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ton of process Z, respectively, and are commonly used to derive, in the more
general setting of Markov chains, theorems about a continuous-time Markov
chain by applying known theorems for discrete-time Markov chains. We shall
demonstrate here that the continuous-time BD process Z and its discrete-time
counterparts Z and Z behave asymptotically the same in the limit of large time
index, while the processes Z and Z differ from the continuous-time BD process
7 in terms of the random length of an outbreak, or when considering their dy-
namics during a predetermined time interval [0,#']. To compare the dynamics
of process Z with those of the discrete-time processes Zand T during [0,t'],
we consider extreme values (i.e., maximum and minimum number of infectives
simultaneously observed during [0,%']) in these three processes. Finally, we il-
lustrate our analytical results by means of a number of numerical examples,
where we use the Hellinger distance between two probability distributions to
quantify the similarity between the resulting extreme value distributions of
either Z and Z, or Z and 7.

Keywords SIS epidemic model - Extreme values - Finite birth-death process -
Cayley-Hamilton approach - Hellinger distance

Mathematics Subject Classification (2000) 60J28 - 92B05

1 Introduction

The susceptible — infective — susceptible (SIS) epidemic model can be seen
as a special case of the deterministic Verhulst logistic model (Verhulst 1838),
and it has become a routinely used tool to describe the dynamics of a disease
that does not lead to immunity. Its stochastic formulation yields a birth-death
(BD) process Z with discrete state space and continuous time, which is first
studied by Feller (1939), Bartlett (1957), and Weiss and Dishon (1971). The
book by Allen (2003) provides much of the basic theory and methodology
when considering deterministic or stochastic SIS-models either in continuous
or discrete time; see also the expository paper by Allen (2008). A detailed
study of the extinction and quasi-stationary dynamics of the stochastic SIS-
model can be found in the monograph by Nasell (2011).

Discrete-time epidemic models have been widely used in the literature to
represent, epidemic processes that do typically occur in reality in continuous-
time, and thus it is relevant to study how similar these processes are when
looking at particular summary statistics of interest, and when focusing both
on the short-term and long-term dynamics. There are different approaches
to model the dynamics of a disease in discrete time, including chain bino-
mial epidemic models (Abbey 1952; Greenwood 1931), discrete-time Markov
chain models (Allen and Burgin 2000; Chalub and Souza 2014), branching
processes (Allen and van den Driessche 2013), arbitrarily distributed disease
stages (Herndndez-Cerén et al. 2013a, 2013b, 2015; Hernandez-Cerén 2015),
the next-generation approach (Allen and van den Driessche 2008; van den
Driessche and Yakubu 2019), and linear and nonlinear difference equations
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which are usually derived either by making use of the dynamics of the dis-
ease (Allen et al. 1991; Castillo-Chdvez and Yakubu 2001; De Jong et al. 1994;
Zhou et al. 2004) or by discretizing the continuous-time model (Ma et al. 2013)
by using, for example, Euler techniques (Enatsu et al. 2010; Hu et al. 2012;
Sekiguchi 2010), among others. For related work, see e.g. the papers by Allen
(1994), Brauer et al. (2010), Lewis et al. (2006), Longini (1986), Pellis et al.
(2008), and Zhang and Jin (2009).

In the setting of discrete-time Markov chain models, Allen and Burgin
(2000) formulate and analyze three stochastic epidemic models in discrete time
—more concretely, the SIS-model with constant population size, the SIS-model
with variable population size, and the SIR-model with constant population
size— as discrete-time Markov chains which may be seen as approximations
to the continuous-time Markov jump processes describing the state of the
population at time ¢. Specifically, it is assumed that the time step is sufficiently
small so that, consequently, only one event at most can occur during this
time step. In the case of the SIS-model with constant population size N <
00, Allen and Burgin (2000) present a discrete-time BD process Z, which is
inherently linked to the infinitesimal transition probabilities of process Z for a
sufficiently small time step 7, and demonstrate that the behavior of 7 agrees
with that of the continuous-time BD process Z in terms of a certain random
walk as the population size N is sufficiently large, and the expected length of
an outbreak. More recently, Chalub and Souza (2014) revisit the discrete-time
BD process 7 and a related deterministic model by introducing a continuous
model, which is based on a partial differential equation, and derive a diffusion-
drift approximation to the probability density of process Z.

In this paper, we complement the work of Allen and Burgin (2000) by
focusing on the discrete-time BD process 7 and an alternative discrete-time
Markov chain Z, which is defined by inspecting the number of infective hosts
in the original continuous-time Markov chain model at a sequence {1, : n €
Ny} of inspection times with 7,, = n7. The aim is to study the similarities
and differences between the continuous-time process Z, and the discrete-time
processes Z and Z, in three different ways. The first way is related to the
limiting distributions of Z and Z, which shall be compared with the limiting
distribution of process Z as the time index tends to infinite. In the second way,
the interest is in the end of the epidemic —in terms of Z, the first visit to state
0— in the SIS-model, and the scaled versions derived from the random number
of steps before the first visit of processes Z and Z to state 0. The third way,
which is common among statistical modelers, leads us to replace the dynamics
of process T by its discrete-time versions Z and Z during a predetermined time
interval of length ¢’ > 0, where the aim is then to compare how the dynamics
of processes Z, T and Z, differ during [0,#'], in terms of a couple of summary
statistics related to extreme values.

It is important to stress that the SIS epidemic model studied here differs
from the well-known SIS-model with transmission rate SisN ! and recovery
rate ¢, where s = N — ¢ and ¢ denote the number of susceptible and infective
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hosts, and N is the population size. More concretely, the SIS epidemic model in
this manuscript includes an additional source of infection from the environment
of rate 3, which yields the transmission rate (8i 4+ 3')sN 1.

The paper is organized as follows. In Section 2, we show that, in terms
of long-term epidemic dynamics, processes Z and Z are equivalent to each
other and amount to process Z as the time index tends to infinity, whereas
they differ from process Z in terms of the random length of an outbreak.
In Section 3, the aim is to analytically compare the dynamics of the num-
ber I(t) of infective hosts at time ¢ over times ¢ € [0,t'] with those given
by the number I, = T (1n,) of infective hosts at equidistant times 7, = nr
with time step 7 = m~t’, for n € {0,1,...,m} and a predetermined time
length ¢ > 0. Although it appears to be analytically intractable, the prob-
lem is closely related to the distribution of the total area between the sample
paths of infective hosts in the continuous-time BD process Z and its discrete-
time counterpart Z. In Section 4, the interest is in the minimum and maxi-
mum number (Inin(t'), Imax(t')) of hosts which are simultaneously infective at

any time t € [0,#] in the SIS-model, and its counterparts (Imin(1m), Imax (1))
and (Inin(m), Imax(m)) in the discrete-time processes 7 and T, respectively.
The joint probability mass functions of the random vectors (Imin ('), Imax(t')),
(Imin(m), Imax(m)) and (Imin(m), Imax (1)) are used in Section 5 in order to
study the different behaviours of processes Z, Z and Z during [0,t], depending
on the number m = 77 !¢ of inspection times and the infection and recovery
rates. We do this by using the Hellinger distance between these probability
mass functions. In Section 5, we also present numerical results when focusing
on the expected length of an outbreak and the probability of not detecting
the end of the outbreak within process Z. Finally, we give some concluding
remarks in Section 6.

2 The continuous-time SIS-model and related discrete-time
processes

2.1 Model definition

In the SIS-model, the interest is in a homogeneously well-mixed and finite
population of hosts, with constant population size N, where each susceptible
(S) host can become infective (I) after some time, becoming again susceptible
(S) after recovery, thus allowing for a bidirectional transition between the two
possible states. Specifically, a typical infective host makes infectious contacts
at random points of a Poisson process with rate § > 0 during its infectious
period, which follows an exponentially distributed recovery time with expected
value ™!, in such a way that the newly infective hosts at successive contacts
are selected independently and uniformly from the subpopulation of suscep-
tible hosts; additional to this, we consider an exogenous Poisson stream of
infection of rate 8 > 0, to represent potential external sources of infection
not directly related to contacts (e.g., environmental sources). Further, all in-
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Fig. 1 State space and transitions in the continuous-time BD process Z with birth rates
{Ni:1€{0,..., N —1}} and death rates {u; : i € {1,...,N}}.

fectious periods, and internal and exogenous contact processes are assumed to
be mutually independent.

