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Modelling future safe and just operating spaces in regional
social-ecological systems
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H I G H L I G H T S

• The first future safe and just operating
spaces of a real social-ecological system

• Systems modelling explores resilience
to driver interactions, feedbacks and
management.

• Resilient causal pathways are traced
back from pre-defined safe and just fu-
tures.

• Decommonisation extends Chilika's re-
silience to fishery intensification path-
ways.

• Decision-makers should target the “core
space” of the safest driver interactions.
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Shaping social-ecological systems towards sustainable, desirable and equitable futures is often hampered by
complex human-natural feedbacks, emergence and nonlinearities. Consequently, the future of systems vulnera-
ble to collapse is uncertain under plausible trajectories of environmental change, socioeconomic development
and decision-making. We develop a modelling approach that incorporates driver interactions and feedbacks to
operationalise future “safe and just operating spaces” for sustainable development. Monte Carlo simulations of
fish catch from India's Chilika lagoon are compared to conditions that are ecologically and socioeconomically de-
sirable as per today's norms. Akin to a satellite-navigation system, the model identifies multidimensional path-
ways giving at least a 75% chance of achieving the desirable future, whilst simultaneously diverting the system
away from undesirable pathways. Critically for regional governance, the driver limits and trade-offs associated
with regulating the resource are realised.Morewidely, this approach represents an adaptable framework that ex-
plores the resilience of social-ecological interactions and feedbacks underpinning regional sustainable
development.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The challenges facing Earth's contemporary social-ecological sys-
tems (SESs) call for integrated, holistic and dynamic assessments of sus-
tainability (van der Leeuw et al., 2011). However, predicting the future

of SESs is associated with spatiotemporally complex processes like
human population growth, climate change and natural resource use.
Consequently, achieving aspirational futures such as theUnited Nation's
Sustainable Development Goals and the Convention on Biological
Diversity's “Aichi targets” is complicated by interplay between short-
term policies, medium-term socioeconomic demands, long-term envi-
ronmental trends and multiscale uncertainty about the future.

Empirical datasets have traditionally uncovered the complexities of
real SESs, such as historical legacies, interdependencies and nonlinearities
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(Dearing et al., 2015). Yet, there is growing recognition that decision-
makers benefit from complementing empirical data with modelled as-
sessments that capture the complex processes driving social-ecological
functions (Letcher et al., 2013; Schlüter et al., 2012). Ultimately, social-
ecological models aim to test hypotheses about past causes of envi-
ronmental degradation and provide virtual platforms to test strate-
gies for management without the need for potentially harmful in
situ experiments.

The non-analogous challenges facing SESs in the 21st century de-
mand modelling techniques that move beyond statistical-based fore-
casts, optimisation and cost-benefit analysis, to process-based models
for persistence, adaptability and resilience (Letcher et al., 2013;
Verburg et al., 2016). For instance, unprecedented rates of regional in-
terconnectivity are undermining resilience to cross-scale processes,
such as “roving bandits” that sequentially exploit marine fish stocks
(Berkes et al., 2006), and the effects of climate change on hydrological
baselines and extremes (Milly et al., 2008). Moreover, the strengths of
reinforcing and balancing feedback structures are known to evolve as
systems adapt to stresses (Liu et al., 2007). Rather than assuming unidi-
rectional relationships, as common amongst integrated assessment
models used to estimate the socioeconomic impacts of climate change
(Weyant, 2017), it is critical to capture feedbacks driving SESs towards
abrupt ecological changes. Feedback sensitivity may be tested by prob-
abilistic simulations that stress the system over a spectrum of future
scenarios, with their iterative nature helping to improve model perfor-
mance by repeatedly comparing outputs to new observations (Dietze
et al., 2018). In turn, rather than narrowly forecasting themost likely fu-
ture trajectory, normative scenarios can identify broad pathways lead-
ing to desirable futures whilst avoiding system limits (Bai et al., 2016).
Although established in theory, the practical application of these con-
cepts to real SESs is limited.

The conceptual framework of this research aims to bring together
and advance three research areas in SESs science. First, with regards to
operationalising desirable futures (Carpenter et al., 2015a), the plane-
tary boundaries concept represents a complex systems framework de-
scribing a “safe operating space” (SOS) of nine Earth system limits
which once transgressedweakens the chances of persisting stable Holo-
cene environmental conditions (Rockström et al., 2009).Whilst there is
debate over the global threshold values, interdependencies and implica-
tions for biodiversity (Brook et al., 2013; Montoya et al., 2018), the heu-
ristic has been downscaled to identify coupled boundaries of regional
biophysical limits and foundations of social wellbeing (Dearing et al.,
2014; Raworth, 2012). To date, these “safe and just operating spaces”
(SJOS) have been empirically defined in China (Dearing et al., 2014)
and South Africa (Cole et al., 2017), showing how socioeconomic devel-
opment can force ecosystem services (e.g. air quality, soil stability, bio-
diversity) beyond environmental thresholds and envelopes of historical
variability. Therefore, this work aims to build on the empirical studies
by converting the SJOS concept into a forward-looking tool that iden-
tifies driver-based SJOSs for regional social-ecological systems, defined
by: (i) the future dynamics, interactions and limits of drivers underpin-
ning regional social-ecological functions, (ii) the effects of non-
stationary driver interactions, feedbacks and trade-offs, and (iii) the in-
ternal leverage points available to regional governors to shape system
resilience.

Second, this study aims to build on previous attempts to model safe
spaces of experimental (Carpenter et al., 2015b) and real systems
(Hossain et al., 2017). In particular, the model of rice produce in
Bangladesh (Hossain et al., 2017) is solely dependent on user-defined
damage functions and statistical driver-response relationships that
might breakdown under nonstationary environmental conditions.
Here, a model of a real SES is built with a systems-based approach
using empirical observations, qualitative records and insights from
stakeholder interviews to capture the dynamics of the key stocks,
flows and feedbacks (Graphical abstract, panel 1). Once the model's
skill is verified against historical data, the model is simulated forward

under a spectrum of socioeconomic and biophysical scenarios to under-
stand the likelihood of achieving safe and just futures from today
(Graphical abstract, panel 2). Outcome trajectories are then traced
back to their causal driver pathways to understand the resilience of
the system to cross-scale processes, feedbacks and management op-
tions (Graphical abstract, panel 3).

