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Abstract

In recent years, machine learning has received increased interest both as an aca-
demic research field and as a solution for real-world business problems. However,
the deployment of machine learning models in production systems can present a
number of issues and concerns. This survey reviews published reports of deploy-
ing machine learning solutions in a variety of use cases, industries and applications
and extracts practical considerations corresponding to stages of the machine learn-
ing deployment workflow. Our survey shows that practitioners face challenges at
each stage of the deployment. The goal of this paper is to layout a research agenda
to explore approaches addressing these challenges.

1 Introduction

Machine learning (ML) has evolved from purely an area of academic research to an applied field. In
fact, according to a recent global survey conducted by McKinsey, machine learning is increasingly
adopted in standard business processes with nearly 25 percent year-over-year growth [1] and with
growing interest from the general public, business leaders [2] and governments [3].

This shift comes with challenges. Just as with any other field, there are significant differences
between what works in academic setting and what is required by a real world system. Certain
bottlenecks and invalidated assumptions should always be expected in the course of that process.
As more solutions are developed and deployed, practitioners sometimes report their experience in
various forms, including publications and blog posts. In this study, we undertake a survey of these
reports to capture the current challenges in deploying machine learning in production1. First, we
provide an overview of the machine learning deployment workflow. Second, we review use case
studies to extract problems and concerns practitioners have at each particular deployment stage.
Third, we discuss cross-cutting aspects that affect every stage of the deployment workflow: ethical
considerations, end users’ trust and security. Finally, we conclude with a brief discussion of potential
solutions to these issues and further work.

A decade ago such surveys were already conducted, albeit with a different purpose in mind. Machine
learning was mainly a research discipline, and it was uncommon to see ML solution deployed for
a business problem outside of “Big Tech” companies in the information technology industry. So

1By production we understand the setting where a product or a service are made available for use by its
intended audience.
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the purpose of such a survey was to show that ML can be used to solve a variety of problems, and
illustrate it with examples, as was done by Pěchouček and Mařík [4]. Nowadays the focus has
changed: machine learning is commonly adopted in many industries, and the question becomes not
“Where is it used?”, but rather “How difficult is it to use?”

A popular approach to assess the current state of machine learning deployment for businesses is a
survey conducted among professionals. Such surveys are primarily undertaken by private compa-
nies, and encompass a variety of topics. Algorithmia’s report ([5], [6]) goes deep into deployment
timeline, with the majority of companies reporting between 8 and 90 days to deploy a single model,
and 18% taking even more time. A report by IDC [7] that surveyed 2,473 organizations and their
experience with ML found that a significant portion of attempted deployments fail, quoting lack of
expertise, bias in data and high costs as primary reasons. O’Reilly has conducted an interview study
that focused on ML practitioners’ work experience and tools they use [8]. A broader interview-based
reports have also been produced by dotscience [9] and dimensional research [10].

While there are a number of business reports on the topic, the challenges of the entire machine
learning deployment pipeline are not covered nearly as widely in the academic literature. There is
a burgeoning field of publications focusing on specific aspects of deployed ML, such as Bhatt et al.
[11] which focuses on explainable ML or Amershi et al. [12] which discusses software engineering
aspects of deploying ML. A large number of industry-specific surveys also exist, and we review
some of these works in the appropriate sections below. However the only general purpose survey we
found is Baier et al. [13], which combines literature review and interviews with industry partners.
In contrast with that paper, which concentrates on experience of information technology sector, we
aim at covering case studies from a wide variety of industries. We also discuss the most commonly
reported challenges in the literature in much greater detail.

In our survey we consider three main types of papers:

• Case study papers that report experience from a single ML deployment project. Such works
usually go deep into discussing each challenge the authors faced and how it was overcome.

• Review papers that describe applications of ML in a particular field or industry. These re-
views normally give a summary of challenges that are most commonly encountered during
the deployment of the ML solutions in the reviewed field.

• “Lessons learned” papers where authors reflect on their past experiences of deploying ML
in production.

To ensure that this survey focuses on the current challenges, only papers published in the last five
years are considered, with only few exceptions to this rule. We also refer other types of papers where
it is appropriate, e.g. practical guidance reports, interview studies and regulations. We have not
conducted any interviews ourselves as part of this study. Further work and extensions are discussed
at the end of this paper.

To main contribution of our paper is to show that practitioners face challenges at each stage of the
machine learning deployment workflow. This survey supports our goal to raise awareness in the
academic community to the variety of problems that practitioners face when deploying machine
learning, and start a discussion on what can be done to address these problems.

2 Machine Learning Deployment Workflow

For the purposes of this work we are using the ML deployment workflow definition suggested by
Ashmore et al. [14], however it is possible to conduct a similar review with any other pipeline
description. In this section we give a brief overview of the definition we are using.

According to Ashmore et. al. [14], the process of developing an ML-based solution in an industrial
setting consists of four stages:

• Data management, which focuses on preparing data that is needed to build a machine
learning model;

• Model learning, where model selection and training happens;

• Model verification, the main goal of which is to ensure model adheres to certain functional
and performance requirements;
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• Model deployment, which is about integration of the trained model into the software in-
frastructure that is necessary to run it. This stage also covers questions around model
maintenance and updates.

Each of these stages is broken down further into smaller steps. It is important to highlight that
the apparent sequence of this description is not necessarily the norm in a real-life scenario. It is
perfectly normal for these stages to run in parallel to a certain degree and inform each other via
feedback loops. Therefore this or any similar breakdown should be considered not as a timeline, but
rather as a useful abstraction to simplify referring to concrete parts of the deployment pipeline.

For the remainder of this paper we discuss common issues practitioners face at each each stage and
granular constituent steps. We also discuss cross-cutting aspects that can affect every stage of the
deployment pipeline. Table 1 provides a summary of the issues and concerns we discuss. We do not
claim that this list is exhaustive, nonetheless by providing illustrative examples for each step of the
workflow we show how troublesome the whole deployment experience is today.