This description results in a finite continuous-time BD process Z = {I(t) :
t > 0} where I(t) is the number of infective hosts at time ¢ (Figure 1), and its
infinitesimal transition probabilities are given by

Aidt + o(dt), ifj=i+1,
. o=+ wi)dt 4+ o(dt), if j =1,
P+ dt) =G =) =9 g+ o(dt), itj—i—1, U
o(dt), otherwise,

for integers 4,j € {0,1,..., N}, with o(dt)/dt — 0 as dt — 0; more concretely,
the birth and death parameters in (1) are specified by A; = N=1(8i+3")(N —1)
and p; = 1 representing, respectively, infection and recovery events.

For later use, we briefly discuss two simple but revealing properties of
process Z. First, it is routinely seen (see e.g. page 292 in the book of Kulkarni
(1995)) that, irrespectively of 7(0) =i € {0,1, ..., N}, the limiting distribution
of the number of infective hosts is specified by

) . . IED.YEEED VEN) .

lim P(I(t) =j|I(0)=14)=A""2"2—  j¢c{0,1,..,N},

Jim P(I(t) = j|T(0) = ) P e }
where A = Z;‘V:o )‘zlAL‘Il and AleAZL:l = 11if j = 0. Second, we point out

that, under the assumption of i € {1,2,..., N} initially infective hosts, the
random length 7' = inf{t > 0 : I(¢t) = 0} of an outbreak can be seen as
a continuous phase-type random variable (see e.g. Chapter 2 in the book of
Latouche and Ramaswami (1999)) of order N with representation (ey (i), Q*),
where e, (b) denotes a row null vector of order a with a single 1 in its bth entry,
and Q* records infinitesimal rates associated with jumps of Z between states
in {1,2,..., N}; see also Section 7.3.2 of the book by Allen (2003). For practical
use, moments of 7" can be evaluated (Artalejo et al. 2012; Norden 1982) from
the iterative relation

N
E[TNI0) =] = k> d; S ——E[1T%11(0) =], keN,

where d; = 1 if j = 0, and HL if j € {1,2,..., N}, and E[T°/I(0) =] = 1,
for states i € {0,1, ..., N}.
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2.2 A discrete-time BD process

Equation (1) is used in Section 2.2.1 of (Allen and Burgin 2000) (see also
Section 1.1 of the paper by Chalub and Souza (2014)) to define, for a prede-
termined value 7 verifying

0 <7 <min{Agt (N + ) uyt ri€ {1,2,..., N — 11}, (2)

a discrete-time BD process 7= {fn :n € Ny} from the one-step transition
probabilities

T, if j=q+1,
= s N 1=t if =1,
P(I "*’)* i, ifj =i 1, (3)
0, otherwise,

for integers i,j € {0,1,..., N}. The one-step transition probabilities P(fm_l =
j|I, = i) of T are inspired from the infinitesimal behavior in (1) and can be
thus seen as approximations of P(I(t 4+ 7) = j|I(t) = i) at time steps t = T,
with 7,, = n7, for n € Ny, when 7 is sufficiently small. We note that (2) is just
a technical condition so that the probabilities in (3) are all non-negative and,
consequently, the process 7 is well defined. Moreover, the minimum in (2) can
be interpreted as the smallest mean holding time in any state of the process.

By denoting the infinitesimal generator of Z and the one-step transition
probability matrix of Z by Q and P(r ), respectively, we may express Eq. (3)
in matrix form as P(T) =In41 +7Q, where I, denotes the identity matrix of
order a, and notice that 7 is a uniformised version of Z. This means that the
random variable I(t) is identically distributed to Iy, where N' = {N(t) :
t > 0} is a Poisson process of rate =1, and N and 7 are assumed to be
independent; for details on uniformization techniques, see e.g. the expository
presentation of van Dijk et al. (2018). This relation enables us to express the
transition function P(t) = (P; ;(t) : 4,5 € {0,1,..., N}) of process Z in terms
of

Z - t) Pn( )

and if we are interested in approximating P(¢) within £ > 0, then we may
approximate P(t) by the finite sum

1
t
!
n=no
with >0 01 e T_lt(_n# o1 € 1t£— < g; see e.g. the paper by
Fox an Glynn (1988) for a method to find the tluncatlon integers ng and ny
given a predefined ¢, and values 7 and t.
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On time-discretized versions of the stochastic SIS epidemic model 7

1— (N +pi)7

The discrete-time BD process Z = {fn :n € No}.

Pio(T) Pin(7)

Piii(r) — Pijalr)

1820

The continuous-time BD process Z = {I(t) : t > 0}.

Fig. 2 A graphical comparison between the discrete-time BD process 7T of Allen and Burgin
(2000) and the continuous-time BD process Z in terms of the one-step transition probabilities
P(Iny1 = j|In =) in Eq. (3), for integers j € {i—1,i,i+ 1}, and the time-dependent prob-
abilities P; ;(7), for integers j € {0, 1,..., N}, respectively, for any number i € {0,1,..., N}
of initially infective hosts.

It is worth noting that, unlike the continuous-time BD process Z in (1)
where multiple events can occur with strictly positive probability P; ;(7) =
P(I(t+ 1) = jlI(t) = i) at any time interval [¢t,¢ + 7) and integers i,j €
{0,1,..., N}, in the discrete-time BD process T it is assumed that at most one
event occurs in the time period 7, either a new infection or the recovery of an
infective host, which depends only on the state variables at the current time;
see Figure 2. _

Despite the fact that the discrete-time BD process Z is inherently linked
to the time step 7 verifying Eq. (2), it possesses two interesting properties
that remain valid regardless of the concrete specification of 7. For a proof of
Lemma 1, see Appendix A.

Lemma 1 For any number i € {0,1,..., N} of initially infective hosts and
time step T satisfying condition (2), it is seen that

(i) The limiting distribution of I satisfies

lim P (In —j ‘IO - z) = lim P(I(t) = j|1(0) = i), (4)
for integers j € {0,1,..., N}.

(i) The random number T = inf{n € Ny : I, = 0} of steps before the first
visit of process 7 to state 0 is a discrete phase-type random variable of
order N and representation (en (i), P*(7)), where P*(1) consists of one-
step transition probabilities for states in {1,2,..., N}. It is also found that

TE[T|1y = i] = E[T|1(0) = i), (5)
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and Var(rT|Iy = i) > Var(T|1(0) = i).

We note however that the random variables 7" and 77" are not identically
distributed — in fact, the former is a continuous phase-type random variable
and the latter is a discrete one —, but a striking property is that their expec-
tations (not higher moments) are identical, regardless of the particular choice
of 7. As the reader may verify, the equality TE[T|Iy = i] = E[T|I(0) = i
amounts to Eq. (9) in the paper by Allen and Burgin (2000) for the expected
duration of the epidemic beginning with 7 infective hosts in the continuous-
time BD process Z and its discrete-time counterpart Z. We shall return to
the discrete-time BD process Z — and the underlying selection of a sufficiently
small value 7 > 0 — in Sections 4.2 and 4.3.

2.3 An alternative discrete-time Markov chain model

By assuming that time steps 7, = nr, for n € Ny, represent inspection times
in Z, we may define the time-discretized process Z = {I,, = I(7,) : n € N},
which is a discrete-time Markov chain having state space {0,1,...,N} and
one-step transition probability matrix P(7) = (P () : i,j € {0,1,...,N}),
where P, ;(7) are the transient probabilities of the original continuous-time
BD process 7.

In this setting, the value 7 > 0 is not subject to (2) or any other condition,
and one-step transition probabilities P; ;(7) are all strictly positive for every
strictly positive rates 8, 8’ and . The sequence of numbers I,, = I(7,) of
infective hosts, for n € Ny, results in a summary of the continuous-time BD
process Z in such a way that, with the exception of states I, = I(7,) and
I41 = I(Tp41), states visited by Z in any inter-inspection interval (7,,, Tp41)
are ignored.