In doing so, the third contribution of this research is building on the
systemsmodels that test resilience against a single temporally dynamic
driver (Bueno and Basurto, 2009; Moxnes, 2000), and/or assume that
the natural environment remains static whilst socioeconomic drivers
vary over time (BenDor et al., 2009; Martins et al., 2015). Identifying
SJOSs of multiple interacting drivers works towards overcoming three
barriers resisting the use of SJOSs in regional decision-making, namely
(a) the need for systems to transgress safe spaces before sustainable
limits can be empirically observed, (b) the identification of a “core
SJOS” of the least riskiest pathways of the most influential drivers, and
(c) the development of a modelling approach that delivers realistic
and robust governance options with respects to system complexities
and uncertainties (Anderies et al., 2004).

On top of exploring the issues surrounding the future persistence of
India's Chilika lagoon (i.e. the fourth aim of this paper), the system acts
as the vehicle to develop and test this modelling framework. Section 2.1
introduces the study site, Section 2.2 details the parameterisation of the
systemsmodel, before Sections 2.3, 2.4 and 2.5 describe the external fu-
ture scenarios, internal governance scenarios and definitions of safe and
just futures, respectively. Section 3.1 simulates the future fish catches
and their causal driver trajectories (Section 3.2), before identifying
driver-based SJOSs that represent interacting signposts to maintain
SESs inside sustainable limits (Section 3.3).

2. Material and methods

2.1. The Chilika lagoon fishery system

The Chilika lagoon is Asia's largest brackish water ecosystem, cover-
ing 1000 km2 of India's Bay of Bengal coastline (Fig. 1). The fishery was
valued at US$25-million/year in 2015, supporting 35,000 fishers and
200,000 livelihoods in the preparation, marketing and distribution of
fish (Kumar and Pattnaik, 2012). Fish catch quadrupled between the
1930s and the late-1980s, but reversed from an average of 7200
tonnes/year during the 1980s to 3100 tonnes/year during the 1990s.
Since 2005, catches have averaged 12,000 tonnes/year following the
opening of a new tidal outlet in 2000 between the lagoon and the Bay
of Bengal.

The history of multidecadal growth, collapse and recovery reflects
Chilika's dynamic biophysical, socioeconomic and institutional settings.
Chilika receives freshwater inputs from both the Lower Mahanadi
catchment (LMC) and the Western Catchments (WC) on the lagoon's
western flank (Kumar and Pattnaik, 2012) (Fig. 1), split 75:25 in favour
of the LMC. Brackish ecosystem conditions are primarily maintained by
the transgression of marine waters via the principal tidal outlet at
Satapada. The location of the tidal outlet is dynamic, driven by the depo-
sition of terrestrial sediment and northwards littoral drift along the Bay
of Bengal (Chandramohan et al., 1993). In turn, it is estimated that 70%
of the fish stock annually migrate to (anadromous species) or from (ca-
tadromous species) the lagoon via Satapada to complete reproduction
cycles (Kumar et al., 2011). The 1990s fishery collapse is blamed on
the unchecked northward drift and sedimentation of the now defunct
“Magarmukh” outlet, whereby the reduced tidal range constrained
fish migration, freshened water salinity to ~4 parts per thousand (ppt)
and promoted the growth of freshwater vegetation which blocked fish-
ing grounds (Kumar et al., 2011).

Concurrently, the active fisher population has increased from 7000
in the 1940s to 35,000 at present, split 60:40 between traditional and
non-traditional communities (Kumar and Pattnaik, 2012). Non-
traditional fishers introduced outboard motors in the early-1980s
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(Mishra and Griffin, 2010), with motorboats now representing ~40% of
the 5600 crafts (Mohanty et al., 2016). Compared with traditional
wind-assisted boats, motorboats enable daily commutes to fishing
grounds further from landing centres. Regarding system management,
resource access was moderated by cooperatives allocating fishing
grounds to fishing villages throughout most of the 20th century
(Adduci, 2009). The formation of the Chilika Development Authority
in 1992 started an era of ecological monitoring; however, Chilika's for-
mal institutional structure remains monocentric and hierarchical
(Mishra and Griffin, 2010), with the CDA embeddedwithin Odisha's Di-
rectorate of Fisheries andDirectorate of Environment.Moreover, Chilika
is a common-pool resource,meaning the exclusion of potentialfishers is
difficult and the actions of user can potentially affect the welfare of
others (Nayak and Berkes, 2011). Therefore, this status has historically
limited the introduction of new fishing regulations on top of pre-
existing state-level regulations outlawing the use of ‘zero nets’. Conse-
quently, the extent to which the system is resilient after opening the
new tidal outlet in 2000 is unknown, supporting the need for a model-
ling study that explores the resilience of the system both in its current
configuration and under alternative governance approaches. In other
words, to what extent can decommonisation build resilience against
the individual and driver combinations, thus expanding the driver-
based SJOSs?

Therefore, modelling the Chilika lagoon has real-world, systems and
practical rationale. First, efforts to model the system's persistence and
guide its future governance are supported by its legacy of resource col-
lapse and future uncertainties, including the magnitude and rate of cli-
mate changes; the extent to which biophysical changes will affect
socioeconomic outcomes; and, the management approaches building
resilience against potential social-ecological changes. Second, Chilika's
SES presents challenges from a systems perspective, including the con-
trast between awell-defined physical boundary (i.e. the lagoon's banks)
and various external processes (e.g. freshwater inputs and fish price);
the emergent effects of different processes with different timescales

(e.g. frequency of fishing trips); and, the interactions between numer-
ous social-ecological feedbacks (Section 2.2). Third, Chilika has a rich
history of observational records, including annual fish catch records
since the 1920s (Iwasaki and Shaw, 2009). This level of data availability
provides diverse insights into system dynamics, including patterns of
drivers and outcomes over time to inform model parameterisation
and evaluation.

