
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/348860116

Implementing an intrusion detection and prevention system using Software-

Defined Networking: Defending against ARP spoofing attacks and Blacklisted

MAC Addresses

Article in Computers & Electrical Engineering · March 2021

DOI: 10.1016/j.compeleceng.2021.106990

CITATIONS

0
READS

61

2 authors:

Some of the authors of this publication are also working on these related projects:

Adversarial Attacks Against Machine Learning-Based Spam Detection Models in Online Social Networks (OSNs) and Countermeasures View project

H2020-SESAME View project

Tom Girdler

The University of York

1 PUBLICATION 0 CITATIONS

SEE PROFILE

Vassilios Vassilakis

The University of York

119 PUBLICATIONS 805 CITATIONS

SEE PROFILE

All content following this page was uploaded by Vassilios Vassilakis on 31 January 2021.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/348860116_Implementing_an_intrusion_detection_and_prevention_system_using_Software-Defined_Networking_Defending_against_ARP_spoofing_attacks_and_Blacklisted_MAC_Addresses?enrichId=rgreq-f81f970f5c15daf439ad00ab72b74d74-XXX&enrichSource=Y292ZXJQYWdlOzM0ODg2MDExNjtBUzo5ODYxNzU0ODU1MzAxMTJAMTYxMjEzMzk2NjE2MA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/348860116_Implementing_an_intrusion_detection_and_prevention_system_using_Software-Defined_Networking_Defending_against_ARP_spoofing_attacks_and_Blacklisted_MAC_Addresses?enrichId=rgreq-f81f970f5c15daf439ad00ab72b74d74-XXX&enrichSource=Y292ZXJQYWdlOzM0ODg2MDExNjtBUzo5ODYxNzU0ODU1MzAxMTJAMTYxMjEzMzk2NjE2MA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Adversarial-Attacks-Against-Machine-Learning-Based-Spam-Detection-Models-in-Online-Social-Networks-OSNs-and-Countermeasures?enrichId=rgreq-f81f970f5c15daf439ad00ab72b74d74-XXX&enrichSource=Y292ZXJQYWdlOzM0ODg2MDExNjtBUzo5ODYxNzU0ODU1MzAxMTJAMTYxMjEzMzk2NjE2MA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/H2020-SESAME?enrichId=rgreq-f81f970f5c15daf439ad00ab72b74d74-XXX&enrichSource=Y292ZXJQYWdlOzM0ODg2MDExNjtBUzo5ODYxNzU0ODU1MzAxMTJAMTYxMjEzMzk2NjE2MA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-f81f970f5c15daf439ad00ab72b74d74-XXX&enrichSource=Y292ZXJQYWdlOzM0ODg2MDExNjtBUzo5ODYxNzU0ODU1MzAxMTJAMTYxMjEzMzk2NjE2MA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tom-Girdler?enrichId=rgreq-f81f970f5c15daf439ad00ab72b74d74-XXX&enrichSource=Y292ZXJQYWdlOzM0ODg2MDExNjtBUzo5ODYxNzU0ODU1MzAxMTJAMTYxMjEzMzk2NjE2MA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tom-Girdler?enrichId=rgreq-f81f970f5c15daf439ad00ab72b74d74-XXX&enrichSource=Y292ZXJQYWdlOzM0ODg2MDExNjtBUzo5ODYxNzU0ODU1MzAxMTJAMTYxMjEzMzk2NjE2MA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/The-University-of-York?enrichId=rgreq-f81f970f5c15daf439ad00ab72b74d74-XXX&enrichSource=Y292ZXJQYWdlOzM0ODg2MDExNjtBUzo5ODYxNzU0ODU1MzAxMTJAMTYxMjEzMzk2NjE2MA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tom-Girdler?enrichId=rgreq-f81f970f5c15daf439ad00ab72b74d74-XXX&enrichSource=Y292ZXJQYWdlOzM0ODg2MDExNjtBUzo5ODYxNzU0ODU1MzAxMTJAMTYxMjEzMzk2NjE2MA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Vassilios-Vassilakis?enrichId=rgreq-f81f970f5c15daf439ad00ab72b74d74-XXX&enrichSource=Y292ZXJQYWdlOzM0ODg2MDExNjtBUzo5ODYxNzU0ODU1MzAxMTJAMTYxMjEzMzk2NjE2MA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Vassilios-Vassilakis?enrichId=rgreq-f81f970f5c15daf439ad00ab72b74d74-XXX&enrichSource=Y292ZXJQYWdlOzM0ODg2MDExNjtBUzo5ODYxNzU0ODU1MzAxMTJAMTYxMjEzMzk2NjE2MA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/The-University-of-York?enrichId=rgreq-f81f970f5c15daf439ad00ab72b74d74-XXX&enrichSource=Y292ZXJQYWdlOzM0ODg2MDExNjtBUzo5ODYxNzU0ODU1MzAxMTJAMTYxMjEzMzk2NjE2MA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Vassilios-Vassilakis?enrichId=rgreq-f81f970f5c15daf439ad00ab72b74d74-XXX&enrichSource=Y292ZXJQYWdlOzM0ODg2MDExNjtBUzo5ODYxNzU0ODU1MzAxMTJAMTYxMjEzMzk2NjE2MA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Vassilios-Vassilakis?enrichId=rgreq-f81f970f5c15daf439ad00ab72b74d74-XXX&enrichSource=Y292ZXJQYWdlOzM0ODg2MDExNjtBUzo5ODYxNzU0ODU1MzAxMTJAMTYxMjEzMzk2NjE2MA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Implementing an Intrusion Detection and Prevention
System using Software-Defined Networking:

