,

Yang Gao5, and Tom Duckett6, Li Sun1∗

Abstract— 3D point cloud-based place recognition is highly
demanded by autonomous driving in GPS-challenged envi-
ronments and serves as an essential component (i.e. loop-
closure detection) in lidar-based SLAM systems. This paper
proposes a novel approach, named NDT-Transformer, for real-
time and large-scale place recognition using 3D point clouds.
Specifically, a 3D Normal Distribution Transform (NDT) rep-
resentation is employed to condense the raw, dense 3D point
cloud as probabilistic distributions (NDT cells) to provide the
geometrical shape description. Then a novel NDT-Transformer
network learns a global descriptor from a set of 3D NDT cell
representations. Benefiting from the NDT representation and
NDT-Transformer network, the learned global descriptors are
enriched with both geometrical and contextual information.
Finally, descriptor retrieval is achieved using a query-database
for place recognition. Compared to the state-of-the-art methods,
the proposed approach achieves an improvement of 7.52% on
average top 1 recall and 2.73% on average top 1% recall on
the Oxford Robotcar benchmark.

I. INTRODUCTION

There is a high demand for point-cloud-based naviga-

tion systems that are able to robustly localise robots or

autonomously driving cars in GPS-challenging environments.

Point-cloud-based global localisation can also be employed

as a loop-closure detection module, which is an essen-

tial component of simultaneous localisation and mapping

(SLAM) systems. A practical method is to use GPS to

acquire the coarse global location and point cloud registration

methods, such as ICP, to obtain a more accurate pose

estimate. However, GPS is not always available and reliable,

so that alternative solutions using only sensory data are

required.

The conventional point cloud registration methods and

particle filtering methods do not scale well to large-scale

environments. The main challenges for current robot local-

isation systems are generality and scalability. For example,

model-based methods [1], [2], [3] can learn the 6DOF global

pose as a regression model and infer the pose in real-time.

Sadly, however, regression-based methods do not generalise

to novel environments. SegMatch-like methods [4], [5], [6],
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Fig. 1: 3D point (NDT)-based loop-closure detection in a

large-scale environment (Oxford city centre).

[7] register two point cloud maps on intermediate representa-

tions (e.g. semantic segments), which has proven to be robust

but not computationally efficient.

This paper addresses large-scale localisation as a large-

scale point cloud retrieval problem, where the continu-

ous robot car trajectories are discretized into consecu-

tive ‘places’. Inspired by the success of the Transformer

model [8] in natural language processing, we propose a novel

approach – NDT-Transformer – to transform the point cloud

into a ‘long sentence’ of geometry-enriched NDT cells and

then to a site-specific feature signature. During inference,

only the descriptor of the query data is required to be

computed online, while the other descriptors in the database

can be computed once offline and stored in memory, thus

enabling real-time topological localisation in large-scale en-

vironments. Consequently, both scalability and generalisation

are achieved.

The main contributions can be summarised as follows: 1)

A computationally efficient method is proposed for large-

scale point-cloud-based localisation where NDT is used as an

intermediate representation. Our approach condenses a dense

point cloud into a lightweight representation with maximal

preservation of the geometrical features; 2) A novel network

architecture, named NDT-Transformer is devised to learn a

global descriptor with contextual clues from a set of 3D

NDT cell representations; 3) The proposed method achieves



the state-of-the-art performance in point-cloud-based place

recognition, which can be an important supplement for NDT-

based SLAM and Monte-Carlo localisation methods.

The processed data, code and trained model can be

found on our project website: https://github.com/

dachengxiaocheng/NDT-Transformer.git

II. RELATED WORK

A. Point cloud-based global localisation

The state-of-the-art point cloud based localisation methods

can be categorised into three main streams: regression-based

[1], [2], [3], intermediate-representation-based [4], [5], [6]

and global-feature-based [9], [10], [11], [12], [13], [14], [15].

Following the success of deep pose estimation in image-

based global localisation, some methods [1], [2], [3] propose

to use deep regresion networks to learn the 6DOF global

pose. These model-based approaches are extremely efficient

but not generalisable. In other words, a new model is required

to be trained for new environments.