2.2. The social-ecological model

A social-ecological model was built in the modelling software
STELLA v10.1 (ISEES, 2015) to address the regional sustainability chal-
lenges and operationalise driver-based SJOSs. Systems modelling suits
systems of stocks, flows and feedbacks, whereby the links between var-
iables can be expressed as ordinary differential equations (Appendix
A) (Ford, 2010). Systemsmodels are not usually regarded as forecasting
or optimisation tools; rather, they investigate the combined effects of
system drivers, feedbacks and policy levers (Chapman and Darby,
2016; Ford, 2010). STELLA provides an icon-based interface to design
system diagrams, write equations describing the flows of stuff around
a system (i.e. water and fish) and run simulations. Model outputs
were recorded using STELLA's ‘table-pad’ function, before being
exported and stored as comma-separated values (CSV) for graphing
and analysis in the statistical software R (2008).

Themodelling framework stresses themodel under an array of plau-
sible external (Section 2.3) and governance scenarios (Section 2.4) to
distinguish between the internal pathways and feedbacks leading to
the SJOS, and those leading to undesirable social-ecological futures
characterised by declined catches, degraded fish stocks and livelihood
losses (Section 2.5). The model's specifications were based around this
central aim. As detailed below, the key environmental and socioeco-
nomic drivers of Chilika's fishery system were identified from regional
literature and monitoring studies, plus qualitative insights from seven
key-informant and twelve stakeholder interviews during a field visit

Fig. 1. The location of the Chilika lagoon within India (boxed inset), and its location relative to major urban areas in Odisha (main).
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to Odisha from February to April 2016. From this conceptual model, the
2060 simulation horizon aims to provide the system with enough time
to collapse whilst capturing the effects of processes with different tem-
poral scales (Dearing et al., 2012). Themodel's monthly resolution then
aims to balance the computational requirements of the model (e.g.
number of iterations per simulation) with the need to capture the tem-
poral scales of the processes potentially collapsing the system, such as
the seasonal ecosystems variations from monsoonal freshwater inputs.
The rationale behind the model's system-wide spatial specification re-
flects: (a) the lack of spatially disaggregated data on Chilika's fish stocks,
human populations and fishing stresses, (b) the lack of a holistic sys-
tems model that combines emergent stresses across Chilika, and
(c) the trade-off between the number of model variables and the
model's computational efficiency.

The rest of Section 2.2 provides an overview of the materials and
methods used to parameterise and evaluate the seven key drivers of
fish catch (Fig. 2), although the reader is directed to Appendices A, B
and Cooper (2018) for the full numerical values and evaluation
techniques.

2.2.1. Environmental drivers

Based on the dual-stock model of Bueno and Basurto (2009), a rein-
forcing feedback connects mature and juvenile stocks, whereby the
number of new juvenile fish per month is a function of: (i) the mature
population in the previous month; (ii) fish fecundity, reproductive life
length, life expectancy and immaturity duration parameters, all altered
fromdefault to reflect Chilika's resource size (Appendix A1.3), and (iii) a
density-dependent survival rate (Ricker, 1975), equalling the ratio be-
tween the fish population and the ecological carrying capacity, which
in turn defines themaximum fish population supportable by the lagoon
(CIFRI – unpublished).

The three biophysical stresses (outlet sedimentation, fish survival
and aquatic vegetation coverage) are all influenced by Chilika's fresh-
water and sediment flows, which are generated by rainfall across the
LMC andWC. Adapted from Ghashghaei et al. (2013), parameterisation
of the LMC's rainfall-runoff relationship uses monthly discharge data
from the Tikarapara gauging station (Fig. 1), as recorded by the Indian
Central Water Commission from Jan 1973-Dec 1982. Corresponding
monthly rainfalls from the districts of Angul, Baudh, Sambalpur and

Sonepur (LMC), and Khordha and Puri (WC) were acquired from the
IndianMeteorological Department. In turn, runoff evaporation is a func-
tion of monthly near-surface air temperature (Linacre, 1977). Monthly
LMC sediment load is derived from a sediment-rating curve from obser-
vations upstream of Cuttack (Mishra and Jena, 2015). This relationship
is then downscaled to reflect the 30% contributions of the WC (Kumar
and Pattnaik, 2012). Sediment exits Chilika's sediment stock at 0.13 ×
106 tonnes/year (Kumar and Pattnaik, 2012), with monthly removal
proportional to freshwater delivery (Appendix A1.6).

Ecohydrological conditions are modelled using graphical functions,
which hypothesis driver-response relationships in the absence of tem-
porally coherent data (i.e. monthly freshwater inputs and seasonal sa-
linity records). Following the guidelines of Sterman (2000), such as
the need for known reference points and extremes (i.e. salinity ≥ 0
ppt), graphical functions relate monthly freshwater inputs to lagoon-
wide salinity and dissolved oxygen, the effects of outlet sedimentation
on salinity and the consumption of oxygen by aquatic
vegetation (Appendix A1.5). As a well-mixed shallow lake, a linear
model (r2=0.89, p b 0.05, df= 38) relates water and air temperatures,
derived from monitoring records of the Chilika Development Authority
(CDA) from September 2006 to December 2009.

Monthly salinity, dissolved oxygen and temperature then influence
the default juvenile survival rate via known reference points (Appendix
A1.5.4), such as the knowledge that 20% of the fish stock, as freshwater
species, would be resilient to freshwater conditions (Kumar and
Pattnaik, 2012). In turn, approximately 70% of the fish stock annually
migrate to and from the lagoon to complete reproduction cycles
(Kumar et al., 2011),meaning thefish population and its rate of renewal
are coupled with the lagoon's sedimentation dynamics. It is assumed
that the outmigration of the migratory stock is split across the year,
with the number of in-migrants inversely proportional to Chilika's sed-
iment stock in any given month. Lastly, aquatic vegetation is modelled
as a stock to capture the positive feedback with lagoon sedimentation:
fluvial sediments provide nutrients for macrophyte growth; the trap-
ping effect ofmacrophyte coverage then promotes the deposition of flu-
vial sediment (Jaikumar et al., 2011; Panda et al., 2015). The monthly
fishing effort of each fleet is thenmodulated by the vegetation cover-
age, simulating the ecological refuge provided by blocked fishing
grounds.