Defending against ARP Spoofing Attacks and
Blacklisted MAC Addresses

Thomas Girdler, Vassilios G. Vassilakis

Department of Computer Science, University of York, York, United Kingdom

Abstract

This work focuses on infiltration methods, such as Address Resolution Protocol

(ARP) spoofing, where adversaries sends fabricated ARP messages, linking

their Media Access Control (MAC) address to a genuine device’s Internet

Protocol (IP) address. We developed a Software-Defined Networking (SDN)-

based Intrusion Detection and Prevention System (IDPS), which defends against

ARP spoofing and Blacklisted MAC Addresses. This is done by dynamically

adjusting SDN’s operating parameters to detect malicious network traffic.

Bespoke software was written to conduct the attack tests and customise the

IDPS; this was coupled to a specifically developed library to validate user

input. Improvements were made to SDN in the areas of attack detection,

firewall, intrusion prevention, packet dropping, and shorter timeouts. Our

extensive experimental results show that the developed solution is effective

and quickly responds to intrusion attempts. In the considered test scenarios,

our measured detection and mitigation times are sufficiently low (in the order

of a few seconds).

Keywords: Intrusion detection and prevention system, software-defined

networking, ARP spoofing, MAC address, OpenFlow, POX controller

Preprint submitted to Computers and Electrical Engineering 31st January 2021

1. Introduction

Software Defined Networking (SDN) is a new approach to computer net-

working whereby the control and data planes are decoupled [1]. This allows

implementation of an efficient global configuration across its entirety, making

overall network management easier. The centralised control plane, which5

consists of one or more controllers, improves network performance and enables

more efficient network monitoring [2]. SDN-enabled applications send their

requests to the controller, which in turn, directly communicates them to the

data plane. The approach facilitates efficient intrusion detection, which is the

process whereby networks are monitored for malicious activities or threats.10

On the other hand, intrusion prevention actively modifies network resources

or configuration to mitigate any identified threats. Our work has developed

an SDN-based Intrusion Detection and Prevention System (IDPS), with the

associated configuration and testing tools. The IDPS was designed to defend

against Address Resolution Protocol (ARP) spoofing and Blacklisted Media15

Access Control (MAC) Addresses. ARP is commonly used to resolve Internet

Protocol (IP) addresses into MAC addresses. However, it suffers from many

weaknesses, including being a stateless protocol which does not verify the

sender from which packets originate. These weaknesses can be exploited to

carry out ARP spoofing, whereby an attacker sends fabricated ARP messages,20

linking their MAC address to a genuine device’s IP address. Such exploits

can launch Man-in-the-Middle (MITM) or Denial-of-Service (DoS) attacks [3].

A greater demand for SDN, with forecasters indicating a global market size

of over $100bn by 2025 [4], will inevitability lead to an increase in these at-

tacks. Current research into securing ARP within an SDN environment has25

focused on utilising data from Dynamic Host Configuration Protocol (DHCP)

servers [5], switch MAC to IP address mappings [6], or ‘sanitising’ spoofed

ARP requests with dummy values [7]. These factors led us to the requirement

to produce an SDN-based IDPS to detect and alleviate ARP spoofing attacks,

which has minimal input from other network services or devices.30

2

Our work contributes the following: (1) We designed and implemented

an SDN-based IDPS, which defends against ARP spoofing attacks and Black-

listed MAC Addresses. Python-based POX [8] is the SDN controller utilised,

which implements the OpenFlow protocol [9] for communication with an

OpenvSwitch (OvS) switch [10]. (2) Tools to conduct the attacks and customise35

the IDPS were devised. These are coupled to a specialist library which also

validates user input. Improvements are made to the POX controller by develop-

ing a module that logs the attempted attacks and mitigates them by installing

flow rules on the OvS switch. (3) The IDPS was thoroughly tested against its

design goals in different scenarios. This involved four types of experiments,40

namely ARP Request Attack, ARP Reply Attack, ARP Reply Destination Attack,

and Blacklisted MAC Address. The experiments produced a zero false positive

rate and all packets sent were successfully detected. Average detection times

for the first three types of attacks were very low (in the order of a few seconds),

whereas they were less than a second for Blacklisted MAC Address tests. This45

process allowed comparisons to other SDN-based IDPS to be made.

The remainder of the paper is organised as follows: Section 2 reviews recent

research on IDPS within SDN environment, focusing on ARP-related attacks.

Section 3 illustrates how we developed an IDPS. Section 4 describes our testbed,

the experimental setup, as well as the developed software tools for attack testing50

and system administration. Section 5 documents the results of our experiments.

Section 6 concludes the paper by summarising the contributions that our work

has made and outlining future directions for research.