In the general framework of Markov chains (see e.g. Chapter 5 in the book
by Anderson (1991)), the time-discretized process Z is called the T-skeleton of
process Z and can be used to derive some properties of the continuous-time BD
process Z, such as the division of the state space into communicating classes
and the limiting behavior as ¢ — oo, from the corresponding properties of
the discrete skeleton. More particularly, the proof of Lemma 2.(i) is based on
Theorem 2 of Kingman (1963), from which the limiting results for a continuous
function f(¢), as ¢ — oo, can be deduced from the limiting behavior of the
sequences {f(n71) : n € Ng}, as n — oo, for different values of 7. For a detailed
proof of Lemma 2, see Appendix B.

Lemma 2 For a fized time step 7 > 0 and any number i € {0,1,...., N} of
initially infective hosts, it is seen that

(i) The limiting probabilities of T satisfy

lim P (I, =j|lo=1i)= Jim P(I(t) = j|lI(0) =), je€{0,1,...N}.
[ee]

n— o0
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(ii) The random number T = inf{n € Ny : I,, = 0} of steps before the first visit
of process I to state 0 can be thought of as a discrete phase-type random
variable of order N with representation (en(i),P*(7)), where P*(1) =
(Pij(1) = 4,5 € {1,2,...,N}}, and it is seen that T <y 7T in the usual
stochastic order.

In replacing the continuous-time BD process Z in the SIS-model by a time-
discretized version, Lemmas 1 and 2 allow us to establish a first comparison
between the discrete-time BD process Z of Allen and Burgin (2000) and the
discrete-time Markov chain Z. In terms of long-term epidemic dynamics, pro-
cesses Z and 7 are seen to become equivalent as the time index tends to
infinity in the sense that they yield the same description of the number of
infective hosts; i.e., limy, oo P(I, = j|Ip = i) = limy, oo P(I, = j|Io = i) =
lim; 0o P(I(t) = j|I(0) = i), for integers i,j € {0,1,..., N}. Roughly speak-
ing, it is seen that the effect of the time step 7 > 0 on Z and T becomes
negligible in the long term, as long as the discrete-time BD process Z is well
defined (i.e., 7 satisfies the additional condition (2)).

When the focus is on the random length 7" of an outbreak, 7 leads to an
exact description of the outbreak in terms of its expectation (see (5)), but the
scaled length 7T of the outbreak in Z is neither stochastically greater than, less
than nor equal to the random length T' of the outbreak in the SIS-model. On
the contrary, the discrete-time Markov chain Z yields the stochastic ordering
T <4 7T, from which it follows that E[T|I(0) = i] < 7E[T|I, = i], for any
number i € {1,2,..., N} of initially infective hosts.

3 Discrete-time versions on a time interval [0, t']

Let us now examine the dynamics of process Z and those of its discrete-time
versions Z and Z from another angle. For a fixed time ¢’ > 0 and an arbitrary
integer m € N, we may focus on a finite sequence of inspection times 75 =
0<7 < .. < Tme1 < Ty =t with 7, = n7 and 7 = m™!t/, yielding
a decomposition of the interval [0,¢") into m sub-intervals [7,_1,7,), for n €
{1,2,...,m}, of length 7. The question is if, for a suitably selected number m =
m(t') of inspection times —and the corresponding time step 7— the summary
of either numbers Z0™ = {I,, : n € {0,1,...,m}} or numbers Z™ = {I,, :
n € {0,1,...,m}} of infective hosts results in an accurate description of the
continuous-time BD process Z evolving over the predetermined time interval
[0,t).

At first sight, the following lemma plays a crucial role when, for a fixed time
t’, we formally intend to approximate the process Z(¥') = {I(t) : t € [0,¢']} by
a time-discretized process Z("™, for a sufficiently large m. The reader is alerted
to the fact that random variables in Z(#') and Z(™ are not necessarily defined
on a common probability space, whence a similar asymptotic result for Z(m)
does not seem to be plausible.
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Fig. 3 A sample path of the continuous-time BD process Z(t') (blue) versus the resulting
sample path of Z(™) (red) in the case m = 3, with Iy = I, = 1, Iy = 2 and I3 = 1.

Lemma 3 For a fized time length t' > 0 and an arbitrary integer m € N, let
Zm be the total area between the sample paths of infectives in the processes
Z(t') and TU™); see Figure 3. Then, the sequence {Z,, : m € N} of random
variables converges almost surely to 0 as m — oo.

Proof: Assume that, for times ¢ € [0,¢'], the random numbers I(¢) of infec-
tive hosts are defined on a common probability space (£2,.A, P). Under the
exponential assumption for infectious periods, and exogenous and internal in-
fectious contacts, it is clear that there exists a set A(t') € A with P(A(t')) =1
verifying M (t';w) < oo for every w € A(t'), where M (#'; w) is the number of
jumps of the sample path I(.;w) : ¢t — I(t;w) for times ¢ € [0,¢]; note that,
for every fixed w € {2, the mapping I(.;w) : t — I(t;w) is defined on the
measure space ([0,t'], A’[0,¢],X), where A’[0,t'] denotes the Borel o-algebra

n [0,t'] and A is the Lebesgue measure. Furthermore, for each realization
w € A(t"), we may evaluate the smallest inter-jump time [(t';w), thus satisfy-
ing I(t';w) < MLt w)t.

In giving a formal definition for Z,,, we formulate the time-discretized
process 2™ as the continuous-time process ZU™ (') = {I™)(t) : t € [0,#]}
with

m
I(m Z Tn—1 1[7." 17,,)() tG[O,t/},
where 1p(t) = 1 if ¢t € B, and 0 otherwise, which allows us to define the
random variable Z,, in terms of the mapping Z,,(.) : w — f[o o Y (B w)dA,
where Yy, (t;w) = [I(t;w) — I (t;w)| and S5 Ym(t;w)dX is the Lebesgue inte-
gral of Y,,,(t;w) on the set B € A’[0, t /. Then, the result follows by observing
that A(t') C {w € 2 : limy, 00 Zm(w) = 0} since the sample paths of Z(t')
coincide with those of ZU™ () ' in the case m > My(t';w), for a sufficiently

1 For pairs (t,w) € [0,t'] x A(t'), it is seen that I(t;w) = I™)(t; w).
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large integer Mo(t';w) > M(t;w). O

Figure 3 illustrates, at the level of the underlying sample paths of processes
T and Z, why one would expect the relation E[T|I(0) = i] < 7E[T|Iy = i] to
hold, for any number i € {1,2,..., N} of initially infective hosts and time step
7 > 0. In a more general setting, we remark that E[g(T)] < E[g(rT)] for any
nondecreasing function g, since T' <y 71" from Lemma 2.

Remark 1 By appealing to Theorem 6.14 in the book by Cinlar (2010), it is
readily seen that

Bzl = [ Bt

since f[O,t’]xQY (,)d(A\@P) = f[o ] fQ JdPdX = [, f[o ] m(t,w)dAdP,
where A ® P is the product measure of )\ and P on the measurable space

([0,¢'] x 2, A'[0,t'] @ A).

Although it is straightforward to derive the limit result for Z,, in Lemma
3, computing the probability law of Z,, is not immediate. As a result, a direct
comparison between the dynamics of processes Z and Z during [0,#'] in terms
of the probability law of Z,, does not seem to be feasible for practical use.
In Section 4, we shall suggest the alternative of using extreme values, and
estimating the approximating error in terms of the Hellinger distance between
two probability distributions.

4 Extreme values

It is the purpose of this section to study extreme values in the continuous-time
BD process Z(t') for a fixed time length ¢’ > 0 (Section 4.1), and the finite se-
quences Zm and 7 (m) for an arbitrary integer m € N and the resulting time
step 7 = m~!t’ (Section 4.2). The Hellinger distance between two probabil-
ity distributions is then used to quantify the similarity between the resulting
extreme value distributions (Section 4.3).

4.1 Extreme values in the continuous-time BD process Z(t')

For a fixed time length ¢’ > 0, we let Iiin(t') and Inax(t') denote the minimum
and maximum number of hosts which are simultaneously infective during [0, ¢'],
respectively, in the SIS-model, which can be expressed as

Inin(") = min{I(¢) : ¢t €[0,t']} and Imax(t") = max{I(t): t € [0,¢]}.