Intermediate-representation-based methods [4], [5], [6],

[7] first segment the map into intermediate representations

(i.e. semantic segments) then register the segmented parts,

rather than directly registering the point clouds. The inter-

mediate parts can be described as distinctive features [4] or

deep-learned features [5], [6], [7] may be used to eliminate

the false positives. Though the matching efficiency can be

improved by using intermediate representations, significant

running time is spent on cloud segmentation and real-time

performance cannot be guaranteed. Therefore, these methods

are mostly used for loop-closure detection rather than large-

scale localisation.

The mainstream methods for point-cloud-based locali-

sation are based on global features, where a generalis-

able feature extractor is designed or learned to obtain the

place signature for retrieval. Before deep learning began

dominating the machine learning community, hand-designed

heuristics features such as M2DP [9], Scan Context [10]

and DELIGHT [11] were well-studied to represent the 3D

point cloud for the localisation. In terms of learning-based

methods, the Scan Context Image-based network [12] and

OverlapNet [13] convert the 3D lidar scan to a 2D im-

age according to geometric knowledge, then deploy a 2D

convolution-like network to learn a representation.

Instead of using hand-crafted features, Point-

NetVLAD [16] combines PointNet [17] and NetVLAD [14]

to learn a global descriptor based on metric learning.

However, the PointNet-like architecture ignores the spatial

distribution and contextual cues within the 3D point

cloud. Extracting efficient contextual information from the

irregular 3D point cloud is another important challenge

for 3D loop-closure detection. The following work LPD-

Net [15] employs a classical DGCNN [18]-like network to

enhance the feature descriptor by KNN-based aggregation

in both feature space and Cartesian space. They also

introduce 10 different kinds of geometric local features to

feed the network during training, achieving the state-of-the-

art (SOTA) performance. Most of these point-cloud-based

methods require a downsampling operation on the original

3D dense 3D point cloud due to the GPU size limitation.

However, this downsampling operation can lead to a loss

of local geometric information. Lastly, due to the real-time

attribute of SLAM, one challenging aspect of 3D loop-

closure detection is the real-time performance requirement,

which means that lightweight networks are required.

B. NDT-based localisation

The Normal Distribution Transform (NDT) is a classic

method to represent a 2D or 3D point cloud as differential

multi-variant Gaussian distributions for 2D laser [19] and

3D lidar mapping [20], [21]. Compared to point cloud or

grid-map based representations, NDT-based relocalisation,

i.e. NDT-MCL [22], demonstrates advanced localisation

precision and repeatability, as the NDT is an inherently

probabilistic and geometrical representation to model the

likelihood. In other words, the structural and geometrical

information of the map is implicitly interpreted by the NDT

cell parameters. Benefiting from this characteristic, NDT-

based localisation can condense the bulky point cloud map to

memory efficient NDT cells to make the localisation scalable.

Submap-based NDT [23] can eliminate the uncertainties

caused by different robot perspectives, and further improve

the localisation accuracy and scalability in large-scale and

long-term applications [2]. Moreover, NDT can be used to

provide place signatures for loop closure, e.g. using NDT

histograms [24] and semantic-NDT histograms [25], semi-

supervised place categorisation [26], and to create interest

point descriptors [27] for efficient registration or localisation.

III. METHODOLOGY

A. Problem Formulation

Given a 6DoF trajectory of the robotcar and the synchro-

nised lidar scans, submaps M = {m1, · · · ,mN} can be

built by dividing the trajectory into fixed range intervals

and mapping the point cloud into a local reference frame.

Then the obtained submap can be further represented as NDT

cells. Specifically, the space of a submap will be uniformly

divided into grid cells, and the 3D points within a cell will be

used to estimate the NDT parameters. Practically, the number

of cells varies greatly due to the different density of each

submap. A spatially distributed sampling filter G is applied

to guarantee that the numbers of cells in all submaps are

the same, i.e. |G(m1)| = · · · |G(mN )|. A deep model called

NDT-Transformer is proposed to learn a function f(.) which

represents the input NDT cell representations as a fixed-

size global descriptor f(F) where F = G(m). Then the

Euclidean distance function d(.) can be adopted to measure

the similarity, i.e. d(f(F), f(Fpos)) < d(f(F), f(Fneg)),
where F is similar to Fpos and dissimilar to Fneg .