3 Data Management

Data is an integral part of any machine learning solution. Overall effectiveness of the solution de-
pends on the training and test data as much as on the algorithm. The process of creating quality
datasets is usually the very first stage in any production ML pipeline. Unsurprisingly, practitioners
face a range of issues while working with data as previously reported by Polyzotis et al. [15]. Conse-
quently, this stage consumes time and energy that is often not anticipated beforehand. In this section,
we describe issues concerning four steps within data management: data collection, data preprocess-
ing, data augmentation and data analysis. Note that we consider storage infrastructure challenges,
such as setting up databases and query engines, beyond the scope of this survey.

3.1 Data collection

Data collection involves activities that aim to discover and understand what data is available, as well
as how to organize convenient storage for it. The task of discovering what data exists and where it is
can be a challenge by itself, especially in large production environments. Finding data sources and
understanding their structure is a major task, which may prevent data scientists from even getting
started on the actual application development. As explained by Lin and Ryaboy [16], at Twitter this
situation often happened due to the fact that the same entity (e.g. a Twitter user) is processed by
multiple services. Internally Twitter consists of multiple services calling each other, and every ser-
vice is responsible for a single operation. This approach, known in software engineering as “single
responsibility principle” [17], results in an architecture that is very flexible in terms of scalability
and modification. However, the flip side of this approach is that at a large scale it is impossible to
keep track of what data related to the entity is being stored by which service, and in which form.
Besides, some data may only exist in a form of logs, which by their nature are not easily parsed or
queried. An even worse case is the situation when data is not stored anywhere, and in order to build
a dataset one needs to generate synthetic service API calls. Such a dispersion of data creates major
hurdles for data scientists, because without a clear idea of what data is available or can be obtained
it is often impossible to understand what ML solutions can realistically achieve.

3.2 Data preprocessing

The preprocessing step normally involves a range of data cleaning activities: imputation of missing
values, reduction of data into an ordered and simplified form, and mapping from raw form into a
more convenient format. Methods for carrying out data manipulations like this is an area of research
that goes beyond the scope of this study. We encourage readers to refer to review papers on the
topic, such as Abedjan et al. [18], Patil and Kulkarni [19], Ridzuan et al. [20]. An approach towards
classifying readiness of data for ML tasks is given by Lawrence [21].

A lesser known but also important problem that can also be considered an object of the prepro-
cessing step is data dispersion. It often turns out that there can be multiple relevant separate data
sources which may have different schemas, different conventions, and their own way of storing and
accessing the data. Joining this information into a single dataset suitable for machine learning can
be a complicated task on its own right. An example of this is what developers of Firebird faced
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Table 1: All considerations, issues and concerns explored in this study. Each is assigned to the stage
and step of the deployment workflow where it is commonly encountered.

Deployment Stage Deployment Step Considerations, Issues and Concerns

Data management Data collection Data discovery

Data preprocessing Data dispersion

Data cleaning

Data augmentation Labeling of large volumes of data

Access to experts

Lack of high-variance data

Data analysis Data profiling

Model learning Model selection Model complexity

Resource-constrained environments

Interpretability of the model

Training Computational cost

Environmental impact

Hyper-parameter selection Resource-heavy techniques

Hardware-aware optimization

Model verification Requirement encoding Performance metrics

Business driven metrics

Formal verification Regulatory frameworks

Test-based verification Simulation-based testing

Model deployment Integration Operational support

Reuse of code and models

Software engineering anti-patterns

Mixed team dynamics

Monitoring Feedback loops

Outlier detection

Custom design tooling

Updating Concept drift

Continuous delivery

Cross-cutting aspects Ethics Country-level regulations

Focus on technical solution only

Aggravation of biases

Authorship

Decision making

End users’ trust Involvement of end users

User experience

Explainability score

Security Data poisoning

Model stealing

Model inversion
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[22]. Firebird is an advisory system in the Atlanta Fire Department, that helps identify priority
targets for fire inspections. As a first step towards developing Firebird data was collected from 12
datasets including history of fire incidents, business licenses, households and more. These datasets
were combined to give a single dataset covering all relevant aspects of each property monitored by
the Fire Department. Authors particularly highlight data joining as a difficult problem. Given the
fact that building location is the best way to identify that building, each dataset contained spatial
data specifying building’s address. Spatial information can be presented in different formats, and
sometimes contain minor differences such as different spellings. All this needed to be cleaned and
corrected, and turned out to be a massive effort that consumed a lot of time.

3.3 Data augmentation

There are multiple reasons why data might need to be augmented, and in practice one of the most
problematic ones is the absence of labels. Real-world data is often unlabeled, thus labeling turns out
to be a challenge in its own right. We discuss three possible factors for lack of labeled data: limited
access to experts, absence of high-variance data, and sheer volume.

Labels assignment is difficult in environments that tend to generate large volumes of data, such as
network traffic analysis. To illustrate a scale of this volume, a single 1-GB/s Ethernet interface can
deliver up to 1.5 million packets per second. Even with a huge downsampling rate this is still a
significant number, and each sampled packet needs to be traced in order to be labeled. This problem
is described by Pacheco et al. [23], which surveys applications of machine learning to network
traffic classification, with tasks such as protocol identification or attack detection. There are two
main ways of acquiring data in this domain, and both are complicated for labeling purposes:

• Uncontrolled, collecting real traffic. This approach requires complex tracking flows belong-
ing to a specific application. Due to this complexity very few works implement reliable
ground truth assignment for real traffic.

• Controlled, emulating or generating traffic. Even in this case it has been shown that existing
tools for label assignment introduce errors into collected ML datasets, going as high as al-
most 100% for certain applications. Moreover, these tools’ performance degrades severely
for encrypted traffic.

