
This is a repository copy of RiskStructures:A Design Algebra for Risk-Aware Machines.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/172137/

Version: Published Version

Article:

Gleirscher, Mario orcid.org/0000-0002-9445-6863, Calinescu, Radu orcid.org/0000-0002-
2678-9260 and Woodcock, Jim orcid.org/0000-0001-7955-2702 (2021) RiskStructures:A
Design Algebra for Risk-Aware Machines. Formal Aspects of Computing. pp. 763-802.
ISSN 1433-299X

https://doi.org/10.1007/s00165-021-00545-4

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

https://doi.org/10.1007/s00165-021-00545-4
The Author(s) © 2021
Formal Aspects of Computing

Formal Aspects
of Computing

RiskStructuresRiskStructuresRiskStructures: A design algebra for

risk-aware machines

Mario Gleirscher ,1,2 Radu Calinescu ,2,3 and Jim Woodcock

Computer Science Department, University of York, York, UK

Abstract. Machines, such as mobile robots and delivery drones, incorporate controllers responsible for a task
while handling risk (e.g. anticipating and mitigating hazards; preventing and alleviating accidents). We refer to
machines with this capability as risk-aware machines. Risk awareness includes robustness and resilience and com-
plicates monitoring (i.e., introspection, sensing, prediction), decision making, and control. From an engineering
perspective, risk awareness adds a range of dependability requirements to system assurance. Such assurance
mandates a correct-by-construction approach to controller design, based on mathematical theory. We introduce
RiskStructures, an algebraic framework for risk modelling intended to support the design of safety controllers
for risk-aware machines. Using the concept of a risk factor as a modelling primitive, this framework provides
facilities to construct, examine, and assure these controllers. We prove desirable algebraic properties of these facil-
ities, and demonstrate their applicability by using them to specify key aspects of safety controllers for risk-aware
automated driving and collaborative robots.

Keywords: Correct construction; Formal development; Risk awareness; Run-time mitigation; Safety controllers;
Robots and autonomous systems

1. Introduction

Humans identify and predict dangers and take actions to avoid or recover from dangerous situations. Likewise,
autonomous machines can be expected to handle risk (e.g. hazardous environmental situations, erroneous con-
trol inputs, machine faults) on their own. Such machines should continuously judge risk in a situation, using
introspection, estimating the current situation, and predicting future situations. While some risks can be avoided,
for most of them only the likelihood of their occurrence or the likelihood and severity of their consequences can
be reduced. This circumstance requires a careful analysis of risk causes and consequences in terms of risk fac-
tors, and the investigation of temporal and causal relationships between these. Risk can be handled by various
measures [HM99, AASB+06], ranging from passive measures to active control schemes. The former include, for
example, flexible surfaces or soft materials used on robot arms and predetermined breaking points in machine
chassis [HASH09]. The latter include low-level continuous control mechanisms [SC88], high-leveldiscrete-event

Correspondence to: Mario Gleirscher, e-mail: mario.gleirscher@york.ac.uk
1Mario Gleirscher was supported in part by the German Research Foundation (DFG) under the Fellowship Grant no. 381212925.
2Work by Radu Calinescu and Mario Gleirscher was partially supported by the Lloyd’s Register Foundation under the Autonomy

Assurance International Programme (AAIP) Grant CSI:Cobot.
3Radu Calinescu was additionally supported by the UKRI Project EP/V026747/1 “Trustworthy Autonomous Systems Node in Re-

silience”.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00165-021-00545-4&domain=pdf
http://orcid.org/0000-0002-9445-6863
http://orcid.org/0000-0002-2678-9260
http://orcid.org/0000-0001-7955-2702

M. Gleirscher et al.

controllers [MGW+18, Gle17], and remote or supervisory control schemes [She03]. Overall, active control schemes
detect violations of safety properties and try to reestablish a safe state.

Objective and hypothesis Decades ago, it was suggested that machine autonomy requires extensive sensor fusion,
qualitative reasoning (e.g. [HM99]), and the internalisation of models of consciousness [HG03]. However, to
this date, domains such as human-robot collaboration and autonomous driving are far from full autonomy in
unrestricted environments, to a good extent because of difficulties in assurance [KW17, AZI+17]. As similar
engineering challenges have been solved through formal design techniques (see, e.g. the survey papers [GM20,
GFW19]), we hypothesise that these difficulties can be reduced by bespoke rigorous design techniques4 beyond what
can be achieved by employing general-purpose formal design methods alone. Such techniques could guide the
correct construction of safety controllers that, inspired by [HM99, HG03], integrate a simple form of consciousness
of risk, hereafter called risk awareness, into a machine.

Contributions Based on this hypothesis, we introduce RiskStructures, an algebraic framework for designing
correct-by-construction safety controllers for risk-aware machines. In line with conventional risk analysis, this
framework uses the notion of a risk factor as a modelling primitive and, going beyond preliminary results from
our previous work [Gle17, Gle18], enhances its formalisation and proves key algebraic properties of a factor-
based design calculus for risk-aware controllers. Our work focuses on qualitative risk modelling, enabling the use
of different approaches to dealing with uncertainty. A risk structure can be used to formally specify acceptance
criteria5 and from these, one can synthesise safety controllers [GC20] and reason about their correctness. The
presented theory is supported by the research tool Yap [Gle20], which interprets risk structures encoded in a
domain-specific language and automates analysis and synthesis steps. To the best of our knowledge, this work
is the first to give an algebraic account of risk modelling while building a bridge to safety controller design for
risk-aware machines, adding design guidance to state-of-the-art dependability and risk assessment techniques,
monitoring approaches, and optimal control models (Sect. 8).

The remainder of this article is structured as follows. After summarising background material and the used
formalism (Sect. 2), Sects. 3 to 7 present our framework, using examples (Sect. 3 and sects. 4.3, 6.2 and 7.4)
and discussing the rationale for its components (Sects. 5.5 and 6.3). Sect. 7.6 summarises RiskStructures as an
approach to model uncertain negative outcomes of a machine’s actions. Based on [BFK13], Table 5 highlights how
low-level uncertainties can be dealt with in RiskStructures. After a comparison to previous research in Sect. 8,
we add concluding remarks in Sect. 9. Proof details are listed in Appendix A.

2. Preliminaries

Beyond the avoidance and removal of development mistakes [ALRL04, Sec. 3.3.2] by rigorous design [GFW19]
and dependability techniques [ALRL04, Sec. 5.3.1], there are immanent operational risks to be dealt with by
bespoke machine features. This section introduces terminology, gives an overview of risk analysis and handling
for robots and autonomous systems, and explains the formalism used in this work.

2.1. Risk analysis, assessment, and handling

Risk is the possibility of undesired outcomes (e.g. loss, injury, damage) of an action (whether nominal, faulty,
or malicious) with uncertain alternative outcomes [KG81].6 Particularly relevant are the actions (e.g. failures,
incidents, accidents) in hazardous states (e.g. faults). Risk can be assessed by the likelihood of a hazard, the
likelihood of exposure of an asset to this hazard, the likelihood of an undesired outcome if this hazard occurs, and
the severity of this outcome [Lev95, Kum07]. As such, it is useful to identify causal relationships between events
and to quantify risk using stochastic models (cf. reliability analysis of repairable systems [Kum07]) .

4That is, techniques dedicated to capturing risk factors.
5For readers familiar with refinement-based development: a risk structure R refined by a process P , after hiding P ’s irrelevant events,

can be used to express risk acceptance in P and verify this criterion of P .
6For the sake of simplicity, we neglect for whom the outcome is undesired and who performs the action. However, such aspects are useful

and can be added.

RiskStructures: A design algebra for risk-aware machines

Knowledge about risk often stems from accidents [SR02]. Methods such as hazard and operability studies
(HazOp), event tree analysis, and layer of protection analysis help engineers to disclose hazardous event chains
and design countermeasures (e.g. interventions) in response to and for the prevention of accidents [Lev95]. Fault
tree analysis (FTA) and failure mode and effects analysis (FMEA) specialise in the identification, assessment,
and reduction of faults or failures. There are many variants and combinations of these techniques, enriched
with intuitive models and visual languages (e.g. AcciMaps [SR02]; STAMP [Lev04] for systemtheoretic process
analysis [Lev12]; UML for HazOp [GMGP10]; CORAS diagrams [LSS11]), tailored for specific stages in the
system life cycle [Eri15], and used to shape assurance arguments [McD94, GC17].

Using FTA, one can produce a fault tree (FT), a versatile causal model of fault propagation in a system, relating
an undesired event eu with a set B of basic events connected by various gates (e.g. AND, OR, NOT). A minimum cut
set (MCS) is a minimal set of events causing eu . Dynamic FTs are an extension modelling the ordering of such
events, leading to minimal cut sequences. Such sequences describe minimal sets of events to occur in a particular
order to activate eu . FTs can be expressed by connecting sets minC S ⊆ 2B in the disjunctive normal form in the
antecedent and with eu in the consequent of the implication (

∨

S∈minC S

∧

eb∈S
eb) ⇒ eu , where minCS denotes

all MCSs for eu , and eb stands for a basic event.
For quantitative analysis, FTA and FMEA have been further formalised using probabilistic models [Kum07,

ORS06], particularly, input/output Markov chains [BCS07] for checking probabilistic temporal properties, or
Markov automata [VJK16] for efficient calculation of failure rates. FTs can be synthesised from failure annota-
tions of stochastic Petri nets [UPM18] or from counterexamples generated by continuous stochastic logic model
checking of continuous time Markov chains [LFL13].

Risk handling. Many operational risks cannot be avoided or mitigated by passive measures (e.g. physical segrega-
tion, safe materials). Mechanical or electronic equipment failures are usually addressed by fault-tolerant, robust,
or diverse designs [Bir17], human errors by ergonomic interfaces, controllers robust to unsafe inputs [Lev12], and
adverse environmental events by bespoke safety functions (e.g. safety modes [AZI+17]). An elegant transition
from formal FTs into the specification of such functions is described in [HRS98].

Run-time verification (RV) checks event traces recorded during operation for violation (safety) or accep-
tance (co-safety) of a property [LS09]. RV can range from simple watchdogs, the checking of constraints on
complex algorithm outputs [BBH+17], to Bayesian prediction to warn about violated health parameters such
as low battery time [IMM18] and violated probability thresholds for rear-end collisions [CLC+19]. Huang et al.
[HEZ+14] show how monitoring-oriented programming (MOP) [MJG+11] allows the checking of safety properties
in message communications of the robot operating system7 (ROS). While these works focus on the synthesis of
property monitors, there are also approaches to the design of property enforcers (e.g. [GPBB08]). Already in the
1980s, Sobek and Chatila [SC88] proposed the interruption of robot plan execution by safety monitors (e.g. for
obstacle detection) responding with corrective actions (e.g. obstacle avoidance) and mitigation monitors resuming
the planner after action success. Simmons [Sim94] speaks of deliberative components for normal situations and
reactive behaviours for exceptional situations. Sorin et al. [SLJS16] describe the generation of safety monitors
for ROS-based autonomous robots using rules with corrective actions.

Risk-aware control offers a versatile approach to property enforcement, for example, to minimise collision
risk of autonomous vehicles (AVs). Althoff et al. [AKWB11] work with a probabilistic variant of inevitable col-
lision states [FA04] to approximate collision probability and cost beyond the planning horizon by Monte Carlo
sampling of trajectories. These metrics allow the ranking of simulated trajectories in navigation decisions. Pereira
et al. [PBHS13] experiment with a grid-based minimal collision risk planner and a risk-aware Markov decision
process (MDP) for navigating an underwater vehicle. Sanger [San14] formalises risk-aware movement by a risk
estimate based on state uncertainty and the cost of control errors, implemented in a neuronal network-based
AV controller. Feyzabadi and Carpin [FC14] propose a risk-aware planning algorithm using constrained MDPs,
illustrated for autonomous indoor navigation. Müller and Sukhatme [MS14] encode collision risk by a Gamma
distribution of the state and uncertain distance to a nearest obstacle. Shalev-Shwartz et al. [SSSS18] investigate
collision-free navigation based on driving rules following the Duty of Care approach from Tort law [Har00]. This
approach assumes proper response of other traffic participants in typical driving scenarios. The vehicle action
space is discretised to simplify the control problem. Inspired by the notion and versatility of FTs, the present
work seeks to identify the commonalities of works in risk-aware control and property enforcement and provide
a unified risk handling framework.

7See https://www.ros.org

https://www.ros.org

M. Gleirscher et al.

2.2. Formalism and notation

Our framework uses the communicating sequential processes (CSP, [Hoa85, Ros10]) approach to algebraic speci-
fication and labelled transition system (LTSs, [BK08]) to reason about its operational semantics. Let � be the set
of all concrete events of a process, called its alphabet. We distinguish two special events: � for the termination
of a process and τ for the invisible event, resulting from hiding observations. We require �, τ �∈ � and define
�� � � ∪ {�}, �τ � � ∪ {τ }, and ��,τ � �� ∪�τ .

Definition 1 (Process) A process is an expression of the form

P ::� a→P | ?x : A→P | P ⊓P | P �P | P ‖
A

P | P ; P | P \A | SK I P | ST O P (1)

with event a ∈ �, shared alphabet A ⊆ �, event prefix (→), prefix choice (?x : →), non-deterministic
choice (⊓), external choice (�), generalised parallel composition (‖), sequential composition (;), hiding (\),
termination (SK I P), and deadlock (ST O P). Let P be the set of all processes.

Each expression P ∈ P corresponds to observable behaviours represented in a trace model. Traces are finite
sequences over �� abstracting from details (e.g. internal states) of P ’s executions. In the trace model, traces (P)
yields the trace semantics of P . For example, traces (ST O P) � {〈〉} and traces (SK I P) � {〈〉, 〈�〉}. initials(P) �
{a | 〈a〉 ∈ traces (P)} denotes the set of all initial events of P . For processes P and Q , we write P ⊑s Q to
say that Q s-refines P (or P is s-refined by Q) and that traces(P) ⊇ traces(Q), with the usual abbreviation
P �s Q ⇐⇒ P ⊑s Q ∧ Q ⊑s P .8 We use the term control state for a process and write ‖ if A � �. Below,
we consider P � Sy ‖ En, with a system Sy interacting with its environment En, or P � En(Sy), with the CSP
expression En using Sy .

Definition 2 (Labelled transition system) A LTS is a tuple T � (S , �T ,→,S0) with a set S of states, a set �T ⊆
2�τ

\ {∅} of abstract events (i.e., sets of concrete events), a relation → ⊆ S × �T × S of state transitions
when engaging in these events, and a set S0 ⊆ S of initial states. Omission of S0 results in an uninitialised LTS
(S , �T ,→), further omission of �T in a directed graph (S ,→) with → ⊆ S × S , called transition system (TS).
Let T be the set of all TSs.

We write s
e
−→ s ′ if (s, e, s ′) ∈ →, s

e
−→ if ∃ s ′ ∈ S : (s, e, s ′) ∈ →, s −→ if ∃ e ∈ �T , s ′ ∈ S : (s, e, s ′) ∈ →, s

e
� if

� ∃ s ′ ∈ S : (s, e, s ′) ∈ →, and s � if � ∃ e ∈ �T , s ′ ∈ S : (s, e, s ′) ∈ →. A � indicates discharged cases in proofs.

3. RiskStructures: overview

In this section, we give an overview of the components of the proposed framework. We describe the abstraction
facilitated by RiskStructures, building a bridge between (probabilistic) process modelling, risk analysis, and
controller design. Moreover, we illustrate the main concepts, terminology, and work steps using an example from
the road vehicle domain, which will be revisited in later sections.

Figure 1 (bottom right) shows an example of a processP (Definition 1) associated with an LTST (Definition 2).
P describes actions of one or several agents (e.g. a machine, an operator) in a physical environment, for example, a
manually driven vehicle with some kind of driving assistance on an urban road.P ’s actions include data processing,
control stimuli via actuators, and the monitoring of process outcomes. In this example, data processing occurs
with nav, where the machine performs calculations for navigation (stored internally and displayed to the driver),
step of the driver interpreting data for a next control action, warn of the vehicle sending information to the driver,
and resume of the vehicle returning from a risk handling procedure. Control stimuli include the action drv, where
the driver performs a default driving manoeuvre, swBr where the vehicle executes a swerve and brake manoeuvre,
and em Br representing an emergency braking action conducted by the vehicle. Monitored outcomes include, for
example, the occurrence (elocd) of the risk factor loss of driving control (locd), a potential accident (elocd) following

elocd , and the performance and success of a mitigation (m locd) of this factor, recognised by the machine, and idling
or no output (τi). Underspecification and uncertainty in P can be described by non-determinism or quantified by
probabilities (λi) on action outcomes. traces(P) denotes possible chains of events and T the reachable states (si).

9

8We use ⊑T for trace refinement and ⊑F D for failures-divergences refinement and refer the inclined reader to [Ros10].
9traces (P) contains finite traces reaching such states such that causes can be represented by well-founded sets.

RiskStructures: A design algebra for risk-aware machines

Fig. 1. Risk structure R partitioning the states of the process P , that is, labelling P ’s states with the phases inactive (0loc , white) and active (loc,
dark gray) of the risk factor locd; P ’s transitions are classified into endangerments (dashed arcs), mitigations (solid arcs), and other transitions
(dotted arcs); incomplete abstractions may contain unclassified states (light-grey)

Risk, as introduced in Sect. 2.1, can then be qualitatively (or quantitatively) characterised inP as the possibility
(probability) of an undesired state (e.g. s4) being finitely reachable from a particular state (e.g. s1) in T . Next,
Fig. 1 shows the abstraction from P into an exemplary risk structure R comprising the single factor locd. This
abstraction allows one to focus on the events relevant from the perspective of this factor, that is, its activation (elocd)

and mitigation (m locd). Accordingly, this abstraction step includes the labelling of regions of P ’s state space with
predicates (e.g. for hazards and, more generally, situations) and the construction of R over the resulting abstract
state space. Moreover, this representation helps one to focus on the structure of risk of a certain application
by using information about factors encoded in predicates (e.g. active, inactive) and real-valued functions (e.g.
[AKWB11, PBHS13]). These predicates and functions can be derived from hazard analysis (Sect. 2.1) and be
used to allow a risk-aware machine to estimate risk levels of reachable states and to plan and execute actions
reaching or avoiding the corresponding states.