Fig. 2. Conceptual diagram mapping the seven key modelled drivers of Chilika's immature and mature fish stocks. Driver key: italicised – external; bold – governance. Socioeconomic
feedbacks: blue – total fisher population growth; orange – motorboat uptake by relatively wealthy traditional fishers; pink – days fished as a function of perceived stock density; red –

increased juvenile catches to compensate for lost days fished. DO – dissolved oxygen. ‘+’ positive driver-output polarity; ‘−’ inverse driver-output polarity.
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2.2.2. Socioeconomic drivers

Four socioeconomic feedbacks drive fisher population growth, mo-
torboat usage, the days fished each month and the catch of juvenile
fish. The traditional and non-traditional fisher populations are driven
by externally generated birth and death rates until the carrying capaci-
ties of eachfleet (equal to the economic value of catchdividedby the av-
erage livelihood cost) are exceeded (Fig. 2, blue). The carrying capacities
represent simple limits on the number of financially supportable liveli-
hoods, based around the average income of each fleets and the mini-
mum cost to fish. Surplus fishers exit the system once a carrying
capacity is exceeded, akin to the livelihood losses of the 1990s collapse
(Nayak and Berkes, 2010).

The motorisation of traditional boats by relatively affluent fishers
drives the intensity of fishing efforts (Fig. 2, orange). The number of tra-
ditionalfishers upgrading tomotorboats eachmonth equals the propor-
tion of traditionalfisherswith incomegreater than the cost ofmotorised
fishing (Appendix A1.4.4). Income is assumed normally distributed, as
relatively few traditional fishers can currently afford motors (Kumar
and Pattnaik, 2012). Upgrades only occur if profitability falls, reflecting
the desire expressed by the fishers interviewed to persist traditional
practices when economically viable.

Traditional fishers operate in weekly cycles due to longer travel
times to catch grounds, effectively fishing for five days before returning
to landing centres (Kumar and Pattnaik, 2012). In contrast, it is assumed
that motorboats operate daily, only limited by religious festivals (~17/
year). The key-informant interviews suggested that fishers adapt fish-
ing efforts to perceived stock abundance (Fig. 2, red). Therefore, type-
II functional responses (Holling, 1959) link the days fished each
month to the underlying fish density (Appendix A1.4.1). Finally, fishers
stated that the acceptance of juvenile catch increases during stock de-
clines to compensate for lost fishing days. Therefore, the model diverts
the difference between the fishing effort at maximum days fished and
the fishing effort at time t to the withdrawal of juveniles (Fig. 2, pink).

2.2.3. Model evaluation

Amodel based on best available knowledge is not necessarily a use-
ful decision-making tool (Sterman, 2000). Cooper (2018) conducted
nine tests to assess whether the model captures reality for the right
quantitative and qualitative reasons. As themost informative technique,
designed to assess the contribution of each driver to outcomedynamics,
the process of generalised sensitivity analysis (Spear and Hornberger,
1980) is described here.

Based around two stages, generalised sensitivity analysis first simu-
lates the historical reference period whilst randomly perturbing key
driving variables (j, n = 25) by error ranges (εj) between ±50% of
their parameterised values (Appendix A). The non-parametric
Kolmogorov-Smirnov test (Massey, 1951) then identifies variables
with significant differences between the subsets of εj reproducing the
reference mode and the subsets of εj failing to reproduce the reference
mode. It is assumed that the critical determinants of model behaviour
will display the greatest disparity between behaviour-giving and
behaviour-missing subsets of εj. Overall, 6 variables are found to criti-
cally determine whether the model reproduces reality (Table 1), corre-
sponding to total resource availability, the dampening of fishing efforts
by aquatic vegetation, fishing boat numbers, freshwater and sediment
deliveries, and outlet sedimentation. These variables align with the nar-
rative that the 1990s collapse was driven by the effects of outlet sedi-
mentation on fish migration and habitat quality.

Second, the critical drivers were perturbed by ±5%, ±10%, ±20%
and ±30% to bind acceptable error ranges. As expected, the degree of
similarity between model outputs and observations weakens as errors
widen (Fig. 3). Positively, the ±5% error range reliably reproduces the
periods of catch stability, collapse and recovery, as well as the observed
salinity (Fig. 3A) and aquatic vegetation (Fig. 3B) trendswhich influence
fish renewal and catch, respectively. Therefore, the most influential

model drivers match our qualitative understanding of the system,
whilst also reproducing reality within permissible error ranges.

2.3. Plausible external trajectories

The future resilience of the Chilika lagoon is assessed under a spec-
trum of plausible driver evolutions and interactions. Per governance
scheme (Section 2.4), the model generates 1000 exploratory scenarios
for monthly precipitation and near-surface air temperatures across the
LMC and WC, average fish and diesel price, and the human population
growth rate ‘r’ (Appendix C). Thefirst 444months (1973–2009) use his-
torical data when available (Appendix A), before projecting until 2060
under the exploratory scenarios sampled from uniform probability
distributions between minimum and maximum plausible changes
(Table 2). The scenarios are ‘seeded’ in STELLA to ensure that the
governance scenarios are stressed under the same array of external
trajectories.

Rather than downscaling global climate models, future monthly
rainfalls and temperatures (c) at time t are generated internally:

MonthlyClimateConditionsc;t ¼ ECDFValuec;t þ FinalClimateChangec

�
n

N
ð1Þ

ECDFValue is randomly sampled from cumulative distribution func-
tions ofmonthly rainfall and temperature from1973 to 2009 (Appendix
A1.6), as recorded by the Indian Meteorological Department, and
FinalClimateChange is randomly sampled between zero, and the magni-
tudes of rainfall and temperature change predicted by RCP8.5 (IPCC,
2013) for Odisha by 2065 (Table 2). To generate smoothly increasing
trajectories, n is the number of months since January 2010 and N is
the total number ofmonths between January 2010 and December 2060.

The export of Chilika's catch to domestic and international markets
has decoupled fish price from resource availability (Nayak and Berkes,
2014). Diesel price is also assumed to be determined by international
markets rather than regional supply and demand. The model produces
linear fish and diesel price trajectories (m) by adding the randomly
sampled scenario gradient (Table 2) to the value of the previousmonth:

Pricem;t ¼ Pricem;t−1 þ
PriceIncreasem

12
ð2Þ

Simulating a random trajectory each year would investigate the ef-
fects of volatile markets; however, the number of Monte Carlo trajecto-
ries per plausible future would increase from 5 to 255, with deleterious
impacts on computational efficiency.