Access to experts can be another bottleneck for collecting high-quality labels. It is particularly true
for areas where expertise mandated by the labeling process is significant, such as medical image
analysis [24]. Normally multiple experts are asked to label a set of images, and then these labels are
aggregated to ensure quality. This is rarely feasible for big datasets due to experts’ availability. A
possible option here is to use noisy label oracles or weaker annotations, however these approaches
are by their definition a trade off that provides imprecise labels, which ultimately leads to a severe
loss in quality of the model. Such losses are unacceptable in healthcare industry, where even the
smallest deviation can cause catastrophic results (this is known as The Final Percent challenge).

Lack of access to high-variance data can be among the main challenges one faces when deploying
machine learning solution from lab environment to real world. Dulac-Arnold et al. [25] explain
that this is the case for Reinforcement Leaning (RL). It is common practice in RL research to have
access to separate environments for training and evaluation of an agent. However, in practice all data
comes from the real system, and the agent can no longer have a separate exploration policy - this
is simply unsafe. Therefore the data available becomes low-variance. While this approach ensures
safety, it means that agent is not trained to recognize an unsafe situation and make right decision in
it. A practical example of this issue is the goal specification for autonomous vehicles [26].

3.4 Data analysis

Data needs to be analyzed in order to uncover potential biases or unexpected distributions in it.
Availability of high quality tools is essential for conducting any kind of data analysis. One area
that practitioners find particularly challenging in that regard is visualization for data profiling [27].
Data profiling refers to all activities associated with troubleshooting data quality, such as missing
values, inconsistent data types and verification of assumptions. Despite obvious relevance to the
fields of databases and statistics, there are still too few tools that enable efficient execution of these
data mining tasks. The need for such tools becomes apparent considering that, according to the
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survey conducted by Microsoft [28], data scientists think about data issues as the main reason to
doubt quality of the overall work.

4 Model Learning

Model learning is the stage of the deployment workflow that enjoys the most attention within the
academic community. All modern research in machine learning methods contributes towards better
selection and variety of models and approaches that can be employed at this stage. As an illustration
of the scale of the field’s growth, the number of submissions to NeurIPS, primary conference on ML
methods, has quadrupled in six years, going from 1678 submissions in 2014 to 6743 in 2019 [29].
Nevertheless, there is still plenty of practical considerations that affect the model learning stage.
In this section, we discuss issues concerning three steps within model learning: model selection,
training and hyper-parameter selection.

4.1 Model selection

In many practical cases the selection of a model is often decided by one key characteristic of a model:
complexity. Despite areas such as deep learning and reinforcement learning gaining increasing levels
of popularity with the research community, in practice simpler models are often chosen as we explain
below. Such model include shallow network architectures, simple PCA-base approaches, decision
trees and random forests.

Simple models can be used as a way to prove the concept of the proposed ML solution and get the
end-to-end setup in place. This approach accelerates the time to get a deployed solution, allows
the collection of important feedback and also helps avoid overcomplicated designs. This was the
case reported by Haldar et al. [30]. In the process of applying machine learning to AirBnB search,
the team started with a complex deep learning model. The team was quickly overwhelmed by its
complexity and ended up consuming development cycles. After several failed deployment attempts
the neural network architecture was drastically simplified: a single hidden layer NN with 32 fully
connected ReLU activations. Even such a simple model had value, as it allowed the building of
a whole pipeline of deploying ML models in production setting, while providing reasonably good
performance2. Over time the model evolved, with a second hidden layer being added, but it still
remained fairly simple, never reaching the initially intended level of complexity.

Another advantage that less complex models can offer is their relatively modest hardware require-
ments. This becomes a key decision point in resource constrained environments, as shown by
Wagstaff et al. [31]. They worked on deploying ML models to a range of scientific instruments
onboard Europa Clipper spacecraft. Spacecraft design is always a trade-off between the total weight,
robustness and the number of scientific tools onboard. Therefore computational resources are scarce
and their usage has to be as small as possible. These requirements naturally favor the models that are
light on computational demands. The team behind Europa Clipper used machine learning for three
anomaly detection tasks, some models took time series data as input and some models took images,
and on all three occasions simple threshold or PCA based techniques were implemented. They were
specifically chosen because of their robust performance and low demand on computational power.

A further example of a resource-constrained environment is wireless cellular networks, where en-
ergy, memory consumption and data transmission are very limited. Most advanced techniques, such
as deep learning, are not considered yet for practical deployment, despite being able to handle highly
dimensional mobile network data [32].

The ability to interpret the output of a model into understandable business domain terms often plays
a critical role in model selection, and can even outweigh performance considerations. For that
reason decision trees (DT), which can be considered a fairly basic ML algorithm, are widely used
in practice. For example, Hansson et al. [33] describe several cases in manufacturing that adopt DT
due to its high interpretability.

Banking is yet another example of an industry where DT finds extensive use. As an illustrative
example, it is used by Keramati et al. [34] where the primary goal of the ML application is to
predict customer churn by understanding if-then rules. While it is easy to imagine more complicated

2We discuss more benefits of setting up the automated deployment pipeline in Section 6.3.
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models learning the eventual input-output relationship for this specific problem, interpretability is
key requirement here because of the need to identify the features of churners. The authors found DT
to be the best model to fulfill this requirement.

Nevertheless, deep learning (DL) is commonly used for practical background tasks that require
analysis a large amount of previously acquired data. This notion is exemplified by the field of
unmanned aerial vehicles (UAV) [35]. Image sensors are commonplace in UAVs due to their low
cost, low weight, and low power consumption. Consequently, processing images acquired from
sensors is the main way of exploiting excellent capabilities in processing and presentation of raw
data that DL offers. But computational resource demands still remain the main blocker for deploying
DL as an online processing instrument on board of UAVs.

4.2 Training

One of the biggest concern with model training is the economic cost associated with carrying the
training stage due to the computational resources required. This is certainly true in the field of
natural language processing (NLP), as illustrated by Sharir et al. [36]. The authors observe that
while the cost of individual floating-point operations is decreasing, the overall cost of training NLP
is only growing. They took one of the state-of-the-art models in the field, BERT [37], and found out
that depending on the chosen model size full training procedure can cost anywhere between $50k
and $1.6m, which is unaffordable for most research institutions and even companies. The authors
observe that training dataset size, number of model parameters and number of operations utilized by
the training procedure are all contributing towards the overall cost. Of particular importance here is
the second factor: novel NLP models are already using billions of parameters, and this number is
expected to increase further in the nearest future [38].