The random variables I, (¢') and Iy« (t') are related to the continuous-time
BD process Z(t') and, for a fixed number i € {0,1,..., N} of initially infec-
tive hosts, their joint probability law can be characterized by the conditional
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probabilities
Qit;4,Y") = P(y < Imin(t), Imax(t') < y'[1(0) = i),

for integers 0 < y < i < ¢’ < N. Note that the special choicesy = 0 and ' = N
yield the marginal probability laws of Iyax(t') and Imin(t'), respectively, in
terms of P(Inax(t') < y'|I1(0) = i) and 1 — P(Inin(t') <y — 1]1(0) = 19).

For integers 1 < y <1 < gy’ < N — 1, we observe that the probability
Qi(t';y,y") equals the conditional probability that, starting from state ¢ €
{y,y+1,...,9'}, the continuous-time BD process Z does not leave the sub-set
{y,y + 1,...,9'} of states before time ¢’. This conditional probability can be
derived by studying the non-absorption probability in an absorbing process
J(y,y") = {J(t) : t > 0} having two absorbing states (y — 1)* and (y" + 1)*,
and a class {y,y + 1,...,4'} of transient states. The infinitesimal generator of
J(y,v’) has the block-structured form

T
/ 0 ()y,_y+/1 0 /
Qy,y') = | myey—y+1(1) S, ¥) Apey—y1(y —y+1) |,
0 Og’—yﬂ 0

where the sub-matrix S(y,y’) is given by

—(Ay + 1y) Ay
Pyt —(Aygr + py1) Ay
S(y,y') = ‘ - :
:u'y’—l _<>\y’—1 —I— ,u'y’—l) )\y/_l
My —(Ay + py)
In terms of process J(y,y’), we have Q;(t';y,y') = 1 — P(J(t') € {(y —
)*, (y' + 1)*}J(0) = 9), for integers 1 <y < i <y < N —1, and a simple
computation using the transition function of J(y,y’) shows that

Qi y,y) =ey—yy1(i —y+1)exp{S(y. y" )t} 1y 1. (6)

Equation (6) is closely related to the solution of Krinik and Mortensen
(2007) for the transient probability function of a finite continuous-time BD
process (with or without catastrophes), which can be derived by using a re-
cursive, Cayley-Hamilton approach, leading to Theorem 1.

Theorem 1 For any time length t' > 0 and integers 1 <y <i <y < N -1,
the conditional probability Q;(t';y,y’) can be expressed as

t Y,y Zezz (y,y")t’ chll)c ZJ y (7)

where {z(y,y") : 1 € {y,y +1,...,y'}} are the eigenvalues of S(y,y’), which
are all strictly negative real numbers and satisfy —2max{\g + px : k € {y,y +

1ot} < 2y(0,¥) < 2y (y,Y') < oo < 2y (y,y'). For integers k € {y,y +
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Y'Y, coefficients {Czk(ya Nl ed{y,y+1,...,y'}} in Eq. (7) satisfy a
Vandermonde system of linear equations and are evaluated from

(y)

(zfl()y Y) (Sg(y,y’ Yk
Yy ( S AN
v,y') B (S*(y,¥')) ik
=C '(y.y) : :
(y )(ya y') (Sy/_yﬂ(y» Y'))ik
where
2y(y.y') zyr1(0,Y) 0 2y (YY)
/ 2wy)  zawy) o 2w Y)
C(ya Y ) = . : . . (8)

. oyt .
2V yy) 2 ) e 2 ()

Proof: The analytical treatment of Krinik and Mortensen (2007) for transient
probability functions of finite continuous-time BD processes can be appro-
priately adapted to time-dependent probabilities of continuous-time Markov
chains with a taboo subset of states, which is our case in process J(y,v’).
More particularly, it is found that the (7, k)th entry of the matrix exponential
exp{S(y,y’)t'} in Eq. (6) has the form

y/
(exp{S(W, ¥t} = 0 — 3 40 (4, 1/) (1 — e Wyt ) ,

=y

for integers i,k € {y,y + 1,...,y'}, where d, denotes the Kronecker’s delta.
To derive this expression, it is first seen that S(y,y’) is non-singular and,
consequently, the eigenvalues {z;(y,v’) : |l € {y,y +1,...,y'}} of S(y,y’) are
strictly negative with —2max{A\; + ur : k € {y,y + 1 U <y, y) <
Zy+1(Y,Y') < ... < zy(y,y’), since these eigenvalues are all real and distinct;
see e.g. the book by Noble and Daniel (1988).

Equation (7) is then obtained by using the equality

y/
l
k= Zcﬁi(y '),
=y

which is derived by observing that the absorption of process J(y,y’) into
the subset {(y — 1)*, (v’ + 1)*} of absorbing states occurs almost surely in
a finite time; i.e., limy o P(J(t') = k|J(0) = i) = 0, for transient states
i,k € {y,y+1,...,y'}. This completes the proof. O

The following results summarize the marginal laws of I, (¢') and Iax (1),
which are derived by adapting our preceding arguments to suitably defined
absorbing processes J (y, N) and J(0,y’) taking values in {(y)*}U{y+ 1,y +

»N}and {0,1,...,y'} U{(y' + 1)*}, respectively.
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Theorem 2 For a fized time length t' > 0 and integer i € {0,1,...,N}, it is
seen that

(i)

()

The conditional probabilities P (t';y) = P(Imin(t') < y|I(0) = i) are
gien by

1 if i<y <N,

szn tl’ = ’ ’ ’ l . .
() {1—Zl]iy+1ezl<y+1)t chv=y+1b§,/)c(y+1)»lfOﬁyéz—l,
(9)

where {z[(y+1): 1 € {y+1,y+2,...,N}} are the eigenvalues of sub-matriz
S(y+1, N), which is defined in Theorem 1 with Ay = 0. These eigenvalues
are all strictly negative real numbers and satisfy —2 max{\g + ug, un : k €
{y+Ly+2, . . N=1}} <z g (y+1) < zo(y+1) <. < 2y(y+1). For
integers k € {y+ 1,y +2,..., N}, coefficients {bgf,)c(y +1):le{y+1l,y+
2,...,N}} are specified from

bi(-?’k“;(y +1) (S(y + 1, N))in

b¢y+2 (y+1) (S2(y+1,N))ik
" =B 'y +1) ; ,
bV (y+1) (SN Uy +1,N))ix

where matriz B(y + 1) has the form of C(y+ 1, N) in (8) with eigenvalues
zi(y + 1, N) replaced by z(y + 1), for integersl € {y + 1,y +2,..., N}.
The conditional probabilities P (t';y") = P(Imax(t') < y'|I(0) = i) are
given by

0,/ / if 0<y <i-—1,
Pz_max(tr;y/) _ Z?:O ezl (Wt ZLO dill)c(y/)7 if i<y <N-1, (10)
L, if y =N,

where {z]'(y’) : 1 € {0,1,...,y'}} are the eigenvalues of sub-matriz S(0,y’),
which is defined in Theorem 1 with puy = 0. These eigenvalues are all strictly
negative real numbers and satisfy —2max{Ao, \p +px 1 k € {1,2,...,¢y'}} <
2 (y') < 2/(Y') < ... <zy(y'). Forintegers k € {0,1,....y"}, coefficients

{d%(y’) :1€40,1,...,y'}} are specified from

0

d%lk; ) ((SQ(O’ ?//l)))i,k
)y S%(0,4)) ik
) =D !(y) : :
bgyk/)(y’) (SY+1(0,y'))ik

where matriz D(y") has the form of C(0,y') in (8) with eigenvalues z(0,y")
replaced by z;'(y'), for integers | € {0,1,...,y'}.
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As a last remark, we point out that the marginal mass functions of I, (t')
and Iiax(t'), and the joint mass function of (Iiin (t'), Imax(t')) can be routinely
determined from Theorems 1-2 (Appendix C), leading to the probability laws

fPZ_m’m( I) _ {pmz‘n(t/.y> 1y € {0, 1, ...,’i}},
Pros () = (pe(t5y')  y' € {iyi+1,. N},
Qi(t") = {qi(t;y,y) : 0 <y <i <y <N},

where /" (t';y) = P(Imin(t') = ylI(0) = i), p"**(t';y) = P(Imax(t) =
y'|11(0) =14) and q;(t';y,y') = P(Imin(t') = y, Imax(t') = ¥/ |1(0) = i).