Table 1

Statistical outputs of the Kolmogorov-Smirnov test used to identify which drivers deter-
mine whether the model recreates Chilika's historical reference mode of growth, collapse
and recovery (Fig. 3). Equations can be found in Appendix A. DO – dissolved oxygen;
LMC – Lower Mahanadi catchment; Rc – rainfall-runoff coefficient; WC – Western
catchments.

Significance
level

p-Value
range

Driver name (K-S score)

1 p b 0.01 Sediment effect on aquatic vegetation growth (0.255);
ecological carrying capacity (0.252)

2 0.01 ≤ p
≤ 0.1

Fishers per boat (0.238); LMC sediment rate (0.238); WC
Rc (0.191); outlet closure (0.179)

3 p N 0.1 DO effect on aquatic vegetation growth (0.167); salinity
effect on aquatic vegetation growth (0.164); fish natural
deaths (0.163); catch capacities (0.161); WC abstraction
coefficient (0.150); fecundity (0.145); WC evaporation
coefficient (0.145); LMC evaporation coefficient (0.125);
DO (0.119); mature fish per KG (0.113); LMC abstraction
coefficient (0.110); littoral sediment (0.110); salinity
(0.110); LMC Rc (0.106); days fished (0.102); WC
sediment rate (0.102); traditional upgrade (0.097);
reproductive life (0.077)
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Lastly, the trajectories of human birth and death rates are assumed
free from governance influence. To uncover the boundaries of Chilika's
RSJOS, population growth is designed to force the fisher population to-
wards unsustainable levels (Table 2).

2.4. Internal governance scenarios

Themodel provides a virtual laboratory to explore how lagoonman-
agement can affect the driver-based SJOSs. Options prior to the fieldtrip
included ‘doing nothing’; business-as-usual outlet maintenance; re-
strictions on fishing area and/or time; licence limits; motorboat bans;
quotas and alternative livelihoods. Discussions with Chilika's experts
identified infeasible policies given Chilika's socio-political context,
such as the implementation of quotas and fishing licences, which were
thought to limit the livelihoods of existing fishers and the entry of
new fishers. Therefore, the three approaches outlined below were
deemed to best balance the ecological integrity of the lagoon with the
quality of fishery livelihoods (the model outputs help assess the extent
to which this rationale is true):

– Governance scenario 1. Business-as-usual outlet maintenance (OM):
the CDA plans to cut a new tidal outlet every ten years to renew fish
migration and lagoon salinity (Kumar and Pattnaik, 2012). As per
the opening in 2000, we assume that future openings will return sed-
imentation to pre-1980s levels. This approach is preferable from the
standpoint of minimising interventions, as it does not limit the num-
ber of fishers or the spatiotemporal scales of their activities.

– Governance scenario 2. OM plus a year-round tidal outlet fishing ban
(OB) starting in2015but takinguntil 2025 to fullymaterialise as coop-
eration gradually increases. From 2025, mature fishing effort is re-
duced by 7% relative to OM, equalling the area of the tidal outlet
relative to the lagoon.

– Governance scenario 3. OB plus alternative livelihoods (OL): fishers
also exit the system at an exploratory rate of 1/1000 fishers/month
to limit fishing efforts and reduce livelihood dependency on the la-
goon (note: themodel does not simulate the dynamics of the alterna-
tive livelihoods once the fishers have left the system). This scenario
starts in 2015 because Odisha's state government and Integrated
Coastal Zone Management Project currently generate alternative
livelihoods.

Fig. 3. Graphical outputs from the second stage of generalised sensitivity analysis where the six critically sensitive variables (Table 1) are simulated under four error ranges; 500
simulations are run per error range. Observations (black) are plotted against model generated time-series of four social-ecological processes: (A) salinity; (B) aquatic vegetation
coverage; (C) catch (99% confidence intervals in black) (D) catch per unit boat (99% confidence intervals in black).

Table 2

The plausible trajectory ranges of the five external drivers used to generate the internal dynamics into future. See Appendix C for graphical forms. Current rainfall and temperature values
derive from the IPCC (2013) baseline period 1986–2005; current socioeconomic values are as of 2015.

System driver Current value (units) Plausible change ranges

Min Max Rationale

Annual average rainfall 1259.3 (mm/year) 0 +20% by 2065 RCP8.5 (IPCC, 2013)
Annual average temperature 25.3 (°C) 0 +3 °C by 2065 RCP8.5 (IPCC, 2013)
Fish price 133.6 (INR/kg) 0 30 INR/kg/year Maximum observed interannual increase (Appendix A1.1)
Diesel price 55.9 (INR/l) 0 7 INR/l/year Maximum observed interannual increase (Appendix A1.1)
Birth rate minus death rate (Malthusian's ‘r’) 14.0 (dimensionless) 0 2.20%/year Trajectory to double annual population by 2060
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An alternative approach would be to model adaptive governance
that implements remediation when necessary, such as opening the
outlet or implementing bans once catch is undesirable. However,
static scenarios are modelled here because decision-makers are
prioritising wise-use and maintenance from today (Kumar et al.,
2011). Moreover, modelling a limited number of governance sce-
narios helps to improve the tractability of the driver-outcome rela-
tionships, whilst establishing foundations to implement adaptive
policies in future.

2.5. Defining safe and just futures

Defining desirable system functions is critical to gauging future sus-
tainability (Levin et al., 2015). To this end, Dearing et al. (2014) identify
SJOS limits from linear and nonlinear trends, thresholds and early-
warning signals observed in empirical records. We use linear SJOS defi-
nitions here for three reasons. First, fisheries have multiple outcomes
which should remain safe and just, including catch, resource availability,
and broader components of socioeconomic wellbeing. However, the
CDA currently judge the sustainability of fishing efforts against maxi-
mum sustainable yield (MSY), conceptualised as the maximum catch
that is indefinitely extractable from a fish stock without degrading its
long-term renewal (Maunder, 2008). Second, linear thresholds are
time-invariant, meaning falling beneath standards such as calorific in-
take or per capita income is undesirable at any time. Third, the linear
boundaries provide an initial proof of concept to judge the efficacy of
this modelling framework before including more complex nonlinear
thresholds.