A related concern is raised by Strubell et al. [39] regarding the impact the training of ML models has
on the environment. By consuming more and more computational resources, ML models training
is driving up the energy consumption and greenhouse gas emissions. According to the estimates
provided in the paper, one full training cycle utilizing neural architecture search emits the amount of
CO2 comparable to what four average cars emit in their whole lifetime. The authors stress how im-
portant it is for researchers to be aware of such impact of model training, and argue that community
should give higher priority to computationally efficient hardware and algorithms.

4.3 Hyper-parameter selection

In addition to parameters that are learned during the training process, many ML models also de-
fine several hyper-parameters. Hyper-parameter optimization (HPO) is the process of choosing the
optimal set of these hyper-parameters. Most HPO techniques involve multiple training cycles of
the ML model. Besides, the size of HPO task grows exponentially with each new hyper-parameter,
because it adds a new dimension to the search space. As discussed by Yang and Shami [40], these
considerations make HPO techniques very expensive and resource-heavy in practice, especially for
applications of deep learning. Even approaches like Hyperband [41] or Bayesian optimization [42],
that are specifically designed to minimize the number of training cycles needed, are still not able to
deal with certain problems due to the complexity of the models or the size of the datasets.

HPO often needs to take into account specific requirements imposed by the environment where the
model will run. This is exemplified by Marculescu et al. [43] in the context of hardware-aware ML.
In order to deploy models to embedded and mobile devices, one needs to be well aware of energy and
memory constraints imposed by such devices. This creates a need for customized hardware-aware
optimization techniques that co-optimize for the accuracy of the model and the hardware efficiency.

5 Model Verification

The goal of the model verification stage is multifaceted, because an ML model should generalize
well to unseen inputs, demonstrate reasonable handling of edge cases and overall robustness, as well
as satisfy all functional requirements. In this section, we discuss issues concerning three steps within
model verification: requirement encoding, formal verification and test-based verification.
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5.1 Requirement encoding

Defining requirements for a machine learning model is a crucial prerequisite of testing activities. It
often turns out that an increase in model performance does not translate into a gain in business value,
as Booking.com discovered after deploying 150 models into production [44]. Therefore more spe-
cific metrics need to be defined and measured, such as KPIs and other business driven measures. In
the case of Booking.com such metrics included conversion, customer service tickets or cancellations.
Cross-disciplinary effort is needed to even define such metrics, as understanding from modeling, en-
gineering and business angles is required. Once defined, these metrics are used for monitoring of
the production environment and for quality control of model updates.

Besides, simply measuring the accuracy of the ML model is not enough to understand its perfor-
mance. Essentially, performance metrics should reflect audience priorities. For instance Sato et al.
[45] recommend validating models for bias and fairness, while in the case described by Wagstaff et
al. [31] controlling for consumption of spacecraft resources is crucial.

5.2 Formal Verification

The formal verification step verifies that the model functionality follows the requirements defined
within the scope of the project. Such verification could include mathematical proofs of correctness
or numerical estimates of output error bounds, but as Ashmore et. al. [14] point out this rarely
happens in practice. More often quality standards are being formally set via extensive regulatory
frameworks.

An example of where ML solutions have to adhere to regulations is the banking industry [46]. This
requirement was developed in the aftermath of the global financial crisis, as the industry realized
that there was a need for heightened scrutiny towards models. As a consequence an increased
level of regulatory control is now being applied to the processes that define how the models are
built, approved and maintained. For instance, official guidelines has been published by the UK’s
Prudential Regulation Authority [47] and European Central Bank [48]. These guidelines require
model risk frameworks to be in place for all business decision-making solutions, and implementation
of such frameworks requires developers to have extensive tests suites in order to understand behavior
of their ML models. The formal verification step in that context means ensuring that the model meets
all criteria set by the corresponding regulations.

Regulatory frameworks share similarities with country-wide policies, which we discuss in greater
details in Section 7.1.

5.3 Test-based Verification

Test-based verification is intended for ensuring that the model generalizes well to the previously
unseen data. While collecting validation dataset is usually not a problem, as it can be derived from
splitting the training dataset, it may not be enough for production deployment.

In an ideal scenario testing is done in a real-life setting, where business driven metrics can be ob-
served, as we discussed in Section 5.1. Full scale testing in real-world environment can be challeng-
ing for a variety of safety, security and scale reasons, and is often substituted with testing in simu-
lation. That is the case for models for autonomous vehicles control [26]. Simulations are cheaper,
faster to run, and provide flexibility to create situations rarely encountered in real life. Thanks to
these advantages, simulations are becoming prevalent in this field. However, it is important to re-
member that simulation-based testing hinges on assumptions made by simulation developers, and
therefore cannot be considered a full replacement for real-world testing. Even small variations be-
tween simulation and real world can have drastic effects on the system behavior, and therefore the
authors conclude that validation of the model and simulation environment alone is not enough for
autonomous vehicles. This point is emphasized further by the experiences from the field of rein-
forcement learning [25], where use of simulations is a de-facto standard for training agents.

In addition, the dataset itself also needs to be constantly validated to ensure data errors do not
creep into the pipeline and do not affect the overall quality. Breck et al. [49] argue that one of the
most common scenarios when issues in data can go unnoticed is the setup where data generation
is decoupled from the ML pipeline. There could be multiple reasons for such issues to appear,
including bugs in code, feedback loops, changes in data dependencies. Data errors can propagate
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and manifest themselves at different stages of the pipeline, therefore it is imperative to catch them
early by including data validation routines into the ML pipeline.

6 Model Deployment

Machine learning systems running in production are complex software systems that have to be main-
tained over time. This presents developers with another set of challenges, some of which are shared
with running regular software services, and some are unique to ML.