2. Related Work

Traditional network devices do not include methods for detecting ARP55

spoofing, although many tools have been developed for such purposes. As a

result, in recent years, a number of SDN-based solutions have been proposed.

In this section, we review the most important and recent works in the filed. We

also discuss their limitations and highlight the novelty of our work.

3

Khalid et al. [5] extend the SDN controller with a module that prevents ARP60

spoofing by checking every ARP packet within their network. They utilised the

POX controller with the L2 learning module, an OvS switch, and a DHCP server

which inspects DHCP offer packets. Flow rules are installed on the connected

switches that forward all DHCP and ARP packets to the controller. POX also

holds a main table with IP to MAC address associations for each device on65

the network, created from the received DHCP offer packets. POX instructs

switches to drop received ARP packets with a MAC address not present in the

table. A flow rule is then installed for the originating OvS port.

The solution proposed by Cox et al. [6] utilised the previously described

ARP spoofing mitigation method. The solution is named Network Flow Guard70

(NFG) and employs the POX controller. DHCP and ARP packets are analysed to

build a table with MAC to IP address mappings together with their associated

switch port. Compared to other papers, the system has an additional feature, it

accepts static MAC - IP address - port number mappings from a user inputted

file. For reasons of security, entries to the table can only be made by a valid75

DHCP offer, with the entry being set to initialised. After that, a DHCP request

can be used to assign a port to an existing MAC to IP address entry, at which

point the state of the entry is moved to pending. When the DHCP server

responds with an acknowledgement (ACK), the entry is moved to verified.

Alharbi et al. [7] introduce a system where potentially spoofed information80

in the SPA and SHA fields of an ARP message is prevented from coming in

contact with network hosts. Their solution is based on Network Address Trans-

lation (NAT). A routine which forwards ARP requests to the SDN controller

is installed on the switch, where they are stored in a list of pending requests.

The SPA and SHA fields on the pending ARP requests are then validated and85

any potentially poisoned fields ‘sanitised’ with dummy values.

Birkinshaw et al. [11] developed an SDN-based IDPS for defending against

port-scanning and DoS attacks. They implement and test a variety of mech-

anisms, including Credit-Based Threshold Random Walk and Rate Limiting.

They also devised a new algorithm, called Port Bingo, which guards against90

4

port-scanning attacks. Experiments were carried out on a purpose-built testbed,

consisting of a OvS switch, POX controller, together with Virtual Machines

(VM) used as attackers, targets, and benign nodes.

Leal et al. [12] implemented an architecture composed of two domains –

monitoring and countermeasure. Monitoring detects the initial stages of an95

attack and is comprised of an sFlow agent, collector, and supervision element

to visualise network behaviour. The sFlow agent collects data from different

sources, including physical and virtual network devices, as well as software

applications. sFlow is able to take advantage of the statistical packet sampling

to produce measurements and includes an API able to configure customised100

measurements, metrics and set thresholds.

Abubakar et al. [13] integrated a flow-based IDS into the SDN architecture.

This is done using an anomaly-based neural network, coupled to the NSL-

KDD dataset. The virtual testbed consisted of an OpenDaylight SDN controller,

coupled to a OvS switch, and Mininet simulator, with Parrot security generating105

attacks on Metasploitable2. Their results indicated a high detection accuracy

of 97.4% with training data and 97% with testing data. The researchers cite

reliability issues related to redundant records in KDD-Cup 99 dataset, from

which the NSL-KDD dataset is derived [14].

A recent survey by Shah et al. [15] found that most proposed solutions110

to mitigate ARP spoofing in SDN utilise IP-MAC address bindings held by

the controller; either by listening to DHCP server data or ARP requests. The

researchers state that these may be subject to DHCP spoofing attacks, or the

initial ARP packets themselves could be spoofed. In addition, they also remark

that if large numbers of network hosts are present, construction of the IP-MAC115

address table may cause an additional load on the controller. We have made

improvements by developing a solution that does not require an IP-MAC

address table to be held by the SDN controller. In addition, our work utilises

custom IDPS attack and configuration tools, built using Scapy [16], a powerful

packet manipulation tool.120

5

3. IDPS Functions Design

The purpose of our IDPS is to detect devices, within the SDN environment,

actively performing ARP spoofing attacks. Furthermore, the IDPS identifies

devices whose MAC address has previously been blacklisted using the IDPS

Configuration Tool (presented in Section 4). A high-level operation of the125

IDPS is represented by a flow-chart in Figure 1. When a packet is received

without an existing flow-entry, a PacketIn event is sent from the OvS switch

to the POX controller. The IDPS is an extension to POX and listens for these

PacketIn events. After the event is accepted, it is processed by one of four

separate functions - ARP Request Spoofing, ARP Reply Spoofing, ARP Reply130

Destination Spoofing, and Blacklisted MAC Addresses. Packets matching set

conditions are logged to screen and file, any others are ignored. To mitigate

these attacks, the attacker’s IP address is obtained from the PacketIn event,

then used to generate a flow-rule which prevents IPv4 network traffic to and

from that specific address. This flow rule is active on the OvS switch for a set135

number of seconds, known as the flow hard timeout value. The design of this

flow modification process was determined by the POX controller.