Hence the problem of 3D loop closure detection is illus-

trated as follows. Denoting the query submap as mq , the

task aims at searching the database M for the most similar

submap m∗. The problem can be resolved by searching

for the nearest neighbour of a submap m∗ ∈ M in the

feature space, i.e. f(Fm∗
), which has the smallest Euclidean



distance to the query point cloud (feature) f(Fmq
). That is,

d(f(Fmq
), f(Fm∗

) < d(f(Fmq
), f(Fmi

), ∀mi ∈ M, i 6= ∗.

An example of 3D place recognition is illustrated in Fig. 1.

The red line on the map shows the entire route navigated by

an autonomous vehicle in the city centre of Oxford, UK.

A set of point clouds for this run can be constructed by

combining the scans with relative global poses. The objective

is to identify the nearest match of the query point cloud from

another run. This paper represents all point clouds as a fixed

number of 3D NDT cells (as shown in Fig 2) and utilises

the NDT-Transformer to convert them to site-specific global

descriptors. Moreover, only the query descriptor is required

to be computed online, while the other descriptors in the

database are computed once offline and stored in memory,

which can guarantee the real-time performance.

B. 3D NDT Representation

In contrast to most existing work, we represent the point

cloud submap using the 3D Normal Distributions Transform

(NDT) [21] rather than downsampling the 3D point cloud to a

fixed number of points. As illustrated in Fig. 2, the 3D-NDT

representation is a compact ‘spherical’ structure, which can

not only preserve the geometrical shape of a group of local

3D points but can also significantly decrease the memory

complexity. In other words, we can use very memory effi-

cient resolutions such as (1m × 1m × 1m) without losing

too much geometrical information. The normal distribution

N(µ,C) of each NDT cell consists of the mean vector µ
and the covariance matrix C defined as,

(µ,C) = (
1

n

n∑

k=1

xk,
1

n− 1

n∑

k=1

(xk − µ)(xk − µ)T ). (1)

where xk=1,··· ,n are 3D points in each cell.

We employ a spatially distributed sampling approach G to

generate evenly distributed NDT cells,

F : ms → G([µi,Ci]i=1..k), (2)

where ms refers to submap of size s and G refers to NDT

representation of size k cells.

The spatially distributed sampling can reduce the point

density from an arbitrary input size s to a fixed number of

points k and simultaneously preserve structural information

from the original submap. This operation consists of three

steps. Firstly, we downsample the original submap: ms of

size s to mk∗c±t% (within some tolerance factor t), where

c > 1.0+ t is an oversampling factor that makes sure that an

excessive amount of points are produced. The downsampling

is done by performing binary search to find the voxel size

that produces k ∗ c ± t points. Secondly, we estimate NDT

distributions F with the downsampled points as centroids.

That is, for each point in the downsampled submap qi ∈
mk∗c±t%, an NDT cell (µi,Ci) is computed from all points

within a radius r of qi in the original submap ms. The final

step removes cells with the highest mutual information until

k cells remain. This ensures that the structural information is

maintained. Mutual information is computed from the sym-

metric Kullback–Leibler divergence 1/2 ∗ (DKL(P ||Q) +
DKL(Q||P )). The neighbour with the lowest KL-divergence

has the highest mutual information.

Fig. 2: First row: dense 3D point cloud, second row: 3D

NDT cells, third row: 3D NDT cells within the dense 3D

point cloud.

C. NDT-Transformer Network

After converting the 3D submap m to 3D NDT represen-

tation F , this representation is fed into a NDT-Transformer

network f to obtain a descriptor ξ of the 3D submap. That

is, ξ = f(F) where F =G(m). As shown in Fig. 3, the NDT-

Transformer network consists mainly of three components: 1)

NDT representation module that consists of a point transform

and uncertainty backpropagation, 2) A residual transformer

encoder, and 3) Net Vector of Locally Aggregated Descrip-

tors (NetVLAD).