There is a separate discipline in engineering, called DevOps, that focuses on techniques and tools
required to successfully maintain and support existing production systems. Consequently, there is a
necessity to apply DevOps principles to ML systems. However, even though some of the DevOps
principles apply directly, there is also a number of challenges unique to productionizing machine
learning. This is discussed in detail by Dang et al. [50] which uses the term AIOps for DevOps
tasks for ML systems. Some of the challenges mentioned include lack of high quality telemetry
data as well as no standard way to collect it, difficulty in acquiring labels which makes supervised
learning approaches inapplicable3 and lack of agreed best practices around handling of machine
learning models. In this section, we discuss issues concerning three steps within model deployment:
integration, monitoring and updating.

6.1 Integration

The model integration step constitutes of two main activities: building the infrastructure to run the
model and implementing the model itself in a form that can be consumed and supported. While the
former is a topic that belongs almost entirely in systems engineering and therefore lies out of scope
of this work, the latter is of interest for our study, as it exposes important aspects at the intersection of
ML and software engineering. In fact, many concepts that are routinely used in software engineering
are now being reinvented in the ML context.

Code reuse is a common topic in software engineering, and ML can benefit from adopting the same
mindset. Reuse of data and models can directly translate into savings in terms of time, effort or in-
frastructure. An illustrative case is the approach Pinterest took towards learning image embeddings
[51]. There are three models used in Pinterest internally which use similar embeddings, and initially
they were maintained completely separately, in order to make it possible to iterate on the models
individually. However, this created engineering challenges, as every effort in working with these
embeddings had to be multiplied by three. Therefore the team decided to investigate the possibil-
ity of learning universal set of embeddings. It turned out to be possible, and this reuse ended up
simplifying their deployment pipelines as well as improving performance on individual tasks.

A broad selection of engineering problems that machine learning practitioners now face is given
in Sculley et al. [52]. Most of them are considered anti-patterns in engineering, but are currently
widespread in machine learning software. Some of these issues, such as abstraction boundaries
erosion and correction cascades, are caused by the fact that ML is used in cases where the software
has to take explicit dependency on external data. Others, such as glue code or pipeline jungles, stem
from the general tendency in the field to develop general-purpose software packages. Yet another
source of problems discussed in the paper is the configuration debt, which is caused by the fact that
ML systems, besides all configurations a regular software system may require, add a sizable number
of ML-specific configuration settings that have to be set and maintained.

Researchers and software engineers often find themselves working together on the same project aim-
ing to reach a business goal with a machine learning approach. On surface there seems to be a clear
separation of responsibilities: researchers produce the model while engineers build infrastructure to
run it. In reality, their areas of concern often overlap when considering the development process,
model inputs and outputs and performance metrics. Contributors in both roles often work on the
same code. Thus it is beneficial to loop researchers into the whole development journey, making
sure they own the product code base along with the engineers, use the same version control and
participate in code reviews. Despite obvious onboarding and slow-start challenges, this approach
was seen to bring long term benefits in terms of speed and quality of product delivery [12].

3Please refer to Section 3.3 for detailed discussion about data labeling.
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6.2 Monitoring

Monitoring is one of the issues associated with maintaining machine learning systems as reported
by Sculley et al. [52]. The community is in the early stages of understanding what are the key
metrics of data and models to monitor and how to alarm on them. Monitoring of evolving input data,
prediction bias and overall performance of ML models is an open problem. Another maintenance
issue highlighted by this paper that is specific to data-driven decision making is feedback loops.
ML models in production can influence their own behavior over time via regular retraining. While
making sure the model stays up to date, it is possible to create feedback loop where the input to the
model is being adjusted to influence its behavior. This can be done intentionally, as well as happen
inadvertently which is a unique challenge when running live ML systems.

Klaise et al. [53] point out the importance of outlier detection as a key instrument to flag model
predictions that cannot be used in a production setting. The authors name two reasons for such
predictions to occur: the inability of the models to generalize outside of the training dataset and also
overconfident predictions on out-of-distribution instances due to poor calibration. Deployment of
the outlier detector can be a challenge in its own right, because labeled outlier data is scarce, and the
detector training often becomes a semi-supervised or even an unsupervised problem.

Additional insight on monitoring of ML systems can be found in Ackermann et al. [54]. This paper
describes an early intervention system (EIS) for two police departments in the US. On the surface
their monitoring objectives seem completely standard: data integrity checks, anomaly detection
and performance metrics. One would expect to be able to use out-of-the-box tooling for these tasks.
However, the authors explain that they had to build all these checks from scratch in order to maintain
good model performance. For instance, the data integrity check meant verifying updates of a certain
input table and checksums on historical records, performance metric was defined in terms of the
number of changes in top k outputs, and anomalies were tracked on rank-order correlations over
time. All of these monitoring tools required considerable investigation and implementation. This
experience report highlights a common problem with currently available end-to-end ML platforms:
the final ML solutions are usually so sensitive to problem’s specifics that out-of-the-box tooling does
not fit their needs well.

As a final remark we note that there is an overlap between choice of metrics for monitoring and
validation. The latter topic is discussed in Section 5.1.

6.3 Updating

Once the initial deployment of the model is completed, it is often necessary to be able to update
the model later on in order to make sure it always reflects the most recent trends in data and the
environment. There are multiple techniques for adapting models to a new data, including scheduled
regular retraining and continual learning [55]. Nevertheless in production setting model updating is
also affected by practical considerations.