Each of the IDPS functions has been designed to recognise a separate type

of network attack (see Table 1). One function deals with ARP Request Spoofing,

another with ARP Reply Spoofing, the other with ARP Reply Destination140

Spoofing. Finally, a different function detects Blacklisted MAC Addresses. As

an example, a normal ARP reply has an ethernet frame with an ARP payload

packet encapsulated within it. The source MAC address is identical in the

ethernet frame and ARP packet, which verifies it has been sent from the same

physical device. However, in a spoofed ARP reply, the ARP payload contains a145

different MAC address (of the attacker), to that of the frame, so victim device

sends their packets to the attacker, not the intended device.

These three ARP spoofing functions have the same basic design but vary

slightly dependent upon the type of attack they intend to detect. Once the

PacketIn event is received by the function, it is transferred into a variable entitled150

6

Figure 1: IDPS High-Level Operation

7

Table 1: IDPS Functions

Function Packet Conditions Matched

ARP Request

Spoofing

1. ARP Protocol

2. ARP Request

3. Source MAC Address in ethernet frame or pay-

load are not identical

ARP Reply Spoof-

ing

1. ARP Protocol

2. ARP Reply

3. Source MAC Address in ethernet frame or pay-

load are not identical

or

ARP Reply Destin-

ation Spoofing

4. Destination MAC Address in ethernet frame or

payload are not identical

Blacklisted MAC

Addresses

1. IP Protocol

2. Source MAC Address of ethernet frame contained

within blacklisted_mac_addresses.json file

packet. Every packet has a field entitled EtherType that designates the type of

data contained within it. The IDPS evaluates this field, to see if its type is set to

ARP. After this, the payload of the packet is assessed, which contains an ARP

field entitled opcode. This can be set to either Request or Reply, depending

on the type of ARP packet. The ARP Request Spoofing function checks if the155

opcode is set to Request, whereas the ARP Reply Spoofing function looks for

Reply. Once it has been ascertained that the received packet contains either an

ARP Request or Reply the IDPS will then assess the content of the packet, as

per the conditions in Table 1. If all of the conditions are matched, a variable

called counter is incremented by one. The counter references every packet160

detected by any IDPS function, it is set to zero when the IDPS initialises.

The other role of the IDPS is detecting devices with Blacklisted MAC Ad-

dresses. As with the ARP spoofing functions, the PacketIn event is transferred

8

into the variable packet. The IDPS evaluates the EtherType field, to see if its

type is IP. A JavaScript Object Notation (JSON) file containing the Blacklisted165

MAC Addresses is then read into the variable blacklisted_mac_address

_file, which is compared to the the source hardware address contained in

the packet variable. An on-screen and file log of attacks is provided by the IDPS.

The Openpyxl Python library writes these into a standard .xlsx spreadsheet

file, which is saved onto a network drive. Each row contains the counter vari-170

able, time at which the packet was detected by the IDPS, type of attack, source

IP or MAC address of attacker and time when the flow-rule was installed.

4. Testbed and Supporting Tools

4.1. Experimental SDN Testbed

The testbed runs the Ubuntu operating system, four VMs using the Virtu-175

alBox hypervisor, OvS, and Wireshark. OvS allows the host and four VMs to

communicate with one another using the OpenFlow protocol. Each VM has

4GB of memory and a 50GB dynamically allocated virtual hard disk. Within

VirtualBox, promiscuous mode must be set to ’Allow All’ to enable the host to

process all packets received at the network interface card, all other options180

remain at their defaults. Each of the VMs is attached to a different virtual

network port. A virtual network switch (OVS-BR) was created using OvS, this

connects the four VMs together and allows data on the network to be captured

using Wireshark. Figure 2 gives an overview of the testbed.

Every experiment utilised the OpenVSwitch testbed host together with the185

POX controller VM. Each experiment also employed different combinations

of the other VMs - Attacker1, Attacker2, and Node. For consistency, the IDPS

Attacker Tool was always configured as follows: source IP address 10.0.0.3,

destination IP address 10.0.0.4, source MAC address 11:11:11:11:11:11. Table 2

indicates the testbed configuration and the software used.190

9

Figure 2: SDN Testbed

Table 2: Testbed Configuration and Software

Machine Name Network

Interface

IP

Address

Software

OpenVSwitch ovs-br 10.0.0.1 OvS, Wireshark,

Virtualbox

POX vnet1 10.0.0.2 POX

Attacker1 vnet2 10.0.0.3 Scapy, Openpyxl

Attacker2 vnet3 10.0.0.4 Scapy, Openpyxl

Node vnet4 10.0.0.5 Scapy, Openpyxl

4.2. Sampling Points

T1 to T6 in Figure 3 are the time sampling points for a packet travelling

into our IDPS. Points T1 and T2 are on the host network. The packet enters

the IDS at point T3, T4 is when the IDS detects the packet, T5 is the packet

entering the IPS, and T6 is when it is mitigated by the IPS. Timings within195

points T1 and T2 vary dependant on network traffic; so ideally they would be

discounted. However, due to the testbed being on a single network segment,

it is hard to detect when a packet transitions between devices. In addition,

10

programming limitations within the POX controller meant the only sampling

points provided in practice were T4 and T6.200

Figure 3: IDPS Network Packet Sampling Points

4.3. Software Library and Tools

Our work specifically developed a library and two software tools. Firstly,

the User Input Check Library validates all user input into our software tools

using Regular Expressions. Secondly, the IDPS Configuration Tool allows the

IDPS flow time out value to be set, as well a list of Blacklisted MAC Addresses205

to be added to the IDPS. Finally, the IDPS Attacker Tool tests IDPS effectiveness

by performing four separate ARP or TCP attacks.