We identify three operating spaces based on the evolution of
fish catch relative to contemporary baselines and environmental
limits:

– Safe and just: from 2050 to 2060, annual catch averages between
11,400 tonnes/year and 13,900 tonnes/year, equalling the lower
and upper estimates of MSY (Kumar and Pattnaik, 2012). MSY
balances stakeholder desires for sustainable livelihood generation,
income and food security, with the maintenance of ecosystem func-
tions.

– Dangerous: at any time, the total fisher population exceeds the
total livelihood carrying capacity (Appendix A1.4.1) – signifying
ecologically unsafe resource degradation and potential livelihood
losses.

– Cautionary: annual catch from 2050 to 2060 averages (i) above
MSY; or (ii) belowMSY, although in the case of the latter, the eco-
nomic benefits of catch still cover the average livelihood costs of
fishing.

3. Results

3.1. Future catch trajectories

Business-as-usual (OM) governance displays least resistance to ex-
ternal and internal drivers (Fig. 4a), with only 12% of futures achieving
safe and just catch, and 36% triggering livelihood losses by 2060. In con-
trast, dangerous futures are absent when common-pool rights are re-
stricted under OL governance (Fig. 4c). Therefore, it is hypothesised
that a proportion of OM's dangerous futures are caused by unsustain-
able fishing efforts, which become sustainable with the introduction of
fishing regulations and alternative livelihoods.

Governance also influences the timing and abruptness of catch de-
clines (Fig. 4). Dangerous futures generally occur earlier under
OM, with the year of fisher overcapacity ranging from 2050 to 2060
(mean=2056), rather than 2052–2060 (mean=2058) under OB. How-
ever, collapsing from 8000 tonnes/year to 2000 tonnes/year takes an av-
erage of 12.0 and10.5 years underOMandOB, respectively. This tentative

inverse relationship between the onset and rate of catch decline ques-
tions whether decision-makers would prefer earlier-but-gradual or
later-but-abrupt system degradation. Furthermore, whilst the system
historically appears robust to sporadic catches above MSY, model out-
puts suggest that the persistence of Chilika's resource stock by mid-
century is undermined by near-term future overexploitation. Danger-
ous futures average 14,300 tonnes/year from 2020 to 2029 under both
OM and OB governance, whilst safe futures average 13,800 tonnes/
year and 13,400 tonnes/year, respectively.

3.2. Causal driver pathways

The driver time-series represent multidimensional pathways
coupled within system space (Fig. 5), meaning that reaching desirable
futures requires the safe and just pathways of all drivers to be followed
simultaneously. In general, the future safety of Chilika is found to be in-
versely proportional to the gradients of fish price, total fishers, motor-
boats and juvenile catch; for example, the SJOS of OM governance
(Fig. 5, left column) corresponds to b6000 motorboats by 2050, whilst
the dangerous space starts around 7300 motorboats. Contrastingly,
safe and just futures may be achieved across the entire ranges of annual
rainfall and vegetation coverage trajectories.

Fish catch safety is also dependent on driver interrelationships, such
as the simultaneous need for motorboats to represent b60% of total
boats (OM), and the proportion of juvenile catch in total catch to remain
below 3%. In turn, increased fishery regulation builds system resilience
against socioeconomic drivers and their relationships, exemplified by
the 33% increase in the permissible number of motorboats under OL
governance relative to OM. Moreover, OL governance builds robustness
against the nonlinearfisher population andmotorboat trends that cause
cautionary and dangerous pathways under OM and OB governance
schemes. Finally, the distinctness of each space indicates the confidence
with which following a given trajectory should result in the intended
outcome. For example, a fish price of N700 Rs/kg by 2050 under OM cor-
responds to a fuzzy mixture of cautionary and dangerous futures; con-
trastingly, keeping the number of motorboats below 5000 is distinctly
safe.

Despite identifying multidimensional pathways to follow between
now and mid-century, the fuzzy nature of the time-series hampers the
precise identification of SJOS limits, because (i) different trajectories of
the same driver may reach the same outcome state (equifinality), and
(ii) near identical driver trajectories may produce different outcome
states (multifinality), depending on the simultaneous trajectories of
other drivers.

3.3. Driver-based (core) safe and just operating spaces

To address the limitations outlined above, this section defines
driver-based SJOS using conditional probability plots charting the pro-
portion of different futures (i.e. safe and just, cautionary and dangerous)
over the trajectory ranges. Each conditional probability plot has two di-
mensions (Fig. 6): (i) the value of each driver in 2050 (from Fig. 5), and
(ii) the proportion of different futures from2050 to 2060 over the driver
range. The plots can be divided into those that have SJOSs (%SJOS N 0)
across the entire range of driver trajectories, and those with particular
trajectories associated with no SJOSs (%SJOS = 0). Consistent with the
driver time-series, the socioeconomic drivers (Fig. 6, rows 2–6) under
OM and OB governance all have SJOS limits, whilst the two biophysical
drivers (Fig. 6, rows 1 and 7) have unrestricted SJOS trajectories across
OM, OB and OL.

The most influential drivers are marked by the steepest changes in
safety and the greatest degree of separation between safe and danger-
ous trajectories (as measured by the Kolmogorov-Smirnov statistic, k).
For example, under OM, the proportion of safe futures falls from 75%
to 0% as the number of motorboats by 2050 increases from 5000 to
7000. In turn, the proportion of dangerous futures increases from 0%
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to 100%, as the number of motorboats range from 7000 to ~10,500 by
2050. Beneficially however, OM's safe and dangerous spaces are
intersected by a distinct cautionary window between 6000 and 7000
motorboats, representing a space to remediate trajectories that have
exceeded the SJOS. Less influential drivers display weaker separation
between safe and dangerous spaces; for example, the safety of a given
fisher population by 2050 partly depends on the concurrent number
of motorboats. For instance, 60,000 fishers by 2050 must occur with
b5500 motorboats (b55% of total boats) to give OM any chance of the
SJOS.

The concept of a “core SJOS”was introduced by Steffen et al. (2015),
who argue that climate change and biosphere integrity are the two
planetary boundaries with independent capacities to drive state
changes in the Earth system. We operationalise core SJOSs for regional
SESs by cutting through the complexity of interacting driver ranges
and probabilities, identifying the safestmultidimensional pathways giv-
ing ≥75% chances of safety (Fig. 6, green fills). The most influential
driverswith individual safety proportions ≥75% represent the core foun-
dations for decision-makers to target, with the remaining dimensions
defined by the corresponding pathways of all other drivers.