A particularly important problem that directly impacts the quality and frequency of model update
procedure is the concept drift. Concept drift in ML is understood as changes observed in joint
distribution p(X, y), where X is the model input and y is the model output. Undetected, this phe-
nomenon can have major adverse effects on model performance, as is shown by Jameel et al. [56]
for classification problems or by Celik and Vanschoren [57] in AutoML context. Concept drift can
arise due to a wide variety of reasons. For example, the finance industry faced turbulent changes as
the financial crisis of 2008 was unfolding, and if advanced detection techniques were employed it
could have provided additional insights into the ongoing crisis, as explained by Masegosa et al. [58].
Changes in data can also be caused by inability to avoid fluctuations in the data collection procedure,
as described in paper Langenkämper et al. [59] which studies the effects of slight changes in marine
images capturing gear and location on deep learning models’ performance. Data shifts can have no-
ticeable consequences even when occurring at microscopic scale, as Zenisek et al. [60] show in their
research on predictive maintenance for wear and tear of industrial machinery. Even though concept
drift has been known for decades [61], these examples show that it remains a critical problem for
applications of ML today.

On top of the question of when to retrain the model to keep it up to date, there is an infrastructural
question on how to deliver the model artifact to the production environment. In software engi-
neering such tasks are commonly solved with continuous delivery (CD), which is an approach for
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accelerating development cycle by building an automated pipeline for building, testing and deploy-
ing software changes. CD for machine learning solutions is complicated because, unlike in regular
software products where changes only happen in the code, ML solutions experience change along
three axis: the code, the model and the data. An attempt to formulate CD for ML as a separate
discipline can be seen in Sato et al. [45]. This work describes the pieces involved and the tools that
can be used at each step of building the full pipeline. A direct illustration of benefits that a full CD
pipeline can bring to the real-life ML solution can be found in Wider and Deger [62].

7 Cross-cutting aspects

In this section we describe three additional aspects that ML projects have to consider: ethics, end
users’ trust and security. These aspects can affect every stage of the deployment pipeline.

7.1 Ethics

Ethical considerations should always inform data collection activities. As stated in the report on eth-
ical AI produced by the Alan Turing Institute [63], “it is essential to establish a continuous chain of
human responsibility across the whole AI project delivery workflow”. If researchers and developers
do not follow this recommendation, complications may come up due to a variety of reasons: breach
of governmental regulations, unjustifiable outcomes, aggravation of existing issues, and more [63].

Various countries have produced regulations to protect personal data rights. The more sensitive is
the information collected from the individual, the severer are the regulations governing its use. And
of course industry that deals with some of the most sensitive information is healthcare. According
to Han et al. [64], many countries have strict laws in place to protect data of patients, which makes
adoption of ML in healthcare particularly difficult. Examples of such regulations include the General
Data Protection Regulation in European Union [65] and ethical screening laws in a range of Asian
countries [66]. On one hand there is no doubt that these rules are absolutely necessary to make sure
people are comfortable with their data being used. On the other hand amount of reviews, software
updates and cycles of data collection/annotation that is required makes it exceptionally hard to keep
up with technical advances in ML, as Han et al. [64] explain following their experience deploying
ML solutions in healthcare sector in Japan.

Companies should not be focusing solely on the technological side of their solutions, as DeepMind
and Royal Free NHS Foundation Trust have discovered while working on Streams, an application
for automatic review of test results for serious conditions [67]. Their initial collaboration was not
specific enough on the use of patient data and on patient involvement overall, which triggered an
investigation on their compliance with data protection regulations. The revised collaboration agree-
ment was far more comprehensive and included patient and public engagement strategy in order to
ensure data is being used ethically.

Since ML models use previously seen data to make decisions, they can worsen issues that already
exist in data. This effect in the field of criminal justice is discussed in detail by O’Neil [68]. Models
that calculate person’s criminal “risk score” are often marketed as a way to remove human bias.
Nevertheless, they use seemingly neutral demographic information that often ends up serving as a
proxy. As a result, people are disadvantaged on the basis of race or income.

Likewise, Soden et al. [69] mention aggravation of social inequalities through use of biased training
datasets as one of the main concerns in applying ML to Disaster Risk Management (DRM) field.
Furthermore, it is argued that ML causes privacy and security concerns in Fragility, Conflict and
Violence settings through combination of previously distinct datasets. Reducing role of both experts
and general public is also seen as an ethical issue by DRM professionals. Some of these issues
are studied by the branch of machine learning known as Fairness in ML [70]. We discuss related
cross-cutting security concerns in Section 7.3.

An interesting ethical aspect arises in usage of ML in the field of creative arts, discussed by
Anantrasirichai and Bull [71]. When a trained model is used to create a piece of visual art, it is
not entirely clear where the authorship of this piece resides. The questions of originality therefore
requires a special attention. Closely related with this question is the growing concern of fake content
being generated with ML, which can be easily used for the wrong purposes [72].
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Another facet of ethical issues encountered by machine leaning is the data based decision making.
As machine learning tools become utilized in critical decision making processes ethical concerns
with their usage grow. Illustrative note is made by Muthiah et al. [73]. Their system of predict-
ing civil unrest, called EMBERS, is designed to be used as a forecasting and communication tool,
however authors remark that it can also be potentially misused by governments, either due to misun-
derstanding of its role in society, or intentionally.

7.2 End users’ trust

ML is often met cautiously by the end users [74], [3], [75]. On their own accord models provide
minimal explanations, which makes it difficult to persuade end users in their utility [64]. In order to
convince users to trust ML based solutions, time has to be invested to build that trust. In this section,
we explore ways in which that is done in practice.

If an application has a well-defined accessible audience, getting these people involved early in the
project is an efficient way to foster their confidence in the end product. This approach is very
common in medicine, because the end product is often targeted at a well defined group of healthcare
workers. One example is the project called Sepsis Watch [76]. In this project the goal was to build a
model that estimates patient’s risk of developing sepsis. It was not the first attempt at automating this
prediction, and since previous attempts were considered failures, medical personnel were skeptical
about eventual success of Sepsis Watch. To overcome this skepticism, the team prioritized building
trust, by:

• Building strong communication channels;

• Sharing with stakeholders progress towards developing the goal instead of showing techni-
cal advances;

• Establishing mechanisms for public and external accountability;

• Engaging both front-line clinicians and enterprise-level decision makers at early stages of
the project.