In order to achieve rotational invariance of the descriptor,

the point transform and uncertainty backpropagation are ap-

plied to each original NDT representation F = (µ,C). Firstly,

a transition matrix T3×3 is learned through a Transform

Net (T-Net) [17] from the NDT mean vectors µ. Then a

new NDT representation FT = (µT ,CT ) can be obtained by

assembling the transformed points and propagated uncertain-

ties,

N (µT ,CT ) = N (T3×3 µ, T3×3 CTT
3×3), (3)

where T3×3 = T (µ) and T refer to the T-Net. Feature ag-

gregation on irregular data such as NDT cells is still a

challenging problem. PointNetVLAD [16] utilises Point-

Net [17] to transform the points’ position information to

a high-dimensional feature representation. However, this

representation of each point suffers from the ambiguities

due to a lack of contextual cues. Although local feature

aggregation can be achieved via mean and covariance cal-

culation within each NDT cell, there is no aggregation



Fig. 3: NDT-Transformer Network Architecture

between the individual NDT representations. Our intuition

is to employ an attention mechanism to learn the underlying

context between landmarks (NDT cells). In contrast to most

existing approaches [15], [18], which utilise kNN grouping

for contextual information modelling, we employ a residual

transformer encoder to aggregate the contextual cues for

one NDT cell from the other NDT cells to increase the

distinctiveness of the representation.

As shown in the middle part of Fig. 3, the network includes

three transformer encoder stacks in series, and two shared

linear stacks at the head and bottom with a shortcut skip

connection. Each Transformer encoder is composed of a

series of modules, i.e. multi-head self-attention (MHSA),

feed-forward network (FFN) and layer normalization (LN),

which can be stacked on top of each other multiple times.

The transformer encoder can learn co-contextual informa-

tion/message Attn captured by a self-attention mechanism,

Attn([Qi,Ki, Vi]) = concat([softmax(
Qi ·KT

i√
dk

)Vi]), (4)

where dk denotes the dimension of queries and Qi,Ki, Vi

stand for ith head of queries, keys, values of the NDT

cell representation, respectively. In our implementation, four-

head attention (i.e. i = 1, 2, 3, 4) is used to enhance the

discriminativeness of the feature attributes. The self-attention

mechanism can automatically build connections between the

current NDT cell and the other salient interesting NDT cells.

The attentional representation Φ can be obtained as,

Φ′ = LN(FT +Attn), (5)

Φ = LN(FFN(Φ′) + Φ′). (6)

By this means, the local representation FT of each NDT cell

is upgraded to an attentional representation Φ.

Following PointNetVLAD [16], we choose NetVLAD [14]

instead of a max-pooling layer to improve permutation in-

variance for the descriptor of the 3D point cloud. NetVLAD

is designed to aggregate a set of local descriptors and

generate one global descriptor vector. It records statistical

information with respect to local signatures and sums the

differences between these signatures and their respective

cluster. In contrast to conventional VLAD, the parameters of

NetVLAD, especially the assignment score, are learnt during

training in an end-to-end manner. After going through the

NetVLAD followed by a Multi-Layer Perceptron (MLP), a

set of NDT cell representations/descriptors Φ can be fused

to obtain a fixed-size global descriptor vector ξ to describe

the 3D point cloud,

ξ = MLP (NetV LAD(FT ⊕ Φ)), (7)

where ⊕ refers to the concatenation.

D. Metric Learning

Following the PointNetVLAD architecture [16], the Lazy

Quadruplet loss is used to achieve metric learning between

the query global descriptor ξq and the positive ξpos, negative

ξneg , and hard negative ξneg∗ examples, which are randomly

picked during training from different locations to ξq . The

Lazy Quadruplet loss is:

LQ(ξq, ξpos, ξneg, ξneg∗) = max([α+ d(ξq, ξpos)

−d(ξq, ξneg)]+) + max([β + d(ξq, ξpos)− d(ξq, ξneg∗)]+)

(8)

where α, β are constant margin values, and d(·, ·) is the

Euclidean distance. The core idea of Quadruplet loss is

to minimise the distance between the query and positive

global descriptors, and maximise the distance between the

query and negative global descriptors, while simultaneously

keeping a proper distance between all negative descriptors

(i.e. ξneg and ξneg∗).