The proportion of simulations per governance scenario reaching the
core SJOS gives a relative measure of the core space size. The cores of
OM, OB and OL measure 0.9%, 2.8% and 71.2% respectively, again illus-
trating that the most regulatory governance approach gives the best
chance of remaining inside the SJOS. In general, the core SJOSs depend
on narrow ranges of motorboats and juvenile catches; for instance,
under OM and OB, motorboat numbers must fall within 4200–4600
and 4800–5000 by 2050, respectively. Fish price can reach 280 INR/kg
by 2050 under OM before the chances of reaching a safe future fall be-
neath 75%. Remaining within this limit requires a shallowing of the
fish price trend from 2009 to 2014, as the core space will be exceeded
by 2025 if the 15 INR/year growth rate persists.

Promisingly, a continuation of the observed fisher population trend
from 2009 to 2014 will fall inside the core by 2050 (~52,000 fishers);
however, the core space of motorboats may still be surpassed if fewer
fishers occupy each boat, perhaps if socioeconomic wellbeing improve-
ments reduce the need to split fishing costs sixways. The insensitivity of
the core SJOSs to rainfall change and aquatic vegetation coverage
further emphasises the weakness of biophysical leverage points for
decision-makers.

Fig. 4. Annual catch time-series and the proportions of plausible futures produced by the spectrums of driver interactions under the three governance scenarios (N= 1000 per scenario):
‘OM’ – outlet maintenance only; ‘OB’ – OM plus outlet fishing ban; ‘OL’ – OB plus alternative livelihoods. Normative futures: ‘Safe and just’ – green, ‘cautionary’ – yellow, ‘dangerous’ –
purple and ‘historical’ – black. Colour-blind friendly scheme based on R package ‘viridis’ (Garnier, 2018).
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4. Discussion

By projecting plausible external trajectories under alternative gover-
nance approaches, this modelling framework has illuminated desirable
cross-scale processes, social-ecological feedbacks and internal driver
limits for a system with a legacy of resource collapse. This section dis-
cusses the implications of applying thismodelling framework elsewhere,

the ways in which we evaluate the future of SESs and the wise-use of
Asia's largest brackish water ecosystem.

4.1. Adaptability of the modelling framework

It is important thatmodelling studies develop concepts andmethod-
ologies that are transferable to other systems (Verburg et al., 2016).

Fig. 5. Time-series depicting the safe and just (green), cautionary (yellow) and dangerous (purple) driver pathways of each plausible governance scenario. All model variables could be
mapped in theory, but due to space limitations, only the critical socioeconomic drivers are shown here alongside two historically important biophysical drivers. Observed data (black)
covers 1973–2009; time-series gaps represent missing data. JCR – juvenile catch rate - the proportion of juvenile catch in total catch.
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Fig. 6. Conditional probability plots relating themagnitude of fishery drivers by 2050 to the proportion of safe and just (green), cautionary (yellow) and dangerous (purple) futures. Driver
magnitudes associatedwith safe and just futures (%=100)denote the safest plausible trajectories,whilst a rangewithout safe and just futures (%=0)means that a driver has exceeded its
driver-based SJOS. The core SJOS (green fill) shows trajectories that if simultaneously achieved give a ≥75% chance of sustaining MSY until 2060. k – Kolmogorov-Smirnov statistic.
Significance levels: ** - p b 0.01; * - 0.01 ≤ p ≤ 0.1.
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Identifying future driver-based SJOSs elsewhere is dependent on three
conditions. First, the central governance philosophy must be to persist
social-ecological functions by achieving desirable levels of socioeco-
nomic wellbeing without transgressing ecological thresholds. The
framework becomes less useful if governors are only interested in fore-
casting themost likely short-term outcome. Therefore, decision-makers
and modellers must be able to envision ‘good Anthropocene’ goalposts
to shape the future system towards (Bai et al., 2016; Berkhout, 2014).
Critically, achieving the safe and just futures as defined here does not
rule out steering towards different trajectories in future (Hughes et al.,
2017, Sterk et al., 2017), at least relative to the rigidity of ecological
degradation and livelihood losses from fishery collapse. Whilst MSY
presents a well-established target for fisheries, the framework is trans-
ferable to using optimum yield by considering regional socioeconomic
and environmental constraints (Levin, 2014). However, such normative
targets are not always readily definable, such as for ecosystem services
like soil stability and water quality (Dearing et al., 2014).

Second, the choice of normative, nonlinear and/or hysteretic bound-
aries (cf. Dearing et al., 2014) is important for the framework's transfer-
ability. Defining Chilika's safe and just future through a historical
envelope of variability would be inappropriate here given that catch col-
lapsed as recently as the1990s.Moreover, the dependent population and
level of resource use have both increased by ~40% since the late-1980s,
questioning the justness of limiting future catches to pre-collapse levels.
Where normative conditions and historical windows cannot be defined,
statistical breakpoints may detect future outcome shifts caused by
abrupt feedback-driven or structural changes (Rodionov and Overland,
2005). However, nonlinearities are not always unsafe, as an abrupt
catchdecline in the futuremight reflect a livelihood shift away from fish-
ing, rather than resource scarcity.

Third, coupling Monte Carlo simulations with normative targets
evaluates the extent to which driving processes can diverge from
today but still achieve desirable outcomes (Folke, 2006). In turn, the
non-binary thresholds caused by driver multifinality and equifinality
build on the conventionally hard and static SJOSs (see Cole et al.,
2014; Hossain et al., 2017), aligning the SJOS concept withmultidimen-
sional notions of resilience. The range of safe and just trajectories repre-
sent resilience latitude, denoting the range of driver trajectories that
lead to desirable outcomes (Walker et al., 2004). In turn, resistance is
the rate at which safety changes over the driver range (Section 3.3). Fu-
ture work may seek to formalise how system precariousness changes
over time based on the model defined SJOSs, for instance, the product
of the driver's distance from its SJOS edge (i.e. where %SJOS = 0) and
its current SJOS conditional probability.

