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TRANSPORT OF STRUCTURE IN HIGHER HOMOLOGICAL ALGEBRA

RAPHAEL BENNETT-TENNENHAUS AND AMIT SHAH

Abstract. We fill a gap in the literature regarding ‘transport of structure’ for (n + 2)-angulated, n-exact,

n-abelian and n-exangulated categories appearing in (classical and higher) homological algebra. As an

application of our main results, we show that a skeleton of one of these kinds of categories inherits the

same structure in a canonical way, up to equivalence. In particular, it follows that a skeleton of a weak

(n + 2)-angulated category is in fact what we call a strong (n + 2)-angulated category. When n = 1 this

clarifies a technical concern with the definition of a cluster category. We also introduce the notion of an n-

exangulated functor between n-exangulated categories. This recovers the definition of an (n + 2)-angulated

functor when the categories concerned are (n + 2)-angulated, and the higher analogue of an exact functor

when the categories concerned are n-exact.

1. Introduction

‘Transport of structure’ refers to the situation in which an object gains structure by being isomorphic

to an object with some pre-existing structure (see [6, §IV.1]). Instances of this well-known idea appear, for

example, in: Lie theory [1], [31], [37]; operational calculus [9]; algebraic geometry and number theory [7], [20],

[34]; the theory of concrete geometrical categories [14]; modular representation theory [38]; and the theory

of algebraic structures [23]. These examples involve transporting some algebraic structure across a function

between sets.

Analogously, one can ask which categorical structures can be transported across equivalences. For example,

it is well-known that any category equivalent to an additive category is also additive (see Theorem 3.1).

Other examples found in the literature include the transport of monoidal [13], model [16] and triangulated

[11] structures. See also [19], [28], [29].

The motivation for writing this note arose in the context of triangulated categories. Suppose (C, Σ, T ) is a

triangulated category, where the suspension Σ is assumed to be an automorphism of C; see Example 2.6. Let

C′ be any category and assume F : C → C′ is an equivalence. Suppose one wants to find an automorphism

Σ′ of C′ (and a collection T ′ of triangles in C′), such that (C, Σ′, T ′) is a triangulated category and that

F is a triangle equivalence. A canonical choice for Σ′ is FΣG , where G : C′ → C is a quasi-inverse for F .

Unfortunately, when one tries to prove this choice is an automorphism of C′, one encounters problems that

seem difficult (or, perhaps, impossible) to resolve. Bernhard Keller pointed out that it is more natural to

ask only that Σ is an autoequivalence in the definition of a triangulated category, and we call these ‘weak’

triangulated categories here in order to make a distinction; see Definition 2.4. After this modification, by

which nothing is lost (see [27, §2]), we can obtain a clean ‘transport of triangulated structure’ statement.

Although well-known, we could not find the details of this claim. Theorem 3.4 fills this gap in the literature.

Recently, homological algebra has seen the introduction of higher (dimensional) analogues of categories

that have been a core part of the classical theory for many years. Let n > 1 be a positive integer. The notion

of an (n + 2)-angulated category (see Definition 2.5) was introduced in [18], in a way so that one recovers

the definition of a triangulated category by setting n = 1. Similarly, higher versions of exact and abelian

categories were introduced in [25]; see Definitions 2.16 and 2.17. Parallel to this, Nakaoka and Palu defined

an extriangulated category, which is a simultaneous generalisation of a triangulated category and an exact
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2 BENNETT-TENNENHAUS AND SHAH

category; see [35]. And, naturally, a higher analogue, called an n-exangulated category, of an extriangulated

category has since been introduced in [22]; see Definition 2.28.

As a consequence of these developments, we include transport of structure results for (n + 2)-angulated,

n-exact, n-abelian and n-exangulated categories. That is, we show that one can transport these categorical

structures across equivalences; see Theorems 3.4, 3.5, 3.6 and 3.9. Moreover, in order to state the latter three

results in the same fashion as Theorem 3.4, we introduce the notion of an n-exact functor (see Definition

2.18) and an n-exangulated functor (see Definition 2.32). We show in Theorem 2.33 that a (covariant) functor

between (n+2)-angulated categories is an n-exangulated functor if and only if it is an (n+2)-angulated functor,

in the sense of Definition 2.7. Similarly, in Theorem 2.34 we show that a functor between n-exact categories

is an n-exangulated functor if and only if it is an n-exact functor.

An application of Theorem 3.5 (respectively, Theorem 3.6, Theorem 3.9) shows that any skeleton of

an n-exact (respectively, n-abelian, n-exangulated) category is again n-exact (respectively, n-abelian, n-

exangulated). Furthermore, in the (n + 2)-angulated case we deduce a stronger conclusion: we show that

each skeleton of a weak (n + 2)-angulated category (see Definition 2.4) is what we call a strong (n + 2)-

angulated category (i.e. with an (n + 2)-suspension functor that is an automorphism); see Corollary 4.6.

In this case, the natural choice for the (n + 2)-suspension functor of the skeleton is an automorphism; see

Proposition 4.4.

This paper is organised as follows. In §2 we recall the definitions of the categories from higher homological

algebra that we work with in the sequel. In particular, we propose a definition for an n-exact functor in

§2.2 and an n-exangulated functor in §2.3. Moreover, we show that an n-exangulated functor simultaneously

generalises the notions of an (n + 2)-angulated functor and an n-exact functor. In §3 we prove our main

results on transport of structure. In §4 we provide an improvement of transport of (n+2)-angulated structure

when transporting the structure to a skeletal category. We also explain how our results from §4 may be used

to show how the definition of a cluster category is made rigorous.

2. Higher structures

Throughout §2, let n > 1 be a positive integer and let C be an additive category. In §§2.1–2.2 we recall

the higher analogues of the classical (i.e. n = 1) theory, and in §2.3 we recall the more recent theory of

n-exangulated categories.

2.1. (n+2)-angulated categories. We assume throughout §2.1 that C is equipped with an autoequivalence

Σ: C → C. We recall the definition of an (n+2)-angulated category (see Definition 2.5), which was introduced

in [18] and we follow the exposition therein.

Remark 2.1. Definitions 2.2–2.4 below are essentially [18, Def. 2.1]. However, there is one key difference. In

[18] the endofunctor Σ: C → C is assumed to be an automorphism, whereas here we only assume that Σ is

an autoequivalence.

Definition 2.2. A sequence of morphisms of the form X0 X1 · · · Xn+1 ΣX0
d0

X
d1

X
dn

X
dn+1

X in C

is called an (n + 2)-Σ-sequence.

Definition 2.3. A morphism of (n + 2)-Σ-sequences from

X0 X1 · · · Xn+1 ΣX0
d0

X d1
X dn

X
dn+1

X

to

Y 0 Y 1 · · · Y n+1 ΣY 0
d0

Y
d1

Y
dn

Y
dn+1

Y
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is a tuple (f0, . . . , fn+1) of morphisms f i : X i → Y i in C such that

X0 X1 · · · Xn+1 ΣX0

Y 0 Y 1 · · · Y n+1 ΣY 0

d0
X

f0

d1
X

f1

dn
X

dn+1
X

fn+1 Σf0

d0
Y

d1
Y

dn
Y

dn+1
Y

commutes in C.

Definition 2.4. Recall that n > 1 is a positive integer and C is an additive category equipped with an

autoequivalence Σ. Let T be a class of (n + 2)-Σ-sequences in C. Then we call (C, Σ, T ) a weak pre-(n + 2)-

angulated category if the following axioms are satisfied.

(F1) (a) The class T is closed under finite taking direct sums and direct summands.

(b) For each X ∈ C, the (n + 2)-Σ-sequence X X 0 · · · 0 ΣX
1X is in T .

(c) For each morphism d0
X there is an (n + 2)-Σ-sequence in T whose first morphism is d0

X .

(F2) An (n + 2)-Σ-sequence X0 X1 · · · Xn+1 ΣX0
d0

X
d1

X
dn

X
dn+1

X lies in T if and only if its left

rotation

X1 X2 · · · Xn+1 ΣX0 ΣX1
d1

X
d2

X
dn

X
dn+1

X
(−1)nΣd0

X

lies in T .

(F3) Each commutative diagram

X0 X1 X2 · · · Xn+1 ΣX0

Y 0 Y 1 Y 2 · · · Y n+1 ΣY 0

d0
X

f0

d1
X

f1

d2
X

dn
X

dn+1
X

Σf0

d0
Y

d1
Y

d2
Y

dn
Y

dn+1
Y

(2.1)

with rows in T can be completed to a morphism

X0 X1 X2 · · · Xn+1 ΣX0

Y 0 Y 1 Y 2 · · · Y n+1 ΣY 0

d0
X

f0

d1
X

f1

d2
X

f2

dn
X

dn+1
X

fn+1 Σf0

d0
Y

d1
Y

d2
Y

dn
Y

dn+1
Y

(2.2)

of (n + 2)-Σ-sequences.

In this case, we say: T is a pre-(n + 2)-angulation; the members of T are (n + 2)-angles; and Σ is an

(n + 2)-suspension.

Moreover, if (C, Σ, T ) satisfies (F1)–(F3) and (F4) below, then we call (C, Σ, T ) a weak (n + 2)-angulated

category. In this case, we refer to T as an (n + 2)-angulation.

(F4) In the situation of (F3) above, (2.1) can be completed to (2.2) using morphisms f2, . . . , fn+1 such

that the cone C• = C(f)• lies in T , where C• is the (n + 2)-Σ-sequence

X1 ⊕ Y 0 X2 ⊕ Y 1 · · · ΣX0 ⊕ Y n+1 ΣX1 ⊕ ΣY 0,
d0

C
d1

C
dn

C
dn+1

C

in which

di
C :=

(
−di+1

X 0

f i+1 di
Y

)
,

for i ∈ {0, . . . , n + 1}, where dn+2
X := Σd0

X and fn+2 := Σf0.

The definition of a (pre-)(n + 2)-angulated category, as originally given in [18], is the following.

Definition 2.5. [18, Def. 2.1] Let (C, Σ, T ) be a weak (pre-)(n + 2)-angulated category. We call (C, Σ, T ) a

(pre-)(n + 2)-angulated category if Σ is an automorphism of C.

Sometimes will use the adjective ‘strong’ for a (pre-)(n + 2)-angulated category (in the sense of Definition

2.5 above) in order to highlight that the (n+2)-suspension functor is an automorphism. As is normal practice,
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we will usually just talk of a (weak) (pre-)(n + 2)-angulated category C and assume the existence of T and

Σ is understood.

Example 2.6. With n = 1, an (n + 2)-angulated category (in the sense of Definition 2.5) is the same as a

triangulated category in the sense of [24, Def. 3.1]. See [36, Def. 3.1, Def. 3.2, pp. 246–248].