For example, the factor locd partitions T ’s state space (cf. nodes in the bottom right of Fig. 1) into re-
gions where locd is inactive (0locd , white), active (locd , dark grey), or where an accident (locd , light-grey) has

happened. To focus on the practical handling of locd in P , outcomes (e.g. elocd , m locd , τi) are paired with their
control actions (e.g. drv, swBr , em Br ; dotted arcs) and merged into sets of transition labels called events (e.g.
{swBr/m locd , . . . }, {swBr/τ2, . . . }). To keep track of mishap states, such as s6, we assign the label locd to states

where undesired consequences after an unmitigated elocd -event will be materialised. Such states might be reached,

for example, after the execution of em Br , drv, and swBr with a collision elocd as the possible outcome. locd

enables risk assessment in terms of likelihood and severity. To design mitigations for locd , we introduce an extra

risk factor (e.g. col) handling elodd in analogy to elocd . This technique will be discussed below. Overall, for locd,

R reduces to just two abstract states (0locd , locd) and two events, the endangerment elocd (dashed arc) and the

mitigation m locd (solid arcs). We assume there to be observational refinement or some simulation relation between
T and R.

Overall, risk awareness amounts to the machine incorporating R in its decisions such that expected risk from
its own actions does not exceed an acceptable level. So, how can we engineer R?

From an engineering perspective, our approach requires neither P nor R to exist in a complete form to
facilitate the aforementioned abstraction or refinement. One can rather think of these two artefacts as being
developed concurrently.

M. Gleirscher et al.

Table 1. A generic situation/action/factor table (a) and per-cell risk analysis checklists (b, c)

Action a1 a2 . . .

Situation Factor f1.1 f1.2 . . . f2.1 f2.2

(a) Generic situation/action/factor table

σ1 Each cell filled with results from a cause/consequence and . . .
σ2 mitigation analysis along the lines of Tables 1b and 1c. . . .

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
. . .

(b) Factor activation analysis (causes/consequences)

Why would fi occur with/during action aj in situation σk ?
What if fi occurs with/during action aj in situation σk ?

1. What is the likelihood of occurrence of fi ?

Quantified by Pr [fi | aj , σk].
2. What is the risk of an accident fi following fi ?

Quantified by the likelihood Pr [fi | fi , aj , σk] and

the severity sev (fi ; fi , aj , σk).

3. Which other factors are related to the activation of fi ?

Qualified by relationships such as fi requires f j , fi causes fk ; and quantified by Pr [fk | fi , aj , σk].

(c) Factor mitigation analysis

How can we mitigate fi during or after action aj in the situation σk ?

4. Which mitigation options m are available to reach f i ?

5. What is the risk of an accident fi following f i ?

Quantified by the likelihood Pr [fi | f i ,m, aj , σk] and

the severity sev (fi ; f i ,m, aj , σk).

6. Which other factors are related to the mitigation of fi ?

Qualified by relationships such as fi prevents f j , fi causes fk ; and quantified by Pr [fk | f i ,m, aj , σk].

For example, one might start with a part of P , then, after risk analysis, continue with a part of R, and in a
second iteration, maybe even after a period of operation, proceed with another part of both P and R. In this
sense, R can be incrementally developed. The notion of a situation will help us to structure such a development. A
situation, σ , is an abstract state that describes a particular context (i.e., a scene or environment), an activity (i.e., a
task, operating mode, a use case, or scenario), and a configuration of hazardous events occurring in P . Engineers
and risk analysts are familiar with tables and graphs, for example, when applying HazOp or FMEA to assess risk
factors of certain machine actions in particular situations. We will, therefore, show in the following how one can
develop R by means of what we call a situation/action/factor table (Table 1a).

One may want to start with an initial set of application-specific situations and actions that the machine under
consideration can perform, together with an initial set of factors, maybe obvious from accident experience and
preliminary hazard analyses. Then, each resulting cell in Table 1a would involve a focused cause/consequence
analysis (e.g. [ORS06]) and risk assessment (Sect. 2.1), for example, using risk graphs [Kum07, p. 53]. Tables
1b and 1c elaborate ideas in [Gle18] for such analyses, including the estimation of the conditional probability
Pr [X | Y] and severity sev (X ; Y) of an event X under the condition Y . We use 0f , f , f , and f to denote the

inactive, active, mitigated, and mishap phases of a factor f, explained in Sect. 4.1. Incrementally, one would add
further situations, actions, and factors to the table. At some point, one can split the table into several smaller
ones. Please, note that such tables are not subject of this work. We presented them merely to hint to the data to
be collected for building R. Moreover, when formalising situations, we will only consider the hazardous events
part. In our future work, we will discuss situations in more detail.

RiskStructures: A design algebra for risk-aware machines

Table 2. Example of a situation/action/factor table for road driving

Action drive (drv) releaseAirbag (r A)

Situ- Factor locd ncol col strA fodrA

ation Descr. loss of control near-collision collision spurious trip fail. on dem.

manual mode 3. Pr [ncol | locd]: h,

requires strA

3. Pr [col | ncol]: h

4. swerve; brake

2. sev (col): m

3. requires ncol

2. sev (shock): m

3. causes locd

–

autonomous mode – 3. Pr [col | ncol]: h

4. swerve; brake

2. sev (col): m

3. requires ncol

2. sev (shock): m –

following vehicle 3. equal to manual/autonomous 2. sev (col): l 3. equal to manual/autonomous

leading vehicle 3. equal to manual/autonomous 2. sev (col): h, 4. rA, 5.

sev (col): m

3. equal to manual/autonomous

oncoming vehicle 3. equal to manual/autonomous 2. sev (col): h, 4. rA, 5.

sev (col): h

3. equal to manual/autonomous

collision (col) – – 2. sev (col): m – 3. equal to *

no airbag (fodrA) 1. Pr [locd]: l

3. eq. to manual

3. eq. to manual * 2. sev (col): h – 3. idempotent

Legend: Numbers indicate the analysis steps applied from the Table 1b and 1c; situation/action/factor parameters for Pr and sev are determined

by the cell (hence omitted); values after the colon are exemplary; probabilities are abstracted to h/m/l for high/medium/low; relationship sources

are determined by the column (hence omitted); *. . . cross-reference to other cell;–irrelevant/not applicable

Extending the Example from Fig. 1 In Fig. 1, we illustrated basic concepts by discussing a single risk fac-
tor (locd). Now, we extend our discussion to a more realistic setting by investigating situations, system actions,
and further risk factors. In Table 2, we consider actions such as releaseAirbag (r A), responsible for mitigating
a collision col, that is, mcol ≡ r A. However, r A itself may be associated with two failure modes: failure on demand
fodrA (i.e., r A not performed when requested) and spurious trip strA (i.e., r A performed when not requested). In
forward reasoning, one can ask: What if fodrA or strA, both influencing or determining the behaviour of r A, are
activated in manual or autonomous driving mode? strA in manual mode would increase the probability of a crash
because of a loss of control locd from shock and distraction. strA in autonomous mode may cause shock injuries
but would unlikely cause a crash. fodrA will be irrelevant in normal situations but in a collision, risk will be
quite similar to the case of no airbag.

Table 2 can store probabilistic relationships, for example, between near-collision ncol and collision col. Proba-
bilities for ncol and col will be highly dynamic and need to be estimated and used for decision making at run-time.
Probabilities for fodrA maybe more stable, known from experiments, and can be used in risk assessment at design-
time. Requirements on the confidence in probability estimates are specific to each factor. Note the variety of
relationships between situations, actions, and factors, for example, in manual mode locd requires strA, fodrA in
collision is similar to col in no airbag, strA in manual mode extends strA in autonomous mode, and the airbag,
subject of risk assessment in the two r A-columns, mitigates col .

Graphs (e.g. FTs) can be used to visualise and elicit the information stored in Table 2 if these tables get more
complex. The tabular representation is, however, integrative, scales, and conveys the scheme recurring across the
cells as well as the relationships between situations, actions, and factors. We will discuss and use some of these
relationships in our framework.

The components of a design algebra for risk-aware machines will be described in the following sections:
risk factors and risk spaces (Sect. 4), mitigation orders (Sect. 5), factor dependencies (Sect. 6), and, finally,
RiskStructures (Sect. 7), illustrated by examples and a discussion of applications.

4. Risk spaces

This section introduces risk factors and risk spaces, frequently abbreviated by “factors” and “spaces”, as the basic
elements of the algebraic framework.

4.1. Risk factors

We first define the notion of a risk factor using a LTS and describe its properties and meaning.

M. Gleirscher et al.

Fig. 2. Basic template of a risk factor f (a) with a description of f’s events (b)

Definition 3 (Risk factor) Let (Phf , �
f ,→f) be an uninitialised LTS according to Definition 2. Extending this

LTS, a risk factor is a tuple f � (Phf , �
f ,→f ,�f , sf) with

• A finite set Phf of phases of f,

• A finite set �f ⊂ 2�τ

\ {∅} specifying significant events for f,

• A labelled transition relation→⊆ Phf ×�f × Phf ,

• A partial order � f �f ⊆ Phf × Phf called phase order of f, and

• A pair sf ∈ R
2
+ with s

(1)
f ≤ s

(2)
f denoting the severity of the least and worst expected impact of f.10

Let F be the set of all risk factors.

We consider factors f with →f according to Fig. 2a with Phf � {0f , f , f } for the phases inactive (0f , typi-
cally, the initial phase), active (f), and mitigated (f), where � f �f is at least11 the reflexive transitive closure of

{(f , 0f), (f , f)}, and with �f � {ef , ef , mf , mf
d , mf

r , of
n , of

m , of
e}.

The interval sf represents the severity (also known as the detriment or negativity) of f’s expected materialised
impact or consequences for any relevant assets if f gets and stays active. Impact can include, for example, damage
of the environment, injury of humans, loss of a valuable, or any combination of these.

Events and factor types. By Definition 3, for any p, p ′ ∈ Phf if (p, e, p ′) ∈ →f then e �� ∅. f is deterministic
if and only if for every phase the events of all outgoing transitions are pairwise disjoint. We require ∀ p ∈
Phf :

(⋃

(p,e,p ′) ∈ p → e
)
\ {τ } � �.12 Figures 2a and 2b indicate the meaning of the events in �f for factor

modelling. The three phase-preserving events of
n , of

e , and of
m complement the endangerment and mitigation

events. Moreover, we distinguish some special types of factors:

• If mf ∪ mf
d � ∅ then we call f final, otherwise reducible.

• For any reducible f with mf �� ∅, if ef ⊂ e f then we call f strongly reducible.

• If mf
d � ∅ then we call f indirectly reducible.

Modelling mishaps. Observing from the example in Sect. 3, the mishap phase f , modelling incidents or accidents

from f , complements the severity information encoded in f.s and enables risk assessment solely based on a
single risk factor. It turns out, however, that f is non-essential for the basic framework we want to discuss in

the following sections. While we keep f for factor-specific risk assessment, to simplify algebraic reasoning about

factors as discussed below, we collapse f into f and ef into of
e . Furthermore, we introduce a final factor f ′ to

model the corresponding mishap. This approach simplifies the basic factor model and allows the conversion of
f ′ into a reducible factor when a mitigation for f ′ is available. For example, as illustrated in Table 2, the factor
col provides accident handling for the factor ncol, whose likelihood of occurrence under the condition of locd

is high. In [Gle18, GC20], however, we have started to work with a refined factor model including f as well

10By usual convention, for an ordered n-tuple t and i ∈ [1..n], we write t (i) to refer to the value of the i-th element of t . Furthermore, if
t has a uniquely named element e, we write t .e to refer to the value of e in t .

11Some applications might give rise to a linear � f �f by adding at most one out of {(0f , f), (f , 0f)}.
12In testing, this is known as input-enabledness [Tre08].

RiskStructures: A design algebra for risk-aware machines

as further phases and events (e.g. for mishap alleviation). In order to preserve the main results presented here,
such extensions require � f �f to have a unique maximal element (discussed in Sect. 5.3) and an adjustment of

constraint definitions in Sect. 6.1. We conclude that Phf and �f comprise a useful minimal set of elements for a
generic risk factor f.

4.2. Risk states, spaces, and space composition

Risk factors give rise to risk states and risk spaces. Let F ⊂ F be a finite factor set (Definition 3) where each
f ∈ F has the form f � (Phf , �

f ,→f ,� f �f , sf).

Definition 4 (Risk state) Assume that risk factors are unique, that is, ∀ f, g ∈ F : f �� g ⇒ Phf ∩ Phg � ∅. Then,
a risk state is a faithful total injection σ : F →

⋃

f∈F Phf , that is, ∀ f ∈ F : σ (f) ∈ Phf .

A risk state abstracts from states of P by focusing on risk-related information in form of state propositions
associated with the factor phases. Such propositions will, however, not be formalised in this work.

Definition 5 (Risk space) For a factor set F , a risk space R(F) is the function space given by

R(F) � {σ ∈ F →
⋃

f∈F

Phf | σ is total ∧ σ is an injection ∧ ∀ f ∈ F : σ (f) ∈ Phf} .

We omit the parameter F from R if it is clear from the context and denote the set of all risk spaces by R.

By Definition 5, R is non-empty and finite if and only if F is non-empty and finite. R defines the set of all states
an arbitrary13 combination of factor phases might give rise to. Note that σ (f) can now be used to refer to the
phase of factor f in a risk state σ .

Definition 6 (Compatibility of risk states) Given F1,F2 ⊂ F , σ ∈ R(F1) and σ ′ ∈ R(F2) are compatible, written

σ ≈ σ ′ ⇐⇒ ∀ f ∈ F1 ∩ F2 : σ (f) � σ ′(f) . (2)

Notice that any two risk states σ ∈ R(F1) and σ ′ ∈ R(F2) are compatible if F1 ∩ F2 � ∅ and, furthermore,
that state equality implies F1 � F2 and, therefore, state compatibility. This compatibility is a prerequisite for risk
space composition as follows.

Definition 7 (Risk space composition) The composition ⊗ : R×R → R of the two risk spaces R(F1) and R(F2)
is defined by

R(F1)⊗ R(F2) � {σ1 ∪ σ2 | σ1 ∈ R(F1) ∧ σ2 ∈ R(F2) ∧ σ1 ≈ σ2}. (3)

Now, we can derive a basic law relating the union of risk factors and the composition of risk spaces. Furthermore,
it will turn out that R is a homomorphism.

Lemma 1 (Exchange of ∪ and ⊗)

R(F1 ∪ F2) � R(F1)⊗ R(F2)

Proof sketch. The proof is by mutual existence and uniqueness: For each σ ∈ R(F1 ∪ F2), (i) there exists a
σ1 ∪ σ2 ∈ R(F1) ⊗ R(F2) and (ii) this pair is unique, and (iii, iv) conversely. Details on the proof can be taken
from Appendix A. �

Lemma 2 (R is homomorphic) R is a homomorphism in the context of (F ,∪) and (R,⊗).

F1,F2 F1 ∪ F2

R(F1),R(F2) R(F1 ∪ F2)

∪

R R

⊗

13Below, we also view R as “the most general (risk) structure” for a specific factor set.

M. Gleirscher et al.

Proof sketch. We first make sure that we deal with semi-groups and then show by algebraic manipulation that⊗
is associative. Details on the proof can be taken from Appendix A. �

Two specific classes of risk states and a basic lemma close this section. R({f}) � {[f �→ 0f], [f �→ f], [f �→ f]}
forms the trivial risk space for f, and R(∅) � ∅ the empty risk space, used in the following equality.

Corollary 1 For finite F ⊂ F , Lemma 1 yields R(∅) to be the zero element of composition with ⊗:

R(∅)⊗ R(F) � R(F) . (⊗-zero)

4.3. Example: risk factors on the road

In the following, we discuss Table 2 more deeply and provide further examples for the event sets in Fig. 2b. Tracing
back through the causal relation from col, we find that collisions require near-collisions to occur beforehand. Based
on that observation, we identify a combination of swerve & brake (swBr) to be a possible mitigation for ncol.
However, the action swBr gives rise to the failure on demand fodbr of the car’s braking action br . This extension
of the analysis in Table 2 results in another dependency, namely, fodbr impedes the mitigation of ncol, technically,
it disables the braking action br .

Tracing forward through the causal relation, we may stop at application-specific factors. Such factors can
be modelled as final, that is, the machine will not mitigate them. This way, final factors define the scope of R.
However, as explained in Sect. 4.1, a design increment of the machine can turn a final into a reducible factor. For
example, designing an airbag into a car makes col reducible. This epistemic limit explains why safety always has
to be considered relative to a known factor set F [Gle14].

Tracing back again from fodbr discloses the failure mode degradation of brake degbr. degbr causally relates to
fodbr like ncol relates to col: degbr will make br ineffectual but not ineffective, if one does not intervene, degbr will
actually cause fodbr. We want degbr to be strongly reducible, based on a mitigation mdegbr that establishes degbr

from which only a strict subset edegbr ⊂ edegbr can occur. In phase degbr , drive by and halt would be a conservative

option for mdegbr to be implemented by a safety controller. These reasoning steps are summarised in Fig. 3.
While the state bi-partition for locd shown in Fig. 1 seems sufficient, some factors need a tri- or n-partition.

For example, fodbr suggests a vehicle repair. Therefore, Fig. 2a introduces a third phase to separate the state where
a brake failure (fodbr) is mitigated (f odbr) from the state 0fodbr where the brake is fully operational. Because fodbr

requires an off-line repair action mfodbr
r , it is indirectly reducible. Two further examples for such a factor would be

leaking or damaged battery and run out of fuel. Reaching the “safe state” f odbr is possible via an intermediate
stable state such as halted at car repair shop. From this phase, recovery (mfodbr

r) to the inactive phase 0fodbr should
be feasible. In contrast, ncol or too close to the front vehicle are factors that can often be dealt with by braking
or swerving correspondingly (i.e., swBr). Thus, reaching 0ncol should be possible. In this sense, ncol is directly
reducible.

Risk awareness emerges from combining several factors (e.g. F � {locd, ncol, col, strA, fodrA, fodbr, degbr})
into a risk space R(F), detecting the current risk state, and estimating the likelihood of neighbouring, potentially
worse, risk states. Our example suggests that risk awareness contains a notion of machine health. One might
expect an autonomous vehicle to take full responsibility of emergency control in any of the states in R(F).

Fig. 3. Factor instances (degbr, fodbr, ncol, col) and their dependencies (thick arcs, e.g. requires)

RiskStructures: A design algebra for risk-aware machines

Fig. 4. Risk factor f with non-deterministic fractions uef , umf , and umf
r . The label τ is to be read as {τ }

This example illustrates how the proposed formalism captures and guides the way of thinking of safety
engineers responsible for developing and assuring safety controllers of autonomous machines.

4.4. Discussion: abstraction and types of risk factors

Types of risk factors and risk states Factors can be used to model faults, failure modes, hazards, incidents, and
accidents. Final factors can model, for example, permanent and off-line repairable faults, and reducible factors,
for example, transient and on-line repairable faults.

States with an active final factor f (Sect. 4.1) expose the process P to residual risk infinitely long and often, thus,
almost certainly materialising the consequences of f . By using R, a risk-aware machine in a process P should
govern its (often probabilistic) choices to not enter such states.