4.2 Extreme values in the discrete-time processes Z(m) and Z(m)

Next, we turn to extreme values in the finite sequences Z(m) and Z(™). For the
sake of brevity, we focus on Z(™) and briefly comment on appropriate results
for 7(m),

In the case of the finite sequence Z("™), the joint distribution of the random
vector (Imin(m), Imax(m)), with Lyin(m) = min{ly, I1, ..., I, } and Iax(m) =
max{ly, I, ..., I;,}, can be determined from the conditional probabilities

Qi(m;y,y") = P (y < Imin(m), Imax(m) <y [Iy =i), 0<y<i<y <N,

for i € {0,1,...,N}, with Q;(m;0,9') = P(Imax(m) < ¢/'|[I = i) and 1 —
Qi(m;ya N) = P(Imm <y- 1|IO = Z)

One can repeat the arguments yielding Theorems 1-2 to show that, for
integers 1 <y <i <y <N —1, it is possible to write down

Qi(m;y,y) =ey_yr1(i —y+ )P (139, ¥ )1y —yt1. (11)

with P(r;y,y") = (P,;(7) : 4,5 € {y.y +1,...,y'}) and 7 = m~'t". More par-
ticularly, Eq. (11) is derived as the non-absorption probability before step m
of an absorbing discrete-time process J(y,y') taking values in {(y — 1)*} U
{y,y +1,...,4'}U{(y +1)*}, where {(y — 1)*} and {(y' + 1)*} are absorbing
states, and one-step transition probabilities between transient states {y,y +
1,...,y'} are given by P ;(7), for i,5 € {y,y + 1,...,4'}. One can also de-
termine the conditional probabilities P/ (m;y) = 1 — P(Lnin(m) > y +
1|1y = i) in terms of P(Ipmin(m) > yllp = i) = 1 if y = 0, and en_y41(i —
y+ DP™(1;9,N)1n_yt1 if y € {1,2,...,i}; in a similar manner, the con-
ditional probabilities P/ (m;y’) = P(Imax(m) < y'|Iy = i) are given by
P(Imax(m) < y|lop = i) = ey1(i + 1)P™(150,y) 1y 41 if y' € {i,i+1,...,N —
1}, and 1, if y/ = N.
The marginal mass functions

P (m) = {p{"" (m;y) »y € {0, 1, ..., i} },
Pret(m) = {p"*"(m:y) sy € {ii+ 1., N}},
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with p"(m;y) = P(Imin(m) = y|lo = i) and p"(m;y’) = P(Ipax(m) =
y'|Iy =1i), and the joint mass function

Qi(m) = {Gi(m;y,y) :0<y <i<y <N}
with (L(m Y,y ) P(inln( ) =Y, ina,x( ) =Yy |j b), can be then easily
evaluated (Appendix C) from the probabilities Qi i(m;y,y ) in (11).
Turnlng to the extreme values Imm(m) mln{IO, Il, weey Ip } and Imax( )=
max{[o, I.. m} in the finite sequence Z(™), we can replace P(T y,y') in the

preceding arguments by the sub-matrix P(T y,y') = (P(11 = j|]0 =1):4,j €
{y,y+1,...,4'}) with 7 = m~1¢’ into (11) to derive the probabilities

Qi(m;y,y') = P(y < Inin(m), Imax(m) < y/|Ig =), 0 <y <i<y' <N,
szzn(m,y) ( ( ) < y|_[0 = z , Y E {O, 1, ,Z}
PP (m;y') = P(Imax(m) < y/'[To =), v € {i,i+1,.., N}.

Finally, we note that the joint mass function
Qi(m) ={G@(miy,y) : 0<y<i<y <N}

of (fmin(m)a fmax("n))a where Z]vz(mv Y, ZJ') = P(fmin( ) =Y, Imax(m) = Z/'|fo =
i), and the marginal mass functions

Prn(m) = {5 (mi) -y € {0,1, 14},
Ps(on) = (B nitf) £y € (i + 1,0 N))

of Inpin(m) and fglax(m), where pI""(m;y) = P(Ipin(m) = y|lIy = i) and
P (myy’) = P(Lpax(m) =y '|Iy = i), can be routinely evaluated (Appendix

C) from the joint probabilities Q;(m;y,y").

4.3 Discretization of continuous-time dynamics

When focusing on a predetermined time interval [0,t¢'], we can compare the
dynamics of the process Z(t') with those of the approximative discretized
versions Z(™ and Z(m ), in terms of the extreme value distributions anal-
ysed above and by means of the Hellinger distance (Pardo 2006). To this
end, we point out that, for discrete random variables X and Y taking val-
ues on a common set D, the Hellinger distance between the mass functions
Px ={px(u)=P(X =u):u € D} and Py = {py(u) = PY =u) : u € D}
is defined by

H(Px,Py) = \/— Z \/px '\/pY(U))Q»

ueD

which amounts to the Euclidean norm of difference of square root vectors; i.e.,

H(Px,Py) = (V2)~ Y |vVPx —v/Py||2 with 0 < H(Px, Py) < 1. The Hellinger
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distance is closely related to the Bhattacharyya distance, and it measures the
closeness of the probability distributions Px and Py of two random variables
X and Y. It was first defined in terms of the Hellinger integral, and it can be
seen as a type of f-divergence satisfying the property

H*(Px,Py) < §(Px.Py) < V2H(Px,Py),

where §(Px,Py) denotes the total variation distance between Px and Py .

In Section 5 we demonstrate, using the Hellinger distance between Q,(t)
and Q;(m), and between Q;(t') and Q;(m), that approximations of properties
of process Z(t'), for a fixed time length ¢’ > 0, by the corresponding properties
of processes Z™) and Z(m —for a suitably chosen integer m € N and resulting
time step 7 = m ™/~ are often very accurate.

5 Numerical experiments and discussion

In what follows, we illustrate how the dynamics of the continuous-time BD
process Z(t') can be significantly different from those of the finite sequences
Z(m) and Z (m) "and how these differences can depend on certain model param-
eters, the choice of m (equivalently, 7), as well as on the particular summary
statistic of interest. In our numerical examples, we consider a population con-
sisting of N = 20 hosts, and set y~! = 1.0 in such a way that time is measured
in terms of the average recovery time of an infective host. To better appreciate
relevant behaviors in our examples, a log scale is used in the z-axes of Figures
4-6.

In Figure 4, differences between the descriptor Inin(t') and the discrete-
time versions fmin(m) and Inin(m) are measured in terms of the Hellinger
distances H(P™n ('), P™in(m)) and H(P™n(t'), P (m)), for time steps T
verifying 7 = m~ ' with ¢ € {5.0,10.0}, 8/ € {1.0,10.0} and under the
assumption of 1(0) = ¢ initially infective hosts with ¢ = 10. When focusing on
the discrete-time process Iin(m) (bottom row of sub-plots in Figure 4), it is
seen that, as intuition tells us, the Hellinger distance behaves as a decreasing
function of the integer m, irrespectively of other parameter values. Larger
values of m are needed to reach a predetermined value of the Hellinger distance
with increasing values of the time length ¢'. In Figure 4 it is also observed that
larger values of the contact-related infection rate 5 lead to a more significant
effort (i.e., larger integers m) needed for the finite sequence Z (™) to mimic the
continuous-time BD process Z(t'), in terms of the stochastic descriptor I, (t').
This could be explained by noting that larger values of § yield more events
occurring during the time interval [0,¢'], so that there are higher chances of
massing relevant events during the discretization process. For a similar reason,
increasing values of the exogenous infection rate 5’ lead to larger differences
between Z(t') and the discrete-time sequence ZU™ | and these differences are
seen to increase with increasing values of the time length ¢'.