Definition 2.7. [4, §4] Let (C, Σ, T ) and (C′, Σ′, T ′) be weak (pre-)(n+2)-angulated categories. An additive

covariant functor F : C → C′ is called an (n + 2)-angulated functor if there exists a natural isomorphism

Θ = {ΘX}X∈C : F ◦ Σ
∼=

=⇒ Σ′ ◦ F , such that if

X0 X1 · · · Xn+1 ΣX0
d0

X
d1

X
dn

X
dn+1

X

is an (n + 2)-angle in C, then

FX0 FX1 · · · FXn+1 Σ′FX0
Fd0

X Fd1
X Fdn

X
ΘX0 ◦ Fdn+1

X

is an (n + 2)-angle in C′.

We remark that (n + 2)-angulated functors as we refer to them here were called ‘exact’ functors in [25].

The last piece of terminology we need for this setting is the following.

Definition 2.8. An (n + 2)-angulated functor F : C → C′ is called an (n + 2)-angle equivalence if it is an

equivalence of categories.

2.2. n-exact and n-abelian categories. In §2.2 we follow [25] in recalling some prerequisite concepts

from higher homological algebra and the definitions of an n-exact category and an n-abelian category (see

Definitions 2.16 and 2.17, respectively). At the end of §2.2 we define an n-exact functor (see Definition 2.18).

We denote by Ab the category of all abelian groups.

Definition 2.9. [25, Def. 2.2] Let dn
X : Xn → Xn+1 be a morphism in C. An n-kernel of dn

X is a sequence

(d0
X , . . . , dn−1

X ) : X0 X1 · · · Xn
d0

X
d1

X
dn−1

X

of composable morphisms in C, such that for all Z ∈ C the functor C(Z, −) yields an exact sequence

0 C(Z, X0) C(Z, X1) · · · C(Z, Xn) C(Z, Xn+1)
d0

X ◦ − d1
X ◦ − dn−1

X
◦ − dn

X ◦ −

in Ab. An n-cokernel is defined dually.

Let CC denote the category of (cochain) complexes in C. We denote by C
n
C the full subcategory of CC

consisting of complexes which are concentrated in degrees 0, . . . , n + 1. We denote a complex X• ∈ C
n
C by

X0 X1 · · · Xn Xn+1.
d0

X
d1

X
dn−1

X
dn

X

Definition 2.10. [25, Def. 2.4] An n-exact sequence in C is a complex X• ∈ C
n
C , such that (d0

X , . . . , dn−1
X ) is

an n-kernel of dn
X and (d1

X , . . . , dn
X) is an n-cokernel of d0

X .

Definition 2.11. [25, Def. 2.9] Let X•, Y • ∈ C
n
C be n-exact sequences. A morphism f • : X• → Y • of n-exact

sequences is just a morphism f • ∈ C
n
C(X•, Y •) of complexes.

Definition 2.12. [25, Def. 2.11] Let f • : X• → Y • be a morphism of complexes in C
n−1
C

. The mapping cone

C• := MC(f)• is the complex

X0 X1 ⊕ Y 0 X2 ⊕ Y 1 · · · Xn ⊕ Y n−1 Y n
d−1

C
d0

C d1
C

dn−2
C

dn−1
C
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in C
n
C , where d−1

C
:=
(

−d0
X

f0

)
, dn−1

C
:= ( fn dn−1

Y ), and

di
C :=

(
−di+1

X 0

f i+1 di
Y

)

for i ∈ {0, . . . , n − 2}.

Definition 2.13. [25, Def. 2.11] Let X• ∈ C
n−1
C

be a complex. Suppose gn : Zn → Xn is a morphism in C.

An n-pullback of (d0
X , . . . , dn−1

X ) along gn is a morphism of complexes

Z0 Z1 · · · Zn−1 Zn

X0 X1 · · · Xn−1 Xn,

d0
Z

g0

d1
Z

g1

dn−2
Z

dn−1
Z

gn−1 gn

d0
X

d1
X dn−2

X
dn−1

X

such that in the mapping cone

C• := MC(g)• : Z0 Z1 ⊕ X0 Z2 ⊕ X1 · · · Zn ⊕ Xn−1 Xn
d−1

C
d0

C
d1

C
dn−2

C
dn−1

C

the sequence (d−1
C , . . . , dn−2

C ) is an n-kernel of dn−1
C . An n-pushout is defined dually.

Definition 2.14. [25, §4.1] Fix a class X of n-exact sequences in C. The members of X are called X -

admissible n-exact sequences. If X• is an X -admissible n-exact sequence, then d0
X : X0  X1 is called an

X -admissible monomorphism and dn
X : Xn →→ Xn+1 is called an X -admissible epimorphism.

Definition 2.15. [25, Def. 4.1] Let f • : X• → Y • be a morphism of n-exact sequences in C
n
C . If there exists

i ∈ {0, 1, . . . , n + 1} such that f i and f i+1 (where fn+2 := f0) are isomorphisms, then we call f • a weak

isomorphism, and we say X• and Y • are weakly isomorphic.

We are now able to recall the definitions of an n-exact category and an n-abelian category.

Definition 2.16. [25, Def. 4.2] Let n > 1 be a positive integer and let C be an additive category. Suppose

X is a class of n-exact sequences in C that is closed under weak isomorphisms. The pair (C, X ) forms an

n-exact category if the following axioms are satisfied.

(n-E0) The sequence 0  0 → · · · → 0 →→ 0 is an X -admissible n-exact sequence.

(n-E1) The class of X -admissible monomorphisms is closed under composition.

(n-E1op) The class of X -admissible epimorphisms is closed under composition.

(n-E2) For each X -admissible n-exact sequence X• and each morphism f0 : X0 → Y 0, there exists an

n-pushout

X0 X1 · · · Xn−1 Xn Xn+1

Y 0 Y 1 · · · Y n−1 Y n

d0
X

f0

d1
X

f1

dn−2
X

dn−1
X

fn−1

dn
X

fn

d0
Y d1

Y dn−2
Y

dn−1
Y

of (d0
X , . . . , dn−1

X ) along f0 such that d0
Y is an X -admissible monomorphism.

(n-E2op) Dual of (n-E2).

Definition 2.17. [25, Def. 3.1] Let n > 1 be a positive integer. An additive category C is called n-abelian if

the following axioms are satisfied.

(n-A0) The category C has split idempotents.

(n-A1) Every morphism in C has an n-kernel and an n-cokernel.

(n-A2) For each monomorphism d0
X : X0 →֒ X1 in C and every n-cokernel (d1

X , . . . , dn
X) of d0

X , the sequence

X0 X1 · · · Xn Xn+1
d0

X
d1

X
dn−1

X
dn

X
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is n-exact.

(n-A2op) Dual of (n-A2).

It was shown in [25] that every n-abelian category is n-exact; see [25, Thm. 4.4].

For an additive covariant functor F : A → B between additive categories, we denote by FC : CA → CB

the induced additive covariant functor between the categories of complexes. More precisely, for complexes

X•, Y • ∈ CA and any morphism f • ∈ CA(X•, Y •), the complex FC(X•) ∈ CB is

· · · FX−1 FX0 FX1 · · ·
Fd−1

X
Fd0

X
Fd1

X

and the morphism FC(f •) ∈ CB(FCX•, FCY •) is given by the commutative diagram

· · · FX−1 FX0 FX1 · · ·

· · · FY −1 FY 0 FY 1 · · · .

Fd−1
X

Ff−1

Fd0
X

Ff0

Fd1
X

Ff1

Fd−1
Y

Fd0
Y

Fd1
Y

Now we introduce the higher version of an exact functor between exact categories; see [10, Def. 5.1].

Definition 2.18. Let (C, X ) and (C′, X ′) be n-exact categories. An additive covariant functor F : C → C′ is

called an n-exact functor if it sends X -admissible n-exact sequences to X ′-admissible n-exact sequences, i.e.

FC(X ) ⊆ X ′. If F is n-exact and an equivalence, then we call F an n-exact equivalence.

Remark 2.19. We note here that the terminology ‘n-exact functor’ has appeared in [30, §4.1]. However, in

[30] an ‘n-exact functor’ is an additive covariant functor from an n-abelian category to an abelian category

that maps n-exact sequences to exact sequences. On the other hand, what we call an n-exact functor is a

direct generalisation of an exact functor (between exact categories).

2.3. n-exangulated categories. In §2.3 we follow [22, §2] in order to recall the definition of an n-exangulated

category (see Definition 2.28). We also recall how one can view (n + 2)-angulated and n-exact categories

as n-exangulated categories (see Examples 2.30 and 2.31, respectively). Lastly, we define an n-exangulated

functor (see Definition 2.32), and we relate this notion to (n + 2)-angulated functors and n-exact functors

(see Theorems 2.33 and 2.34, respectively).

Setup 2.20. We assume C comes equipped with a biadditive functor E : Cop × C → Ab (which is the same

as an ‘additive bifunctor’ in the sense of [15, §1.2, p. 649]). Thus, for fixed objects A, C in C, the functors

E(C, −) : C → Ab and E(−, A) : Cop → Ab are additive. Furthermore, each morphism f : X → Y in C gives

rise to abelian group homomorphisms E(C, f) : E(C, X) → E(C, Y ) and E(fop, A) : E(Y, A) → E(X, A). To

simplify notation, we will omit the superscript “op”, writing E(f, A) instead of E(fop, A).

Definition 2.21. [22, Def. 2.1, Rem. 2.2, Def. 2.3] By an E-extension (or simply an extension) we mean an

element δ of E(C, A) for some objects A, C in C.

For morphisms x : A → X , z : Z → C in C and for an extension δ ∈ E(C, A), we obtain new extensions as

follows:

xEδ := E(C, x)(δ) ∈ E(C, X) and zEδ := E(z, A)(δ) ∈ E(Z, A).

Let δ ∈ E(C, A) and ε ∈ E(D, B) be extensions. A morphism of E-extensions δ → ε is a pair (a, c) of

morphisms a : A → B and c : C → D in C, such that aEδ = cEε.

By the Yoneda Lemma, each E-extension gives rise to two natural transformations as follows.

Definition 2.22. [22, Def. 2.11] For any A, C in C and any E-extension δ ∈ E(C, A), there is an induced

natural transformation δ♯
E

: C(A, −) ⇒ E(C, −), which is given by (δ♯
E
)B(a) = aEδ for each object B ∈ C and

each morphism a : A → B. Dually, there is also a natural transformation δE♯ : C(−, C) ⇒ E(−, A), which is

given by (δE♯ )D(d) = dEδ for each object D ∈ C and each morphism d : D → C.
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We will be particularly interested in pairs 〈X•, δ〉 of complexes and extensions for which the natural

transformations δ♯
E

and δE♯ fit into exact sequences induced by Hom-functors.