Uncertainty in risk factors Figure 1 illustrates the abstraction from a possibly probabilistic process P into a
deterministic risk structure R with a single factor, now call it f. This abstraction could preserve the probability
of occurrence of f, if estimated, in R. However, the quantities of f (especially the probabilities) will often not
be confidently known even if they are continuously estimated during operation. But, as indicated in Fig. 4,
assumptions about the events of f might still be made, for example,

1. uncertainty about the actual occurrence of an endangerment ef expressed as uef � of
n ∩ ef ,

2. uncertainties um f � of
e ∩ mf and um f

r � of
m ∩ mf

r in the success of mitigation mf and recovery mf
r , or

3. the likelihood of an accident f from f .

Deterministic risk factors (uef � ∅, Definition 3) assume that R is certain about the preconditions that activate
f, that is, from observing ef , R knows that the machine enters f . However, uef �� ∅ means that R can observe ef

but P does not necessarily move to a state fulfilling f .
An example for 1. could be an obstacle tracked within safe braking distance with low confidence, justifying

both states 0f and f . This situation requires further state estimation (e.g. a homing algorithm [NSV03]) to disclose
further information about the tracked obstacle. We also discuss this below in Sect. 7.6.

Moreover, ef \ uef can describe known causes of f and uef potential causes of f. of
n ⊇ ef means that R is

uncertain about all of f’s causes. Following [Ros10, p. 116], uef is followed by non-deterministic choice over 0f

and f , modelled by τ from an anonymous state () in the factor LTS. Analogously, with umf for f and umf
r for

f . The factor in Fig. 4 is equivalent to the one in Fig. 2a according to the following lemma.

Lemma 3 (Isolating uncertainty preserves factor properties)

f(4) �FD f(2a)

Proof sketch. The proof is by showing that in both cases, considering uncertainty explicitly by isolating non-
determinism (Fig. 4) and considering uncertainty implicitly by not isolating non-determinism (Fig. 2a), we deal
with the same factor model. Details on the proof can be taken from Appendix A. �

M. Gleirscher et al.

For the sake of simplicity of the discussion, we neglect further non-determinism possible for the three other
actions ef , mf

d , and ef . However, our discussion suggests that in future work we can explore a factor theory
addressing those factor types that are likely to occur frequently in practical applications.

5. Mitigation orders

This section investigates three basic orders over risk spaces, all intended to support the evaluation (e.g. compar-
ison) of successors of a particular risk state reached after further endangerments or deployed mitigations. The
fully and partially comparable inclusive mitigation orders (Sect. 5.1), both partial orders, are based on qualitative
information, and the strong mitigation order (Sect. 5.2), a linear order, is based on quantitative information. These
orders depend on the available information about risk and are related (Sect. 5.3).

5.1. Qualitative mitigation orders

Let R(F) be a risk space (Definition 5) for a factor set F ⊆ F . Then, we define a partial order � m ⊆ R × R as
follows.

Definition 8 (Fully comparable inclusive mitigation order) For any pair of states σ, σ ′ ∈ R, define

σ � m σ ′ ⇐⇒ ∀ f ∈ F : σ (f) �f σ ′(f) .

By σ ≺m σ ′ ⇐⇒ σ � m σ ′ ∧ σ ��m σ ′, we induce the corresponding strict order. σ and σ ′ are said
to be incomparable if and only if σ �� m σ ′ ∧ σ ′ �� m σ . Intuitively, σ � m σ ′ signifies that “σ ′ is a better
achievement in risk mitigation than σ .”14 However, � m requires full comparability of two states. It might be
cumbersome to require such comprehensive knowledge to determine which state is “more or less risky” than
another. Allowing for both epistemic and aleatory uncertainty, we might instead account for partial knowledge
in the phase orders (Definition 3) at the level of R by providing a relaxed partial order as follows.

Definition 9 (Partially comparable inclusive mitigation order) For states σ, σ ′ ∈ R, define

σ �m σ ′ ⇐⇒ ∀ f ∈ F : σ (f) �f σ ′(f) ∨
(
(σ (f), σ ′(f)) �∈ �f ∧ (σ ′(f), σ (f)) �∈ �f

)
.

We use ≺∼m and �∼m to distinguish the corresponding strict order and equality for �m from ≺m. Intuitively,
Definition 9 requires a “betterment in risk from σ to σ ′” based exactly on the comparable phases.

Lemma 4 For any pair of risk states σ, σ ′ ∈ R, we have that

σ � m σ ′ ⇒ σ �m σ ′ .

Proof of Lemma 4. �f is antisymmetric. By definition of � m, we may assume

∀ f ∈ F : σ (f) �f σ ′(f) (∀-elim)

⊢ σ (f) �f σ ′(f) (∨-intro1)

⊢ σ (f) �f σ ′(f) ∨
(
(σ (f), σ ′(f)) �∈ �f∧ (σ ′(f), σ (f)) �∈ �f

)
(∀-intro, assumption for each f)

⊢ ∀ f ∈ F : σ (f) �f σ ′(f) ∨
(
(σ (f), σ ′(f)) �∈ �f∧ (σ ′(f), σ (f)) �∈ �f

)
�

Corollary 2

σ ′ ��∼m σ ⇒ σ ′ ��m σ

14This notation might feel unusual as risk reduction is about lowering risk. So, if σ ′ is a state with lower risk than state σ then we could
write “σ m σ ′”. But we might agree that being in σ ′ is better than residing in σ . Moreover, for risk mitigation, reaching better states from
worse is in the foreground. Thus, it seems reasonable to use the inverted notation σ � m σ ′.

RiskStructures: A design algebra for risk-aware machines

Proof of Corollary 2.

σ ′ ��∼m σ ⇒ σ ′ ��m σ (by definition)

¬(σ ′ �m σ ∧ σ �m σ ′) ⇒ ¬(σ ′ � m σ ∧ σ � m σ ′) (by conversion)

σ ′ �m σ ∧ σ �m σ ′ ⇐ σ ′ � m σ ∧ σ � m σ ′ (by Lemma 4) �

In Sect. 7.6, we revisit how features such as partial orders account for uncertainty in RiskStructures.

5.2. Quantitative mitigation orders

So far, we have seen how partial orders account for a lack of knowledge and potential uncertainties about risk.
Now, we will investigate the use of impact or consequence data in form of severity intervals, if available for specific
factors, to interpolate knowledge gaps, model uncertainty, and derive a linear order over R.

We continue with definitions for dealing with intervals. Given two intervals [l1, u1), [l2, u2) ⊂ R+, the convex
hull is a map ⊔ : R

2
+ × R

2
+ → R

2
+ given by

[l1, u1)⊔ [l2, u2) � [min{l1, l2}, max{u1, u2}) . (4)

For a family of n ∈ N intervals I � ([li , ui))i∈[1..n], we use the abbreviation
⊔

I � [l1, u1)⊔ . . .⊔ [ln , un).

Furthermore, let active : R(F) → 2F with active(σ) � {f ∈ F | σ (f) � f } be the map returning the set of active
factors of a risk state. Moreover, let S : R → R

2
+ with

S (σ) �
⊔

(f.s)f∈active(σ) (5)

be a map for the construction of the severity interval of a risk state from the intervals of its factors.15 Whereas the
minimal severity of a factor f is given by f.s � [0, 0), the minimal severity S (σ) of a state σ is the empty interval
[), which we equate with the empty set, [) � ∅. For any two real-valued intervals [a, b), [c, d) ∈ R

2
+, Ishibuchi

and Tanaka [IT90] define with [a, b) ≤ [c, d) ⇐⇒ a ≤ c ∧ b ≤ d a partial order over such intervals.
Moreover, we say that two risk states σ, σ ′ ∈ R are severity-equivalent if and only if their accumulated severity

intervals are equal, that is, σ ∼s σ ′ ⇐⇒ S (σ) � S (σ ′). We have that σ � σ ′ ⇒ σ ∼s σ ′ because the factors
that are in their active phases are identical. The relation ∼s is an equivalence relation because it is reflexive,
symmetric, and transitive (all by the usual equivalence over intervals). Furthermore, ∼s induces equivalence
classes [σ]∼s

� {σ ′ ∈ R | σ ′ ∼s σ } over R for any σ ∈ R with the corresponding quotient class R/∼s. With the
family (f.s)f∈F of severity intervals of F , we now define an order over R/∼s.

Definition 10 (Strong mitigation order) For [σ]∼s
, [σ ′]∼s

∈ R/∼s, define

[σ]∼s
≤m [σ ′]∼s

⇐⇒ ∀ σ̌ ∈ [σ]∼s
, σ̌ ′ ∈ [σ ′]∼s

: S (σ̌) ≥ S (σ̌ ′) ∨ S (σ̌ ′) ⊂ S (σ̌) .

[σ]∼s
≤m [σ ′]∼s

can be dropped from R/∼s, yielding

∀ σ̌ ∈ [σ]∼s
, σ̌ ′ ∈ [σ ′]∼s

: σ̌ ≤m σ̌ ′ ⇐⇒ S (σ̌) ≥ S (σ̌ ′) ∨ S (σ̌ ′) ⊂ S (σ̌) . (6)

≤m codifies that σ ′ (a) reduces or (b) focuses risk if the union of its severity intervals is

1. Lower in the ranking ≤ of interval numbers or

2. Strictly narrower than the corresponding union for σ .

Condition (a) seems immediately intuitive. Condition (b) conveys the intuition that the interval carries less
uncertainty about the consequences expected from σ ′ than from σ . Equivalence classes in R/∼s abstract from
the factors from which the merged severity intervals originate. This abstraction has to be carefully taken into
account when using ≤m and, therefore, when specifying severity. Note that ≤m is based on the convex hull of
severity intervals from the active phases of a pair of risk states. Apart from the convex hull, interval addition and
multiplication are relevant for alternative mitigation orders as we shall see below. However, a detailed investigation
is left for future work. Let us now consider some properties of ≤m.

15Note that S over-approximates (i.e., constructs the convex hull from) sparsely distributed severity intervals.

M. Gleirscher et al.

Lemma 5 ≤m is linear over R/∼s.

Proof sketch. We show by case analysis that any two risk states are comparable and ≤m is antisymmetric. The
complete proof is stated in Appendix A. �

Corollary 3 After dropping Lemma 5 by Formula (6), we have that ≤m is also linear over R.

Lemma 6 (R,≤m) and (R/∼s,≤m) are well ordered.

Proof sketch. Lemma 6 follows from a finite R (by definition) and, thus, finite R/∼s, and linearity of ≤m (by
Lemma 5). �

Definition 11 For σ ∈ R(F), we also write 0
F ≡ ∀ f ∈ F : σ (f) � 0f and F ≡ ∀ f ∈ F : σ (f) � f . We denote by

⊤F the set of maximal elements and by ⊥F the set of minimal elements of (R,� m,�m,≤m). We characterise the
minimal elements in (R(F),� m) by

⊥F ≡ {σ ∈ R(F) | ∀ σ ′ ∈ R(F) : σ ′ � m σ ⇒ σ ′ �m σ }

and analogously for (R,�m) and (R,≤m) and the maximal elements.

Corollary 4 If ∀ f ∈ F : (Phf ,�f) is linear, then (R(F),� m) � (R(F),�m). If R �� R(∅) then ⊥F and ⊤F are
non-empty and, therefore, have a proper manifestation. For (R/∼s,≤m), ⊥F and ⊤F are singletons.

Proof of Corollary 4. The proof is by contradiction. For the sake of brevity, we only consider a sketch of this
proof. Assume we have two state classes [σ]∼s

, [σ ′]∼s
in ⊥F with [σ]∼s

��m [σ ′]∼s
. Because of our assumption,

state classes are in linear order. Thus, by definition of ⊥F , one of these state classes causes a violation of the
universal quantification in Definition 11 and, therefore, one of the classes cannot be in⊥F which contradicts our
assumption. The proof is analogous for ⊤F . �

Corollary 5 (R/∼s,≤m) forms a complete lattice.

Proof of Corollary 5. Linearity of ≤m implies that every non-empty subset of R/∼s has a greatest lower bound
and a least upper bound. �

5.3. Relating mitigation orders

The strong mitigation order characterised by the Lemmas 5 and 6 is driven by the number of active factors
and their severity intervals (because of the definition of S) but not by the equality of factor phases among the
compared risk states. This offers the possibility of abstraction from individual factors and focusing on severity
estimates. To avoid infeasible models (e.g. specifications that get too strong to be realisable), we require that the
addition of severity intervals constitutes a relational extension of either � m or �m, formally,

(
∀ σ̌ ∈ [σ]∼s

, σ̌ ′ ∈ [σ ′]∼s
: σ̌ � m σ̌ ′ ∨ σ̌ �m σ̌ ′

)
⇒ [σ]∼s

≤m [σ ′]∼s
.

Dropped to R, this implies σ̌ � m σ̌ ′ ∨ σ̌ �m σ̌ ′ ⇒ σ̌ ≤m σ̌ ′ for all pairs (σ̌ , σ̌ ′) ∈ [σ]∼s
× [σ ′]∼s

, therefore,

σ̌ � m σ̌ ′ ∨ σ̌ �m σ̌ ′ ⇒ S (σ̌) ≥ S (σ̌ ′) ∨ S (σ̌ ′) ⊂ S (σ̌) (7)

for full and partial comparability, otherwise implying

(σ̌ , σ̌ ′) �∈ � m∧ (σ̌ , σ̌ ′) �∈ �m ⇒ t . (8)

Intuitively, if σ̌ is “worse” than σ̌ ′ then its accumulated severity interval S (σ̌) has to be greater than that of
σ̌ ′ and, therefore, must not be contained in that of σ̌ ′. Moreover, if σ̌ and σ̌ ′ are incomparable in � m and
�m (i.e., some factors have inversely ordered or incomparable phases) then S (σ̌) and S (σ̌ ′) are allowed to form
any relationship (signified by t for “true”), for example, Formula (7).

What is the (necessary and) sufficient condition on F to satisfy the requirement expressed by Formula (7)?
Risk spaces and risk state pairs are the interpretations and, therefore, potential models satisfying the relational
extension imposed by Formula (7). Answering this question suggests the following lemma.

Lemma 7 For σ, σ ′ ∈ R(F),

σ � m σ ′ ∨ σ �m σ ′ ⇒ active(σ) ⊇ active(σ ′) .

RiskStructures: A design algebra for risk-aware machines

Fig. 5. Visualisation of the case distinction to establish Theorem 1, with f, g, h ∈ F , TS (R,→), and σ −→ σ ′

Proof sketch. The proof is by induction over F and relies on the assumptions that, for any f ∈ F , f is the unique
maximal element in �f and that the map active (Sect. 5.2) only returns such elements. The whole proof is stated
in Appendix A. �

Again, fix a finite F and a pair σ, σ ′ ∈ R(F) and assume σ � m σ ′ ∨ σ �m σ ′. Then, by Lemma 7, σ ′

incorporates a subset of σ ’s active factors. To show that S (σ ′) preserves S (σ ′) ⊂ S (σ), the right-hand part of
the disjunction in the consequent of Formula (7), it is sufficient to investigate S (σ ′) for any factor deactivation
possible in a transition from σ to σ ′. We can summarise all such possibilities in five cases:

1. all intervals remain (σ ′ � σ),

2. only intervals in the convex hull of the remaining intervals are removed,

3. intervals only increasing the lower bound of this hull are removed,

4. intervals only decreasing the upper bound of this hull are removed, and

5. intervals increasing the lower bound and decreasing the upper bound of this hull are removed.

This case distinction is visualised in Fig. 5 and also works for σ ′ such that σ ≺m σ ′. Formula (7) is also
satisfied if all factors in F are assigned the same interval, call it sF . In conclusion, the sufficient condition on F
to satisfy Formula (7) is the “unique maximal element” precondition in the proof of Lemma 7. Apart from this
precondition, Formula (7) holds of an arbitrary finite F ⊆ F . Below, we shall call� m and �m inclusive mitigation
orders, and ≤m a strong mitigation order. We arrive at the following theorem.

Theorem 1 The strong mitigation order ≤m extends the partially comparable inclusive mitigation order �m which,
in turn, extends the fully comparable inclusive mitigation order � m. Formally, for σ, σ ′ ∈ R:

σ � m σ ′
Lemma 4
�⇒ σ �m σ ′

Lemma 7
�⇒ σ ≤m σ ′.

5.4. Application: evaluating local, regional, and global safety

The orders � m,�m, and ≤m allow a local evaluation of safety in the sense that their definitions only require the
comparison of pairs of risk states. Two further qualitative notions of safety seem to be useful.

Let R be non-empty and finite and reach : R × P → 2R. Given a process P ∈ P and a risk state σ ∈ R,
reach(σ,P) ⊆ R denotes the set of risk states reachable from σ by finite executions (prefixes) of P where σ itself
is always reachable and, thus, σ ∈ reach(σ,P). Figure 6 (light-grey area) exemplifies such a set. Then, we use the
presented orders to determine non-empty sets of minimal and maximal elements in R reachable by P , such as
max� m

reach(σ,P) or min�m
reach(σ,P). In Fig. 6, the risk states 1 to 3 and 5 to 7, connected by double arcs,

are the ones reachable from σ after at most two consecutive endangerments or mitigations. Reachability arcs
are labelled with the weakest applicable order. Single arcs illustrate potential modifications or extensions of the
reachability set, for example, by the states 4 and 8 to 10 after a reassessment of the operational environment by
the machine.

In the situation described by the process P in the risk state σ , these two sets signify the regionally safest (max,
white circles) and the regionally most hazardous (min, dark-grey circles) states, respectively. The smallest such
set will only and exactly contain σ , meaning P cannot reduce risk in (R,�m). � m and �m enable a regional
evaluation of safety inasmuch as once a maximal element in max�m

reach(σ,P) is reached, �m limits reasoning
about safer states that P could reach from σ .

M. Gleirscher et al.

Fig. 6. Visualisation of local, regional, and global safety in a risk space R

Besides local and regional safety, (R/∼s,≤m) supports global evaluation because of its linearity (Lemma 5).
With ≤m, there are always unique safest and riskiest states in reach(σ,P)/∼s (Corollaries 4 and 5). In contrast,
� m and �m will not guarantee this uniqueness. Note that the use of equivalence classes leads to more abstract
forms of safest and riskiest states. Overall, Lemma 6 and Corollary 5 provide necessary conditions for deriving
finite strategies (i.e., policies, choice resolutions) that stabilise or terminate P in a safest state.

Quantitative mitigation orders (e.g. ≤m) will have to be calculated at run-time, according to R by estimating
probabilities of factor occurrence and severity of factor consequences from situational data only available during
operation. In P , safety can then be observed as the gradual presence or absence of risk over traces (P). On a side
note, the reliability as the gradual presence or absence of defective behaviour can be seen as a special case when
considering only factors that model faults.