When focusing on the discrete-time counterpart Z(™) in Figure 4 (top row),
we recall that restrictions are put on the time step 7 (i.e., on m) to ensure
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Tl:' = 7 not well defined
Fig. 4 Hellinger distances H (P (t/), 75{’”" (m)) and H(P" ('), P (m)) between the
mass function of Iy, (¢') and the mass functions of Tmm (m) and Iyin (M), respectively, versus
parameters (m, 3), for values 8’ € {1.0,10.0}, N = 20, y~! = 1.0 and time step 7 verifying
7 =m~ 1 with ¢’ € {5.0,10.0}. I(0) = Iy = Ip = 10 initially infective hosts. The green
region is related to pairs (m, 3) for which the discrete-time BD process 7T is not well defined,
due to condition (2).

that the finite sequences zm give true transition probabilities in (3), whereas
Z(m) ig always well defined for any selection of parameters (m, B). Thus, green
regions in Figure 4 represent parameter regimes and values of 7 (i.e., m) for
which the process 7 is not well defined. Still, it is remarkable to note that
any selection of (m,f) yielding a well-defined sequence Z(™) is enough to
guarantee a good approximation of process Z(t') in terms of the Hellinger
distance H(P™"(t'), 731”“"(m)), regardless of the exogenous infection rate 3,
the contact-related transmission rate 3, and the time length ¢, even if the
selected pair (m, 3) is close to the border of the green region in Figure 4. In
fact, for selections of (m, ) yielding well-defined sequences 7 (m) it is always
verified that H (P™m(t'), Pm™in(m)) < H(P™"(t'), P™"(m)) in our examples,
which shows a stronger similarity (in terms of the summary statistic Iy (t'))
between the continuous-time BD process Z(t') and the finite sequence Zm) of
Allen and Burgin (2000) than between process Z(¢') and the finite sequence
Z(m) defined by inspection (at least for large enough values of m so that
Z(m) is well defined). On the other hand, we can note that green regions
are significantly wider for ¢ = 10’, which shows how the discretization effort in
terms of m needs to increase for process Z to be well defined, when looking into
the dynamics over longer time intervals [0,#']. This effort also depends on some
model parameters such as 3, with larger values of 5 leading to larger intervals
in green (i.e., larger values of m for which this discrete-time process is not
properly defined). This indicates that the discretization effort (in terms of m)
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Fig. 5 Ratio p; between the expected length of the outbreak in process Z and its scaled
version in process Z, provided that I(0) = Ip = 1, versus parameters (7, (), for values
B’ € {1.0,5.0,10.0}, N =20 and v~! = 1.0.

does not only depend on the length ¢’ of the time interval of interest, but also
on the parameter values for the particular population and infectious disease
under study. It is at the same time striking how the alternative discrete-time
process Z(™) is able to approximate relatively well the dynamics of process
Z(t') —in terms of the summary statistic Iy (')~ even in parameter regions
leading to these green areas for process 7. That is, process Z™) can relatively
well approximate the continuous-time process even in parameter regimes for
which Z is not even properly defined. Finally, we point out that very similar
comments can be made to the alternative descriptor Iax(t'), which has been
omitted in this section for the sake of brevity.

In Figures 5-6 we focus on the discrete-time Markov chain Z. Given that
E[T|I(0) =i < 7E[T|Iy = i] from statement (i) of Lemma 2, we explore in
Figure 5 the value of the ratio p; = (TE[T|ly = i])"'E[T|I(0) = i] between
the expected length of an outbreak in process Z and the scaled average in
process Z, under the assumption of 1(0) = I = i initially infective hosts with
i = 1. We note that because we are focusing in Figure 5 on the length of an
outbreak, rather than observing a fixed time interval [0,¢], it does not make
sense here to consider a number of sub-intervals m, and thus we plot results in
Figure 5 just as a function of the time step 7. We also note that the inequality
E[T|I(0) = i] < T7E[T|Iy = i] can be intuitively explained as follows: in some
sample paths, the continuous-time process Z may enter into state 0, and leave
this state, between two consecutive inspection instants 7, and 7,41, leading
to a non-detection of the end of an outbreak for the time-discretized version
Z. The plots in Figure 5 suggest that, for fixed infection rates 3 and 3’, the
scaled average TE[T|Iy = i] converges to the true expectation E[T|I(0) =
i] with decreasing values of the time step 7, complementing the statement
(ii) of Lemma 2. This allows us to conclude that, in terms of the expected
length of an outbreak, the time-discretized process Z becomes a more suitable
approximation of the continuous-time BD process Z with increasing values of
the number m of inspection times, in such a way that better approximations
are derived with decreasing values of the exogenous infection rate 8’. On the
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contrary, the convergence rate of T7E[T'|I = i] towards the expected length
E[T|I(0) = 4] of an outbreak in the SIS-model is not affected significantly
by the internal infection rate 3, for a fixed rate §’. This is to be expected,
since the probability of missing a visit to state 0 (i.e., missing the end of the
outbreak) should mainly depend on the rate A\g for the process leaving this
state, which depends on parameter 3’ but not on /3. Note that an analogue
to the behavior of the ratio p; as a function of 8’ is not necessarily observed
in terms of the Hellinger distance for extreme values; for example, numerical
results not reported here show that smaller values of 8’ do not lead necessarily
to small values of the Hellinger distance between P%*(¢') and P/**(m) if m
is small or moderate (e.g. m < 50 in Figure 4).

Some of the behaviors observed in Figures 4-5 and discussed above are
directly related to the idea of missing events when looking at the discretized
version Z. For example, for a fixed time interval [0,#] and when focusing on
a visit to state 0 (i.e., the end of an outbreak), one can define the conditional
probability 4;(t') that the end of the outbreak is not observed by the finite
sequence Z™ (i.e., I, # 0 for steps n € {0, 1, ...,m}), provided that the end of
an outbreak in the SIS-model occurs before time ¢’ (i.e., I(u) = 0 for some u <
') and 1(0) = Iy = i withi € {1,2, ..., N}. We note that the end of an outbreak
in process Z (respectively, process Z) occurring before time ' (respectively, step
m) can be readily identified with the event {T{%} (') = 0} (respectively, {I_r{,?} =
0}) in an auxiliary process {I{%}(¢) : t > 0} (respectively, {IZEO} :n € No})
which is described as the original process with Ag = 0; i.e., state 0 in process
T (respectively, Z) becomes an absorbing state in process {I{°}(t) : ¢t > 0}
(respectively, {f,{lo} :n € Ng}). Thus, the probability §;(¢') of missing the end
of an outbreak can be written as

5i(t') = P (11 (¢) = 0[1H0) =) = P (I =0 | 1{” =),

for integers i € {1,2,..., N}, and

N
P10y =0[1(0) =i) = >3 el 1.8) (1 e M0,

)

Il
—
—

Il
—

k
P (T = 0|1 = i) =1 en(i+1) (P*(1)" Ln,

where eigenvalues {z(1,N) : [ € {1,2,...,N}} of matrix S(1,N) and coeffi-
cients {cg,)f(l,N) :1e€{1,2,..,N}}, for integers k € {1,2, ..., N}, are specified
in Theorem 1, and the one-step transition probability sub-matrix P*(7) is
described in Lemma 2.

The behavior of the probability ¢;(¢') is shown in Figure 6 for time length
t" = 10.0. It is seen that ¢;(¢') increases with increasing values of ', where
smaller values of 3’ are linked to shorter outbreaks in our examples. On the
other hand, and by noting that the expected recovery time of the initially
infective host is equal to one, the value 8’ = 10.0 leads to a major outbreak
in our examples, and shows how a large integer m is necessary for the finite
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Fig. 6 Conditional probability &;(t') of missing the end of an outbreak in process Z during
the time interval [0,¢'] with ¢ = 10.0, provided that I(0) = Iy = i with i = 1, versus
parameters (m, 3), for values 8’ € {1.0,5.0,10.0}, N = 20, v~! = 1.0 and time step T
verifying 7 = m~1¢'.

sequence Z(™ to record the end of an outbreak. We also note that the in-
creasing behavior of §;(¢') with increasing values of 3’ is to be expected, since
parameter 3’ represents the external infection rate, which is the parameter
allowing the process to escape from state 0. Thus, large values of 5’ can lead
to missing the end of the outbreak, if an exogenous infection happens quickly
enough relative to the number of inspection instants. In terms of 6;(¢'), the
influence of the contact rate S on the number m of inspection times is seen
to be less relevant in Figure 6 due to the magnitudes of parameters v and 5,
and the time length ¢'. We can still appreciate that larger values of 3 lead to
slightly larger probabilities of missing the end of the outbreak. This is likely
because once the process has escaped state 0 due to rate 3’, the chances of the
process going back to 0 before the next inspection instant (and so that the end
of the outbreak would be captured by the discrete-time process f(m)) depend
on the parameter 3, with larger values of 8 moving the process towards state
2 rather than 0.