Definition 2.23. [22, Def. 2.13] A pair 〈X•, δ〉, where X• ∈ C
n
C and δ ∈ E(Xn+1, X0), is called an n-exangle

if, for every object Z in C, the sequences

C(Z, X0) C(Z, X1) · · · C(Z, Xn+1) E(Z, X0)
d0

X
◦ − d1

X
◦ − dn

X
◦ − (δE

♯
)Z

and

C(Xn+1, Z) C(Xn, Z) · · · C(X0, Z) E(Xn+1, Z)
− ◦ dn

X
− ◦ dn−1

X
− ◦ d0

X
(δ♯

E
)Z

in Ab are exact.

In [22] and [35] the notation x∗δ, respectively z∗δ, is used to label the extensions xEδ, respectively zEδ.

The reason for our change in notation become apparent later; see Remark 3.7.

Definition 2.24. [22, Def. 2.17] Let A, C be objects in C. We define the subcategory C
n
(A,C) of C

n
C in the

following way. The objects of C
n
(A,C) consist of those complexes X• ∈ C

n
C for which X0 = A and Xn+1 = C.

For X•, Y • ∈ C
n
(A,C), we set

C
n
(A,C)(X

•, Y •) := {f • ∈ C
n
C(X•, Y •) | f0 = 1A and fn+1 = 1C}.

For morphisms f •, g• : X• → Y • in CC , we write f • ∼ g• if f • and g• are homotopic in the usual sense.

Recall that ∼ gives an equivalence relation on CC(X•, Y •) for all complexes X•, Y •. Now fix A, C ∈ C and let

X•, Y • ∈ C
n
(A,C) be arbitrary. Note that the set C

n
(A,C)(X

•, Y •) is no longer an abelian group (see [22, p. 540]).

However, the homotopy relation ∼ on C
n
C(X•, Y •) restricts to an equivalence relation on C

n
(A,C)(X

•, Y •), which

we again denote by ∼.

Definition 2.25. [22, §2.3] By K
n
(A,C) we denote the category whose objects are those of C

n
(A,C) and, for

X•, Y • ∈ K
n
(A,C), we put

K
n
(A,C)(X

•, Y •) := C
n
(A,C)(X

•, Y •)/ ∼ .

Given a morphism f • ∈ C
n
(A,C)(X

•, Y •), we will call f • a homotopy equivalence if it induces an isomorphism

in K
n
(A,C)(X

•, Y •). In this case, we will say the complexes X• and Y • are homotopy equivalent. We denote

by [X•] the homotopy equivalence class of X• in C
n
(A,C). (Note that this may not coincide with the usual

homotopy equivalence class of X• in C
n
C ; see [22, Rem. 2.18].)

Definition 2.26. [22, Def. 2.22] Let s be a correspondence that, for each A, C ∈ C, assigns to each extension

δ ∈ E(C, A) a homotopy equivalence class s(δ) = [X•] where X• ∈ C
n
(A,C). We say that s is a realisation of E

if

(R0) for all δ ∈ E(C, A) and ε ∈ E(D, B) with s(δ) = [X•] and s(ε) = [Y •], and for all morphisms

(a, c) : δ → ε of E-extensions, there exists a morphism f • = (f0, . . . , fn+1) ∈ C
n
C(X•, Y •) with f0 = a

and fn+1 = c.

In this case, we say X• realises δ (or δ is realised by X•) and that f • realises (a, c) (or (a, c) is realised by f •).

For objects A, C ∈ C, we write A0C for the identity element in the abelian group E(C, A).

A realisation s of E is said to be exact if

(R1) the pair 〈X•, δ〉 is an n-exangle whenever s(δ) = [X•]; and

(R2) for any object A in C, we have that s(A00) = [ A A 0 · · · 0
1A ] and s(00A) =

[ 0 · · · 0 A A
1A ].

Let us recall some useful terminology from [22].

Definition 2.27. [22, Def. 2.23] Let s be an exact realisation of E. Suppose s(δ) = [X•] for some extension

δ ∈ E(C, A) and X• ∈ C
n
(A,C). Then we say 〈X•, δ〉 is an s-distinguished n-exangle and X• is an s-conflation.
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A morphism f in C is called an s-inflation (respectively, s-deflation) if there exists an s-conflation X• with

d0
X = f (respectively, dn

X = f).

We are now in a position to recall the definition of an n-exangulated category.

Definition 2.28. [22, Def. 2.32] Recall that n > 1 is a positive integer, C is an additive category and

E : Cop × C → Ab is a biadditive functor. Let s be an exact realisation of E. Then (C,E, s) is called an

n-exangulated category if the following axioms are satisfied.

(n-EA1) The class of s-inflations is closed under composition. Dually, the class of s-deflations is closed

under composition.

(n-EA2) For each δ ∈ E(D, A) and each c ∈ C(C, D), if s(cEδ) = [X•] and s(δ) = [Y •], then there exists

a morphism f • = (1A, f1, . . . , fn, c) : X• → Y • realising (1A, c) : cEδ → δ such that s((d0
X)Eδ) =

[MC(f̂)•], where f̂ • = (f1, . . . , fn, c). Such an f • is called a good lift of (1A, c).

(n-EA2op) Dual of (n-EA2).

Example 2.29. A category is 1-exangulated if and only if it is extriangulated (in the sense of [35]); see [22,

Prop. 4.3].

Let us recall how (n + 2)-angulated and n-exact categories provide examples of n-exangulated categories.

Example 2.30. Suppose (C, Σ, T ) is an (n + 2)-angulated category. From this information, we obtain a

functor EΣ : Cop × C → Ab by setting EΣ(Xn+1, X0) := C(Xn+1, ΣX0) for any X0, Xn+1 in C, and defining

the map EΣ(f, g) : EΣ(Xn+1, X0) → EΣ(Y n+1, Y 0) by EΣ(f, g)(δ) := (Σg) ◦ δ ◦ f for any f : Y n+1 → Xn+1

and g : X0 → Y 0. An exact realisation s of EΣ is given as follows: for an element δ ∈ EΣ(Xn+1, X0), complete

it to an (n + 2)-angle X0 → · · · → Xn+1 δ
→ ΣX0 and set s(δ) = [X0 → · · · → Xn+1]. Then (C,EΣ, s) is an

n-exangulated category. See [22, §4.2] for more details.

Example 2.31. Suppose (C, X ) is an n-exact category. For any X0, Xn+1 in C, denote by Λn
(X0,Xn+1) the

class of all homotopy equivalence classes of n-exact sequences in C
n
(X0,Xn+1). Then define EX (Xn+1, X0) to be

the subclass of Λn
(X0,Xn+1) consisting of those classes [X•] such that X• ∈ X . We assume that EX (Xn+1, X0)

is a set for all X0, Xn+1 ∈ C. For any X -admissible n-exact sequence X• and any morphism f : X0 → Y 0,

we can form an n-pushout of (d0
X , . . . , dn−1

X ) along f to obtain a morphism

X0 X1 · · · Xn Xn+1

Y 0 Y 1 · · · Y n Xn+1

d0
X

f

d1
X

f1

dn−1
X

dn
X

fn

d0
Y

d1
Y dn−1

Y
dn

Y

of X -admissible n-exact sequences by [25, Prop. 4.8]. Thus, set EX (Xn+1, f)([X•]) = [Y •]. We can define

EX (g, X0) in a dual manner. Then EX : Cop × C → Ab is a well-defined biadditive functor. Lastly, the

assignment s(δ) = [X•] for each δ = [X•] ∈ EX (Xn+1, X0) gives an exact realisation of EX , and (C,EX , s) is

an n-exangulated category. See [22, §4.3] for more details.

For any functor F : A → B, we denote by F op the opposite functor Aop → Bop given by F op(A) = FA

and F (fop) = (Ff)op for any objects A, B ∈ A and any morphism f ∈ A(A, B); see [33, §IV.5].

We now introduce the notion of an n-exangulated functor, which appears to be new.

Definition 2.32. Let (C,E, s) and (C′,E′, s′) be n-exangulated categories. An additive covariant functor

F : C → C′ is called an n-exangulated functor if there exists a natural transformation

Γ = {Γ(C,A)}(C,A)∈Cop×C : E(−, −) =⇒ E
′(F op−, F−)

of functors Cop ×C → Ab, such that s(δ) = [X•] implies s′(Γ(Xn+1,X0)(δ)) = [FCX•]. To simplify notation, we

write E
′(F−, F−) in place of E′(F op−, F−). An n-exangulated functor F : C → C′ is called an n-exangle

equivalence if it is an equivalence of categories.
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In particular, we call a 1-exangulated functor an extriangulated functor.

The following two results show that this definition specialises to recover the definitions of an (n + 2)-

angulated functor and an n-exact functor.

Theorem 2.33. Let (C, Σ, T ) and (C′, Σ′, T ′) be (n + 2)-angulated categories. Following the notation of

Example 2.30, set E := EΣ and E
′ := EΣ′ , and consider the n-exangulated categories (C,E, s) and (C′,E′, s′).

Suppose F : C → C′ is an additive covariant functor. Then F is an (n + 2)-angulated functor if and only if

F is an n-exangulated functor.

Proof. (⇒) Suppose first that F is an (n + 2)-angulated functor. Then there exists a natural isomorphism

Θ: FΣ
∼=

=⇒ Σ′F , such that for any (n + 2)-angle X0 X1 · · · Xn+1 ΣX0
d0

X
d1

X
dn

X
dn+1

X in C,

FX0 FX1 · · · FXn+1 Σ′FX0
Fd0

X
Fd1

X
Fdn

X
ΘX0 ◦ Fdn+1

X

is an (n + 2)-angle in C′.

For each X0, Xn+1 in C, let Γ(Xn+1,X0) be the composition:

C(Xn+1, ΣX0) C′(FXn+1, FΣX0) C′(FXn+1, Σ′FX0).
FXn+1,ΣX0 ΘX0 ◦ −

This gives a homomorphism Γ(Xn+1,X0) : E(Xn+1, X0) → E
′(FXn+1, FX0). We claim that the collection

Γ = {Γ(Xn+1,X0)}(Xn+1,X0)∈Cop×C gives a natural transformation E(−, −) =⇒ E
′(F−, F−).

To this end, suppose f : Y n+1 → Xn+1 and g : X0 → Y 0 are arbitrary morphisms in C. Then we must

show that the square

E(Xn+1, X0) E
′(FXn+1, FX0)

E(Y n+1, Y 0) E
′(FY n+1, FY 0)

Γ(Xn+1,X0)

E(f, g) E
′(Ff, Fg)

Γ(Y n+1,Y 0)

(2.3)

commutes. Note that for any δ ∈ E(Xn+1, X0) we have

E
′(Ff, Fg)(Γ(Xn+1,X0)(δ)) = E

′(Ff, Fg)(ΘX0Fδ) = (Σ′
Fg)ΘX0 (Fδ)(Ff).