5.5. Discussion: ethical aspects of mitigation orders

Linear mitigation orders such as≤m promote machines with negative utilitarian decision ethics [War12, p. 51]. For
example, severity intervals could be calculated at run-time based on sensor data about the possible operational
situation of the machine. Expected outcomes of enabled mitigations, if any, will then be comparable according
to ≤m. This comparability allows the assessment of the actual reachability of states with strictly lower risk. Any

resolution of a near-accident situation (Sect. 4.3) or a tram16 problem [Foo78] would then consist in the choice of
the mitigation leading to the state with the lowest risk or the least severe of the expected negative outcomes. This
scheme characterises negative utilitarianism.

Linear mitigation orders globally resolve decisions based on explicit and, therefore, disputable criteria. Con-
sequently, utilitarian ethics have been criticised to lead to oversimplified approaches to resolve indecision. Such
critiques stress the difficulty of predicting the positive and negative effects (i.e., “double effects” [Foo78]) of
certain actions, in our case, the estimation of the severity of an activated factor and the reached state [War12,
pp. 48-49]. Appreciating the equality of any two groups of the human family [Uni48], one could conclude that
tram problems should be solved by random decisions, independent of whether these are made by humans or
machines. However, in analogy to risk-averse humans (Sect. 3), a risk-aware machine should make (self-inflicted)
tram problems unlikely, that is, avoid such decisions rather than aiming at their random or utilitarian resolution.
The likelihood of tram problems is an important subject to be investigated.

Accordingly, a structured risk model with dependencies between factors could be used to complement util-
itarian decision ethics with Kantian ethics, that is, to use ≤m to decide about conservative measures before
high-severity factors get activated. This results in what is called “rule utilitarianism” [War12, p. 52]. For example,
we can model the necessary preconditions of certain tram problems as risk factors and a machine based on this
model could use these factors to constrain its behaviour. Although the presented model can be used with linear
orders, the discussions below stay agnostic of the mitigation order.

16Also known as the “trolley problem”, a situation where any of the enabled actions leads to an unacceptable outcome.

RiskStructures: A design algebra for risk-aware machines

6. Factor dependencies

Usually, only subsets of a risk space R and a process P ’s traversals of R are relevant. Identifying these subsets
is the task of risk analysis and can be difficult if the relevance of each risk state can only be determined at run-
time based on its context in R and the state of P . As highlighted in Sect. 3, it is then useful to model (causal)
relationships between (phases of) factors, their events (i.e., activation, mitigation), and, consequently, risk states.
For example, we might want to specify that (i) the activation of a risk factor causes the activation of another
factor, (ii) the mitigation of one factor causes the activation of several other factors, or (iii) the activation of a
factor requires the activation of some other factors. We can take account of dependencies, such as illustrated in
Table 2 (e.g. requires ncol, causes locd), by imposing constraints on pairs of consecutive risk states and their
comprising factors’ phases. For this, we use binary relations over R to hypothesise causality assumptions about
less known or controllable parts of P (i.e., the environment En) and express causality requirements for known
and controllable parts of P (i.e., the system Sy).

6.1. Relations over risk spaces

Let F ⊆ F and consider the space R(F) and two distinct factors f, g ∈ F . In the following, we employ relational
specification to formalise factor dependencies as relations over R, that is, as subsets of R × R. For example, a
causes17 constraint requires of a pair (σ, σ ′) ∈ R × R that if f is active then, within at most one (logical) step, g
must be active until f gets either inactive or mitigated.

Let C be the set of all constraints. For the translation of constraints into a form useful for the discussion
below, we use the map [[·]]Rc : C → 2R×R to denote the relational semantics of constraints over R. To distinguish

different semantic maps, as will be defined later, we use subscripts, for example, c in [[·]]Rc . Recall that we use σ (f)
to refer to the phase of factor f in state σ (Sect. 4.2).

For example, causes constraints can be encoded as relations over R by the definition

[[f causes g]]Rc � {(σ, σ ′) ∈ R × R | σ (f) �� f ∧ σ ′(f) � f
︸ ︷︷ ︸

activation of f...

∧ σ (g) �� g
︸ ︷︷ ︸

when g not mitigated

⇒ σ ′(g) � g
︸ ︷︷ ︸

...activates g

} . (9)

This constraint implies that factor activation takes a logical time step corresponding to a strictly positive real-time
duration (i.e., > 0) in P . Note that this definition of causes encodes the assumption that g, once or as long as
mitigated, cannot be caused (again) by activating f. While this behaviour is often to be expected of any mitigation
designed for g, one can define a more general constraint, say alwaysCauses, to capture this behaviour. Moreover,
causes is to be read as “is sufficient to cause” rather than as “is necessary to cause”, and it extends to factor sets.
Given F ,G ⊆ F with F ∩G � ∅, we define

[[F causes G]]Rc � {(σ, σ ′) ∈ R × R | ∃ f ∈ F ∀ g ∈ G : σ (f) �� f ∧ σ ′(f) � f ∧ σ (g) �� g ⇒ σ ′(g) � g} .

Note that all pairs (σ, σ ′) violating the antecedent of the conditional are in [[f causes g]]Rc as well.
As another example, the requires constraint can be defined in relational form by

[[f requires g]]Rc � {(σ, σ ′) ∈ R × R | σ ′(f) � f
︸ ︷︷ ︸

an active f requires...

⇒ σ (g) � g
︸ ︷︷ ︸

an active g in the preceding state

} . (10)

The lifting of requires to factor sets F ,G ⊆ F with F ∩G � ∅ is described as

[[F requires G]]Rc � {(σ, σ ′) ∈ R × R | ∃ f ∈ F : σ ′(f) � f ⇒ ∀ g ∈ G : σ (g) � g} .

This variant of the requires constraint refers to all factors specified on its right-hand side and, this way, resembles
an AND-gate as used in FTA. The side condition F ∩ G � ∅ avoids that a factor requires or causes itself (i.e., it
avoids the “chicken and egg” problem).

17Used in form of MCSs in FTA and, less frequently formally, in FMEA (see Sect. 2.1).

M. Gleirscher et al.

Table 3. A selection of constraints more commonly used in causal reasoning

Name PC D P C M FC Y Description

causes F ⇄ G → + w 1:n =n � The activation of a factor in F causes the (successive) activation of
the factor set G , Formula (9).

causes−1 F ⇄ G → + w m:n =n - The mitigation of the factor set F causes the activation of the factor
set G .

requires F ⇄ G ← + s 1:n =n � The activation of a factor in F requires the (prior) activation of all
factors in G . AND-gate in FTA, Formula (10).

requires1 F ⇄ G ← + s 1:n ≥1 � The activation of a factor in F requires the (prior) activation of at
least one factor in G ; OR-gate in FTA.

prevents F ⇄ G → – s 1:n =n � The activation of a factor in F prevents or impedes the activation of
all factors in G.

preventsMit F ⇄ G → – s 1:n =n � The activation of a factor in F prevents or impedes the mitigation of
all factors in G .

excludes F ⇄ 0G → + s 1:n =n � The activation of a factor inF deactivates (superposes or invalidates)
all factors in G .

direct F ⇄ 0G → + s 1:0 =1 � The deactivation of a factor in F must only happen directly from its
activated phase.

offRepair F ⇄ 0G → – s 1:0 =1 � The deactivation of a factor in F may not happen directly from its
activated phase.

Legend: See the dimensions discussed in the text of Sect. 6.1; � . . . implemented in Yap [Gle21]

Remark 1 causes models weak causality and requires models a strong causality. causes and requires con-
stitute basic dependency templates and exemplify how dependencies support the safety engineer or risk analyst
in causal modelling in a state-based relational way.

Analogously, there are many possible factor dependencies over R that resemble causal reasoning of techniques
such as FTA (Sect. 2.1). Such dependencies can be classified along several dimensions:

• phase combination (PC): active to active (F ⇄ G), active to mitigated (F ⇄ G), active to inactive (F ⇄ 0G),
mitigated to mitigated (F ⇄ G), mitigated to active (F ⇄ G), mitigated to inactive (F ⇄ 0G); combinations
thereof are possible;

• direction (D) of cause-effect analysis: forward (→, e.g. for modelling sufficient conditions or propagation),
backward (←, e.g. for modelling necessary conditions or explanation);

• polarity (P): obligation (+), permission (◦), inhibition (−);

• causality (C): strong (s, sequential events), weak (w, simultaneous events);

• multiplicity (M): one-to-one (1 : 1), one-to-many (1 : n), many-to-one (n : 1), many-to-many (m : n) where
m,n > 0; self-referential18 (1 : 0);

• factor combination (FC): “∼m out of n” where ∼ ∈ {≤,�,≥} and 1 ≤ m ≤ n.

These dimensions19 characterise factor dependencies commonly used in risk analysis. Most of the constraints
listed in Table 3 are realised in our tool Yap [Gle21], which enables their use based on previous discussions in
[Gle18, Gle17]. However, their comprehensive treatment would exceed the scope of this work.

We have now seen that constraints prune irrelevant state pairs. This mechanism is reflected by the following
definition.

Definition 12 (Relational semantics of constraints) For a set of constraints C ⊆ C,

[[C]]Rc �

{
R × R, C � ∅
⋂

k∈C [[k]]Rc , otherwise
⊆ R × R . (11)

Constraints are an instrument for specifying structures over risk spaces. Regarding the composition of spaces,
this instrument requires the definition of the following well-formedness condition.

18In this case, we allow F � G � {f}.
19Naı̈ve combination of all dimensions results in more than 1000 possibilities to define constraints. Many of these possibilities are not

essentially different and some might not even be useful. Table 3 does, however, not aim to cover all useful constraints.

RiskStructures: A design algebra for risk-aware machines

Listing 1: Yap script modelling the situation
transferObj from Table 4

1 factormodel {
2 dmgo desc "object damage"
3 mishap
4 requiresNOf(1|hp,fodg)
5 sev=[5,10);
6 fodg desc "failure on demand of grabber"
7 requires(slp)
8 causes(dmgo);
9 slp desc "slippery grabber"

10 requires(wet)
11 direct
12 detectedBy(.senseSlip)
13 mitigatedBy(.incPr)
14 sev=[2,6);
15 wet desc "wet grabber surface"
16 causes(slp)

17 direct;
18 hp desc "high grabber pressure"
19 mitPreventsMit(slp)
20 direct
21 detectedBy(.sensePr)
22 mitigatedBy(.limPr)
23 sev=[3,8);
24 /∗ str desc "spurious release "; equal to fod ∗/
25 }
26

27 controlloop collRob {
28 mode senseSlip desc "identify slip";
29 mode incPr desc "increase grabbing pressure"
30 update "pressure++";
31 mode sensePr desc "sense pressure"
32 guard "pressure > threshold(obj)";
33 mode limPr desc "limit grabbing pressure"
34 update "pressure = threshold(obj)";
35 }

Table 4. Situation/action/factor table for grabbing scenarios performed by collaborative robots

Act. work (w) grab & hold (g) release (r)

Situ. Fact. dmgo fodg slp wet hp str
object damage failure on demand slippery grabber wet surface high pressure spurious trip

transferObj 3. requires1

hp, fodg

3. requires1 slp,
str;
causes dmgo

2. Pr [slp | slp] �
h
3. requires wet
4. increase grab-
bing pressure

3. causes
slp

2.Pr [hp | hp] � m

3. mitPrevents-
Mit slp
4. limit grabbing
pressure

–

Legend: h . . . high, m . . . medium, –not analysed; see also Table 2 for guidance

Definition 13 (Well-formedness of constraints) Let R(F) be a space formed by a factor set F ⊆ F . We say that
a constraint k ∈ C is well-formed for R(F) if and only if it does not refer to factors other than the ones in F ,
formally, if and only if [[k]]Rc ⊆ R(F) × R(F). We say that C ⊆ C is well-formed for R(F) if and only if each
element in C is well-formed for R(F).

6.2. Example: collaborative robots

To illustrate relationships for structuring risk perception, we apply our framework to a scenario in human-robot
collaboration. Table 4 shows a risk analysis similar to Table 2 for a robotic arm with a grabber. Consider such
a robot (w)orking by repetitively (g)rabbing, holding, and (r)eleasing work pieces. Water or oil on the robot’s
grabber (wet) can cause the grabber to be slippery (slp) such that holding an object may increase the likelihood
of accidentally dropping it (Pr [slp | slp]). For our further analysis, we generalise the negative outcome from

the phase slp to an additional final risk factor dmgo. Obviously, increased grabbing pressure can mitigate slp.

However, forward reasoning leads to the conclusion that increased pressure could be too high (hp) causing damage
to the object (dmgo). However, because we plan to install an intervention in our machine, we omit the dependency
hp causes dmgo. Moreover, a FTA of the sensor software and the actuator hardware results in the factor mistaken
loosening of the grabber (str), which, for the sake of simplicity, we equate with a failure on demand of the “grab
& hold” action (fodg). Applying final backward causal reasoning, the object’s high falling onto a hard surface
causes damage of the object (dmgo) and requires1 (at least one of) slippery grabber (slp), fodg, or a spurious
trip of the “release” action (str).

Listing 1 encodes this analysis in a script processable by Yap, which calculates the risk space and the phase
transition relation. The resulting risk graph in Fig. 7 can be useful as a controller design template for a risk-aware
machine. Further details on how this graph can be constructed are discussed in Sect. 7.

M. Gleirscher et al.

Fig. 7. Graph for risk structure RtransferObj with factor set F � {dmg, fod, slp,wet, hp} generated by Yap from Listing 1. To increase
readability, inactive factors are not shown in the nodes

6.3. Discussion: abstraction, compatibility, and characteristics of risk factors

Abstraction Two structurally different risk states σ, σ ′ ∈ R (i.e., σ �� σ ′) can be severity-equivalent (i.e., σ ∼s σ ′).
Moreover, the family (f.s)f∈F of severity intervals of F forms a cut of causal chains and, thus, defines the scope of R.
These intervals abstract from potential consequences of active factors. This abstraction is left to the modeller (i.e.,
the risk analyst or safety engineer) and can vary significantly, depending on the assets (e.g. humans, animals,
environment) and impact categories (e.g. certain injuries, damage, loss) under discussion. For example, assume
two independent consequences cA and cB (e.g. a class of injuries of an operator A, a class of damages of an object
B) associated with possible20 intervals [lA, uA) and [lB , uB). Consider a single factor f causing both cA and cB .
This circumstance suggests the consistency condition f.s ⊆ [lA + lB , uA + uB), requiring that all consequences
of f (i.e., cA, cB) have to be measurable in their severity along the same scale. Our example stresses the difficulty
of comparing injury with damage. However, if cB was another class of injuries of that operator then cB would
fit into the same scale as cA. Practitioners often formalise these concepts for quantitative analysis. However, we
leave this for future work.

Factor compatibility Consequences of several factors should be compatible such that the convex hull of their
intervals (recall ⊔ from Formula (4)) has a consistent meaning of severity in (R,≤m). Consider the two factors f
and g. Both can describe three cases with their individually specified intervals f.s and g.s :

1. f and g share all their consequences (e.g. both cause cA). f, g → cA

2. f and g share some of their consequences (e.g. f causes cA and cB , g causes cB). f → cA cB g←−

3. f and g do not share any consequences (e.g. f causes cA, g causes cB). f → cA g → cB

If both factors get active in case 1, the convex hull can be backed by the condition f.s ⊔ g.s ⊆ [lA, uA).
Case 2 can be split into the ≤m-compatible case 1 for cB and case 3 for cA. In case 3, generally, the convex
hull may extend both the range of consequences and the severity intervals. However, the consistency condition
f.s ⊔ g.s ⊆ [lA, uA)⊔ [lB , uB) implied by ≤m seems inappropriate. For example, if cA and cB signify damage of
two independent objects with the same interval, the hull would not account for this because of idempotency of
interval union.

20For [lA,uA) and [lB ,uB), we assume sufficient knowledge about possible consequences and their accurate evaluation.

RiskStructures: A design algebra for risk-aware machines

Fig. 8. Risk graphs for F � {strA, locd} after applying causes (a), requires (b), and both (c), using Yap

In summary, while≤m can deal with consequences shared by all risk factors (case 1), partially shared (case 2)
or independent consequences (case 3) require a further investigation out of scope.

Condition 1 (Factor convergence) The use of ≤m with several risk factors requires severity specifications to be
based on a single compound consequence and a single severity scale across all factors.

The problematic case 3 could be modelled by an additional factor h that is caused by f and g and carries an
up-shifted severity interval, for example, h.s � f.s +g.s , and f, g, and h are all defined with respect to a single new
consequence cA+B . In Sect. 6.1 and Table 3, we have seen how such a dependency can be specified by constraints
on the risk space, that is, by {f, g} causes h and h excludes {f, g}. excludes assures that severity calculation
for states in phase h is only based on the interval h.s .

Based on this analysis, we call a factor set F ≤m-compatible if the way of combining the severity intervals
for each subset F ′ ⊆ F fulfils Condition 1. For support in achieving and maintaining compatibility, the next
paragraphs exemplify how factor severity and dependencies play together with mitigation orders. We also explore
conditions for the well-formedness of severity intervals.

Factor characteristics and dependencies Constraints over risk spaces have implications on the characteristics
of risk factors such as their severity intervals. Conversely, severity intervals govern ≤m and can impose well-
formedness conditions on the definition of constraints. In the following, we explore the impact of two different
well-formedness conditions (f.s ⊆ g.s and f.s ⊇ g.s) on ≤m and the influence of choosing either one on the
monotonicity of mitigation strategies. For example, for a constraint

f causes g, the condition f.s ⊆ g.s, and for (12)

F causes G, the condition
⋃

f∈F

f.s ⊆
⋃

g∈G

g.s (13)

seems coherent with the (probabilistic) relationship between the activation of causal and consequential factors.
Particularly, the condition in Formula (12) expresses that if f causes g then f should have at most the potential
impacts of g.

Consider the airbag spurious trip (strA with s � [5, 12)) causing loss of driving control (locd with s � [2, 17))
from the example in Table 2. For strA causes locd, the two intervals would fulfil the aforementioned condition.
The structure fulfilling this constraint is shown in Fig. 8a, it includes the states 0 with S (0) � [0, 0), locd with
S (locd) � [2, 17), and locdstrA with S (locdstrA) � [2, 17), with three equivalence classes in R({strA, locd})/�m

ordered according to

locdstr A, locdstrA, locd <m locdstrA, strA <m locd , str A,0, locdstr A .

M. Gleirscher et al.

On the contrary, assume a risk structure where strA.s � [2, 17) and locd.s � [5, 12) in order to be compliant with
the converse condition f.s ⊇ g.s . From this structure, we obtain the order

locdstrA, locdstrA, strA <m locdstr A, locd <m locd , str A,0, locdstr A .

In both orders, mitigation paths (i.e., sequences of solid arcs) in Fig. 8a, for example,

m locd →mstrA →mstrA
r →m locd

r → SK I P ,

remain in their equivalence class or lead to a state in a better class according to ≤m. Mitigations (solid arcs)
deactivate at least one factor and, thus, lead to a better state according to ≺∼m. We call such paths through R

mitigation monotonous [GK17, Def. 8]. However, if intervals are specified in coherence with Formula (12), seven
instead of five out of the twelve mitigations strictly reduce risk.