4.3.1. IDPS Configuration Tool

Four functions are incorporated within the IDPS Configuration Tool: setting

or viewing flow timeout value, adding or viewing Blacklisted MAC Addresses.210

The purpose of the View Flow Timeout option is to view the existing flow

time out value. Measured in seconds, this value is used when a flow rule is

inserted into the OvS switch and determines how long it is active. When this

time has passed, the rule expires. The value is stored in a text file entitled

flow_timeout_value.txt. By selecting the Change Flow Timeout option,215

the software prompts for a new flow timeout value, replacing the existing one.

The value is checked by the User Input Check library, if valid it is written to

flow_timeout_value.txt, otherwise a warning is presented. The View

11

Blacklisted MAC Address option is used to view the MAC addresses that are

blacklisted by the IDPS and read when it is initialised. If a device appears220

on the network with a MAC address contained within the list, a warning is

logged by the IDPS. IPv4 data from the device’s IP address is prevented from

entering the network. The final option - Change Blacklisted MAC Addresses -

provides the ability to change the Blacklisted MAC Addresses. In this instance,

the software prompts for new MAC addresses, which each being verified by225

the User Input Check library.

4.3.2. IDPS Attacker Tool

As part of our work, the IDPS Attacker Tool software was created to provide

five distinct functions: three ARP spoofing attacks (Request, Reply, and Reply

Destination), a Blacklisted MAC Address Attack and an ARP Request. These230

allow the operation of our IDPS to be fully tested. The ARP Request Attack

function creates an ethernet packet with an ARP payload. The ARP payload

contains a source MAC address and IP address as well as destination IP address.

The ARP operation code is set to request. The ARP Reply Attack is identical

to the Request Attack, but the ARP operation code is set to reply. The ARP235

Reply Destination Attack varies from the other two, in that the destination

(not source) MAC address is modified. The ARP payload is set to reply, as per

the previous attack. A Blacklisted MAC Address attack sends TCP packets

containing random source and destination port numbers. The ARP request

function creates benign ARP requests, this is used with ARP request attacks to240

test if the IDPS generates false positives. All of the packets sent from the IDPS

Attacker Tool are individually created using the Scapy Python library [16].

Information regarding the source and destination IP address, as well as MAC

address are obtained from the user and passed to Scapy. Once the required

addresses have been entered by the user, each packet is simultaneously sent,245

displayed on screen and added to the log file in a pre-defined format. This

format ensures the Attacker Tool and IDPS logs can be easily compared.

12

5. Experimental Results

In this section we initially explain our evaluation metrics and afterwards

we document four experiments. The first experiment tests the detection system250

(IDS) and software tool operation utilising three different types of ARP spoofing

attack. The second employs a different attack type (Blacklisted MAC Address)

to further validate IDS operation. The third had the same configuration as

the first, apart from employing the IDPS to certify its prevention functionality.

Our final experiment simultaneously sent benign and spoofed ARP requests,255

simulating a real-life network environment.

5.1. Metrics

The papers discussed in Section 2 had several different ways to measure

performance of their developed systems. For the purposes of our work, per-

formance metrics used were Detection Time, Mitigation Time, False Positives,260

and Detection Rate. These metrics assess the effectiveness of our solution

and allow comparison to other related works. Detection Time is defined as

the time required to detect the attack, measured by the packet entering the

IDS (points T1 to T4 in Fig. 3). Mitigation Time is defined as the time lapsed

from detecting the attack to blocking the attacker (points T4 to T6 in Fig. 3).265

False Positives occur the when the IDPS erroneously detects a benign packet

as being malicious, determined by subtracting the number of attacker packets

sent to those detected by the IDPS. Detection Rate is percentage indication of

IDPS performance, computed by dividing the number of packets sent by the

attacker, to those detected by the IDPS then multiplying the results by 100.270

In the following we present our evaluation results for detection times and

mitigation times in the four considered experiments. In all cases, false positives

where 0, whereas the detection rates were 100%.

Other proposed IDS solutions [13, 17, 18], which employ ML-based tech-

niques, actively create patterns from the traffic dataset and therefore can learn275

to differentiate attacks from normal network traffic. This necessities the utilisa-

tion of other metrics, such as: Accuracy a percentage of true detection over the

13

total traffic, Sensitivity the percentage of predicted attacks against all attacks,

and Precision which is a measure of the number of attacks predicted by the IDS

that actually occur. Given that we do not employ ML-based detection methods,280

the aforementioned metrics have not been used in our experiments.