On the other hand,

Γ(Y n+1,Y 0)(E(f, g)(δ)) = Γ(Y n+1,Y 0)((Σg)δf) = ΘY 0 (FΣg)(Fδ)(Ff),

which is equal to (Σ′Fg)ΘX0 (Fδ)(Ff) since (Σ′Fg)ΘX0 = ΘY 0(FΣg) as Θ is natural. So (2.3) commutes

and Γ is indeed a natural transformation.

Lastly, suppose s(δ) = [X•]. That is, X0 X1 · · · Xn+1 ΣX0
d0

X
d1

X
dn

X δ is an (n + 2)-angle

in C. Then, as F is an (n + 2)-angulated functor,

FX0 FX1 · · · FXn+1 Σ′FX0
Fd0

X Fd1
X Fdn

X ΘX0 ◦ Fδ

is an (n + 2)-angle in C′. Since Γ(Xn+1,X0)(δ) = ΘX0 ◦ Fδ, we see that s
′(Γ(Xn+1,X0)(δ)) = [FCX•]. Hence,

F satisfies Definition 2.32.

(⇐) Conversely, assume F satisfies Definition 2.32 with natural transformation Γ: E(−, −) ⇒ E
′(F−, F−).

Let X ∈ C be arbitrary. Setting Xn+1 = ΣX and X0 = X , we obtain a morphism

C(ΣX, ΣX) = E(ΣX, X) E
′(FΣX, FX) = C′(FΣX, Σ′FX).

Γ(ΣX,X)

Set ΘX := Γ(ΣX,X)(1ΣX) : FΣX → Σ′FX .

We claim that Θ = {ΘX}X∈C is a natural isomorphism FΣ ⇒ Σ′F . Let a : X → X ′ be an arbitrary

morphism in C. Then we must show that (Σ′Fa)ΘX = ΘX′(FΣa). Since (2.3) commutes for all f : Y n+1 →

Xn+1 and g : X0 → Y 0 in C, we can first choose f = 1ΣX and g = a, and then, using δ = 1ΣX ∈ E(ΣX, X), we
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obtain (Σ′Fa)ΘX = Γ(ΣX,X′)(Σa). Secondly, choosing f = Σa, g = 1X′ and δ = 1ΣX′ ∈ E(ΣX ′, X ′) yields

Γ(ΣX,X′)(Σa) = ΘX′(FΣa). Consequently, (Σ′Fa)ΘX = ΘX′(FΣa) and Θ is a natural transformation.

To show ΘX is an isomorphism for each X ∈ C, consider the (n + 2)-angle

X 0 · · · 0 ΣX ΣX
1ΣX

in C. Denote by Z• the complex X 0 · · · 0 ΣX in C
n
(X,ΣX). Since F is an n-exangulated

functor and s(1ΣX) = [Z•], we have that s
′(Γ(ΣX,X)(1ΣX)) = [FCZ•]. Hence, in C′ we have the (n + 2)-angle

FX 0 · · · 0 FΣX Σ′FX
ΘX (2.4)

as ΘX = Γ(ΣX,X)(1ΣX). It follows that ΘX is an isomorphism, because applying the functors C′(Σ′FX, −)

and C′(−, FΣX) to (2.4) yields long exact sequences in Ab.

Finally, suppose that X• is an (n + 2)-angle in C. Then

FX0 FX1 · · · FXn+1 Σ′FX0
Fd0

X
Fd1

X
Fdn

X
Γ(Xn+1,X0)(dn+1

X
)

is an (n + 2)-angle in C′. Note that the commutativity of (2.3) with f = dn+1
X , g = 1X0 and δ = 1ΣX0 ∈

E(ΣX0, X0) implies Γ(Xn+1,X0)(d
n+1
X ) = Γ(ΣX0,X0)(1ΣX0 ) ◦ Fdn+1

X = ΘX0 ◦ Fdn+1
X . Hence,

FX0 FX1 · · · FXn+1 Σ′FX0
Fd0

X
Fd1

X
Fdn

X
ΘX0 ◦ Fdn+1

X

is an (n + 2)-angle in C′.

�

Theorem 2.34. Let (C, X ) and (C′, X ′) be n-exact categories. Following the notation of Example 2.31, set

E := EX and E
′ := EX ′ . Assume for all X0, Xn+1 ∈ C (respectively, Z0, Zn+1 ∈ C′) that E(Xn+1, X0)

(respectively, E′(Zn+1, Z0)) is a set. Consider the n-exangulated categories (C,E, s) and (C′,E′, s′). Suppose

F : C → C′ is an additive covariant functor. Then F is an n-exact functor if and only if F is an n-

exangulated functor.

Proof. (⇒) Suppose F is an n-exact functor. For X0, Xn+1 in C, define Γ(Xn+1,X0) : E(Xn+1, X0) →

E
′(FXn+1, FX0) by Γ(Xn+1,X0)([X

•]) := [FCX•]. Note that this is a well-defined map since the addit-

ive functor FC preserves homotopies and since FC(X ) ⊆ X ′ as F is n-exact. Now let us show that the

collection of homomorphisms Γ = {Γ(Xn+1,X0)}(Xn+1,X0)∈Cop×C gives a natural transformation E(−, −) ⇒

E
′(F−, F−). Let f : Y n+1 → Xn+1 and g : X0 → Y 0 be arbitrary morphisms in C. Note that E(f, g) =

E(Y n+1, g) ◦ E(f, X0) and E
′(Ff, Fg) = E

′(FY n+1, Fg) ◦ E
′(Ff, FX0), so it is enough to show that the

squares

E(Xn+1, X0) E
′(FXn+1, FX0)

E(Y n+1, X0) E
′(FY n+1, FX0)

Γ(Xn+1,X0)

E(f, X0) E
′(Ff, FX0)

Γ(Y n+1,X0)

(2.5)

and

E(Y n+1, X0) E
′(FY n+1, FX0)

E(Y n+1, Y 0) E
′(FY n+1, FX0)

Γ(Y n+1,X0)

E(Y n+1, g) E
′(FY n+1, Fg)

Γ(Y n+1,Y 0)

(2.6)

commute.

We only show that (2.5) commutes as the commutativity of (2.6) can be shown similarly. Thus, let

[X•] ∈ E(Xn+1, X0) be arbitrary. Then Γ(Xn+1,X0)([X
•]) = [FCX•], and E

′(Ff, FX0)([FCX•]) = [Z•] is

obtained by forming an n-pullback of (Fd1
X , . . . , Fdn

X) along Ff , where Z0 = FX0 and Zn+1 = FY n+1.
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By the dual of [25, Prop. 4.8], this yields a morphism h• : Z• → FCX• of X ′-admissible n-exact sequences,

where h0 = 1FX0 and hn+1 = Ff .

On the other hand, E(f, X0)([X•]) = [W •] is given by taking an n-pullback of (d1
X , . . . , dn

X) along f ,

where W 0 = X0 and W n+1 = Y n+1. By the dual of [25, Prop. 4.8], there is a morphism f • : W • → X• of

X -admissible n-exact sequences such that f0 = 1X0 and fn+1 = f . Note that Γ(Y n+1,X0)([W
•]) = [FCW •]

and that, since F is an n-exact functor, FCf • : FCW • → FCX• is a morphism of X ′-admissible n-exact

sequences.

By the dual of [25, Prop. 4.9], there exists a morphism p• : Z• → FCW • such that p0 = h0 = 1FX0 ,

and there exists a morphism q• : FCW • → Z• such that q0 = Ff0 = 1FX0 . In particular, we then have

a morphism q•p• : Z• → Z• with q0p0 = 1FX0 = 1Z0 , and a morphism p•q• : FCW • → FCW • with p0q0 =

1FX0 = 1FCW 0 . Hence, by [25, Lem. 2.1], we have that q•p• ∼ 1Z• and p•q• ∼ 1FCW • . Thus, the homotopy

equivalence classes [Z•] and [FCW •] coincide, so (2.5) commutes and Γ is a natural transformation.

Lastly, suppose s(δ) = [X•], which means δ = [X•] by Example 2.31. As defined above, Γ(Xn+1,X0)(δ) =

Γ(Xn+1,X0)([X
•]) = [FCX•] so s

′(Γ(Xn+1,X0)(δ)) = [FCX•].

(⇐) Conversely, suppose F is an n-exangulated functor. We must show that FC(X ) ⊆ X ′. Let

X0 X1 · · · Xn Xn+1d0 d1 dn−1 dn

be an arbitrary X -admissible n-exact sequence. Set δ := [X•] ∈ E(Xn+1, X0). Then s(δ) = [X•] implies

s
′(Γ(Xn+1,X0)(δ)) = [FCX•] ∈ E

′(FXn+1, FX0) as F is n-exangulated. Hence, FCX• is an X ′-admissible

n-exact sequence and we are done.

�

We note here that the notion of an n-exangulated functor is currently being generalised. In ongoing with

J. Haugland and M. H. Sandøy, the authors are considering functors from an n-exangulated category to an

m-exangulated category, which are compatible with the respective structures and where n and m might differ.

See [3].

3. Transport of structure

In §3, let n > 1 be a positive integer. We show that an equivalence of categories preserves the structures

discussed in §2. In all cases, we will need the following well-known result, which is easily verified.

Theorem 3.1. Let F : C → C′ be an equivalence of categories and suppose C is an additive category. Then

C′ is an additive category and F is an additive equivalence.

For any category A, we will denote the identity functor of A by 1A; see [5, p. 6].

Setup 3.2. Suppose F : C → C′ is an equivalence. Then there exists a quasi-inverse G : C′ → C for F .

In this situation, the unit Φ: 1C′ =⇒ FG and the counit Ψ: G F=⇒1C are natural isomorphisms, and the

counit-unit equations (or triangle identities)

FΨ ◦ ΦF = 1F and ΨG ◦ G Φ = 1G , (3.1)

are satisfied; see [5, Prop. 3.4.1]. The natural transformations FΨ, ΦF , ΨG and G Φ are obtained from

whiskering; see [2, p. 24].

We will refer to Setup 3.2 in the main results of §§3.1–3.3.