Analogously, for a constraint f requires g, the condition f.s ⊇ g.s seems useful. The two factors in our
example fulfil this condition for locd requires strA. The structure fulfilling this constraint is shown in Fig. 8b,
with the states ordered according to

locdstrA <m locdstrA, strA <m str A,0, locdstr A ,

whereas intervals specified the opposite way (following f.s ⊆ g.s) would lead to a less distinctive order

locdstrA, locdstrA, strA <m str A,0, locdstr A .

Again, mitigation paths are monotonous and coherent with the above condition; four instead of three out of
seven mitigations strictly reduce risk according to ≤m. Overall, a violation of the mentioned conditions does not
influence mitigation monotonicity of this risk structure with respect to ≤m but it reduces non-determinism in a
strategy over R.

Figure 8c shows a risk graph for the discussed causes/requires constraint pair fulfilling both conditions.

Note that the states are equivalent to Fig. 8b but the arc 0
estrA

−−→ strA in Fig. 8b is replaced by 0
elocdstrA

−−−−→ strAlocd

and the edge strAlocd
m

strA
s .m

locd
s

−−−−−→ str Alocd is added. In summary, the causes constraint streamlines the transition
relation of the risk structure as opposed to the requires constraint. This can be useful for merging factors during
reduction of a risk structure. However, Fig. 8a shows that causes is less restrictive than requires, particularly,
allowing elocd to occur without a previous estrA , for example, due to other causes not made explicit as factors in
the model.

An in-depth analysis of techniques for making F compatible, a discussion of a set of rules relating factor
characteristics and factor dependencies, as well as an alternative to ≤m are subject of future work.

7. RiskStructures: the language

In the previous sections, we have explored how a risk space R can be used for assessing risk mitigation capabilities
of a process P (cf. Fig. 1) and for equipping P with a form of risk awareness. Risk in specific situations has a
specific causal structure. We have seen how dependencies in a factor set F focus on this structure. Starting from
the full extension of R, we select subsets of R, making assumptions if the structure is not entirely known in
advance. This focus and these assumptions can be expressed by a constrained composition. Specifically, based on
constraints on the combinations of factor phases, on the phase transitions, and on the synchronisation of events
corresponding to the CSP model of concurrency, we can specify

• which region of R we want to pay attention to (i.e., the scope of safety guarantees) and

• which region of R we consider to be safe for a process P (i.e., conventional safety).

We use LTSs for investigating the operational semantics of RiskStructures, beginning with factors and their
constrained composition, and accompanied by a discussion of the consistency, well-formedness, and validity of
their algebraic semantics.

Definition 14 (Risk structure) Given a factor set F ⊆ F , a risk structure R is an expression of the form

R ::� p | R ‖ R | [R]C

where, for a factor f ∈ F (Definition 3), phase p ∈ Phf (e.g. 0f , f , f) is a risk structure and C ⊆ C is a set of
constraints (Definition 12). Let S be the set of all risk structures, including all phases

⋃

f∈F
Phf ⊂ S.

RiskStructures: A design algebra for risk-aware machines

The binary operator ‖ signifies the parallel composition of two structures, and the binary operator [·]C applies
all constraints in the set C to a risk structure.

Operational semantics Let the map [[·]]r : S → T uniquely assign a LTS to a CSP process corresponding to a
risk structure. With R ∈ S we associate a LTS [[R]]r � (R, �u ,→,R0) with the risk space R (Definition 5),
the abstracted used alphabet �u ⊂ 2�τ

\ {∅} (Definition 1, Sects. 7.1, 7.2, 7.3), the transition relation → ⊆
R ×�u ×R (Definitions 15 and 16, Sect. 7.3), and a set of initial states R0 ⊆ R. The operational semantics and
algebraic properties of the operators and constructs of the language in Definition 14 are provided below. The
construction of the used alphabet �u will be explained along with the operators.

7.1. Risk factors as sequential processes

A risk factor f ∈ F (Figs. 2 and 3) can be represented as a sequential, mutually recursive process Rf according to
Definition 1. We express f as

Rf � 0f (init)

0f � ?x : ef → f � ?x : of
n → 0f (inactive)

f � ?x : mf
d → 0f � ?x : of

e → f � ?x : mf → f (active)

f � ?x : ef → f � ?x : mf
r → 0f � ?x : of

m → f . (mitigated)

Note the use of f as a symbol for the risk factor as a transition system (Fig. 2a) and the use of f for the CSP
process that models this factor in its active phase. Different fonts signify the semantic difference. Also notice that

p
τ
−→ for any p ∈ Phf of a non-deterministic factor (Fig. 4) corresponds to the ⊓-fraction in �.

This mapping enables an algebraic treatment of factors in CSP.
The semantics of a single factor f in phase p ∈ Phf is given by [[p]]r � (R({f}), �f ,→f , {[f �→ p]}) and the

elements of this tuple are given by Definition 3 and described in Fig. 2. For example, [[0f]]r � (R({f}), �f ,→f

, {[f �→ 0f]}) provides the semantics of f initialised with the phase 0f . For each factor, we assume a phase order
�f as given in Sect. 4.1.

Factor alphabets for global input-enabledness Based on the definitions in Sect. 4.1, the condition

∀ f, g ∈ F :
(⋃

e∈�f

e
)
\ {τ } �

(⋃

e ′∈�g

e ′
)
\ {τ } � � (14)

requires all factors to support the alphabet � of the process P . This choice does not affect risk space composi-
tion (Sect. 4.2) but allows factors to be composed in parallel synchronously and be ready to agree with some event
P offers. This attempt to avoid interleaving requires input-enabledness of R (Sect. 4.1). Given F in terms of a
factor family (fi)i∈[1..n] with n ∈ N, one way to satisfy Formula (14) is a structured alphabet with compound (i.e.,
multi-part) events

r .α1.α2 . . . αn

with α1.α2 . . . αn ∈ �f1 .�f2 . . . �fn and a central channel r of type �f1 .�f2 . . . �fn through which R can observe
and influence P . For i , j ∈ [1..n] with i �� j , two (partially defined) factor event sets, say an endangerment
efi ∈ �fi activating factor fi and a mitigation mfj ∈ �fj of factor fj , then correspond to the set of (fully defined)
compound events given by

eventsR(r?efi !mfj) � {r .α1 . . .?efi . . .!mfj . . . αn | α1 ∈ �f1, . . . , efi ∈ �fi , . . . , mfj ∈ �fj , . . . , αn ∈ �fn } .

At the level of P , these compound events are equivalently given by

eventsP (r?efi !mfj) � {r .x1 . . . xi . . . xj . . . xn | x1 ∈
⋃

e∈�f1

e, . . . , xi ∈ efi , . . . , xj ∈ mfj, . . . , xn ∈
⋃

e∈�fn

e} .

This channel type is inspired by suggestions in [Ros10, Sec. 1.2.4] and by [BS01, Sec. 3.4]. Thus, each factor
f synchronises with the projection from � into �f and is always ready to agree with some event offered by

M. Gleirscher et al.

P .21 This construction models partial observability of P through factors implemented by sensors and actuators
and, for a deterministic factor set F , guarantees deadlock freedom of P ‖ R, modelling that a corresponding
implementation of F can always monitor and influence P .

7.2. Composition

Let A,B ,F ⊆ F be factor sets with A,B ⊆ F and, for i ∈ {1, 2, 3}, Ri ∈ S be structures according to
Definition 14 with [[Ri]]r � (Ri , �

u
i ,→i ,Ri,0). Now, we may want to combine two structures, say R1 and R2,

with possibly intersecting factor sets, for example, if two safety engineers are trusted with two HazOps of the same
machine. Let the map scope : S → 2F identify the factors referred to by a structure. Then, scope(R1) ∩ scope(R2)
indicates all shared factors.

Because a single factor cannot be in two different phases at the same time, we apply Definition 6 for F1 �
scope(R1) and F2 � scope(R2) to uniquely define the transition relation resulting from parallel composition:
only those states can be combined whose factors in the shared scope are in their identical phases.

Definition 15 (Parallel composition) We define [[R1 ‖ R2]]r � (R, �u ,→,R0) with R � R1⊗R2 (see Definition 7
and Lemma 1) and R0 � R1,0 ⊗ R2,0. For states σ1, σ

′
1 ∈ R1, σ2, σ

′
2 ∈ R2, the composed transition relation → is

given by the left, right, and synchronous step rules

Based on −→, the used alphabet is �u � {e ∈ 2�τ

| ∃ σ, σ ′ ∈ R : σ
e
−→ σ ′}.

Note that ‖-l-step covers the special case f � ∅ corresponding to σ2 �2. ‖-r-step works analogously. These step
rules together resemble the step law of generalised parallel composition in CSP [Ros10, Sec. 3.4].

Algebraic properties of composition In the following, we show some desirable properties of the composition of
two or more risk structures.

Lemma 8 (Idempotency of ‖ under determinism) For any deterministic R1 ∈ S, we have

R1 ‖ R1 � R1 . (‖-idem)

Proof of Lemma 8. From Definition 5, by Lemma 1, we obtain R1⊗R1 � R1. Based on Sect. 4.2 and the alphabet
of Rf defined in Sect. 7.1, we can apply the rules from Definition 15 as follows.

Because of the uniqueness of R1 and the compatibility requirement (Formula (2)), the composition takes two
consistent views of R1 offering identical source and target states (σ1 � σ2) at each step. By definition, all factors
share the alphabet � and R1 is deterministic. Then, any two event sets e, f in ini tials(R1) (i.e., in a state σ) are
either disjoint or equal. Hence, there is no way for a concrete event in P to be a member of more than one such
event set. In line with Definition 3, ‖-l-step and ‖-r-step do not apply. ‖-s-step turns into a tautology and both
views exhibit an identical transition:

21According to the CSP notation for channel events, we have � � {| r |} � events(r) for the channel r .

RiskStructures: A design algebra for risk-aware machines

For σ1, σ
′
1 ∈ R1 and e ∈ �u

1 , this tautology preserves �u
1 ,→1, and R1,0. �

The composition of a deterministic R1 with itself turns into a synchronous (i.e., non-interleaved) composition,
essentially, a sequence of external choices where both R1s synchronously agree with the environment.

Lemma 9 (Commutativity of ‖) For any R1,R2 ∈ S, we have

R1 ‖ R2 � R2 ‖ R1 . (‖-comm)

Proof of Lemma 9. Lemma 1 in Sect. 4.2 makes it easy to show R1⊗R2 � R(scope(R1)∪ scope(R2)) � R2⊗R1.
Furthermore, the symmetric duals (i.e., ‖-r-step is the dual of ‖-l-step) of the rules in Definition 15 yield the same
→ and, hence, the same �u . �

Lemma 10 (Associativity of ‖) For any R1,R2,R3 ∈ S with disjoint scopes, that is,

scope(R1) ∩ scope(R2) ∩ scope(R3) � ∅,

we have

(R1 ‖ R2) ‖ R3 � R1 ‖ (R2 ‖ R3) . (‖-assoc-1)

Proof sketch for Lemma 10. Because of empty shared scopes, the side conditions always hold on both sides and
states are merged by disjoint union. Set operations on states and events are commutative and associative. By
definition,22 all factors (Definition 3) share the alphabet �, that is, they synchronise on all events (Sect. 4.2).
Thus, interleaving is avoided, the alphabetised parallel operator takes � on both sides and, this way, reduces to
synchronous parallel composition for which a general associative law is available [Ros10, p. 60]. �
Lemma 10 allows the use of ‖f∈F 0f as a shortcut for ((. . . (0f1 ‖ 0f2) ‖ . . .) ‖ 0fn) with fi ∈ F .

Lemma 11 (Associativity of ‖) For any R1,R2,R3 ∈ S with equal scopes, that is,

scope(R1) � scope(R2) � scope(R3) ,

we have

(R1 ‖ R2) ‖ R3 � R1 ‖ (R2 ‖ R3) . (‖-assoc-2)

Proof sketch of Lemma 11. The proof is analogous to the proof of Lemma 10. �

7.3. Constraints

In Sect. 6, we specified relations over risk spaces to determine → by pruning R × R. We now use constraints
as a construct in the language of RiskStructures (Definition 14). The redundancy coming with this construct
can be used to identify inconsistencies between R and the real world, potentially helpful in model refinement,
completion, and validation [Gle14]. Particularly, these inconsistencies allow choices for their resolution. We can
make such inconsistencies explicit as follows.

For factors F ⊆ F , constraints C ⊆ C, and a risk state σ ∈ R(F), we call

R
C
σ � [‖f∈F σ (f)]C

with R0 � {σ } the characteristic risk structure of σ under constraints C . But which definition of σ −→ is most
useful? To investigate this, we split the determination of σ −→ for R

C
σ into three fractions σ −→c,f,p with

σ −→c derived from C , with σ
τc
−→ σ ′ ∈ σ −→c ⇐⇒ (σ, σ ′) ∈ [[C]]Rc ,

σ −→f from Definitions 3 and 15, with σ
e
−→ σ ′ ∈ σ −→f ⇐⇒ σ

e
−→ σ ′, and

σ −→p from process P , with σ
e
−→ σ ′ ∈ σ −→p ⇐⇒ e ∈ ini tials(P) ∧ σ ′ ∈ reach(σ,P) .

These fractions give rise to the following inconsistencies:

1. The relation σ −→c \ σ −→f describes sensible transitions with invisible events signified by τc. We choose to
prune transitions from −→ if they deviate from what is provided in −→f .

22We provide the rationale for this definition in Sect. 7.5.

M. Gleirscher et al.

Fig. 9. Semantics of σ −→ for the constrained form [R]C according to Definition 16

2. The relation σ −→f \ σ −→c describes irrelevant transitions labelled with a τf . We choose to prune transitions
from −→ if they violate constraints and, hence, lead to inconsistencies in R.

3. The relation σ −→p \(σ −→c ∪ σ −→f) describes imperceptible transitions. In−→, we could label such transitions
with a τp, making them subject of process-driven disclosure of R.

4. The relation (σ −→c ∩ σ −→f) \ σ −→p describes unrealised transitions. We could prune such transitions from
−→, because they are not realised in P and, hence, would only add little value to R.

This case analysis is visualised in Fig. 9 and suggests several possibilities to design a semantics for constraints.
As indicated in the case list, one would desire the following possibility for −→:

σ −→ � (σ −→c ∪ σ −→f ∪ σ −→p) \
(

(σ −→c \σ −→f)
︸ ︷︷ ︸

1. reduce to F

∪ (σ −→f \σ −→c)
︸ ︷︷ ︸

2. reduce to C

∪ (σ −→c ∪ σ −→f \σ −→p)
︸ ︷︷ ︸

4. reduce to P

)

� σ −→c ∩ σ −→f ∩ σ −→p . (by set-algebraic manipulation)

Corollary 6 For any characteristic structure R
C
σ , we have σ −→c \ σ −→f � ∅ because of the input-enabledness

[Tre08] of factors and, thus, σ −→ � σ −→c ∩ σ −→p.

To weaken the dependency of R on a possibly partially known process, we apply the following definition.

Definition 16 (Constraint) Let R be a risk structure (Definition 14) with [[R]]r � (R, �u ,→,R0) and C a set
of constraints well-formed for R (Sect. 6, Definition 13). The constrained form [R]C is defined by [[[R]C]]r �
(R, �u

C ,→C ,R0).→C is determined by the following two rules. For σ, σ ′ ∈ R

Based on −→C , �u
C � {e ∈ 2�τ

| ∃ σ, σ ′ ∈ R : σ
e
−→C σ ′}.

For arbitrary structures, the [·]C -step rule implements −→ � −→c ∩ −→f (i.e., cases 1 and 2). The reduction of
unrealised transitions and the coverage of imperceptible transitions (i.e., cases 3 and 4) could be addressed by an
incremental construction of R. [·]C -cancel produces τf self-loops to preserve input-enabledness.23 Notice that
τf -loops remain whether or not they are contained in further constraints applied to R, and also that Corollary 6
and Definition 16 prevent constraints such as causes from producing τc. Overall, the rules ‖-l-step, ‖-r-step,
‖-s-step, [·]C -step, and [·]C -cancel determine the operational semantics of a risk structure as an LTS and,
together with reach (Sect. 5.4), form a basis for automated reasoning about RiskStructures. We demonstrate
such automation with our tool prototype Yap [Gle21].

Remark 2 The meaning of f causes g, specified as a relation in Sect. 6.1, can now be investigated in the LTS
semantics of R. On a particular path through R according to−→C from a state in R0, whenever f gets active, g must

23Operationally, [·]C -cancel acts like a SK I P , non-blocking ST O P , or a hiding of trace suffixes. Hence, we define τf � �.

RiskStructures: A design algebra for risk-aware machines

get active in the same or the following state. This way, causes constraints allow immediate or weak causation and
requires constraints delayed or strong causation at most one logical step apart in R. The weak form of causes
enforces the simultaneous occurrence of f and g, it synchronises the activation of g with the prior activation of f.
Moreover, g can stay active forever and may already be active before the activation of f. Consider that g might
have been activated by a factor or a causal relationship not (yet) captured in R. Such activation is by default
possible in R once g is in the factor set.

Algebraic properties of constraints ([·]C). Let Ci ⊆ C for i ∈ {1, 2, 3}. We have that [R]∅ � R by Definition 12.
The following lemma establishes that the order in which single constraints are applied to R does not matter.

Lemma 12 (Exchange of [·]C and ∪)

[[R]C1
]C2
� [R]C1∪C2

(15)

Proof sketch. The proof is by induction over C1, supported by an additional lemma for the induction step,
and takes advantage of associativity of set intersection as used in Definition 12. The detailed proof is stated in
Appendix A. �

Lemma 13 (Idempotency)

[[R]C]C � [R]C ([·]C -idem)

Proof sketch. This lemma follows from Lemma 12 and idempotency of set union. �

Lemma 14 (Commutativity)

[[R]C1
]C2
� [[R]C2

]C1
([·]C -comm)

Proof sketch. This lemma follows from Lemma 12 and commutativity of set union. �

Lemma 15 (Associativity)

[[R]C1∪C2
]C3
� [[R]C1

]C2∪C3
([·]C -assoc)

Proof sketch. This lemma follows from Lemma 12 and associativity of set union. �
For an arbitrary C ⊆ C, we relax Definition 16 by establishing following equivalence

[R]C � [R]C ′ (16)

for the largest C ′ ⊆ C well-formed for R (Definition 13). Then, [R]C denotes the structure resulting from
applying only and exactly the constraints in C ′. Moreover, Definition 16 complements Definition 15 by guarding
the ‖-l-step, ‖-r-step, and ‖-s-step rules. In this way, the application of a constraint c ∈ C to a risk structure R

restricts its transition relation →. Definition 16, together with the relational pruning for three out of the four
mentioned cases (cf. Fig. 9), yields the following refinement law.