One of the key messages of this work is that model interpretability has limits as a trust-building tool,
and other ways to achieve high credibility with the end users should be considered. While it may
sound controversial, in fact it aligns with conclusions made by "Project explAIn” which found that
relative importance of explanations of AI decisions varies by context [77].

Similar argument is made by Soden et al. [69], who explore an impact ML has on disaster risk
management (DRM). Due to growing complexity of the ML solutions deployed, it is becoming
increasingly hard for public to participate and consequently to trust the ML-based DRM services,
such as flooding area estimates or prediction of damage from a hurricane. As a mitigation measure
the authors recommend making development of these solutions as transparent as possible, by taking
into account voice of residents in the areas portrayed by models as “at risk” and relying on open
software and data whenever possible.

A reasonable approach towards building trustworthy products is investing time in specialised user
interfaces with tailored user experience. Developers of Firebird [22], a system that helps identify
priority targets for fire inspection in the city of Atlanta, USA, found that the best way to introduce
ML solution as a replacement of the previously used pen-and-paper method was to develop a user
interface that presented the results of modelling in a way that the end users (fire officers and inspec-
tors in the Fire dept) found most useful and clear. Similar experience is reported by Ackermann et
al. [54].

Authors of EMBERS [73], a system that forecasts population-level events (such as protest), in Latin
America, noticed that their users have two modes of using the system: (a) high recall: obtain most
events, and then filter them using other methods; (b) high precision: focus on specific area or specific
hypothesis. To improve the user experience and thus increase their confidence in the product, user
interface was improved to easily support both modes. This case study emphasizes the importance of
context-aware personalization for ML systems’ interfaces, one of the key observations delivered by
Project explAIn [77].

Budd et al. [24] show that interface design directly impacts quality of applications built to collect
annotations for unlabeled data. They discuss a range of projects that collected labels for medical
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images, all of which benefited from well designed user interface. The authors conclude that end user
interface plays a large part in overall success of the annotation applications.

Finally, the solutions based on models whose decisions can be explained are preferred when the
target audience has experience and an understanding of ML. Bhatt et al. [11] analyzed explainability
as a feature of machine learning models deployed within enterprises, and found that it is a must-
have requirement for most of the stakeholders, including executives, ML engineers, regulators, and
others. Moreover, their survey showed that explainability score is a desired model metric, along
with measures of fairness and robustness.

7.3 Security

Machine Learning opens up new threat vectors across the whole ML deployment workflow as de-
scribed by Kumar et al. [78]. Specialised adversarial attacks for ML can occur on the model itself,
the data used for training but also the resulting predictions. The field of adversarial machine learn-
ing studies the effect of such attacks against ML models and how to protect against them [79, 80].
Recent work from Kumar et al. found that industry practitioners are not equipped to protect, detect
and respond to attacks on their ML systems [81]. In this section, we describe the three most com-
mon attacks reported in practice which affects deployed ML models: data poisoning, model stealing
and model inversion. We focus specifically on adversarial machine learning and consider other re-
lated general security concerns in deploying systems such as access control and code vulnerabilities
beyond the scope of our work.

In data poisoning, the goal of the adversarial attack is to deliberately corrupt the integrity of the
model during the training phase in order to manipulate the produced results. Poisoning attacks are
particularly relevant in situations where the machine learning model is continuously updated with
new incoming training data. Jagielski et al. reported that in a medical setting using a linear model,
the introduction of specific malicious samples with a 8% poisoning rate in the training set resulted
in incorrect dosage for half of the patients [82].

Data poisoning can also occur as a result of a coordinated collective effort that exploits feedback
loops we have discussed in Section 6.2, as it happened with Microsoft’s Twitter bot Tay [83]. Tay
was designed to improve its understanding of the language over time, but was quickly inundated
with a large number of deliberately malevolent tweets. Within 16 hours of its release a troubling
percentage of Tay’s messages were abusive or offensive, and the bot was taken down.

Another type of adversarial attack is reverse engineering a deployed model by querying its inputs
(e.g. via a public prediction API) and monitoring the outputs. The adversarial queries are crafted to
maximize the extraction of information about the model in order to train a substitute model. This
type of attack is referred to as model stealing. In a nutshell, this attack results in loss of intellectual
property which could be a key business advantage for the defender. Tramèr et al. [84] have shown
that it is possible to replicate models deployed in production from ML services offered by Google,
Amazon and Microsoft across a range of ML algorithms including logistic regression, decision trees,
SVMs and neural networks. In their work, they report the number of queries ranging from 650 to
4013 to extract an equivalent model and in time ranging from 70s to 2088s.

A related attack is that of model inversion where the goal of the adversarial attack is recover parts
of the private training set, thereby breaking its confidentialty. Fredrikson et al. have shown that they
could recover training data by exploiting models that report confidence values along their predictions
[85]. Veale et al. [86] emphasize the importance of protecting against model inversion attacks as a
critical step towards compliance with data protection laws such as GDPR.

8 Discussion of potential solutions

This survey looked at case studies from a variety of industries: computer networks, manufacturing,
space exploration, law enforcement, banking, and more. However, further growths of ML adoption
can be severely hindered by poor deployment experience. To make the ML deployment scalable and
accessible to every business that may benefit from it, it is important to understand the most critical
pain points and to provide tools, services and best practices that address those points. We see this
survey as an initial step in this direction: by recognizing the most common challenges currently
being reported we hope to foster an active discussion within the academic community about what
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possible solutions might be. We classify possible research avenues for solutions into two categories,
which we discuss below.

8.1 Tools and services

The market for machine learning tools and services is experiencing rapid growth [87]. As a result,
tools for individual deployment problems are continuously developed and released. For some of
the problems we have highlighted, making use of the right specific tool is an entirely reasonable
approach.