3.1. (n + 2)-angulated categories. Recall that if (C, Σ, T ) is a weak (n + 2)-angulated category, then in

this article we only require Σ to be an autoequivalence of C. Lemma 3.3 is a key ingredient in the proof of

Theorem 3.4.
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Lemma 3.3. Let (C, Σ, T ) be a weak (pre-)(n + 2)-angulated category and let C′ be a category equipped with

an autoequivalence Σ′. Suppose F : C → C′ is an equivalence and assume that there is a natural isomorphism

Θ: FΣ
∼=

=⇒ Σ′F . Let T ′ be the collection of (n + 2)-Σ′-sequences consisting of those isomorphic to any

(n + 2)-Σ′-sequence of the form

FX0 FX1 · · · FXn+1 Σ′FX0,
Fd0

X Fd1
X Fdn

X
ΘX0 ◦ Fdn+1

X (3.2)

where X0 X1 · · · Xn+1 ΣX0
d0

X
d1

X
dn

X
dn+1

X is an (n + 2)-angle in C. Then (C′, Σ′, T ′) is a weak

(pre-)(n + 2)-angulated category and F is an (n + 2)-angle equivalence.

Proof. Let us fix the notation as in Setup 3.2. By Theorem 3.1, we have that C′ is an additive category and

F is an additive equivalence. Note that this implies Σ′ is additive (also by Theorem 3.1). Suppose (C, Σ, T )

is a weak pre-(n + 2)-angulated category, and let us first verify axioms (F1)–(F3) from Definition 2.4 for

(C′, Σ′, T ′).

One can easily verify that T ′ is closed under taking finite direct sums and direct summands, using that

F , Σ and Σ′ are all additive functors and that T satisfies (F1).

Let X ′ ∈ C′ be arbitrary. Then

G X ′ G X ′ 0 · · · 0 ΣG X ′
1G X′

is an (n + 2)-angle in C. Thus,

FG X ′ FG X ′ 0 · · · 0 Σ′(FG X ′)
1FG X′

is an (n + 2)-Σ′-sequence in T ′. Using the natural isomorphism Φ: 1C′

∼=
=⇒ FG , we see that

X ′ X ′ 0 · · · 0 Σ′X ′
1X′

is also an (n + 2)-Σ′-sequence in T ′.

Let d0
X′ : X ′0 → X ′1 be an arbitrary morphism in C′, and consider the morphism G d0

X′ : G X ′0 → G X ′1 in

C. Using (F1)(c) for C we obtain an (n + 2)-angle

G X ′0 G X ′1 X2 · · · Xn+1 ΣG X ′0.
G d0

X′ d1
X

d2
X

dn
X

dn+1
X

So, the (n + 2)-Σ′-sequence

FG X ′0 FG X ′1 FX2 · · · FXn+1 Σ′FG X ′0.
FG d0

X′ Fd1
X

Fd2
X

Fdn
X

ΘG X′0 Fdn+1
X

belongs to T ′. Set a := ΘG X′0Fdn+1
X . Then the diagram

FG X ′0 FG X ′1 FX2 · · · FXn+1 Σ′FG X ′0

X ′0 X ′1 FX2 · · · FXn+1 Σ′X ′0

FG d0
X′

Φ −1
X′0

Fd1
X

Φ −1
X′1

Fd2
X

Fdn
X a

Σ′Φ −1
X′0

d0
X′ (Fd1

X
) ◦ ΦX′1 Fd2

X
Fdn

X
(Σ′Φ −1

X′0 ) ◦ a

commutes and all the vertical morphisms are isomorphisms, since Φ is a natural isomorphism. Thus the

diagram is an isomorphism of (n + 2)-Σ′-sequences and, hence, (F1) holds for (C′, Σ′, T ′).

By using suitable (n + 2)-Σ′-sequence isomorphisms, we need only show the remaining axioms hold for the

defining (n + 2)-Σ′-sequences of T ′, i.e. (n + 2)-Σ′-sequences of the form (3.2), namely

FX0 FX1 · · · FXn+1 Σ′FX0
Fd0

X
Fd1

X
Fdn

X
ΘX0 ◦ Fdn+1

X
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where X0 X1 · · · Xn+1 ΣX0
d0

X d1
X dn

X
dn+1

X is an (n + 2)-angle in C. We may apply (F2) in C

yielding the (n + 2)-angle

X1 X2 · · · Xn+1 ΣX0 ΣX1
d1

X
d2

X
dn

X
dn+1

X
(−1)nΣd0

X

in C. Then, setting b := (−1)nΘX1FΣd0
X , the (n + 2)-angle

FX1 FX2 · · · FXn+1 FΣX0 Σ′FX1
Fd1

X
Fd2

X
Fdn

X
Fdn+1

X b

is in T ′. In the diagram

FX1 FX2 · · · FXn+1 FΣX0 Σ′FX1

FX1 FX2 · · · FXn+1 Σ′FX0 Σ′FX1

Fd1
X

Fd2
X

Fdn
X

Fdn+1
X b

ΘX0

Fd1
X

Fd2
X

Fdn
X

ΘX0Fdn+1
X

(−1)nΣ′Fd0
X

the rightmost square commutes since Θ is a natural isomorphism. Hence, the diagram above is an (n + 2)-

Σ′-sequence isomorphism and the bottom row is in T ′. Thus, we conclude that if an (n + 2)-Σ′-sequence is

in T ′, then its left rotation also lies in T ′. The converse is similar, and so (F2) holds for (C′, Σ′, T ′).

In order to show (F3) is satisfied, suppose we are given a commutative diagram

FX0 FX1 · · · FXn+1 Σ′FX0

FY 0 FY 1 · · · FY n+1 Σ′FY 0,

Fd0
X

f0
	

Fd1
X

f1

Fdn
X

ΘX0 ◦ (Fdn+1
X

)

Σ′f0

Fd0
Y

Fd1
Y

Fdn
Y

ΘY 0 ◦ (Fdn+1
Y

)

(3.3)

in which the rows are defining (n + 2)-Σ′-sequences in T ′ and f1 ◦ Fd0
X = (Fd0

Y ) ◦ f0. Since F is full,

we have that f0 = Fg0 and f1 = Fg1 for some g0 : X0 → Y 0 and g1 : X1 → Y 1. Therefore, the identity

f1 ◦ Fd0
X = (Fd0

Y ) ◦ f0 becomes F (g1d0
X) = F (d0

Y g0), and we see that g1d0
X = d0

Y g0 in C as F is also

faithful. Hence, by (F3) for C, we obtain a morphism

X0 X1 X2 · · · Xn+1 ΣX0

Y 0 Y 1 Y 2 · · · Y n+1 ΣY 0

d0
X

g0
	

d1
X

g1

d2
X

g2

dn+1
X

gn+1 Σg0

d0
Y d1

Y d2
Y

dn+1
Y

(3.4)

of (n + 2)-Σ-sequences. Applying FC and using the natural isomorphism Θ to adjust the rightmost square,

we have a morphism

FX0 FX1 FX2 · · · FXn+1 Σ′FX0

FY 0 FY 1 FY 2 · · · FY n+1 Σ′FY 0

Fd0
X

f0
	

Fd1
X

f1

Fd2
X

f2

ΘX0Fdn+1
X

fn+1 Σ′Fg0 = Σ′f0

Fd0
Y

Fd1
Y

Fd2
Y

ΘY 0 Fdn+1
Y

of (n + 2)-Σ′-sequences in C′, where f i := Fgi for 2 6 i 6 n + 1, so (F3) holds for (C′, Σ′, T ′).

Altogether, we have shown (F1)–(F3) hold for (C′, Σ′, T ′) whenever these axioms hold for (C, Σ, T ). That

is, if C is weak pre-(n + 2)-angulated then so too is C′.

Suppose now that (C, Σ, T ) also satisfies (F4); we will show (C′, Σ′, T ′) satisfies (F4). To this end, fix

morphisms f0, f1 in C′ such that (3.3) commutes. As before, this induces diagram (3.4) in C, and since (F4)

holds for C, we may assume that g2, . . . , gn+1 were obtained in such a way that the cone C• := C(g)•

X1 ⊕ Y 0 X2 ⊕ Y 1 · · · ΣX0 ⊕ Y n+1 ΣX1 ⊕ ΣY 0
d0

C d1
C dn

C
dn+1

C

lies in T . Therefore,

FX1 ⊕ FY 0 · · · FΣX0 ⊕ FY n+1 Σ′FX1 ⊕ Σ′FY 0
Fd0

C Fdn
C c
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lies in T ′, where

c :=

(
ΘX1 0

0 ΘY 0

)
Fdn+1

C =

(
−ΘX1FΣd0

X 0

ΘY 0FΣg0 ΘY 0Fdn+1
Y

)
.

One can then check that the diagram

FX1 ⊕ FY 0 · · · FXn+1 ⊕ FY n FΣX0 ⊕ FY n+1 Σ′FX1 ⊕ Σ′FY 0

FX1 ⊕ FY 0 · · · FXn+1 ⊕ FY n Σ′FX0 ⊕ FY n+1 Σ′FX1 ⊕ Σ′FY 0,

Fd0
C

Fdn−1
C

Fdn
C c

d

Fd0
C

Fdn−1
C

d ◦ Fdn
C e

where

d :=

(
ΘX0 0

0 1FY n+1

)
and e :=

(
−Σ′Fd0

X 0

Σ′Fg0 ΘY 0Fdn+1
Y

)
,

gives an isomorphism of (n + 2)-Σ′-sequences using the natural isomorphism Θ for morphisms d0
X and g0.

Since the top row lies in T ′ and the bottom row is precisely the cone C(f)• of the morphism (f0, . . . , fn+1)

in C′, we see C(f)• belongs to T ′. Thus, (F4) holds for (C′, Σ′, T ′) whenever it holds for (C, Σ, T ).

Lastly, we immediately see that F is an (n + 2)-angulated functor by the existence of the natural iso-

morphism Θ: FΣ
∼=

=⇒ Σ′F and by how we defined the (pre-)(n + 2)-angulation T ′. Furthermore, F is thus

an (n + 2)-angle equivalence.

�

We are now in a position to prove transport of structure for weak (pre-)(n + 2)-angulated categories.

Theorem 3.4. Let (C, Σ, T ) be a weak (pre-)(n + 2)-angulated category and suppose F : C → C′ is an

equivalence. Then C′ is a weak (pre-)(n + 2)-angulated category and F is an (n + 2)-angle equivalence.

Proof. Let us fix the notation as in Setup 3.2. By Theorem 3.1, we have that C′ is an additive category and

F is an additive equivalence of categories.

Since Σ is an autoequivalence of C, there exists a functor Σ− : C → C and natural isomorphisms Γ: ΣΣ−

∼=
=⇒

1C and Λ: Σ−Σ
∼=

=⇒ 1C . Set Σ′ := FΣG and Σ′
− := FΣ−G . Then there is a natural isomorphism

Σ′Σ′
− ⇒ 1C′ given by the composition

Σ′Σ′
− = FΣ(G F )Σ−G FΣ1CΣ−G = FΣΣ−G FG 1C′ .