5.2. IDS - ARP Spoofing Attack

In this experiment, we verify the operation of the IDS and the Attacker Tool,

analyse attacks, and confirm virtual network functionality. To ensure reliability,

our experiment was performed with three different types of ARP spoofing285

attack - Request, Reply, and Reply Destination. For each attack, spoofed ARP

packets were sent by the IDPS Attacker Tool from the Attacker1 VM. Figure 4

is a Wireshark capture of a packet sent by the IDPS Attacker Tool. The sender

MAC address in the ARP payload is different to that of the ethernet source

frame.290

Figure 4: ARP Request Attack – Wireshark Capture

In order to check attack effectiveness, the POX ARP cache was examined by

inputting the command: arp -a. Figure 5 depicts the output we received and

confirms that the ARP cache was ‘poisoned’, as the network host 10.0.0.3 was

mapped to the spoofed MAC address 11:11:11:11:11:11.

14

Figure 5: POX VM - ’Poisoned’ ARP Cache

Broadly speaking, this experiment established that the IDS has an average295

detection time of around 2.2 seconds, consistent across all three types of attack.

We examined the Wireshark captures during subsequent experiments, all

indicated the IDPS Attacker Tool generated ’spoofed’ ARP packets as intended

and validated full operation of the virtual network. A check for false positives

was made by comparing the Attacker and IDS Log files, none were recorded.300

Figure 6 and Table 3 present a summary of the results for this experiment.

ARP Request ARP Reply ARP Reply Destination

2.2

2.25

2.3

2.35

Attack Type

ID
S

D
et

ec
ti

on
Ti

m
e

(S
ec

on
ds

) Minimum
Average

Maximum

Figure 6: IDS Detection Time - ARP Spoofing Attacks

15

Table 3: IDS - ARP Spoofing Attacks - Detection Time (Seconds)

ARP Attack Avg. Min. Max.

Request 02.203914 02.183804 02.338696

Reply 02.202416 02.184107 02.289039

ReplyDestination 02.201044 02.183559 02.286205

An anomaly was observed in this experiment, whereby the maximum (Max.)

detection time is not proportional to the average (Avg.) or minimum (Min.).

Figures 7 to 9 provide a breakdown of the IDS response time for each individual

packet. It can be seen that for every attack there are two packets that have305

greater response times than the others. This results in the maximum detection

time being significantly higher than the average or minimum. Nevertheless,

these anomalies do no seem to have a significant impact on the overall system

performance and attack detection efficiency.

Figure 7: ARP Request Attack - Individual Packets

16

Figure 8: ARP Reply Attack - Individual Packets

Figure 9: ARP Reply Destination Attack - Individual Packets

5.3. IDS – Blacklisted MAC Address310

Our second experiment is built on the first, by employing a new type of

attack from a different host. In order to test IDS operation, the Attacker2 VM

was employed and its enp0s3 interface was entered as a Blacklisted MAC

17

using the IDPS Configuration Tool. Using Wireshark, a repeating pattern of

OFPT_Packet_In and OFPT_Packet_Out packets were observed during the315

attack, as illustrated in Figure 10. This is due to Attacker2 sending packets to

the OvS switch, which encapsulates them with the OpenFlow protocol, these

are then directed to POX as an OFPT_Packet_In packet. Inspection of the

OFPT_Packet_In encapsulation includes an explanation for the packet being

sent "Reason: No matching flow (table-miss flow entry)". The source and320

destination ports are randomly generated in each packet sent by Attacker2,

which means POX must create a new flow-entry, as none exist on the OvS

switch. To create the flow-entry, POX returns the packet header to the switch as

an OFPT_Packet_Out packet, containing an OPFT_Flow_Mod packet, which

allows the packet to reach its destination. This process is depicted by Figure325

11, which shows a OFPT_Packet_Out packet, with randomly generated TCP

source and destination ports.

Figure 10: OpenFlow Packets

18

Figure 11: TCP Packet Format

The IDS was able to detect packets despite a delay being added to them

by the insertion of flow rules. The delay could be observed as a potential

flaw with OpenFlow-based SDN. This type of network traffic places a load330

on the controller, which may be unable to cope if the volume is high. The

situation could be exacerbated if the SDN controller and switch are physically

separate or have a high round-trip-time between themselves. The experiment

confirmed OpenFlow operation on the SDN network, including insertion of

flow rules, which are employed in our last experiment to prevent malicious335

network traffic. Our obtained detection times (in seconds) are: Avg.= 00.029930,

Min.=00.068751, and Max.=00.656727. These times are significantly lower than

in our first experiment. This is because the Scapy send command, used by

the IDPS Attacker Tool, transmits all packets at Layer 3, the same layer as

TCP, whereas ARP operates primarily on Layer 2. Therefore, the overhead340

involved in translating packets between network layers may account for the

higher response time for ARP packets.

As with our first experiment, no false positives were recorded by the log

files. In addition, as indicated by Figure 12, one packet has a significantly

higher response time than the others, again resulting in the overall results345

being biased. We note that the anomaly occurs for both TCP and ARP packets

and speculate the causes as being load on the POX controller or malformed

19

packets sent by the Scapy Python library.