Lemma 16 (Constraints trace-refine)

R ⊑T [R]C

Proof sketch. The proof is by showing that traces (R) ⊇ traces ([R]C). Fix t ∈ traces ([R]C) with t � f ˆl for
induction over the split of t into f and l . Induction step: Assume that f ∈ traces (R) as induction hypothesis (IH).

With l � 〈e〉ˆl ′ and t � f 〈̂e〉ˆl ′, there exist σ, σ ′ ∈ R such that σ
e
−→C σ ′ and, according to rule [·]C -step, such

that e ∈ �u , σ
e
−→ σ ′, and (σ, σ ′) ∈ [[C]]Rc . Because of IH and σ

e
−→ σ ′, there must be a trace f 〈̂e〉ˆl ′′ ∈ traces (R)

and, because of downward closure, a trace f 〈̂e〉. e is part of l and, therefore, t such that we complete the induction
step and establish the new IH f 〈̂e〉. (We do not need to prove the equivalence l ′ � l ′′.) The case f � 〈〉 provides
the induction start and l � 〈e〉 terminates the induction. �

Following the pruning semantics described in Fig. 9, Lemma 16 establishes the desirable effect of constraints,
the pruning of the transition relation of R according to the relational specification of the added constraints.
However, an investigation of the conditions under which constraints are compositional, that is, when they can be
exchanged with, for example, ‖, is left for future work.

M. Gleirscher et al.

Listing 2: Yap script modelling the situation manual
from Table 2

1 factormodel for manual {
2 // single compound consequence on a single asset: impact on

human driver
3 col desc "collision"
4 accident
5 detectedBy(.crashSens)
6 mitigatedBy(.rA)
7 requires(ncol)
8 sev=[10,20);
9

10 strA desc "airbag spurious trip"
11 causes(locd)
12 sev=[5,12);
13 locd desc "loss of driving control"
14 preventsMit(ncol,locd) // mitigation lock at loc
15 requires(strA)
16 sev=[2,17);
17 ncol desc "near collision"
18 detectedBy(.ODM)
19 mitigatedBy(PREVENT_CRASH.swBr)
20 direct
21 sev=[5,18);

22 }
23

24 controlloop vehOnRd {
25 mode ODM desc "object detection and distance measurement

system"
26 guard "distToNOoT < SBD" // distance To Nearest Object on

Trajectory Is Less Than Safe Braking Distance
27 embodiedBy lidar;
28

29 mode SwBr desc "swerve and brake"
30 type PREVENT_CRASH
31 target (act=SwBr); // perform low−level procedure
32

33 mode crashSens desc "crash sensor"
34 update "shock=true"; // forward validated shock signal to

airbag
35

36 mode rA desc "release driver and passenger airbags"
37 guard "shock=true"
38 update "release=DrvAndPsgr"
39 embodiedBy airbag;
40

41 lidar;
42 airbag;
43 }

Fig. 10. Risk structure Rmanual with the factor set F � {locd, ncol, strA, col} generated by Yap from Listing 2

Finally, we discuss the special case that constraints are applied to a phase p ∈ Phf of a factor f. Observe that
scope(p) � {f} and, by Definition 13, C is well-formed for R(scope(p)) if C contains only constraints that refer
to f. Moreover, if C does not contain self-referential constraints (Sect. 6.1), Formula (16) entails C ′ � ∅ for the
largest well-formed C ′ ⊆ C . From this observation, we obtain

[p]C � [p]C ′

︸ ︷︷ ︸

by Formula (16)

� [p]∅
︸ ︷︷ ︸

by Definition 13

� p
︸︷︷︸

by Definition 12

.

The effect of this last result is that single factors are not affected by constraints other than self-referential ones. Self-
referential constraints such as f direct can, however, restrict p or convert p to SK I P . Often, such constraints
can be avoided because they do not offer much expressiveness over bespoke factor models.

7.4. Example: risk factors on the road (cont’d)

We develop the example in Sect. 3 and sects. 4.3 and 6.3, modelling instances of the factor setF � {locd, ncol, strA, col}
with corresponding events and compose these factors into the structure

Rmanual � [((0strA ‖ 0locd) ‖ 0ncol) ‖ 0col]C

for the situation manual. C contains dependencies such as locd preventsMit {ncol, locd} and strA causes locd.
The full dependency list can be derived from Listing 2. Figure 10 shows the transition graph for Rmanual after
applying composition and constraints. The edges are labelled with factor events and the nodes with active factors.
Listing 2 is written in Yap script, the input language for our tool Yap [Gle21], which allows one to encode a
situation/action/factor table (Table 1a) and elaborate the example in Sect. 3 in several steps.

Collision (col) is the first phenomenon we model as a factor. With the detectedBy directive, we specify that
a collision is detected by a crash sensor (crashSens) that signals the release of an airbag (r A). We associate an
interval col.s � [10, 20) of 10 to 20 “negativity units” to a collision.

RiskStructures: A design algebra for risk-aware machines

To illustrate scoping of a risk structure, we use the keyword accident to declare col as final. Mitigation of final
factors is out of scope, so vehicle control would not take into account crashSens and r A in this case. However, in
practice, col is not final because of being mitigated by an airbag. Capturing a step of accident analysis–technically,
backwards causal reasoning–the dependency col requires ncol specifies that a near-collision is assumed to occur
before any collision.

A near-collision (ncol) is detected by an object distance measurement system (ODM). The ODM is responsible for
monitoring the predicate distT oN OoT < SB D, which is true if the distance measured to the nearest object on
the road within the planned vehicle trajectory (distT oN OoT) is smaller than the safe braking distance SB D.
We assume an interval ncol.s � [5, 18) with a smaller upper bound than the one for col because the indirection
to the accident reduces the possibility of bad consequences. Concretely, the likelihood of consequences from col
is reduced by the action swBr . Based on the discussion in Sect. 4.4, we plan in future work to quantify this
likelihood through probabilistic factor transitions.

The mitigatedBy(PREVENT CRASH.swBr) directive specifies as a mitigation of ncol the swerve-and-break
manoeuvre (swBr). The constraint direct specifies that swBr to be the event mncol

d (cf. Fig. 2a). Shown in the
controlloop block, swBr is a low-level control mode to be elaborated in an external model (e.g. in MATLAB
or its free alternative GNU/Octave24). PREVENT CRASH is a classifier from which generic parameters for low-
level controllers of this kind could be inherited. The modelling of modes is akin to the specification of guarded
commands (i.e., using the guard and update attributes). We demonstrate in [GC20] how Yap modes can be used
for controller synthesis, and in [FGC20] how factor LTSs can be modelled as hybrid automata, simulated in
GNU/Octave, and formally verified in Isabelle/UTP.

By FMEA of the airbag, we identify its spurious trip (strA) and assume it to be one of possibly several sufficient
causes of a loss of driving control (locd). This finding is captured by the two dependencies strA causes locd and
locd requires strA. strA gets assigned the interval strA.s � [5, 12).25 We specify the interval locd.s � [2, 17). More-
over, locd preventsMit {ncol, locd} captures the fact that after a loss of control, manual driving mode prevents
the mitigation of ncol. Additionally, locd locks itself using a circularity so that, in Rmanual, it cannot be mitigated.

From the severity intervals calculated for each risk state according to Formula (5) (see the state labels in
Fig. 10), we establish

col <m ncol �m locdstrAncol <m locdstrA <m 0 .

Notice that, according to≤m, the statencol is equivalent to locdstrAncol . This equivalence results from the equality
of the upper bounds of both intervals [5, 18) and [2, 18). Although one might think that the state with the smaller
lower bound (i.e., locdstrAncol) is better, consider that ncol has two active factors less. This circumstance gives
rise to investigate refinements of≤m. In fact, our tool Yap [Gle21] implements a special case of≤m distinguishing
pairs (σ, σ ′) of risk states that normally are σ �m σ ′ because they only differ in the lower bounds of their severity
intervals.

The state F with all factors activated (cf. Definition 11) is not reachable from 0. Moreover, only one of the five
relevant states in Rmanual is covered by a mitigation swBr for ncol. In practice, one desires mitigations that cover
many states or mitigate several factors at once. Although it is useful to statically assign severity intervals for analysis
purposes, it is obvious that these intervals will in most applications of risk-aware machines have to be estimated
online. From a particular state, online estimation allows one to trigger a mitigation based on a severity threshold
that codifies an unacceptable level of risk. Moreover, a risk structure makes this estimation explicit and potentially
simpler. Overall, the Rmanual is a simple risk structure, yet showing many features of RiskStructures. Figures 11a
and 11b in Appendix B show a more complex structure for a set of six factors, generated by Yap in 66 milliseconds.
The use of constraints leads to a focus on 24 out of the 4096 (46 from using four-phase factors) risk states.

7.5. Discussion: compositional abstraction

Event abstraction Events in the CSP interpretation are atomic observations [Ros10, Ch. 1.5]. The initiation and
termination of events representing complex enduring real-world phenomena are to be viewed as non-separable
aspects of these events. Consequently, care is necessary when making assumptions about the atomicity of such

24GNU/Octave, https://octave.sourceforge.io.
25To keep the model simple for the sake of illustration, the upper bound 12 takes into account the possibility that the driver might be able

to regain control after the airbag deflates.

https://octave.sourceforge.io

M. Gleirscher et al.

events interfering with other events. Nevertheless, we consider the event sets in Fig. 2b and their embedding
into compound events (Sect. 7.1) useful to model the initiation, termination, or other significant events of the
corresponding sub-processes (i.e., endangerment and mitigation processes) of P .

Any implementation of a risk structure as a safety controller needs to make an assumption about how shared
resources, such as actuators, are used. In CSP, two processes (e.g. two factors) cannot engage in two different events
on the same channel at the same time. Hence, resource sharing has to be implemented outside a risk structure,
creating two cases: (a) mitigation actions of two factors mapping onto the same resource simultaneously occur
and (b) a mitigation action competes with an action outside the safety controller. In case (a), signal priorities or
more sophisticated signal merge functions may determine the control inputs to be forwarded. Case (b) suggests
the use of a safety override, that is, giving priority to the safety controller.

Shared factor alphabet for compositional abstraction The side conditions in the rules of ‖ (Definition 15) prohibit
any behaviour leading to inconsistent states. The composition constrains the behaviour of two structures with an
overlapping scope. Corollary 6 summarises our decisions on defining the constraint operator in such a way that
Lemma 16 confirms this operator to form a refinement of a risk structure.

Were we to use arbitrary CSP processes for factors and were we to allow different interfaces for each use
of the parallel composition operator, several structures, when composed, would not have guaranteed freedom
from interference, exhibit different event and state traces and, consequently, the order of their composition would
have led to different risk models. Associative laws for generalised parallel composition in CSP are not universally
applicable. Discussions by Oliveira et al. [OCW09] and Roscoe [Ros10, p. 60] highlight how differences in the
alphabets shared between each pair in a set of risk structures would entail meaning to the order in which these
pairs are composed. For example, in CSP, the equality (P ‖

X

Q) ‖
Y

R � P ‖
X

(Q ‖
Y

R) holds generally only if X � Y .

In case of X �� Y , one has to compare the traces of the composed processes to prove specific guarantees to be
preserved by their composition. This can be computationally complex.

Overall, we obtain two advantages in RiskStructures when using factors with an alphabet as described in
Sect. 7.1. First, all factors have to always agree on their view of the same process P . Second, overlapping scopes
in CSP terms then mean copies of factors that will be reduced by idempotency if deterministic (see Lemma 8).
The transformation of factors into CSP (Sect. 7.1) encodes all the information from the risk space R into the
processes 0f , f , and f . This way, we restrict the use of generalised parallel composition to the use of synchronous
parallel composition [Ros10, p. 45].

Risk graphs and Yap The risk graphs in Figs. 7, 8 and 10 omit the transition self-loops for nominal, endangered,
and mitigated operation because these are non-essential for endangerment and mitigation. Currently, Yap explores
risk by changing (i.e., activating, mitigating) one factor at a time unless constraints such as causes are used.
causes enforces the synchronisation of phase changes of involved factors. Because of input-enabledness from
the compound event construction (Sect. 7.1), interleaving is avoided, but non-determinism can arise from non-
deterministic factors. However, composition according to Definition 15 is more flexible because it allows several
factors to change their phases simultaneously. This ability is exploited for the synthesis of safety controllers
from Yap models in [GC20]. Furthermore, Definition 15 does not require input-enabledness but it relies on the
alphabet defined in Sect. 7.1. Anyway, the use of a risk structure as a concurrent monitor or, more actively, as a
safety controller, makes input-enabledness a useful requirement.

7.6. Discussion: uncertainty in RiskStructures

Recall the notion of risk as an action with an uncertain and undesired outcome. As summarised in Fig. 1, a risk
structure focuses on such outcomes.26 Consequently, we propose risk structures as one way of formalising the
irreducible (or aleatory) uncertainty associated with the actions of a risk-aware machine operated in a particular
domain. Table 5 highlights low-level epistemic and aleatory uncertainties about a risk structure itself as a formal
model of aleatory uncertainty in that domain, and as a model of a safety controller of that machine. Table 5
classifies these low-level uncertainties based on the discussion in [BFK13] and indicates how RiskStructures

incorporate and support the handling of these uncertainties.

26Desired or certain outcomes are not typically subject of operational risk analysis of autonomous machines.

RiskStructures: A design algebra for risk-aware machines

Table 5. Summary of uncertainties inherent to and controllable in RiskStructures

RiskStructures at design-time at run-time Mathematical Can be implemented by . . .

can be uncertain epistemic1 aleatory2 epistemic3 approach
in their . . . (imprec.) (variab.) (meas.)

Factor uncertainties

factor observation yes – yes subsetting ef only covers domain subset
impact quantification yes yes yes intervals severity bounds
phase changes yes – yes non-determinism overlapping factor event sets
risk qualification yes – – partial order partial phase order �f

Structural uncertainties

analysis scope yes – – relations factor dependencies/omission
risk qualification yes – – partial order partial mitigation order �m

risk quantification yes yes yes interval arithmetic strong mitigation order ≤m

To be investigated in future work

phase changes yes yes yes MDPs transition probabilities

Legend: 1analytic imprecision, 2physical parameter variability, 3parameter measurement, – not applicable

Non-deterministic and partial risk factors With non-deterministic factors (Sect. 4.4) in R, from an observed
phase/event, P can reach several distinct phases and, thus, risk states. Without further information, R ceases
to know which of these states was actually reached. R would be in a risk state region, ordered and bounded
by min≤m

/ max≤m
(Sect. 5.4), suggesting to express R’s uncertainty by a risk interval. If factor phases carry

information about P ’s state in terms of disjoint state invariants, we can build state estimators into R, able to
gradually restore lost state information, narrow the interval, and again uniquely identify P ’s actual risk state.
Following up on Sect. 4.4, if we can show that a risk structure is an Input/Output LTS and it can be transformed
to a non-deterministic finite Mealy machine, the state estimation problem can be solved, for example, by homing
algorithms used for passive testing [NSV03].

Partially specified risk factors (e.g. because of partial activation or mitigation analysis according to Tables 1b
and 1c) may lead to sensible transitions τc (cf. Sect. 7.3). Occurrences of τc could be used to incrementally learn a
property enforcer guided by unrealised events from risk factors.

8. Related work

Following up Sect. 2.1, we summarise research on dependability modelling for repairable systems, algebraic
methods for risk assessment, run-time monitoring, and risk-aware planning and control. We discuss the role of
RiskStructures in the design of safety controllers.

From dependability analysis to RiskStructures Leveson and Stolzy [LS87] investigate reachability graphs of
timed Petri nets with failure places to assess fault-tolerance of safety-critical real-time systems. RiskStructures

form a projection and compositional generalisation of such graphs when risk factors are used to model faults.
Based on the annotation of a component architecture with a fault model, Unanue et al. [UPM18] show the
synthesises of a failure automaton, a temporal fault/repair tree, and MCSs from this tree. From the failure
automaton, they construct an extended Petri net to calculate failure probabilities to identify critical MCSs. Unanue
et al.’s use of graphical models is intuitive and practical. A failure automaton corresponds to a risk structure
with directly reducible risk factors modelling failure and repair. The commonalities of our framework with
theirs suggests that RiskStructures can use input from state-of-the-art dependability assessments of repairable
systems for the design of safety controllers. At the moment, however, RiskStructures provide no direct support
for modelling probabilistic actions.

As discussed in Sect. 6, FTs (Sect. 2.1) can be translated into RiskStructures using factor dependencies.
Because of the step semantics of constraints (cf. Definition 12), such a translation is also possible for PAND and
POR gates27 used in dynamic FTs. This way, RiskStructures can include a translation of FTs generated from

27These are AND and OR gates that also express priority in a FT by taking into account the order of event occurrences.

M. Gleirscher et al.

system architectures (see, e.g. [UPM18]). The expressiveness of risk factors enables the combination of Boolean
factors modelling failures internal to an autonomous robot with factors modelling hazards in physical processes
in this robot’s environment.

Hansen et al. [HRS98] use the Duration Calculus to derive safety requirements from system FTs for the
incremental design of safety-critical real-time controllers. We have shown an integration of FTA and incremental
design in [GC17], however, from a less rigorous perspective. Because FTs can be modelled by RiskStructures,
an adoption of Hansen et al.’s approach suggests a refinement of the risk factors defined in Figs. 2a and 4 for
deriving safety controllers for real-time systems.

Algebraic methods for risk assessment The only algebraic approach to design-oriented risk assessment, we could
find, is from Hamdi and Boudriga [HB03]. They formalise IT security risk management as an algebraic datatype
specification to check the consistency of security risk analyses viewed as algebras. Probability of occurrence and
severity of consequence are modelled as metrics over attack actions to select optimal countermeasures using
multi-objective optimisation. While focusing on security management, their algebraic datatype is an inspiration
for a further formalisation of consequences and assets in Sect. 6.3. However, our action abstraction and the use
of CSP offers a design method for safety controllers as opposed to the more abstract attack model proposed in
[HB03], which focuses on risk assessment.

From RiskStructures to safety monitors and controllers As mentioned for the comparison with [UPM18], each
factor f (Fig. 2) can be seen as a sequential monitor automaton for a process P , with f’s events being triggered (i.e.,
sensors, variable checkers) by P ’s actions. A risk structure R then forms a concurrent monitor of P ’s risk space,
each risk state being concurrently monitored for the detection of endangerments (i.e., safety violations) and
mitigation successes (i.e., mitigation acceptances).