FΣΨΣ−G FΓG Φ−1

Similarly, there is also a natural isomorphism Σ′
−Σ′

∼=
=⇒ 1C′ , and hence Σ′ is an autoequivalence of C′.

Note that there is also a natural isomorphism

Θ := FΣΨ−1 : FΣ = FΣ1C

∼=
=⇒ FΣG F = Σ′

F .

Then, by Lemma 3.3, (C′, Σ′, T ′) is a weak (pre-)(n + 2)-angulated category, where T ′ is the collection of

(n + 2)-Σ′-sequences that are isomorphic to any (n + 2)-Σ′-sequence of the form

FX0 FX1 · · · FXn+1 Σ′FX0,
Fd0

X
Fd1

X
Fdn

X
ΘX0 ◦ Fdn+1

X

such that X0 X1 · · · Xn+1 ΣX0
d0

X
d1

X
dn

X
dn+1

X is an (n + 2)-angle in C. Furthermore, F is a

(n + 2)-angle equivalence by the same result.

�

3.2. n-exact and n-abelian categories. In §3.2, we show that whenever a category is equivalent to an

n-exact (respectively, n-abelian) category, it must also be n-exact (respectively, n-abelian). The idea in both

results is that the property of a complex becoming exact under a Hom-functor is preserved by any fully

faithful functor.
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Theorem 3.5. Let (C, X ) be an n-exact category and suppose F : C → C′ is an equivalence. Consider the

class X ′ consisting of all sequences in C′ that are weakly isomorphic to any sequence of the form

FX0 FX1 · · · FXn+1,
Fd0

X
Fd1

X
Fdn

X (3.5)

where X0 X1 · · · Xn+1
d0

X
d1

X
dn

X is an X -admissible n-exact sequence. Then (C′, X ′) forms an

n-exact category and F is an n-exact equivalence.

Proof. First, note that X ′ does indeed consist of n-exact sequences in C′, because F is an equivalence

of categories and so gives bijections on morphism sets. Second, by definition X ′ is closed under weak

isomorphisms. Now let us show the axioms for an n-exact category are satisfied by the pair (C′, X ′).

Since 0  0 → · · · → 0 →→ 0 is an X -admissible n-exact sequence and F is an additive functor, the

sequence 0 → 0 → · · · → 0 → 0 is in X ′, so (n-E0) holds for (C′, X ′).

With the use of suitable isomorphisms of n-exact sequences, we are reduced to showing the remaining

axioms for the defining sequences of the form (3.5). Thus, suppose we have two composable X ′-admissible

monomorphisms Fd0
X : FX0 → FX1 and Fd0

Y : FX1 → FY 1, where d0
Y and d0

X are X -admissible mono-

morphisms. Then the morphism d0
Y d0

X is an X -admissible monomorphism as (C, X ) is an n-exact category.

Hence, Fd0
Y ◦ Fd0

X = F (d0
Y d0

X) is an X ′-admissible monomorphism and (C′, X ′) satisfies (n-E1). Dually,

(n-E1op) is also satisfied.

Suppose we have a defining X ′-admissible n-exact sequence of the form (3.5) and an arbitrary morphism

f0 : FX0 → Y ′ in C′. Since F is essentially surjective, there exists Y 0 in C and an isomorphism h : Y ′ →

FY 0. Then there exists a morphism g0 : X0 → Y 0 such that Fg0 = hf0 as F is full. Applying (n-E2) in C,

we obtain an n-pushout

X0 X1 · · · Xn

Y 0 Y 1 · · · Y n,

d0
X

g0

d1
X

g1

dn−1
X

gn

d0
Y

d1
Y dn−1

Y

(3.6)

such that d0
Y is an X -admissible monomorphism.

Applying F yields a morphism

FX0 FX1 · · · FXn

FY 0 FY 1 · · · FY n

Fd0
X

Fg0 = hf0

Fd1
X

Fg1

Fdn−1
X

Fgn

Fd0
Y

Fd1
Y Fdn−1

Y

(3.7)

of X ′-admissible n-exact sequences by definition of X ′. We claim that this diagram is an n-pushout in C′.

As (3.6) is an n-pushout, we know that in the mapping cone C• := MC(g)•, the sequence (d0
C , . . . , dn−1

C ) is

an n-cokernel for d−1
C . Thus, for any Z ∈ C, the induced commutative diagram

0 C(Y n, Z) · · · C(X1 ⊕ Y 0, Z) C(X0, Z)

0 C′(FY n, FZ) · · · C′(F (X1 ⊕ Y 0), FZ) C′(FX0, FZ)

− ◦ dn−1
C

FY n,Z∼=

− ◦ d0
C

− ◦ d−1
C

FX1⊕Y 0,Z
∼= FX0,Z

∼=

− ◦ Fdn−1
C

− ◦ Fd0
C

− ◦ Fd−1
C

in Ab has an exact top row. The vertical homomorphisms are isomorphisms because F is fully faithful,

which thus implies exactness of the bottom row. As F is essentially surjective, it follows that the sequence

(d0
D, . . . , dn−1

D ) is an n-cokernel for d−1
D in the mapping cone D• := MC(FCg)•. Hence, (3.7) is an n-pushout,

as claimed.
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Since h : Y ′ → FY 0 is an isomorphism, we can adjust (3.7) to get another n-pushout

FX0 FX1 · · · FXn

Y ′ FY 1 · · · FY n,

Fd0
X

f0

Fd1
X

Fg1

Fdn−1
X

Fgn

(Fd0
Y

)h Fd1
Y Fdn−1

Y

where the bottom row is isomorphic to FCY •. In particular, (Fd0
Y )h is an X ′-admissible monomorphism.

Thus, (n-E2) holds in (C′, X ′). Dually, (n-E2op) is satisfied.

Hence, (C′, X ′) is an n-exact category. The final claim follows from the definition of X ′.

�

Using similar methods as in the proof of Theorem 3.5, one may also show the following result, which we

state without proof.

Theorem 3.6. Let C be an n-abelian category and suppose F : C → C′ is an equivalence. Then C′ is an

n-abelian category and F is an n-exact equivalence.

3.3. n-exangulated categories. The goal of §3.3 is to show that one can transport an n-exangulated

structure across an equivalence.

Remark 3.7. We now supplement the discussion after Definition 2.23. Suppose F : C → C′ is a functor and

E : Cop × C → Ab and E
′ : C′op × C′ → Ab are biadditive functors. In Lemma 3.8 and Theorem 3.9 below, it is

necessary to distinguish between E-extensions and E
′-extensions, and describe relationships between them.

This necessity motivates the use of the symbol E in denoting δE♯ , δ♯
E
, xEδ and zEδ. Note that these were

denoted δ♯, δ♯, x∗δ and z∗δ, respectively in [22] and [35].

Lemma 3.8. Let (C,E, s) be an n-exangulated category and suppose F : C → C′ is an equivalence. Fix the

notation as in Setup 3.2. Define the functor E
′ : C′op × C′ → Ab to be E(G −, G −). For each A, C ∈ C′ and

each δ ∈ E
′(C, A) = E(G C, G A), set s′(δ) to be the homotopy equivalence class

[ A FX1 · · · FXn C
(Fd0

X
)ΦA Fd1

X
Fdn−1

X
Φ −1

C
◦ Fdn

X ]

in K
n
(A,C), where s(δ) = [ G A X1 · · · Xn G C

d0
X

d1
X

dn−1
X

dn
X ]. Then E

′ is a biadditive functor

and s
′ is an exact realisation of E′.

Proof. It is straightforward to show that E
′ : C′op × C′ → Ab is a biadditive functor. Using that F is

an equivalence, and in particular that Φ and Ψ are natural isomorphisms, one can also check that s
′ is a

well-defined assignment.

Let us show that s′ is a realisation of E′. Let A, B, C, D ∈ C′ and suppose we have extensions δ ∈ E
′(C, A)

and ε ∈ E
′(D, B). Suppose

s
′(δ) = [ A FX1 · · · FXn C

(Fd0
X

)ΦA Fd1
X

Fdn−1
X

Φ −1
C

Fdn
X ]

and

s
′(ε) = [ B FY 1 · · · FY n D

(Fd0
Y

)ΦB Fd1
Y

Fdn−1
Y

Φ −1
D

Fdn
Y ],

where

s(δ) = [ G A X1 · · · Xn G C
d0

X
d1

X
dn−1

X
dn

X ]

and

s(ε) = [ G B Y 1 · · · Y n G D
d0

Y
d1

Y
dn−1

Y
dn

Y ].
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Let (a, c) : δ → ε be a morphism of E′-extensions, where a : A → B and c : C → D are morphisms in C′. Then

we have

(G a)E(δ) = E(G C, G a)(δ)

= E
′(C, a)(δ)

= aE′δ

= cE
′

δ

= E
′(c, B)(ε)

= E(G c, G B)(ε)

= (G c)E(ε),

which implies (G a, G c) : δ → ε is a morphism of E-extensions. Thus, since s is a realisation, there is a

morphism f • = (G a, f1, . . . , fn, G c) of complexes in C
n
C depicted by

G A X1 · · · Xn G C

G B Y 1 · · · Y n G D.

d0
X

G a

d1
X

f1

dn−1
X

dn
X

fn
G c

d0
Y

d1
Y

dn−1
Y

dn
Y

(3.8)

There are commutative squares

A FG A

B FG B

ΦA

a FG a

ΦB

and

FG C C

FG D D

Φ −1
C

FG c c

Φ −1
D

(3.9)

from the natural isomorphism Φ: 1C′ ⇒ FG . Thus, applying F to (3.8) and adjusting the resultant diagram

with the squares in (3.9), we obtain a commutative diagram

A FX1 · · · FXn C

B FY 1 · · · FY n D

(Fd0
X

)ΦA

a

Fd1
X

Ff1

Fdn−1
X

Φ −1
C

Fdn
X

Ffn c

(Fd0
Y

)ΦB Fd1
Y

Fdn−1
Y

Φ −1
D

Fdn
Y

(3.10)

in C′. That is, (a, Ff1, . . . , Ffn, c) is a morphism in C
n
C′ and hence s

′ is a realisation of E′.