IV. EXPERIMENT

A. Dataset Benchmark

The Oxford Robotcar dataset [28], which provides long-

term multi-session data, was used to evaluate the proposed

method. In this dataset, a Sick LMS-151 2D lidar scanner



mounted on the rear of the vehicle is used for mapping.

Each scan contains a set of triplet records (x, y,R), where

the former two refer to coordinates in 2D Cartesian space and

the latter refers to lidar infrared reflectance information. The

dataset provides an accurate 6 DoF trajectory of the travelled

urban environment through fusing GPS with inertial sensors,

and a dense point cloud map can be built by transforming

2D lidar scans with respect to the global poses. Then the

places are generated with a fixed interval (10 m for training

and 20 m for evaluation) and the global 3D map is divided

into a set of submaps using a fixed length trajectory segment

(20 m).

In this experiment, we use 44 runs for training and 22 runs

for testing from the Oxford RobotCar dataset. We obtain

a total of 21898 submaps for training and 3071 submaps

for testing. For the NDT cell generation, we use 2000

cells with a resolution of 0.8m as the input to We follow

the definition of query, positive and negative data-pairs in

PointNetVLAD [16], that is, the places within 10m to the

query are classified as positives while places beyond 50m to

the query are classified as negatives via KD-Tree search.

B. Neural Network Training

Similar to PointNet [17], an input Transform Network (T-

Net) is required to achieve rotational invariance by transform-

ing the input map to a canonical view. The hyperparameters

of T-Net are the same as PointNet [17]. The two shared

linear stacks before and after transformer encoders consists

of linear layers with hidden variables with 256 and 1024

separately followed by Batch Normalisation layer and ReLU

activation layer. The three Transformer encoders have the

same hyperparameter settings: the dimensions of the input

and output are set to 256, the dimension of the feed-forward

layer is set to 1024, the dropout rate is 0.1, and the number

of heads is set to 4. For the hyperparameter settings within

NetVLAD, the dimensions of the input and output are set to

1024 and 256, respectively, and the size of the cluster is set

to 64.

For the metric learning, the network is trained with 20

epochs with a batch size of 2. There are 1 query submap, 2

positive submaps, 18 negative submaps, and 1 hard negative

submap in one single batch. Margin values of α = 0.5
and β = 0.2 are used. The multi-step learning policy is

used and the learning rate decay is a fixed value of 0.1
applied on epoch 9 and 15. The initial learning rate is 1e-5

and the momentum is a fixed value of 0.9. The network is

implemented in Pytorch and trained on a tower with Intel

i9 CPU and two NVIDIA RTX Titan GPUs accelerated by

CUDA and cuDNN.

C. Performance Evaluation

Following PointNetVLAD [16] on the Oxford Robotcar

dataset benchmark [28], the recall indices, i.e., the Average

Recall@N (N=1,2,3...25) and Average Recall@1% are em-

ployed as metrics for the performance evaluation of 3D loop

closure detection.

NDT-Transformer achieves 93.80% top 1 (@1) average

recall and 97.65% top 1% (@1%) average recall, respec-

tively. As shown in Table I, ND-Transformer achieves a

significant improvement compared to PointNetVLAD [16]

with an improvement of 31.04% on top 1(@1) average recall

and an improvement of 16.64% on top 1% (@1%) average

recall. The performance of NDT-Transformer is superior

to the SOTA, LPD-Net [15], with 7.52% improvement for

top 1(@1) average recall and 2.73% improvement for top

1% (@1%) average recall. Although LPD-Net utilises 10

different kinds of local features, the NDT-Transformer only

uses the NDT representations. The average recall curves from

top 1 (@1) to top 25 (@25) of PointNetVLAD, LPD-Net and

NDT-Transformer are provided in Fig 5.