Guiochet et al. [GPBB08] encode a risk model into a monitor automaton with partially ordered safety modes,
each with a constraint limiting the parameters of robot actions to a mode-specific risk level. Refining this idea,
Mekki-Mokhtar et al. [MMBG+12] distinguish between safe, warning, and catastrophic states with safety trigger
conditions. Based on this framework, Machin et al. [MGW+18] apply model checking to determine whether
catastrophic states can be reached despite such triggers. The authors present an algorithm for the synthesis of
a mitigation policy, that is, minimal sequences of interventions to reach the nearest safe state from any warning
state fulfilling validity, permissiveness, and safety. Our framework could enhance their refined hazard model with
an algebraic method and the specification of dependencies between hazards.

Based on the MOP approach to RV [MJG+11], Huang et al. [HEZ+14] present a monitoring infrastructure for
(i) checking trace properties (specified in different formalisms) observable from communications between ROS
modules and (ii) the property-triggered execution of mitigations. Bogdiukiewicz et al. [BBH+17] describe how
monitors can be formally developed in a step-wise manner using Event-B, an abstract state machine language
supporting refinement-based development. RiskStructures provide a bridge between formal risk modelling and
the design of monitors in Event-B as shown in [BBH+17], in the ROS-specific MOP framework [HEZ+14], or the
ROS-based framework proposed in [SLJS16].

From RiskStructures to risk-aware control Works in (stochastic) optimal control [PBHS13, San14, FC14,
MS14, SSSS18], summarised in Sect. 2.1, incorporate risk either as a (chance) constraint not to be violated or
as a minimisation criterion for determining an optimal plan. The underlying stochastic models allow the per-
state estimation of expected risk. Severity intervals would allow a per-state estimation of the expected risk range.
Complementary to, for example, Sanger’s neuronal network-based controller [San14], RiskStructures provide
an algebraic method for structuring and composing complex risk models (i.e., state spaces, value functions, action
spaces) in a verifiable manner. Once a risk model is found and validated, optimal control provides the low-level
mathematical framework for detailed controller design.

9. Conclusion

The certification of autonomous systems requires the rigorous verification of their safety controllers. From the
application of formal methods in other domains, we know that the emerging complexity of such controllers
can be tackled by compositional verification. With RiskStructures, we proposed a novel algebraic framework
for the modelling and analysis of the risk profile of an automated or autonomous machine in its multi-scenario
operational environment. This framework also supports the construction of discrete-event safety controllers that,

RiskStructures: A design algebra for risk-aware machines

when integrated into the machine, improve this risk profile. These controllers incorporate an explicit and, thus,
verifiable structure of the risk awareness of such a machine. The presented algebraic laws support the design of
and reasoning about these controllers. The proposed theory was applied in form of situation/action/factor tables
used to craft risk models with the Yap tool and resulted in the generation of risk graphs useful for controller
design. To the best of our knowledge, this work is the first to provide an algebraic account of risk modelling and
systematic safety controller design for risk-aware machines.

Future work Our work on this framework has led to a range of new research directions we want to pursue in the
near future. The further development of our framework will include its extension to more general and more refined
forms of risk factors; the elaboration of probabilistic factor semantics; the investigation of more specific mitigation
orders, the construction of risk lattices from risk spaces, mitigation orders, and event structures; the development
of analysers for risk estimation and synthesizers for safety controllers; the derivation of RiskStructures from
dynamical models; the further discussion of factor characteristics such as compatibility; the investigation of
distributivity of composition and constraints; and a mechanisation and extension of further proofs using a
specialised proof assistant such as Isabelle/UTP [FBC+20].

Acknowledgements

Mario Gleirscher was supported in part by the German Research Foundation (DFG) under the Fellowship
Grant no. 381212925. Work by Radu Calinescu and Mario Gleirscher was partially supported by the Lloyd’s
Register Foundation under the Autonomy Assurance International Programme (AAIP) Grant CSI:Cobot. Radu
Calinescu was additionally supported by the UKRI Project EP/V026747/1 “Trustworthy Autonomous Systems
Node in Resilience”. We would like to thank Simon Foster for inspiring discussions on the use of relational
specification; Ana Cavalcanti and Cliff Jones for insightful questions about the abstraction, composition, and
methodology underlying RiskStructures; James Baxter, Alvaro Miyazawa, and Pedro Ribeiro for enlightening
conversations about CSP. We are also thankful to Sam Clark for helpful feedback on an early version of the
introductory and closing sections.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and
indicate if changes were made. The images or other third party material in this article are included in the article’s
Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds
the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Author Contributions. •Mario Gleirscher: Conceptualization, Methodology, Formal analysis and investigation,
Writing - original draft preparation, Writing - review and editing, Funding acquisition. • Radu Calinescu: Writ-
ing - review and editing, Funding acquisition, Resources, Supervision. • Jim Woodcock: Formal analysis and
investigation, Writing - review and editing, Resources, Supervision.

Abbreviations

AV Autonomous vehicle

CSL Continuous stochastic logic

CSP Communicating sequential processes

CTMC Continuous time Markov chain

ETA Event tree analysis

FMEA Failure mode and effects analysis

FT Fault tree

http://creativecommons.org/licenses/by/4.0/

M. Gleirscher et al.

FTA Fault tree analysis

HazOp Hazard and operability studies

IH Induction hypothesis

IOLTS Input/Output LTS

IS Induction step

LOPA Layer of protection analysis

LTS Labelled transition system

MCS Minimum cut set

MDP Markov decision process

MOP Monitoring-oriented programming

ROS Robot operating system

RV Run-time verification

STAMP System-theoretic accident model and process

STPA System-theoretic process analysis

TS Transition system

UML Unified modelling language

A. Proof details

This section provides further proof details. The symbol � indicates a discharged case distinction.
Proof of Lemma 1. The proof is by mutual existence and uniqueness: For each σ ∈ R(F1 ∪ F2) (i) there exists a
σ1 ∪ σ2 ∈ R(F1)⊗ R(F2) and (ii) this pair is unique, and (iii, iv) conversely.

Below, we will need the infix binary operator scheme · |F ′ : R(F) → R(F ′) that describes the (phase-invariant)
projection from R(F) to R(F ′) with F ′ ⊆ F .

We show (i): Let σ ∈ R(F1 ∪ F2), then, by definition, σ is a total injection and, hence, every restriction of σ

is a total injection, particularly, the restrictions σ |F1
and σ |F2

. Obviously, we have σ |F1
(f) � σ |F2

(f) for all
f ∈ F1 ∩ F2. Furthermore, by definition, σ (f) is faithful to Phf for all f ∈ F1 ∪ F2 and, thus, so are both these
restrictions. These two results lead to σ1 � σ |F1

∈ R(F1) and σ2 � σ |F2
∈ R(F2) and, finally, to the existence of

the wanted pair. �

We show (ii): Suppose there are two pairs (σ1, σ2) �� (σ ′1, σ2) ∈ R(F1)⊗ R(F2). Then there exists f ∈ F1 \ F2

where σ1(f) �� σ ′1(f), thus, also σ1 ∪ σ2 �� σ ′1 ∪ σ2. However, there can be no faithful total injection σ ∈ R(F1 ∪F2)
such that σ � σ1 ∪ σ2 ∧ σ � σ ′1 ∪ σ2. �

We show (iii): For each σ1 ∪ σ2 ∈ R(F1) ⊗ R(F2) there exists a σ ∈ R(F1 ∪ F2) � {σ ∈ (F1 ∪ F2) →
⋃

f∈F1∪F2
Phf | σ is a total injection ∧ ∀ f ∈ F1 ∪ F2 : σ (f) ∈ Phf}: By definition, both σ1 and σ2 are faithful

total injections (i.e., matching results for all f ∈ F1 ∩ F2). Then, we can construct a faithful total injection σ by
applying set union to the domains and co-domains of these two. Thus, σ ∈ R(F1 ∪ F2). �

We show (iv): Suppose from σ1 ∪ σ2 we can construct σ �� σ ′ ∈ R(F1 ∪ F2) then there exists f ∈ F1 ∪ F2 such
that σ (f) �� σ ′(f). However, then either σ1 or σ2 must have violated injectivity which in turn would have violated
the definition of R(F1)⊗ R(F2). �
Proof of Lemma 2. (F ,∪) is a semi-group because ∪ is an associative binary operation on F . We have that

σ1 ≈ (σ2 ∪ σ3) ⇔ σ1 ≈ σ2 ∧ σ1 ≈ σ3 . (17)

RiskStructures: A design algebra for risk-aware machines

(The sub-proof based on the definition of ≈ is omitted here.) Based on Formula (17), we show by algebraic
manipulation that the binary operation ⊗ on R is associative:

R(F1)⊗ (R(F2)⊗ R(F3))

� {σ1 ∪ σ | σ1 ∈ R(F1) ∧ σ ∈ R(F2)⊗ R(F3) ∧ σ1 ≈ σ }

� {σ1 ∪ (σ2 ∪ σ3) | σ1 ∈ R(F1) ∧ (σ2 ∪ σ3) ∈ R(F2)⊗ R(F3) ∧ σ1 ≈ (σ2 ∪ σ3)}

� {σ1 ∪ (σ2 ∪ σ3) | σ1 ∈ R(F1) ∧ (σ2 ∈ R(F2) ∧ σ3 ∈ R(F3) ∧ σ2 ≈ σ3) ∧ σ1 ≈ (σ2 ∪ σ3)}

� {(σ1 ∪ σ2) ∪ σ3 | (σ1 ∈ R(F1) ∧ σ2 ∈ R(F2)) ∧ σ3 ∈ R(F3) ∧ σ2 ≈ σ3 ∧ σ1 ≈ (σ2 ∪ σ3)} (by Formula (17))

� {(σ1 ∪ σ2) ∪ σ3 | (σ1 ∈ R(F1) ∧ σ2 ∈ R(F2)) ∧ σ3 ∈ R(F3) ∧ σ2 ≈ σ3 ∧ σ1 ≈ σ2 ∧ σ1 ≈ σ3}

� {(σ1 ∪ σ2) ∪ σ3 | (σ1 ∈ R(F1) ∧ σ2 ∈ R(F2) ∧ σ1 ≈ σ2) ∧ σ3 ∈ R(F3) ∧ (σ1 ∪ σ2) ≈ σ3}

� {(σ1 ∪ σ2) ∪ σ3 | (σ1 ∪ σ2) ∈ R(F1)⊗ R(F2) ∧ σ3 ∈ R(F3) ∧ (σ1 ∪ σ2) ≈ σ3}

� (R(F1)⊗ R(F2))⊗ R(F3)

Hence, (R,⊗) is a semi-group, too. Lemma 1 completes the proof. �
Proof of Lemma 3.

We express the basic factor template from Fig. 2a in CSP as

f(2a) � 0f

0f � ?x : ef → f � ?x : of
n → 0f

f � ?x : mf
d → 0f � ?x : of

e → f � ?x : mf → f

f � ?x : ef → f � ?x : of
m → f � ?x : mf

r → 0f .

(As indicated in the Sect. 4.1 and 4.4, we consistently omit ef for the sake of simplicity.) Analogously, we express
the factor template with isolated non-determinism from Fig. 4 in CSP as

f(4) � 0f

0f � ?x : ef \ uef → f � ?x : of
n \ uef → 0f �

(
?x : uef →(0f ⊓ f)

)

f � ?x : mf
d → 0f � ?x : of

e \ umf → f � ?x : mf \ umf → f �
(

?x : umf →(f ⊓ f)
)

f � ?x : ef → f � ?x : of
m \ umf

r → f � ?x : mf
r \ umf

r → 0f �
(

?x : umf
r →(0f ⊓ f)

)
.

The inherent difference of the actions mf
d , ef , and ef from their phase competitors allows us to make the simplifying

assumption ef ∩ of
m � ef ∩ mf

r � ef ∩ of
e � ef ∩ mf � ef ∩ mf

d � mf ∩ mf
d � ∅. We further define uef � of

n ∩ ef ,

umf � of
e ∩ mf , umf

r � of
m ∩ mf

r . For the equivalence proof, we have to distinguish whether or not the events in

the three sets {ef , of
n }, {m

f
d , of

e , mf}, and {ef , of
m , mf

r } are pairwise disjoint.
Case 1: Events are pairwise disjoint. Then,

1. from the emptiness of uef , umf , and umf
r ,

2. from applying the CSP laws ?x : ∅→P �FD ST O P and P � ST O P �FD P [Sch99, p. 93] to f(4), and

3. from the resulting structure of f(4) being equivalent to f(2a),

we immediately derive f(4) �FD f(2a). �

Case 2: Events are not pairwise disjoint. Then,

1. from the potential non-emptiness of uef , umf , and umf
r ,

2. from applying the step law of external choice [Sch99, p. 93] to f(2a) in order to isolate, for example, ?x :

of
n ∩ ef →(0f ⊓ f), and

3. from our definitions (e.g. uef � of
n ∩ ef),

we again immediately have that f(2a) �FD f(4). The cases 1 and 2 complete the proof. �
The following corollary and its proof rule out potential errors in the proof of Lemma 4.

M. Gleirscher et al.

Corollary 7 (Converse of Lemma 4)

¬(σ � m σ ′) ⇐ ¬(σ �m σ ′) (by definition of �� m, ��m)

σ �� m σ ′ ⇐ σ ��m σ ′ (by negation and definition of � m,�m)

σ ≺mσ ′ ∨
(
(σ, σ ′) �∈ � m∧ (σ ′, σ) �∈ � m

)
⇐ σ ≺∼mσ ′ ∨

(
(σ, σ ′) �∈ �m∧ (σ ′, σ) �∈ �m

)
(18)

Proof of Corollary 7. Case 1: If (σ, σ ′) �∈ �m∧ (σ ′, σ) �∈ �m then (by Definitions 8 and 9) also (σ, σ ′) �∈ � m∧
(σ ′, σ) �∈ � m and, therefore, Formula (18). �

Case 2: If σ ≺∼mσ ′ � σ ′ �m σ ∧ σ ′ ��∼m σ , then we have either (σ, σ ′) �∈ � m∧ (σ ′, σ) �∈ � m (because of some
incomparable phases) which fulfils Formula (18). Alternatively, we have (σ ′, σ) ∈ � m which means σ and σ ′ are
fully comparable and, because of Corollary 2, we have σ ≺mσ ′. �
Proof of Lemma 5. For this we only need to show that any two risk states σ, σ ′ ∈ R are (i) comparable and (ii)
antisymmetric: [σ]∼s

≤m[σ ′]∼s
∧ [σ ′]∼s

≤m[σ]∼s
⇒ [σ]∼s

�m [σ ′]∼s
.

We show (i) by showing that the conditions (a) and (b) guarantee the comparability of any two risk states in
R based on the interval order ≤ as defined above and use the fact that comparability can be dropped from R/∼s

to R using [σ]∼s
≤m[σ ′]∼s

⇐⇒ ∀ σ̌ ∈ [σ]∼s
, σ̌ ′ ∈ [σ ′]∼s

: σ̌ ≤m σ̌ ′ (Formula (6)). Recall that we equate the empty
interval with the empty set, [) � ∅. Now, we have to consider the following three cases to complete the sub-proof
of (i):

Case “no risk factors activated”: [) ≥ [) ∨ ∅ ⊂ ∅ validates (b) and lack of comparability invalidates (a), yet
we have [σ]∼s

≤m[σ ′]∼s
. �

Case “at least one risk factor activated only in σ̌”: Let [a, b) � S (σ̌). [a, b) ≥ [) ∨ [a, b) ⊂ ∅ invalidates (a)
and (b). However, the observation [) ≥ [a, b) ∨ ∅ ⊂ [a, b) yields [σ ′]∼s

≤m[σ]∼s
. The dual of this case works

analogously. �

Case “at least one risk factor activated in both σ̌ , σ̌ ′”: Let [a, b) � S (σ̌) and [c, d) � S (σ̌ ′). We need to show
[a, b) ≥ [c, d) ∨ [a, b) ⊂ [c, d) for all a, b, c, d ∈ R: We can assume a ≤ b ∧ c ≤ d by definition of intervals.
Then, we face the case that

• c ≤ a ∧ d ≤ b validates (a) by definition of ≤ over intervals,

• c > a ∧ d ≤ b validates (b),

• c ≤ a ∧ d > b implies (b) for the dual case [σ ′]∼s
≤m[σ]∼s

, or

• c > a ∧ d > b implies (a) for the dual case.

Hence, from each of these four cases, either [σ]∼s
≤m[σ ′]∼s

or [σ ′]∼s
≤m[σ]∼s

follows.
Then, we show (ii) by contradiction: Assuming [σ]∼s

≤m[σ ′]∼s
∧ [σ ′]∼s

≤m[σ]∼s
, we have ∀ σ̌ ∈ [σ]∼s

, σ̌ ′ ∈
[σ ′]∼s

: σ̌ ≤m σ̌ ′ ∧ σ̌ ≥m σ̌ ′ by dropping from R/∼s. Now, we claim that [σ]∼s
��m [σ ′]∼s

. Hence, ∃ σ̌ ∈ [σ]∼s
, σ̌ ′ ∈

[σ ′]∼s
: σ̌ ��m σ̌ ′ and, consequently, ∃ σ̌ ∈ [σ]∼s

, σ̌ ′ ∈ [σ ′]∼s
: σ̌ �≤m σ̌ ′ ∨ σ̌ �≥m σ̌ ′. The latter contradicts our

assumption. �
Proof of Lemma 7. Fix a finite F ⊆ F and a pair σ, σ ′ ∈ R(F). The proof is by induction over F and relies on
the assumption that, for any f ∈ F , the phase f is the unique maximal element of �f and that active only returns
such elements:

Induction start F0 � ∅: σ |∅� m σ ′ |∅ holds trivially and so does active(σ ′ |∅) ⊆ active(σ |∅).
Induction step (IS) Fn+1 � Fn ∪ {f} where n ≥ 0 and f ∈ F \ Fn : For the IH, assume σ |Fn

� m σ ′ |Fn
⇒

active(σ ′ |Fn
) ⊆ active(σ |Fn

). Then, we show that σ |Fn+1
� m σ ′ |Fn+1

⇒ active(σ ′ |Fn+1
) ⊆ active(σ |Fn+1

) (i.e.,
the IS). For this, we prove

• the case of incomparable phases (σ (f), σ ′(f)) �∈ �f : In this case, the state pair gets incomparable and the
implication is trivially fulfilled,

• the inverse case σ (f) ≺fσ
′(f): In this case, the state pair gets incomparable and the implication is again trivially

fulfilled, and

• the aligned case σ (f) �f σ ′(f): In this case, the state pair stays comparable. However, σ ′(f) can either be
f (hence, σ (f) � f and maintaining ⊆), f (hence, σ (f) ∈ {f , f , 0f } and maintaining ⊆), or 0f (see former
sub-case).