Now let us show that s
′ satisfies (R1). Suppose that

s
′(δ) = [ A FX1 · · · FXn C

(Fd0
X

)ΦA Fd1
X

Fdn−1
X

Φ −1
C

Fdn
X ],

where s(δ) = [ G A X1 · · · Xn G C
d0

X
d1

X
dn−1

X
dn

X ]. Let Z ∈ C′ be arbitrary, and consider the

following diagram

C(G Z, G A) C(G Z, X1) · · · C(G Z, G C) E(G Z, G A)

C′(FG Z, FG A) C′(FG Z, FX1) · · · C′(FG Z, FG C)

C′(Z, A) C′(Z, FX1) · · · C′(Z, C) E
′(Z, A),

d0
X

◦ −

FG Z,G A

d1
X

◦ −

FG Z,X1

dn
X

◦ − (δE
♯

)G Z

FG Z,G C

Fd0
X

◦ −

g0

Fd1
X

◦ −

g1

Fdn
X

◦ −

gn+1

(Fd0
X

)ΦA ◦ − Fd1
X

◦ − Φ −1
C

Fdn
X

◦ − (δE
′

♯
)Z
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where the upper vertical maps are those induced by the functor F , and g0 = Φ −1
A ◦ − ◦ ΦZ , gi = − ◦ ΦZ

for each i = 1, . . . , n, and gn+1 = Φ −1
C ◦ − ◦ ΦZ . It is easy to check that the whole diagram commutes,

except possibly the far right rectangle. To this end, suppose v : G Z → G C is arbitrary. As G is full,

there exists u : Z → C such that G u = v. Since Φ: 1C′ ⇒ FG is a natural isomorphism, we have that

u = Φ −1
C (FG u)ΦZ . Then we see that

(δE
′

♯ )Z(gn+1(FG Z,G C(v))) = (δE
′

♯ )Z(Φ −1
C (FG u)ΦZ)

= (δE
′

♯ )Z(u)

= E
′(u, A)(δ)

= E(G u, G A)(δ)

= E(v, G A)(δ)

= (δE♯ )G Z(v).

Note that all the vertical maps are bijections, because F is fully faithful and ΦX′ is an isomorphism for all

X ′ ∈ C′. Since s is an exact realisation of E, the top row is exact and hence so is the bottom row.

Similarly, one can show that there is an exact sequence

] C′(C, Z) C′(FXn, Z) · · · C′(A, Z) E
′(C, Z),

− ◦ Φ −1
C

Fdn
X

− ◦ Fdn−1
X

− ◦ (Fd0
X

)ΦA (δ♯

E′
)Z

and thus 〈 A FX1 · · · FXn C
(Fd0

X
)ΦA Fd1

X
Fdn−1

X
Φ −1

C
Fdn

X , δ〉 is an n-exangle.

Lastly, we show that (R2) holds for s
′. Let A ∈ C′ be arbitrary. Then, as s is an exact realisation of E, we

have

s(G A0G 0) = [ G A G A 0 · · · G 0
1G A ].

Note that the element G A0G 0 ∈ E(G 0, G A) is the trivial element A00 in E
′(0, A), so by definition s

′(A00) =

s
′(G A0G 0) = [ A FG A 0 · · · 0

ΦA ]. Lastly, we see that

s
′(A00) = [ A A 0 · · · 0

1A ],

using the isomorphism (1A, ΦA, 0, . . . , 0) in C
n
(A,0). Similarly, one can also show that

s
′(00A) = [ 0 · · · 0 A A

1A ]

for the trivial element 00A ∈ E
′(A, 0). Therefore, s′ is an exact realisation of E′.

�

Theorem 3.9. Let (C,E, s) be an n-exangulated category and suppose F : C → C′ is an equivalence. Then

there is a biadditive functor E
′ : C′op × C′ → Ab and an exact realisation s

′ of E
′, such that (C′,E′, s′) is an

n-exangulated category and F is an n-exangle equivalence.

Proof. Fix the notation as in Setup 3.2. Let E
′ = E(G −, G −) : C′op × C′ → Ab be the functor and s

′ the

assignment defined in Lemma 3.8. From Lemma 3.8, we have that s
′ is an exact realisation of the biadditive

functor E
′. It remains to show that the triple (C′,E′, s′) satisfies axioms (n-EA1), (n-EA2) and (n-EA2op).

For (n-EA1), suppose we have morphisms a : A → B and b : B → C in C′ that are s
′-inflations. That is,

there are complexes U •, V • in C
n
C′ and E

′-extensions δ ∈ E
′(Un+1, A), ε ∈ E

′(V n+1, B) such that s′(δ) = [U •],

s
′(ε) = [V •], a = d0

U and b = d0
V . Since δ is also an E-extension, there is a complex X• in C

n
C with X0 = G A

and Xn+1 = G Un+1, such that s(δ) = [X•]. Thus, we have s
′(δ) = [W •], where W • is the complex

A FX1 · · · FXn Un+1.
(Fd0

X
)ΦA Fd1

X
Fdn−1

X
Φ −1

Un+1 Fdn
X

In particular, this implies that the complexes U • and W • are homotopy equivalent in C
n
(A,Un+1), and in turn

implies that GCU • and GCW • are homotopy equivalent in C
n
(G A,G Un+1).
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Next we show that the following diagram depicts an isomorphism of complexes GCW • → X•.

G A G FX1 · · · G FXn G Un+1

G A X1 · · · Xn G Un+1.

(G Fd0
X

)G ΦA G Fd1
X

ΨX1

G Fdn−1
X

G Φ −1
Un+1 (G Fdn

X
)

ΨXn

d0
X

d1
X

dn−1
X

dn
X

(3.11)

For each i = 0, . . . , n, the square

G FX i G FX i+1

X i X i+1

G Fdi
X

ΨXi ΨXi+1

di
X

(3.12)

commutes since Ψ is a natural isomorphism. This shows that all except possibly the far left and far right

squares in (3.11) commute. To see the far left square commutes, observe that

ΨX1(G Fd0
X)G ΦA = d0

XΨG AG ΦA by (3.12)

= d0
X ◦ 1G A using the triangle identities (3.1)

= d0
X .

Similarly, one can show the far right square of (3.11) also commutes, and hence (3.11) is an isomorphism of

complexes in C
n
(G A,G Un+1). This implies that s(δ) = [X•] = [GCW •] = [GCU •], so G a is an s-inflation.

In the same way, it can be shown that G b is also an s-inflation. Since (C,E, s) satisfies axiom (n-EA1), we

have that the composition G (ba) = G b ◦ G a is an s-inflation. Thus, there exist Zn+1 ∈ C, ζ ∈ E(Zn+1, G A)

and Z• ∈ C
n
(G A,Zn+1), such that s(ζ) = [Z•], Z0 = G A, Z1 = G C and d0

Z = G (ba). As G is essentially

surjective, there is an object T ∈ C′ and an isomorphism h : G T → Zn+1. Denote by j := h−1 : Zn+1 → G T

the inverse for h. Since ζ = (1Zn+1)Eζ = (hj)Eζ = jEhEζ, we have a sequence

ζ = jE(hEζ) hEζ ζ
(1G A, j) (1G A, h)

of morphisms of E-extensions, which may be realised as follows

Z• : G A G C Z2 · · · Zn Zn+1

D• : G A D1 D2 · · · Dn G T

Z• : G A G C Z2 · · · Zn Zn+1

j•

G (ba) d1
Z

j1

d2
Z

j2

dn−1
Z

dn
Z

jn j∼=

h•

h1 h2 hn h∼=

G (ba) d1
Z

d2
Z

dn−1
Z

dn
Z

Note that 〈D•, hEζ〉 is an n-exangle as s(hEζ) = [D•]. Let E• denote the complex

G A G C Z2 · · · Zn G T
G (ba) d1

Z d2
Z

dn−1
Z

jdn
Z

in C
n
(G A,G T ). It is straightforward to verify that 〈E•, hEζ〉 is also an n-exangle. Moreover, we have morphisms

(1G A, j1, . . . , jn, 1G T ) ∈ C
n
(G A,G T )(E

•, D•) and (1G A, h1, . . . , hn, 1G T ) ∈ C
n
(G A,G T )(D

•, E•).

Thus, by [22, Prop. 2.21], we have that (1G A, j1, . . . , jn, 1G T ) is a homotopy equivalence, and so s(hEζ) =

[D•] = [E•]. Therefore, we have

s
′(hEζ) = [ A FG C FZ2 · · · FZn T

(FG ba)ΦA Fd1
Z

Fd2
Z

Fdn−1
Z d ],
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where d := Φ −1
T F (jdn

Z ). Since there is an isomorphism

A FG C FZ2 · · · FZn T

A C FZ2 · · · FZn T

(FG ba)ΦA Fd1
Z

Φ −1
C

Fd2
Z

Fdn−1
Z d

ba (Fd1
Z

)ΦC Fd2
Z

Fdn−1
Z d

of complexes in C
n
(A,T ), we see that ba is indeed an s

′-inflation. Dually, s′-deflations are closed under com-

position, and (C′,E′, s′) satisfies (n-EA1).

Lastly, we show (n-EA2) holds for (C′,E′, s′); (n-EA2op) can be shown using a similar argument. Thus,

let δ ∈ E
′(D, A) and c : C → D be arbitrary, where A, C, D ∈ C′. Then we may realise cE

′

δ = (G c)Eδ ∈

E(G C, G A) by a complex

G A G B X2 · · · Xn G C
d0

X
d1

X
d2

X
dn−1

X
dn

X

in C
n
C for some B ∈ C′, using that G essentially surjective. Since G is also full, we have that d0

X = G a for

some a : A → B. Furthermore, δ ∈ E(G D, G A) so we may realise this E-extension by a complex

G A Y 1 Y 2 · · · Y n G D
d0

Y
d1

Y
d2

Y
dn−1

Y
dn

Y

in C
n
C . By (n-EA2) for the n-exangulated category (C,E, s), we may realise the morphism (1G A, G c) : (G c)Eδ →

δ of E-extensions by a good lift f • = (1G A, f1, f2, . . . , fn, G c). That is, f • is a morphism

G A G B X2 · · · Xn G C

G A Y 1 Y 2 · · · Y n G D

d0
X

d1
X

f1

d2
X

f2

dn−1
X

dn
X

fn
G c

d0
Y

d1
Y

d2
Y

dn−1
Y

dn
Y

of complexes such that s((d0
X)Eδ) = [M •], where M • := MC(f̂ )• is the mapping cone

G B X2 ⊕ Y 1 · · · Xn ⊕ Y n−1 G C ⊕ Y n G D
d−1

M
d0

M
dn−2

M
dn−1

M

of f̂ = (f1, . . . , fn, G c). As in Definition 2.12, the differentials are d−1
M :=

(
−d1

X

f1

)
, dn−1

M := ( G c dn
Y ), and

di
M :=

(
−di+2

X 0

f i+2 di+1
Y

)

for i ∈ {0, . . . , n − 2}. Then we see that the morphism (1A, c) : cE
′

δ → δ of E′-extensions is realised by the

morphism

A FG B FX2 · · · FXn C

A FY 1 FY 2 · · · FY n D

(Fd0
X

)ΦA Fd1
X

Ff1

Fd2
X

Ff2

Fdn−1
X

Φ −1
C

Fdn
X

Ffn c

(Fd0
Y

)ΦA Fd1
Y

Fd2
Y

Fdn−1
Y

Φ −1
D

Fdn
Y

of complexes in C′ since Φ: 1C′ ⇒ FG is a natural isomorphism. Using Φ again and that G a = d0
X , we can

adjust the diagram above appropriately to obtain a morphism g• := (1A, (Ff1)ΦB, Ff2, . . . , Ffn, c)

A B FX2 · · · FXn C

A FY 1 FY 2 · · · FY n D,

a (Fd1
X

)ΦB

(Ff1)ΦB

Fd2
X

Ff2

Fdn−1
X

Φ −1
C

Fdn
X

Ffn c

(Fd0
Y

)ΦA Fd1
Y

Fd2
Y

Fdn−1
Y

Φ −1
D

Fdn
Y
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giving another realisation of (1A, c) : cE
′

δ → δ.