6 Conclusions

We have studied analytically and numerically two discrete-time versions of the
continuous-time BD process Z recording the number I(¢) of infective hosts at
time ¢ in the stochastic SIS epidemic model. The first version corresponds to
the discrete-time BD process Z = {I,, : n € Ny} of Allen and Burgin (2000)
(see also the paper by Chalub and Souza (2014)), which is defined in Eq. (3)
by approximating the transition probabilities P(I(t + 7) = j|I(t) = i) at time
steps t = n7T with n € Ny, for a sufficiently small value 7 > 0 and states
je{i—1,i,i+1} with 4,5 € {0,1,..., N}. We have revisited the discrete-time
BD process Z of Allen and Burgin (2000) by showing here that processes Z and
7 become equivalent as the time index tends to infinity (Lemma 1, statement
(i), and that the length 7" of an outbreak in process Z and its counterpart 77
in process 7T are identical in terms of their expectations (Lemma 1, statement
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(ii)). In deriving the second approximation, the number I(t) of infectives is
collected at a sequence {7, : n € Ny} of inspection times with 7, = nr, for
n € Ny and a predetermined value 7 > 0. Although the resulting process
T = {I, = I(m,) : n € Ny} is a discrete-time Markov chain with strictly
positive one-step transition probabilities P(I(t + 7) = j|I(t) = i) for any
states 4,7 € {0,1,..., N} and times t = 7,,, we have verified that, in a similar
manner to the discrete-time BD process 7 , processes Z and Z are equivalent
to each other with increasing values of the time index (Lemma 2, statement
(i), and that the scaled length 7T of an outbreak in Z satisfies T <y 7T in
the usual stochastic order (Lemma 2, statement (ii)).

It is worthwhile to note that the asymptotic property shown in state-
ment (i) of Lemma 1 for Z and Z is a well-known result (see e.g. Result
3.1 in the paper by van Dijk et al. (2018)) in the more general framework
of a continuous-time Markov chain and its uniformized version, whereas state-
ment (i) of Lemma 2 for Z and Z has easily been deduced from the classical
approach of Kingman (1963) to derive the limiting result for the transition
function P; ;(t) as t — oo by applying known results for discrete-time pro-
cesses to the discrete skeleton of scale 7. This means that similar results could
be readily derived for the continuous-time process arising in other epidemic
models —based on Markov chains— and the corresponding uniformized version
and discrete skeleton of scale 7. There is clearly future work to be done on the
extension of statement (ii) of Lemmas 1 and 2 about the random lengths 7',
7T and 7T of an outbreak in processes Z, 7 and Z to other epidemic models
and, more interestingly, to first-passage times of a continuous-time Markov
chain and its discrete counterparts in the uniformized version and the skeleton
of scale 7.

Our arguments for the total area Z,,, between the sample paths of infectives
in the processes Z(t') and Z("™ in Lemma 3 are inherently linked to the fact
that the time step 7 decreases with increasing values of m, for every fixed
length ' > 0, since 7 = m~!'¢’. A more difficult problem is the study of
whether or not an analogue of Lemma 3 holds for ¢’ = oo, since other different
conditions on the variation of 7 as a function of m should be required. In
analyzing the limit of Z,, as m — oo, the problem for ¢ = co does not seem
to be immediate and, to the best of our knowledge, has not been previously
addressed in the more general setting of a continuous-time Markov chain and
its discrete skeleton of scale 7, which makes it an interesting open problem.

In an attempt to compare the dynamics of process Z evolving over a time
interval [0,#] and those of its discrete-time versions Z and Z, we have first
studied extreme values in the continuous-time BD process Z(t') = {I(t) : t €
[0,#']} (Section 4.1), and the finite discrete-time sequences Zm) = {fn in €
{0,1,...,m}} and Z0™ = {I,, : n € {0,1,...,m}} (Section 4.2) for an arbi-
trary integer m € N and the time step 7 = m~!'#/. Then, we have used the
Hellinger distance (Section 4.3) between the resulting extreme value distribu-
tions to obtain global error control when, for a fixed time interval of length
t', the continuous-time BD process Z(t') is summarized in terms of either the
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discrete-time model Z(™ of Allen and Burgin (2000) or the time-discretized
version Z("™). Observe that, as a consequence of Eq. (11), the approach de-
scribed in Section 4 for Z(™) and Z(™) applies to other finite discrete-time
sequences, provided they can be formulated as a discrete-time Markov chain,
and it complements the limit result for the total area between the sample
paths of infectives in the processes Z(t') and Z("™ (Section 3), as m tends to
infinity.

A particularly appealing feature of our approach in Section 4.1 is related
to the analytical treatment of the exponential of certain matrices S(y,y’), for
integers 0 < y < ¢’ < N, using techniques of Cayley-Hamilton type, which is
inspired from the solution of Krinik and Mortensen (2007) for transient proba-
bilities of finite continuous-time BD process with or without catastrophes. The
solution in Theorems 1-2 is given in terms of the eigenvalues of S(y,y’) and a
related system of linear equations, regardless of the time length ¢'; see the paper
by Moler and Van Loan (2003) for a review of ways to compute the exponen-
tial of a matrix, including splitting methods (Gémez-Corral and Lépez-Garcia
2013). In our approach, the nature of the time-dependent solution contrasts
however with the simplicity to derive extreme values during a regenerative
cycle, such as an outbreak in epidemic models of SIS type (Economou et al.
2015) and multi-type epidemic models (Amador et al. 2019; Gémez-Corral and
Lépez-Garcfa 2018), an extinction cycle in two-species competition processes
(G6émez-Corral and Lépez-Garcia 2012), and maximum clonal sizes for a naive
T cell clonotype (Artalejo et al. 2017).

In terms of computational times, there is no clear relationship between the
process Z and its discrete-time versions Z and Z. In this sense, we remark
here that, in a similar manner to Theorems 1 and 2, the solution in Eq. (11)
can be reduced to the computation of the eigenvalues and eigenvectors of
P(r;y,y') and P(7;y,y'), respectively, by using the method of cigenvalues;
see e.g. Kulkarni (1995, Section 2.4.2). A similar remark can be made for
P(T < t|I(0) = i) and the computation of matrix powers arising in P(rT <
t|Iy = i) and P(rT < t|I, = i), for any time ¢. Therefore, the advantages and
disadvantages that the continuous-time BD process Z could have —compared
to either the discrete-time BD process Z of Allen and Burgin (2000) or the
discrete-time Markov chain Z— should be more related to the ease of collecting
data from one or other model.

In presenting the numerical experiments in Section 5, our intention has
been to emphasize the fact that the simplifying assumption yielding Z —
based on restricting jumps in Z to neighboring states— on the one hand, and
to describe the disease using the Markov chain model Z —by inspecting the
continuous-time BD process Z— on the other hand, are two distinct issues and
a comparative study, while being recommended, is somewhat ignored in early
presentations of discrete-time epidemic models in the literature. For this rea-
son, we have illustrated how the dynamics of the continuous-time BD process
Z(t') can be similar to (or different from) those of the discrete-time sequences
Z and Z™, and how these similarities (or differences) can depend on the
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selection of the underlying time step 7 and other model rates. To do this, the
focus has been on the Hellinger distance between Q;(t') and Q;(m), and be-
tween Q;(t') and Q;(m), and their marginal probability laws. A particularly
striking behaviour observed in our numerical exploration, and when focusing
on the discrete-time BD process Z("™)| is that the dynamics of this process can
accurately mimic those of the continuous-time BD process Z(¢') when focus-
ing on some particular summary statistics (e.g. extreme values in Figure 4),
even when the discretization step 7 is relatively large, as long as it leads to a
well-defined process Z(™ according to Eq. (2). It should be pointed out that a
similar approach for the random lengths 7', 7T and 7T of an outbreak in pro-
cesses T, T and 7, respectively, cannot be addressed in terms of the Hellinger
distance between the probability laws of T" and 71", and between the probabil-
ity laws of T and 77, since T is a continuous random variable, and 77" and 7T
are discrete. We stress here that it is necessary that the probability measures
Px and Py of two random variables X and Y are absolutely continuous with
respect to a third probability measure for the Hellinger distance between Px
and Py to be defined.