Figure 12: Blacklisted MAC Address Attack - Individual Packets

5.4. IDPS – ARP Spoofing Attacks

Previous experiments only involved intrusion detection, with no counter-350

measures against attacks. This experiment used an IDPS to drop traffic from a

malicious host once detected. Three different types of ARP attack were used

- Request, Reply, and Reply Destination. A review of the packets captured

during the attack indicated the Sender MAC Address (11:11:11:11:11:11) in

the ARP payload being different to the ethernet source (08:00:27:2C:F2:EF) in355

the ethernet frame. The IDPS successfully detected the attack and installed a

flow rule preventing network traffic from the attacker. To check flow rule inser-

tion, ovs-ofctl dump-flows ovs-br was input on the OpenVSwitch host,

which returned: cookie=0x0, duration=0.700s, table=0, n_packets=0,

hard_timeout=0, priority=1 , ip, nw_src =10.0.0.3, nw_dst=10.0.0.4,360

actions=drop. This confirmed that a flow rule had been generated to block

IP network traffic from the attacker. Further validation was carried out by

sending a ping from the OvS host machine. This resulted in ’Destination Host

Unreachable’, proving IP traffic cannot reach the attacker’s IP address. Prior to

the attack, this ping was successful.365

20

ARP Request ARP Reply ARP Reply Destination

2

2.5

3

3.5

4

Attack Type

ID
PS

M
it

ig
at

io
n

Ti
m

e
(S

ec
on

ds
) Minimum

Average
Maximum

Figure 13: IDPS Mitigation Time - ARP Attacks

Table 4: IDPS - ARP Spoofing Attacks - Mitigation Time (Seconds)

ARP Attack Avg. Min. Max.

Request 02.314543 02.024589 03.933365

Reply 02.046977 02.021009 02.127211

ReplyDestination 02.045087 02.028510 02.066943

Experiment 3 results indicate that the mitigation time was not significantly

greater than in our previous experiments. General IDPS response times were

similar to that of the IDS in our first experiment, with an average of 2.2 seconds

across all types of ARP spoofing attack. This indicates that the intrusion

prevention functionality did not add a significant overhead to our system.370

Figure 13 and Table 4 are summaries of our results for this experiment.

5.5. IDPS - Spoofed & Standard ARP Attacks

Our final experiment consists of 25 standard and spoofed ARP packets

being simultaneously sent by the Node and Attacker1 VMs, respectively. Unlike

previous experiments, a two second gap between each packet transmission375

21

was introduced to simulate the usual network traffic an IDPS would operate

in. The IDPS was successfully able to differentiate between the spoofed and

normal ARP requests. Examination of the Node and IDPS Attacker Tool Log

indicates that all of the ARP requests sent received a valid response. This is

time taken by the IPS to mitigate the attack once it is detected by the IDS. Our380

measured additional response time is: Avg.= 02.01465, Min. =02.00890, and

Max. = 02.03694. This difference was noted to be very small, proving intrusion

prevention functionality did not add a significant overhead to the IDS. We

observe that IDPS mitigation times are roughly equivalent to the previous

experiment. As with previous experiments, a number of packets with higher385

than normal response times were detected, leading to a higher maximum

packet response. The additional time taken by the intrusion prevention system

to mitigate the attack is: Avg. = 0.001092, Min. = 0.000674 , and Max. =

0.002004. It was noted not to be significant.

6. Conclusion390

This work has emphasised the flexible nature of SDN and its ability for

customisation to meet user requirements. We have shown that SDN can satis-

factorily detect as well as protect against network intrusions. More precisely,

our IDPS was successful in defending a network against ARP spoofing and

Blacklisted MAC Address attacks. We were able to generate log files on the395

console and write these to spreadsheet files. Testing was carried out by using a

variety of hostile and benign network traffic from different hosts. All parts of

the SDN testbed, including the specifically designed software were verified as

fully operational.

Limitations of this work include the virtual nature of the network testbed400

and POX controller programming constraints which resulted in restricted

experimental sampling points. To mitigate these limitations, the testbed would

be based upon a physical network, with hardware SDN switches and multiple

hosts running a variety of SDN-enabled applications. This would give a

22

better indication of IDPS performance under real-life operating conditions405

and allow additional detailed test data to be produced. Finally, by integrating

Machine Learning into the IDPS, it could be trained to accurately predict

attacks, which would facilitate a wider range of metrics being employed within

the experiments.

References410

[1] D. Kreutz, et al., "Software-defined networking: A comprehensive survey",

Proc. of the IEEE, vol. 103, no. 1, pp. 14-76, Jan. 2015, doi: 10.1109/J-

PROC.2014.2371999

[2] J. Ma, "Resource management framework for virtual data cen-

ter embedding based on software defined networking", Computers415

& Electrical Engineering, vol. 60, pp. 76-89, May 2017, doi:

10.1016/j.compeleceng.2016.09.002

[3] W. Chen, S. Xiao, L. Liu, X. Jiang, and Z. Tang, "A DDoS attacks traceback

scheme for SDN-based smart city", Computers & Electrical Engineering,

vol. 81, pp. 1-12, Jan. 2020, doi: 10.1016/j.compeleceng.2019.106503420

[4] A. Bhutani and P. Wadhwani, "Global SDN Market Size

to Exceed 100bn by 2025", March 2019. [Online]. Available:

https://www.gminsights.com/pressrelease/software-defined-

networking-sdn-market. [Accessed 10 Jan. 2021].