We claim that s
′(aE′δ) = [MC(ĝ)•], where ĝ

• := ((Ff1)ΦB , Ff2, . . . , Ffn, c). Since s((d0
X)Eδ) = [M •]

and G a = d0
X , we have that s

′(aE′δ) = s
′((G a)Eδ) = s

′((d0
X)Eδ) is the homotopy equivalence class

[ B FX2 ⊕ FY 1 · · · FXn ⊕ FY n−1 FG C ⊕ FY n D
(Fd−1

M
)ΦB Fd0

M
Fdn−3

M
Fdn−2

M
Φ −1

D
Fdn−1

M ].

Note that there is an isomorphism

B FX2 ⊕ FY 1 · · · FXn ⊕ FY n−1 C ⊕ FY n D

B FX2 ⊕ FY 1 · · · FXn ⊕ FY n−1 FG C ⊕ FY n D

(Fd−1
M

)ΦB Fd0
M

Fdn−3
M

Fdn−2
M e

(
ΦC 0

0 1FY n

)
∼=

(Fd−1
M

)ΦB Fd0
M

Fdn−3
M

Fdn−2
M

Φ −1
D

Fdn−1
M

of complexes, where e := ( c Φ −1
D Fdn

Y ), in which the top row is precisely MC(ĝ)•. Hence, we see that the

E
′-extension aE′δ is realised by MC(ĝ)•, and g• is a good lift of (1A, c). Thus, (n-EA2) holds for (C′,E′, s′)

and we are done.

�

Remark 3.10. In Theorem 3.9, the n-exangulated structure possessed by a category C is transported across

an equivalence F : C → C′, so that C′ becomes an n-exangulated category and F becomes an n-exangle

equivalence. We remark here that the n-exangulated structure acquired by C′ is unique up to n-exangle

equivalence. Analogous statements also hold for the settings of Theorems 3.4, 3.5 and 3.6.

Remark 3.11. Suppose F : C → C′ and G : C′ → C are functors such that (F , G ) and (G , F ) are both adjoint

pairs. Recall that this holds whenever F is an equivalence and G is a quasi-inverse for F , but that the

converse is false in general1. We note here that our proof of Theorem 3.9 cannot be directly generalised to

this setting: we rely on the assumption that F and G are equivalences, so that the unit and counit are both

natural isomorphisms. This is needed in Lemma 3.8 to check that the assignment s
′ is well-defined, as well

as in both Lemma 3.8 and Theorem 3.9 to produce several isomorphisms between complexes.

4. Special case: skeletal categories

Suppose C′ is a skeletal category equivalent to a weak (pre-)(n + 2)-angulated category. Then we know C′

is also weak (pre-)(n + 2)-angulated by Theorem 3.4. The goal of §4 is to show that the induced (n + 2)-

suspension functor of C′ is actually an automorphism, not just an autoequivalence, thereby showing C′ is

what we call a strong (pre-)(n + 2)-angulated category.

First, let us recall what it means for a category to be skeletal and how a skeleton of a category is defined.

Definition 4.1. [32, §IV.4] A category A is said to be skeletal if X 6= Y implies X is not isomorphic to Y

in A for all X, Y ∈ A.

Definition 4.2. [32, §IV.4] Let A be a category. A skeleton of A is a full, skeletal subcategory B of A such

that the (fully faithful) canonical inclusion F : B →֒ A is essentially surjective.

Remark 4.3. Note that A may have many skeletons, but they are all isomorphic; see [32, Exer. IV.4.1].

The following proposition is a key tool in the proof of the main result of §4. We include the details for the

convenience of the reader.

1We refer the reader to an example provided by user ‘Hanno’ on an online forum; see
https://math.stackexchange.com/q/1095196 .



22 BENNETT-TENNENHAUS AND SHAH

Proposition 4.4. [17, §I, 1.364]2 Suppose A and B are both skeletal categories and that F : A → B is an

equivalence of categories. Then F is an isomorphism of categories.

Proof. We need to define a functor G : B → A such that G F = 1A and FG = 1B. In order to do this, we

first show that F is bijective on objects. Let X ∈ B be arbitrary. As F is an equivalence, F is essentially

surjective and so there exists A ∈ A such that FA ∼= X . Since B is skeletal, we must have FA = X . Thus,

F is surjective on objects. Now suppose we have A, B ∈ A such that FA = X = FB in B. Consider the

identity morphism 1X ∈ B(FA, FB) = B(FB, FA). Since F is full, there exist morphisms f : A → B and

g : B → A such that Ff = 1X and Fg = 1X . Then F (gf) = 1X = F (1A) and F (fg) = 1X = F (1B),

whence gf = 1A and fg = 1B as F is faithful. Thus, A ∼= B and we have A = B as A is skeletal. Hence, F

is injective on objects also.

Now define G : B → A as follows. For an object X ∈ B, there is precisely one object A ∈ A such that

FA = X (as F is bijective on objects). In this case, put G (X) = A. Let f : X → Y be an arbitrary

morphism in B. Then X = FA and Y = FB for some uniquely determined A, B ∈ A, so f ∈ B(FA, FB).

As F is fully faithful, there is a unique morphism a ∈ A(A, B) such that Fa = f . Thus, set G (f) = a.

Let us show that G is indeed a functor. Let X ∈ B be arbitrary and consider the identity morphism

1X . Then X = FA for some A ∈ A and 1X = F (1A), so G (1X) = 1A = 1G X is the identity morphism.

Now suppose we have morphisms f : X → Y and g : Y → Z in B. Then f = Fa : X = FA → FB = Y

and g = F b : Y = FB → FC = Z, where A, B, C and a, b are all uniquely determined. Note that

gf = (F b)(Fa) = F (ba), so G (gf) = ba = (G g)(G f) and G respects composition.

Lastly, let us show that F and G are mutually inverse functors. Let A ∈ A be arbitrary. By definition

of G , the object G (FA) in A is the object A′ ∈ A such that FA′ = FA. Since F is injective on objects,

we must have A′ = A and G (FA) = A. Now let a : A → B be an arbitrary morphism in A, and consider

Fa : FA → FB. Then G (Fa) is the unique morphism a′ : A → B such that Fa′ = Fa. Using that F is

faithful, we obtain a′ = a and G (Fa) = a. Hence, we have shown G F = 1A. Similarly, one can also show

FG = 1B.

�

We are now in a position to improve Theorem 3.4 when transporting a weak (pre-)(n + 2)-angulated

structure to a skeletal category.

Theorem 4.5. Let (C, Σ, T ) be a weak (pre-)(n + 2)-angulated category and let C′ be any skeletal category.

Suppose F : C → C′ is an equivalence. Then C′ is a strong (pre-)(n + 2)-angulated category and F is an

(n + 2)-angle equivalence.

Proof. An application of Theorem 3.4 shows that C′ has the structure of a weak (n + 2)-angulated category,

for some (n + 2)-suspension functor Σ′ : C′ → C′ that is an autoequivalence, and that F is an (n + 2)-angle

equivalence. Since Σ′ is an equivalence between skeletal categories, we have that Σ′ is actually an isomorphism

of categories by Proposition 4.4. That is, the (n + 2)-suspension functor Σ′ of C′ is an automorphism and C′

is a strong (pre-)(n + 2)-angulated category.

�

As an immediate consequence, we have the following.

Corollary 4.6. Let (C, Σ, T ) be a weak (pre-)(n + 2)-angulated category. Then any skeleton Cskel of C is a

strong (pre-)(n + 2)-angulated category.

Proof. Let F : Cskel →֒ C be the inclusion functor associated to a skeleton Cskel of C. Then F is an equivalence

of categories, and we may apply Theorem 4.5 with C′ = Cskel.

�

2Although this result is stated in [17], we would like to acknowledge that user ‘Eric Wofsey’ provides the idea behind our proof
on an online forum; see https://math.stackexchange.com/q/1658991 .
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We conclude §4 by clarifying some details involved in the construction of the cluster category, a certain

orbit category which was first defined in [8]. Let A be an additive category and suppose G is an automorphism

of A. The orbit category A/G has the same objects as A, and for X, Y ∈ A/G we set

(A/G )(X, Y ) :=
∐

i∈Z

A(G iX, Y );

see [12, Def. 2.3], [26, §1]. Note that in order to have well-defined composition of morphisms in A/G , we

need G to be an automorphism.

Example 4.7. Let k be a field and let Λ be a finite-dimensional, hereditary k-algebra. Let D := D
b(Λ – mod)

denote the bounded derived category of finite-dimensional left Λ-modules. Then D is a triangulated (=(1+2)-

angulated) category (see [39, Prop. 3.5.40]) and denote its suspension functor by [1]. In addition, D has

Auslander-Reiten triangles (see [21, Thm. I.4.6]), and let τ−1 denote a quasi-inverse for the Auslander-

Reiten translation (see [21, p. 42]). Note that τ−1 is an autoequivalence of D, so the composite endofunctor

F := τ−1 ◦ [1] is also an autoequivalence of D.

The cluster category of Λ is defined to be the orbit category CΛ := D/F (see [8, p. 576]). Recall that

for an orbit category A/G , the functor G is required be to an automorphism. However, F is only an

autoequivalence, and not an automorphism, of D. Thus, the definition of CΛ just stated masks some details

that we now discuss. We first take a skeleton D
skel of D. Then F induces an autoequivalence F ′ of D

skel and,

by Proposition 4.4, F ′ is actually an automorphism. (This is the ‘standard construction’ alluded to in [26,

§1].) Hence, we may consider the cluster category of Λ to be the orbit category D
skel/F ′. Moreover, D

skel is

triangulated by Corollary 4.6, and we may thus apply [26, Thm. 1] to conclude D
skel/F ′ is triangulated.
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