We have developed our arguments on the assumption of birth rates A; > 0,
for i € {0,...,N — 1}, and death rates p; > 0, for i € {1,...,N}, in the
continuous-time BD process Z, and not making use of the model parameters
(i.e., rates 3, B8’ and v that determine rates A; and p; as a function of the state
variable) in an explicit way. Therefore, analytical expressions in Sections 2-4
are valid for any continuous-time BD process 7 —with strictly positive birth
and death rates— and the uniformized version Z and the discrete skeleton Z of
scale 7. Although the standard SIS-model, which is related to the limiting case
B =0, leads to the birth rate Ag = 0, it can also be treated analytically by
using the approach of Sections 2-4 with obvious modifications. More concretely,
the continuous-time BD process Z, and the discrete-time processes Z and Z in
the case 8/ = 0 are defined on a reducible state space with the absorbing state
0 and the class of transient states {1,...,N}. This implies that, in a similar
manner to statement (i) of Lemmas 1-2, it is found that

Jim P(I(t) = §11(0) = i) = Tim P (T, = jllo = i)
= nh—{goP(I” = jllp = z) , je€{0,...,N},
with limy_,o P(I(t) = j|I(0) = i) = do,;, irrespectively of the initial num-
ber i € {0,..., N} of infective hosts. By the same argument as Section 2.1, it
is also seen that the random lengths T, 7T and 7T of an outbreak in pro-
cesses T, Z and I, respectively, for ' = 0 are phase-type random variables
satisfying statement (ii) of Lemmas 1-2; the only precaution that one should
take is that sub-matrices Q*, P*(7) and P*(7) should be computed with
\i = N71Bi(N — i), instead of \; = N~1(Bi + 8')(N — i). Extreme values
in the case 8’ = 0 may also be analyzed by repeating almost verbatim the
argument of Sections 4.1-4.2. Nevertheless, we remark here that, although the
argument is based newly on the use of auxiliary absorbing processes and the
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Cayley-Hamilton approach, the resulting expressions for Q;(t'), éz(m) and
Q;(m) —and the marginal probability laws P (¢'), ﬁm‘”(m) and P (m),
as well as P (t'), ﬁ{”in(m) and P (m)- cannot be obtained directly from
the analytical expressions in Theorems 1-2 by taking 8’ = 0.
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Appendix A: Proof of Lemma 1

Statement (i) of Lemma 1 is derived by noting that the row vectors p = (limy—o0 P(I(t) =
jlI(0) =14) :j € {0,1,...,N}) and 7 = (limp—oo P(In = j|Io = 1) : j € {0,1,...,N}) are
the unique solution, up to normalization, of the balance equations for the continuous-time
BD process Z and the discrete-time BD process Z, which are given by pQ = 071\} 11 and
T = %f’(f), respectively, where 0, denotes the column null vector of order a. The details
can be found, for example, in Result 3.1 of (van Dijk et al. 2018).

In proving the equality TE[T|T() = i] = E[T|I(0) = 1] in statement (ii) of Lemma 1,
we notice that T is a discrete phase-type random variable of order N and representation
(en (i), P*(7)). Then, the equality TE[T|Io = i] = E[T|I(0) = 4] is derived from the general-
purpose expression E[T|Iy = i] = en(i)(Iy — P*(r))" 11y for the expected value of a
discrete phase-type random variable, where 1, denotes the column unit vector of order a,
and the fact that Iy —P*(7) = —7Q*. In a similar manner, the inequality Var (7T |Io = i) >
Var(T|1(0) = i) is derived by noting that E[(vT)2|Io = i] = E[T2|I(0) = i] + 3rE[T|I(0) =
i]. This completes the proof. [

Appendix B: Proof of Lemma 2

The proof of statement (i) of Lemma 2 is based on the fact that Z is the discrete skeleton
of scale 7 of Z and mostly repeats the arguments in Section 3 of (Kingman 1963). To be
concrete, we first recall that the continuous-time BD process Z is irreducible and positive
recurrent, whence the limit of P(I(¢) = j|I(0) = 1) as ¢ — oo exists and does not depend on 1.
In a similar manner, we have that, for any value 7 > 0, the resulting time-discretized process
T is irreducible, aperiodic and positive recurrent so that the limit of P(I, = j|lo = i) as
n — oo exists and does not depend on ¢. Then, statement (i) of Lemma 2 follows immediately
from Theorem 2 of (Kingman 1963) since P(I,, = j|Ip = i) = P(I(n7) = j|I(0) = i).

The random variable T is the first-passage time of process 7 to state 0, which clearly indi-
cates (see e.g. Section 2.5 of (Latouche and Ramaswami 1999)) that we are dealing with a dis-
crete phase-type distribution of order N and representation (ey (i), P*(7)). In order to prove
the stochastic ordering 7" <s; 7T, we observe that the underlying condition P(T >t) <
P(rT > t), for all t € R, reduces to the inequality ey (i)eQ" {1y < eN(i)(lf'*(7'))[7'71’5]11\77
for t > 0, where [z] denotes the integer part of x, since T and 7T are non-negative. To
prove this inequality, we first derive the relation eN(i)eQ*th < eN(i)eQ*[T_lt]TIN, for
t > 0, by noting that eN(i)eQ*ulN records the conditional probability that, starting from
state 4, the process 7 remains in states of {1,..., N} for the time interval [0, u] and values
u € {[r~tt]r, ¢} with [r71¢]T < t. Then, the remainder of the proof follows by observing
that eQ"7 < P*(7). This last relation is found by noting that the (i, j)-th entry of eQ@"7 is
the conditional probability that, starting from state i, the process Z visits state j at time
7 under the taboo of the subset {0}, whereas the (i,5)-th entry of matrix P*(7) is the
conditional probability that Z visits state j at time 7, provided that the intial state is i. [
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Appendix C: Marginal and joint mass functions

The marginal mass functions P (¢') and P2®(t') of Imin(t') and Imax(t'), respectively,
can be obtained from the probabilities

, P (t'50), if y=0,
1= Pmin(yi— 1), if y=1i,
Pre(i) if v =i,
pr(ty') = 4 PO (ty') — PO (ty' — 1), if ¥ € {i+1,i+2,.., N —1},
L— Proer(i; N — 1), if Y =N.

Furthermore, the joint mass function Q;(t') of (Iymin(t'), Imax(t’)) is specified as follows:

(i) Inthecasei € {0, N}, we have qo(t';0,y") = pg***(t';y) and gn (t';y, N) = p*™ (¢'sy/'),
for integers y,y’ € {0,1,..., N}.

(ii) For a number of 7 € {1,2,..., N — 1} initially infective hosts, it is seen that ¢;(t';i,y’) =
Qi(t'5i,1) if v =i, and Qi(t;4,vy') — Q:i(t'54,y — 1) if ¢/ € {i + 1,i+2,...,N}; and
G(5y.y) = Qi(t5y,1) — Qi(U'5y + 1,4) if ¢/ =4, and Qi(t'59,9") — Qi(U5y + L,y') —
Qi(t;y. vy —1)—Qi(t;y+1,y —1)ify’ € {i+1,i+2,..., N}, for integers y € {0, 1, ...,i—
1}.

_ The joint mass function of (Imin(m), Imaxz(m)) and the marginal mass functions of
Imin(m) and Imaz(m) can be also evaluated from the above expressions by using proba-
bilities Q;(m;y,y’), P (m;y) and P™*(m;y’) instead of Q;(t';y.y"), P™"(l';y) and
Pmaz(¢/;y"), respectively; in a similar manner, the replacement by Q;(m;y,y'), P (m;y)

and ISZ."“”C (m;y’) yields the probability laws of (fmin(m), Tmaz (m)), Lmsin(m) and Trmax (m).
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