[5] H. Khalid, P. Ismael, and A. B. Al-Khali, "Efficient mechanism for securing425

software defined network against ARP spoofing attack", Journal of Duhok

University, vol. 22, no. 1, July 2019, doi: 10.26682/sjuod.2019.22.1.14

[6] J. H. Cox, R. J. Clark, and L. H. Owen, "Leveraging SDN for

ARP security", IEEE SoutheastCon, Norfolk, USA, April 2016, doi:

10.1109/SECON.2016.7506644430

23

[7] T. Alharbi and M. Portmann, "Securing ARP in software defined networks",

IEEE 41st Conference on Local Computer Networks (LCN), Dubai, UAE,

Dec. 2016, doi: 10.1109/LCN.2016.83

[8] J. McCauley, "Installing POX". [Online]. Available:

https://noxrepo.github.io/pox-doc/html/. [Accessed 20 Oct. 2020].435

[9] Open Networking Foundation, "Open Flow Switch Specification",

April 2015. [Online]. Available: https://www.opennetworking.org/wp-

content/uploads/2014/10/openflow-switch-v1.5.1.pdf [Accessed 20 Oct.

2020].

[10] Open vSwitch, "Production Quality, Multilayer Open Virtual Switch".440

[Online]. Available: http://www.openvswitch.org/features. [Accessed 20

Oct. 2020].

[11] C. Birkinshaw, E. Rouka, and V. G. Vassilakis, "Implementing an intrusion

detection and prevention system using software-defined networking: De-

fending against port-scanning and denial-of-service attacks", Journal of445

Network and Computer Applications, vol. 136, pp. 71-85, June 2019, doi:

10.1016/j.jnca.2019.03.005

[12] A. Leal, J. F. Botero, and E. Jacob, "Improving early attack detection in net-

works with sFlow and SDN", 5th Workshop on Engineering Applications

(WEA), Medellín, Colombia, pp. 323-335, Oct. 2018, doi: 10.1007/978-3-450

030-00353-1_29

[13] A. Abubakar and B. Pranggono, "Machine learning based intrusion detec-

tion system for software defined networks", 7th Int. Conf. on Emerging

Security Technologies (EST), Canterbury, UK, Sept. 2017, pp. 138-143, doi:

10.1109/EST.2017.8090413455

[14] M. Tavallaee, E. Bagheri, W. Lu, and A. Ghorbani, "A detailed analysis of

the KDD CUP 99 data set", IEEE 2nd Symposium on Computational Intel-

24

ligence for Security and Defense Applications (CISDA), Ottawa, Canada,

July 2009, pp. 1-6, doi: 10.1109/CISDA.2009.5356528

[15] Z. Shah and S. Cosgrove, "Mitigating ARP cache poisoning attack in460

software-defined networking (SDN): A Survey", MDPI Electronics, vol. 8,

no. 10, pp. 1-26, Sept. 2019, doi: 10.3390/electronics8101095

[16] P. Biondi, "Scapy - Packet crafting for Python2 and Python3". [Online].

Available: https://scapy.net/ [Accessed 20 Oct. 2020].

[17] M. S. Elsayed, N.-A. Le-Khac, S. Dev, and A. D. Jurcu, "Machine-learning465

techniques for detecting attacks in SDN," IEEE 7th Int. Conf. on Computer

Science and Network Technology, Dalian, China, Jan. 2020, pp. 277-281,

doi: 10.1109/ICCSNT47585.2019.8962519

[18] L. N. Tidjon, M. Frappier, and A. Mammar, "Intrusion detection systems:

A cross-domain overview", IEEE Communications Surveys & Tutorials,470

vol. 21, no. 4, pp. 3639-3681, June 2019, doi: 10.1109/COMST.2019.2922584

Thomas Girdler obtained a BSc (Hons) in Computer and Network En-

gineering from Sheffield Hallam University in 2003 and an MSc in Cyber

Security from the University of York in 2019. His research focuses on using

Software-Defined Networking to develop Intrusion Detection and Prevention475

Systems.

Vassilios G. Vassilakis received his Ph.D. degree in Electrical & Computer

Engineering from the University of Patras, Greece in 2011. He is currently a

Lecturer (Assistant Professor) in Cyber Security at the University of York, UK.

He’s been involved in government and industry funded R&D projects related480

to the design and analysis of future mobile networks and Internet technologies.

His main research interests are in the areas of network security, Internet of

things, next-generation wireless and mobile networks, and software-defined

networks.

25

View publication statsView publication stats

https://www.researchgate.net/publication/348860116

	Introduction
	Related Work
	IDPS Functions Design
	Testbed and Supporting Tools
	Experimental SDN Testbed
	Sampling Points
	Software Library and Tools
	IDPS Configuration Tool
	IDPS Attacker Tool

	Experimental Results
	Metrics
	IDS - ARP Spoofing Attack
	IDS – Blacklisted MAC Address
	IDPS – ARP Spoofing Attacks
	IDPS - Spoofed & Standard ARP Attacks

	Conclusion