For example, this is most likely the case for operational maintenance of ML models. Many platforms
on the market offer end-to-end experience for the user, taking care of such things as data storage,
retraining and deployment. Examples include AWS SageMaker [88], Microsoft AzureML [89],
Uber Michelangelo [90], TensorFlow TFX [91], MLflow [92] and more. A typical ML platform
would include, among other features, data storage facility, model hosting with APIs for training and
inference operations, a set of common metrics to monitor model health and an interface to accept
custom changes from the user. By offering managed infrastructure and a range of out-of-the-box
implementations for common tasks such platforms greatly reduce operational burden associated
with maintaining the ML model in production.

Quality assurance also looks to be an area where better tools can be of much assistance. As men-
tioned in Section 3, data integrity plays a big part in quality control, and is an active branch of
research [18]. Models themselves can also greatly benefit from development of a test suite to ver-
ify their behavior. This is normally done by trial and error, but more formal approaches are being
developed, as is the case with CheckList methodology for NLP models [93].

As discussed in Section 3.3, obtaining labels is often a problem with real world data. Weak su-
pervision has emerged as a separate field of ML which looks for ways to address this challenge.
Consequently, a number of weak supervision libraries are now actively used within the commu-
nity, and show promising results in industrial applications. Some of the most popular tools include
Snorkel [94], Snuba [95] and cleanlab [96].

Using specific tools for solving individual problems is a straightforward approach. However practi-
tioners need to be aware that by using a particular tool they introduce an additional dependency into
their solution. While a single additional dependency seems manageable, their number can quickly
grow and become a maintenance burden. Besides, as we mentioned above, new tools for ML are
being released constantly, thus presenting practitioners with the dilemma of choosing the right tool
by learning its strength and shortcomings.

8.2 Holistic approaches

Even though ML deployments require a certain amount of software development, ML projects are
fundamentally different from traditional software engineering projects, and we argue they need a
different approach. The main differences arise from unique activities like data discovery, dataset
preparation, model training, deployment success measurement etc. Some of these activities cannot
be defined precisely enough to have a reliable time estimate, some assume huge potential risks, and
some make it difficult to measure the overall added value of the project. Therefore ML deploy-
ments do not lend themselves well to widespread approaches to software engineering management
paradigms, and neither to common software architectural patterns.

Data Oriented Architectures (DOA, [97], [98]) is an example of an idea that suggests rethinking how
things are normally approached in software development, and by doing so promises to solve quite
a few issues we have discussed in this survey. Specifically, the idea behind DOA is to consider re-
placing micro-service architecture, widespread in current enterprise systems, with streaming-based
architecture, thus making data flowing between elements of business logic more explicit and accessi-
ble. Micro-service architectures have been successful in supporting high scalability and embracing
the single responsibility principle. However, they also make data flows hard to trace, and it is up to
owners of every individual service to make sure inputs and outputs are being stored in a consistent
form. DOA provides a solution to this problem by moving data to streams flowing between state-
less execution nodes, thus making data available and traceable by design, therefore making simpler
the tasks of data discovery, collection and labeling. In its essence DOA proposes to acknowledge
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that modern systems are often data-driven, and therefore need to prioritize data in their architectural
principles.

As noted above, ML projects normally do not fit well with commonly used management processes,
such as Scrum or Waterfall. Therefore it makes sense to consider processes tailored specifically for
ML. One such attempt is done by Lavin et. al. [99], who propose Technology Readiness Levels
for ML (TRL4ML) framework. TRL4ML describes a process of producing robust ML systems that
takes into account key differences between ML and traditional software engineering.

A very widespread practice in software engineering is to define a set of guidelines and best practices
to help developers make decisions at various stages of the development process. These guidelines
can cover a wide range of questions, from variable names to execution environment setup. Simi-
larly, Zinkevich [100] compiled a collection of best practices for machine learning that are utilized
in Google. While this cannot be viewed as a coherent paradigm towards doing ML deployment,
this document gives practical advice on a variety of important aspects that draw from the real life
experiences of engineers and researchers in the company.

Holistic approaches are created with ML application in mind, and therefore they have the potential to
offer a significant ease of deploying ML. But it should be noted that all such approaches assume a big
time investment, because they represent significant changes to current norms in project management
and development. Therefore a careful assessment of risks versus benefits should be carried out
before adopting any of them.

9 Further Work

Even though the set of challenges we reviewed covers every stage of the ML deployment workflow,
we believe that it is far from being complete. Identifying other, especially non-technical, challenges
is a natural direction of further work and could be augmented by conducting interviews with industry
representatives about their experiences of deploying ML.

In this paper, we reviewed reports from a variety of industries, which shows the ubiquity and variety
of challenges with deploying ML in production. An interesting extension can be the comparative
analysis of industries. Quantitative and qualitative analysis of most commonly reported challenges
may open interesting transferability opportunities, as approaches developed in one field may be
applicable in the other.

Our work includes a brief discussion of existing tools in Section 8.1. However, the community would
benefit from a comprehensive review of currently available tools and services, mapped to challenges
reported in our study. This new work could be combined with our survey to enable practitioners
to identify the problem they are facing and choose the most appropriate tool that addresses that
problem.

10 Conclusion

In this survey, we showed that practitioners deal with challenges at every step of the ML deployment
workflow due to practical considerations of deploying ML in production. We discussed challenges
that arise during the data management, model learning, model verification and model deployment
stages, as well as considerations that affect the whole deployment pipeline including ethics, end
users’ trust and security. We illustrated each stage with examples across different fields and indus-
tries by reviewing case studies, experience reports and the academic literature.

We argue that it is worth academic community’s time and focus to think about these problems, rather
than expect each applied field to figure out their own approaches. We believe that ML researchers
can drive improvements to the ML deployment experience by exploring holistic approaches and
taking into account practical considerations.

As an observation that follows from the process of collecting papers to review in this survey, we
note the shortage of deployment experience reports in the academic literature. Valuable knowledge
obtained by industry ML practitioners goes unpublished. We would like to encourage organisations
to prioritize sharing such reports, as they provide valuable information for the wider community, but
also as a way to self-reflect, collect feedback and improve on their own solutions.
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We hope this survey will encourage discussions within the academic community about pragmatic
approaches to deploying ML in production.
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