Having proved these cases completes the induction step by establishing the IH.
For �m, we only have to substitute case 1 of the IS: For f, the smallest �f after Definition 3 implies incompa-

rability at most for (0f , f) and (f , 0f). These two phase pairs of f would not alter the active maps of both states
and hence maintain ⊆ as well. �

RiskStructures: A design algebra for risk-aware machines

Proof of Lemma 12. From associativity of set intersection in Definition 12, we know that the order in which
constraints are applied to R×R does not matter. Consequently, we also have [[k]]Rc ⊇ [[{k , k ′}]]Rc for any k , k ′ ∈ C,
that is, constraints only prune R × R. First, we prove the lemma

[[R]{k}]C � [R]{k}∪C . (19)

Fix σ
e
−→ σ ′.

⇒:

1. Case (σ, σ ′) ∈ [[k]]Rc : [·]C -step applies to [R]{k}.

(a) Case (σ, σ ′) ∈ [[C]]Rc : [·]C -step applies also to [[R]{k}]C . Then, (σ, σ ′) must be in [[k]]Rc ∩ [[C]]Rc , which by

Definition 12 is [[{k}∪C]]Rc . Because of (σ, σ ′) ∈ [[{k}∪C]]Rc , [·]C -step applies to [R]{k}∪C in the same way

as it does to [[R]{k}]C . [·]C -cancel does not apply. Consequently, if σ
e
−→ σ ′ is permitted (and added) by

the left-hand side (LHS) then it is permitted by the right-hand side (RHS) of Formula (19).

(b) Case (σ, σ ′) �∈ [[C]]Rc : [·]C -cancel applies to [[R]{k}]C instead of [·]C -step, resulting in the production of

σ
τf
−→C σ rather than σ

e
−→C σ ′ on the LHS. Because (σ, σ ′) �∈ [[C]]Rc , we have (σ, σ ′) �∈ [[{k}]]Rc ∩ [[C]]Rc

and, by Definition 12, (σ, σ ′) �∈ [[{k} ∪ C]]Rc . Hence, [·]C -cancel applies to RHS and produces σ
τf
−→C σ .

2. Case (σ, σ ′) �∈ [[k]]Rc : [·]C -cancel applies to [R]{k} instead of [·]C -step, producing σ
τf
−→C σ instead of σ

e
−→C σ ′

on the inner LHS.

(a) Case (σ, σ) ∈ [[C]]Rc : [·]C -step is applicable to [[R]{k}]C , producing σ
τf
−→C σ for the outer LHS.

(b) Case (σ, σ) �∈ [[C]]Rc : [·]C -cancel is applicable to [[R]{k}]C , producing σ
τf
−→C σ for the outer LHS.

Because of [[{k} ∪ C]]Rc � [[k]]Rc ∩ [[C]]Rc , in both cases (a) and (b), the [·]C -cancel rule applies to [R]{k}∪C ,

producing a σ
τf
−→C σ on the RHS of Formula (19). �

⇐:

1. If (σ, σ ′) ∈ [[{k}∪C]]Rc then [·]C -step is applicable to [R]{k}∪C and, because of [[k]]Rc ∩ [[C]]Rc , to the inner

and outer constraint in [[R]{k}]C . Thus, if σ
e
−→C σ ′ is produced on the RHS then so on the LHS.

2. If (σ, σ ′) �∈ [[{k}∪C]]Rc then [·]C -cancel applies to [R]{k}∪C and produces σ
τf
−→C σ on the RHS. However,

because of (σ, σ ′) �∈ [[k]]Rc ∩ [[C]]Rc , we have at least one of the two cases for the LHS:

(a) Case (σ, σ ′) �∈ [[k]]Rc : This matches case (2a), that is, [·]C -cancel and [·]C -step produce σ
τf
−→C σ for

[[R]{k}]C .

(b) Case (σ, σ ′) �∈ [[C]]Rc : This matches either case (1b) or case (2b), that is, in both cases [·]C -cancel and

[·]C -step produce σ
τf
−→C σ for [[R]{k}]C . �

Second, we show by induction over C1 that the [·]C -step and [·]C -cancel rules apply in the same way to both
sides of Formula (15).

Induction starts with C 0
1 � ∅: In this case, we have [[R]∅]C2

� [R]∅∪C2
and by applying [·]C -step or

Definition 12 on the left and ∅ ∪ C2 � C2 on the right, we get the tautology [R]C2
� [R]C2

. �

IS with C n+1
1 � C n

1 ∪ {k} where n ≥ 0 and k ∈ C1 \ C n
1 : By assuming [[R]Cn

1
]C2
� [R]Cn

1 ∪C2
(IH), we show

[[R]Cn+1
1

]C2
(by def of IS)

� [[R]Cn
1 ∪{k}

]C2
(by ∪-comm and Formula (19))

� [[[R{k}]Cn
1

]C2
(by IH)

� [[R{k}]Cn
1 ∪C2

(by Formula (19))

� [R]{k}∪Cn
1 ∪C2

(by def)

� [R]Cn+1
1 ∪C2

�

M. Gleirscher et al.

Fig. 11. Risk structure for all factors mentioned in Sects. 4.3, 7.4

B. Supplemental material for the road vehicle example

Figures 11a and 11b contain two parts of a larger risk structure for the road vehicle example illustrated and
discussed in the Sects. 7.4, 4.3, 3.

RiskStructures: A design algebra for risk-aware machines

References

[AASB+06] Alami R, Albu-Schäffer A, Bicchi A, Bischoff R, Chatila R, De Luca A, De Santis A, Giralt G, Guiochet J, Hirzinger G,
Ingrand F, Lippiello V, Mattone R, Powell D, Sen S, Siciliano B, Tonietti G, Villani L (2006) Safe and dependable physical
human-robot interaction in anthropic domains: State of the art and challenges. In: Intelligent robots and systems (IROS),
IEEE/RSJ international conference

[AKWB11] Althoff D, Kuffner JJ, Wollherr D, Buss M (2011) Safety assessment of robot trajectories for navigation in uncertain and
dynamic environments. Auton Robots 32(3):285–302

[ALRL04] Avizienis A, Laprie J-C, Randell B, Landwehr C (2004) Basic concepts and taxonomy of dependable and secure computing.
Dependable Secure Comput IEEE Trans 1(1):11–33

[AZI+17] Ajoudani A, Zanchettin AM, Ivaldi S, Albu-Schäffer A, Kosuge K, Khatib O (2017) Progress and prospects of the human-robot
collaboration. Auton Robots, 42(5):957–975

[BBH+17] Bogdiukiewicz C, Butler M, Hoang TS, Paxton M, Snook J, Waldron X, Wilkinson T (2017) Formal development of policing
functions for intelligent systems. In: Software Reliability Engineering (ISSRE), 28th IEEE international symposium

[BCS07] Boudali H, Crouzen P, Stoelinga M (2007) Dynamic fault tree analysis using input/output interactive Markov chains. In:
Dependable systems and networks (DSN), 37th annual IEEE/IFIP international conference, pp 708–717

[BFK13] Beer M, Ferson S, Kreinovich V (2013) Imprecise probabilities in engineering analyses. Mech Syst Signal Process, 37(1-2):4–29
[Bir17] Birolini A (2017) Reliability Engineering. Springer, 8th edition
[BK08] Baier C, Katoen J-P (2008) Principles of Model Checking. MIT Press
[BS01] Broy M, Stølen K (2001) Specification and Development of Interactive Systems. Springer
[CLC+19] Chen C, Liu X, Chen H-H, Li M, Zhao L (2019) A rear-end collision risk evaluation and control scheme using a Bayesian

network model. IEEE Trans Intell Transp Syst, 20(1):264–284
[Eri15] Ericson CA (2015) Hazard analysis techniques for system safety. Wiley, 2nd edition
[FA04] Fraichard T, Asama H (2004) Inevitable collision states – a step towards safer robots?. Adv Robotics, 18(10):1001–1024
[FBC+20] Foster S, Baxter J, Cavalcanti A, Woodcock J, Zeyda F (2020) Unifying semantic foundations for automated verification tools

in Isabelle/UTP. Sci Comput Program, 197:102510
[FC14] Feyzabadi S, Carpin S (2014) Risk-aware path planning using hierarchical constrained Markov decision processes. In: Au-

tomation science and engineering (CASE), IEEE international conference IEEE
[FGC20] Foster S, Gleirscher M, Calinescu R (2020) Towards deductive verification of control algorithms for autonomous marine

vehicles. In: Engineering of complex computer systems (ICECCS), 25th international conference, pp 113–118, Singapore
[Foo78] Foot P (1978) The problem of abortion and the doctrine of the double effect. Virtues and Vices and Other Essays in Moral

Philosopy, 19. Originally published in 1967.
[GC17] Gleirscher M, Carlan C (2017) Arguing from hazard analysis in safety cases: A modular argument pattern. In: High Assurance

Systems Engineering (HASE), 18th international symposium, pp 53–60. IEEE
[GC20] Gleirscher M, Calinescu R (2020) Safety controller synthesis for collaborative robots. In: Engineering of complex computer

systems (ICECCS), 25th international conference, pp 83–92, Singapore
[GFW19] Gleirscher M, Foster S, Woodcock J (2019) New opportunities for integrated formal methods. ACM Comput Surv, 52:117:1–

117:36
[GK17] Gleirscher M, Kugele S (2017) From hazard analysis to hazard mitigation planning: The automated driving case. In: Barrett

C, et al., editor, NASA Formal Methods (NFM), 9th international symposium, volume 10227 of LNCS. Springer
[Gle14] Gleirscher M (2014) Behavioral Safety of Technical Systems. Dissertation, Technische Universität München
[Gle17] Gleirscher M (2017) Run-time risk mitigation in automated vehicles: A model for studying preparatory steps. In: Bulwahn L,

Kamali M, Linker S, (eds), Formal Verification of Autonomous Vehicles (FVAV), 1st iFM Workshop, EPTCS
[Gle18] Gleirscher M (2018) Strukturen für die Gefahrenerkennung und -behandlung in autonomen Maschinen. In: Jürgen B, Petra

W (eds), Beiträge zu einer Systemtheorie Sicherheit, acatech DISKUSSION, Chapter 8.4, pp 154–167. Herbert Utz Verlag,
München

[Gle20] Gleirscher M (2020) Yap: Tool support for deriving safety controllers from hazard analysis and risk assessments. In: Luckuck
M, Farrell M (eds), Formal Methods for Autonomous Systems (FMAS), 2nd Workshop, volume 329 of EPTCS, pp 31–47.
Open Publishing Association

[Gle21] Gleirscher M (2021) Yap Against Perils: Application Guide and User’s Manual. University of York and Technical University
of Munich

[GM20] Gleirscher M, Marmsoler D (2020) Formal methods in dependable systems engineering: A survey of professionals from Europe
and North America. Empir Softw Eng, 25(6):4473–4546

[GMGP10] Guiochet J, Martin-Guillerez D, Powell D (2010) Experience with model-based user-centered risk assessment for service robots.
In: High Assurance Systems Engineering (HASE), 12th IEEE international symposium

[GPBB08] Guiochet J, Powell D, Baudin É, Blanquart J-P(2008) Online safety monitoring using safety modes. In: Technical challenges
for dependable robots in human environments, workshop, pp 1–13. Rapport LAAS No. 08339

[Har00] Harpwood V (2000) Principles of Tort Law. Cavendish, 4th edn
[HASH09] Haddadin S, Albu-Schäffer A, Hirzinger G (2009) Requirements for safe robots: Measurements, analysis and new insights.

Int J Robot Res, 28(11-12):1507–1527
[HB03] Hamdi M, Boudriga N (2003) Algebraic specification of network security risk management. In: ACM workshop on formal

methods in security engineering (FMSE). ACM Press
[HEZ+14] Huang J, Erdogan C, Zhang Y, Moore B, Luo Q, Sundaresan A, Rosu G (2014) ROSRV: Runtime verification for robots. In:

Runtime verification, pp 247–254. Springer
[HG03] Holland O, Goodman R (2003) Robots with internal models: A route to machine consciousness?. J Conscious Stud, 10(4-

5):77–109
[HM99] Howe RD, Matsuoka Y (1999) Robotics for surgery. Ann Rev Biomed Eng, 1(1):211–240

M. Gleirscher et al.

[Hoa85] Hoare T (1985) Communicating sequential processes. International series in computer science, Prentice-Hall
[HRS98] Hansen KM, Ravn AP, Stavridou V (1998) From safety analysis to software requirement. IEEE Trans Softw Eng, 24(7):573–84
[IMM18] Iamsumang C, Mosleh A, Modarres M (2018) Monitoring and learning algorithms for dynamic hybrid Bayesian network in

on-line system health management applications. Reliab Eng Syst Safety, 178:118–129
[IT90] Ishibuchi H, Tanaka H (1990) Multiobjective programming in optimization of the interval objective function. Eur J Oper Res,

48(2):219–225
[KG81] Kaplan S, Garrick BJ (1981) On the quantitative definition of risk. Risk Anal, 1(1):11–27
[Kum07] Kumamoto H (2007) Satisfying safety goals by probabilistic risk assessment. Reliability engineering. Springer
[KW17] Koopman P, Wagner M (2017) Autonomous vehicle safety: An interdisciplinary challenge. IEEE Int Transp Syst Mag, 9(1):90–

96
[Lev95] Leveson NG (1995) Safeware: system safety and computers. Addison-Wesley
[Lev04] Leveson NG (2004) A new accident model for engineering safer systems. Safety Sci, 42(4):237–70
[Lev12] Leveson NG (2012) Engineering a safer world: systems thinking applied to safety. Engineering systems. MIT Press
[LFL13] Leitner-Fischer F, Leue S (2013) Probabilistic fault tree synthesis using causality computation. Int J Critical Comput-Based

Syst, 4(2):119–43
[LS87] Leveson NG, Stolzy JL (1987) Safety analysis using Petri nets. IEEE Trans Softw Eng, 13(3):386–97
[LS09] Leucker M, Schallhart C (2009) A brief account of runtime verification. J Logic Algeb Program, 78(5):293–303
[LSS11] Lund MS, Solhaug B, Stølen K (2011) Model-driven risk analysis: The CORAS approach. Springer
[McD94] McDermid John A (1994) Support for safety cases and safety arguments using SAM. Reliability Engineering & System Safety,

43(2):111–127
[MGW+18] Machin M, Guiochet J, Waeselynck H, Blanquart J-P, Roy M, Masson L (2018) SMOF – a safety monitoring framework for

autonomous systems. IEEE Trans Syst Man Cybern: Syst, 48(5):702–715
[MJG+11] Meredith PO, Jin D, Griffith D, Chen F, Roşu G (2011) An overview of the MOP runtime verification framework. Int J Softw

Tools Technol Trans, 14(3):249–289
[MMBG+12] Mekki-Mokhtar A, Blanquart J-P, Guiochet J, Powell D, Roy M (2012) Safety trigger conditions for critical autonomous

systems. In: Dependable Computing (PRDC), 18th IEEE Pacific Rim International symposium. IEEE
[MS14] Müller J, Sukhatme GS (2014) Risk-aware trajectory generation with application to safe quadrotor landing. In: Intelligent

Robots and Systems (IROS), IEEE/RSJ International conference
[NSV03] Netravali AN, Sabnani KK, Viswanathan R (2003) Correct passive testing algorithms and complete fault coverage. In: Formal

techniques for networked and distributed systems (FORTE), pp 303–318. Springer
[OCW09] Oliveira M, Cavalcanti A, Woodcock J (2009) A UTP semantics for Circus. Formal Aspects Comput, 21(1-2):3–32
[ORS06] Ortmeier F, Reif W, Schellhorn G (2006) Deductive cause-consequence analysis (DCCA). IFAC Proc Vol, 38(1):62–67
[PBHS13] Pereira AA, Binney J, Hollinger GA, Sukhatme GS (2013) Risk-aware path planning for autonomous underwater vehicles

using predictive ocean models. J Field Robot, 30(5):741–762
[Ros10] Roscoe AW (2010) Understanding concurrent systems. Springer
[San14] Sanger TD (2014) Risk-aware control. Neural Comput, 26(12):2669–2691
[SC88] Sobek RP, Chatila RG (1988) Integrated planning and execution control for an autonomous mobile robot. Artif Intell Eng,

3(2):103–113
[Sch99] Schneider S (1999) Concurrent and real-time systems: the CSP approach. Wiley, New York
[She03] Sheridan TB (2003) Telerobotics, automation, and human supervisory control. The MIT Press
[Sim94] Simmons RG (1994) Structured control for autonomous robots. IEEE Trans Robot Autom, 10(1):34–43
[SLJS16] Sorin A, Larsen M, Jensen K, Schultz UP (2016) Rule-based dynamic safety monitoring for mobile robots. J Softw Eng Robot,

7(1):120–141
[SR02] Svedung I, Rasmussen J (2002) Graphic representation of accident scenarios: mapping system structure and the causation of

accidents. Safety Sci, 40(5):397–417
[SSSS18] Shalev-Shwartz S, Shammah S, Shashua A (2018) On a formal model of safe and scalable self-driving cars. Technical report,

Mobileye
[Tre08] Tretmans J (2008) Model based testing with labelled transition systems. In: Formal methods and testing, pp 1–38. Springer
[Uni48] United Nations General Assembly (1948) Universal declaration of human rights. Technical report research 217 A (III), United

Nations General Assembly. [hereinafter “UDHR”].
[UPM18] Unanue JIA, Papadopoulos Y, Merle G (2018) Explicit modelling and treatment of repair in prediction of dependability. IEEE

Trans Depend Secure Comput, pp 1–16
[VJK16] Volk M, Junges S, Katoen J-P (2016) Advancing dynamic fault tree analysis – get succinct state spaces fast and synthesise

failure rates. In: Computer safety, reliability, and security (SAFECOMP), 35th international conference, pp 253–265
[War12] Warburton N (2012) Philosophy: the basics. Taylor & Francis

Received 15 September 2020

Accepted in revised form 13 March 2021 by Cliff Jones

	RiskStructures-.4: A design algebra for risk-aware machines
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Risk analysis, assessment, and handling
	2.2 Formalism and notation

	3 RiskStructures: overview
	4 Risk spaces
	4.1 Risk factors
	4.2 Risk states, spaces, and space composition
	4.3 Example: risk factors on the road
	4.4 Discussion: abstraction and types of risk factors

	5 Mitigation orders
	5.1 Qualitative mitigation orders
	5.2 Quantitative mitigation orders
	5.3 Relating mitigation orders
	5.4 Application: evaluating local, regional, and global safety
	5.5 Discussion: ethical aspects of mitigation orders

	6 Factor dependencies
	6.1 Relations over risk spaces
	6.2 Example: collaborative robots
	6.3 Discussion: abstraction, compatibility, and characteristics of risk factors

	7 RiskStructures: the language
	7.1 Risk factors as sequential processes
	7.2 Composition
	7.3 Constraints
	7.4 Example: risk factors on the road (cont'd)
	7.5 Discussion: compositional abstraction
	7.6 Discussion: uncertainty in RiskStructures

	8 Related work
	9 Conclusion
	Acknowledgements
	A Proof details
	B Supplemental material for the road vehicle example
	References