The ablation studies for NDT-Transformer are provided

in Table II. The average recall of top 1 (@1) and top 1%

(@1%) decrease 17.87% and 9.76%, respectively, if only

the point position without covariance matrices is used for

learning. The average recall of top 1 (@1) and top 1%

(@1%) show a decrease of 6.92% and 3.2%, respectively, if

only the covariance matrices (i.e. without point position) are

used for the network training. If the T-Net is excluded from

the network, the average recall of top 1 (@1) and top 1%

(@1%) decrease by 1.98% and 1.05% due to the absence

of the point transform and uncertainty propagation for the

NDT representation. Average recalls from top 1 (@1) to top

25 (@25) of the studied ablation baselines are provided in

Fig. 5.

Network Ave recall @1 Ave recall @1%

PointNetVLAD[16] 62.76 81.01

LPD-Net [15] 86.28 94.92

NDT-Transfomer 93.80 97.65

TABLE I: The comparison result of PointNetVLAD, LPD-

Net and NDT-Transformer, where average recall (%) at top

1 (@1) and the top 1% (@1%) are reported.

Network Ave recall @1 Ave recall @1%

NDT-Transfomer-P 75.93 87.89

NDT-Transfomer-C 86.88 94.45

NDT-Transfomer-noT 91.82 96.60

NDT-Transfomer 93.80 97.65

TABLE II: The ablation study of NDT-Transformer is given.

-P refers to our method using 3D points only. -C refers to our

method using covariance matrices only. noT is the network

architecture without using T-Net.

Finally, we show some examples of retrieval results on

the Oxford Robotcar dataset using NDT-Transformer, where

the ranking of correctly retrieved candidates is plotted in

different colours. As shown in Fig. 4, the first row images

are database submaps randomly picked from 22 tests in the

experiment, in which the red trajectories are queries from

previously unseen areas. The second row shows the heat

maps indicating the retrieval results. Colours from red to

yellow represent correctly recognised places in the top 1 to



Fig. 4: In this figure, some examples of the database-query results of the proposed NDT-Transformer are shown. Each column

refers to an experiment randomly picked in our evaluation (i.e. date 2014-11-14, 2014-12-09, 2015-02-03, 2015-04-24, on

Oxford Robocar dataset). The first row shows the database locations where red dots are testing areas (i.e. streets never seen

before). The second row shows the retrieval results (the ranking of successfully retrieved candidates)

.
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Fig. 5: The average recall curves from top 1 (@1) to

top 25 (@25) of PointNetVLAD, LPD-Net and NDT-

Transformer.

4 candidates. The KD-Tree is employed to search the top

N matched candidates from the database. The figure shows

that most of the queries are paired with the correct database

locations as the first ranking candidate. It worth noting that

the query areas (shown as four rectangles) are previously

unseen streets, which means that no data from these areas

were used in the training set. Therefore, this experimental

result shows that our deep-learned features can be used for

localisation in unseen areas (novel locations). Moreover, the

inference time of our approach averages 0.034 seconds per

point cloud (0.03 seconds for NDT conversion and 0.004

seconds for the transformer network) and the computational

complexity of retrieval is O(logn).

V. CONCLUSION

This paper proposes a novel approach, NDT-Transformer,

to interpret a dense point cloud submap and provide a distinc-

tive and discriminative location descriptor, and addresses the
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Fig. 6: The average recall curves from top 1 (@1) to top

25 (@25) of the NDT-Transformer ablation studies.

large-scale topological localisation problem by the means of

place recognition and retrieval. Our approach leverages the

generic NDT encoding to represent the point cloud, where

geometrical information is implicitly summarised. Compared

to the state-of-the-art method [15], our approach does not

require hand-crafted features, and instead aggregates and

strengthens local features hierarchically, hence achieving

better results with superior run time performance.

The experimental results on the Oxford Robocar dataset

demonstrate the effectiveness of our approach, i.e. a signifi-

cant improvement of 7.52% on average recall of top 1 and

2.73% on top 1% in comparison with the SOTA method. Our

system is able to successfully find a compromise between the

needs of SOTA performance and run time performance as an

essential module of a real-time SLAM system. The proposed

approach also provides an important supplement for NDT-

based SLAM approaches such as NDT mapping, NDT-MCL,

etc.
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