Alternatively, using conventional predictive scenarios to define safe
and just boundaries may have critically overlooked the holistic range
of trajectories and interactions which drive the system into undesirable
outcomes, particularly for feedback-dependent systems like fisheries
and coral reefs where slightly altered driver magnitudes can trigger
catastrophic impacts (Scheffer et al., 2001). However, models that are
data and/or processor intensive (e.g. integrated assessment models)
may not have the computation resources to generate plausible trajec-
tory funnels.

4.2. Wider implications for modelling SESs

Assessing the quality of Anthropocene futures is a challenge for
decision-makers given the complexity of social-ecological systems
(Brugnach et al., 2008; Maier et al., 2016). Consequently, this proof-of-
concept study develops an approach similar to a satellite navigation sys-
tem used to guide vehicle drivers towards their desired destination. A
safe and just future defined by experts, decision-makers and/or stake-
holders represents the destination, whilst the exploratory scenarios
are akin to the sat-nav assessing possible routes. Following the core
safe and just pathways is analogous to a driverwanting to avoid hazard-
ous routes. Furthermore, decision-makers are forced to think outside

conventional reference frames; for Chilika, this means leaving behind
the perception that solely rejuvenating resource mobility is sufficient
to ensure long-term persistence. This quality is akin to a sat-nav discov-
ering a new routewhichwould have remained otherwise undiscovered.

In turn, it is imperative to evaluate whether the SJOSs identified by
this modelling framework are accurate. Given the parametric uncer-
tainties of the datasets (Cooper, 2018) and the potential for excluded
drivers like extreme tropical storms to become important in future,
the SJOSs designed here are framed as coupled social-ecological path-
ways of today's key drivers and feedbacks. To this end, replicating the
complex historical pattern of catch stability, collapse and recovery
within ±5% parametric errors (Section 2.2.3) builds confidence in both
the structure of the model and the accuracy of the parameterisation
datasets and equations.

Using systems modelling sets a rigid system structure for each simu-
lation,which is unable to capture the spatial distribution of fishing efforts
and human agency. Alternative integrated approaches, either in the form
of ready-made ‘integrated ecological-economic fishery models’ (Nielsen
et al., 2017) or more modular approaches, such as coupling specialist
fishery, water quality and/or supply chain models (Avadí et al., 2014;
Townsend, 2013) may overcome this rigidity. However, integrated ap-
proaches have a number of inherent disadvantages for identifying
SJOSs. Increased realism trades-off against increased data demands,
model runtimes and reduced user-friendliness. ‘Integronsters’ may
emerge from the coupling of discrete modules, meaning models become
overly complex to parameterise, evaluate and communicate to decision-
makers (Voinov and Shugart, 2013). Consequently, integrated ap-
proaches usedwithout inputs fromsystemmodels, such as future scenar-
ios of special interest, are less suited to horizon-scanning undesirable
interactions, feedbacks and nonlinearities across the spectrum of plausi-
ble system evolutions.

4.3. The future of the Chilika lagoon

Through the operationalisation of driver-based SJOSs, this study
finds that the Chilika lagoon faces a choice between (i) business-as-
usual governance and its associated risks of fishery collapse, and (ii)
implementing transformational governance to widen permissible
driver limits. Although it is possible to rank additional outcomes beyond
fish catch like fisher incomes and catch-per-unit-effort, this strategy
might risk offsettingunderperformance (e.g. cautionary futures) against
overperformance (e.g. short-term fishery profits) (Holden et al., 2014).
Therefore, this study prioritises the achievement of a resilient system
outcome over individual and potentially conflicting interests. However,
in reality, all 3000 plausible futures are associated with trade-offs that
question the extent towhich the SJOSs are truly just. For instance,main-
taining the system's common-pool status in the short-term may make
limiting the number of motorboats unavoidable in the long-term, with
the unintended consequence of isolating fishers requiring motorboats
to reach distant grounds.

Moreover, the unregulated fishery is found to be vulnerable to the
‘success to the successful’ archetype (Senge, 1990), as steep fish price
growth enables ~75% of the traditional population to upgrade tomotor-
boats by 2025. The resulting loss of self-organizing social constraints al-
lows the booming non-traditional population to dominate resource
extraction (Ostrom, 1990), causing the marginalisation of traditional
livelihoods and the spiky fisher population total. Therefore, preserving
common-pool rights within the lagoon may require the introduction
of non-fishery benefits to counteract the uptake of more exploitative
practices.

Transformational governance (OL) also leads to similar trade-offs: for
example, should alternative livelihoods target non-traditional communi-
ties despite their contributions tofishery value, or themore populous tra-
ditional communities which have fished Chilika for centuries? Increased
regulation may make Chilika an “organic machine” (White, 1995), with
catches becoming increasingly reliant on human interventions. Arguably
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this process is already underway, with the finding that periodic outlet
opening decouples the future state of the fishery from biophysical driver
trajectories.

Ultimately, Chilika's SJOSs exist within subsets of hydroclimatic, bio-
physical, socioeconomic and governance pathways. Whilst we stop
short of recommending specific pathways, regional decision-makers
may use these concepts and horizon-scans to inform desired system
identities and track the progress of drivers and outcomes towards desir-
able futures.

5. Conclusion

This study presents a novel framework to guide SESs towards safe
and just futures by modelling internal driver dynamics under a spec-
trum of external trajectories, before classifying outcome time-series rel-
ative to today's social-ecological norms. In doing so, we find that whilst
business-as-usual governance decouples the system from external bio-
physical changes, the Chilika lagoon fishery system in India is vulnera-
ble to near-term nonlinear increases in the number of motorboats and
plausible trajectories of multi-decadal fisher population growth. There-
fore, the framework converts the retrospective ‘safe and just operating
spaces’ concept into a forward-looking tool for proactive system gover-
nance, by identifying interacting signposts to manage drivers within
sustainable limits and assess the resilience of alternative governance
approaches.

The core SJOSs combine driver interactions to give decision-makers
human-natural pathways with at least 75% chance of sustaining MSY
by 2060. The core SJOSs guide decision-makers in the face of social-
ecological complexity and uncertainty, exploring the association be-
tween driver trajectories and the possibility of safe and just futures.
Consequently, we call for greater appreciation of the range of plausible
pathways and driver interactions a system may take when modelling
the future, helping to depict landscapes of outcomes, limits and gover-
nance options for regionally sustainable SESs.
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