

This is a repository copy of Site-directed differentiation of human adipose-derived mesenchymal stem cells to nucleus pulposus cells using an injectable hydroxyl-functional diblock copolymer worm gel.

White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/172090/

Version: Supplemental Material

Article:

Binch, A.L.A., Ratcliffe, L.P.D., Milani, A.H. et al. (3 more authors) (2021) Site-directed differentiation of human adipose-derived mesenchymal stem cells to nucleus pulposus cells using an injectable hydroxyl-functional diblock copolymer worm gel. Biomacromolecules, 22 (2). pp. 837-845. ISSN 1525-7797

https://doi.org/10.1021/acs.biomac.0c01556

This document is the Accepted Manuscript version of a Published Work that appeared in final form in Biomacromolecules, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acs.biomac.0c01556

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown


If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Site-directed differentiation of human adipose derived mesenchymal stem cells to nucleus pulposus cells using an injectable hydroxyl-functional diblock copolymer worm gel

Abbie L. A. Binch, Liam P. D. Ratcliffe, Amir H. Milani, Brian R. Saunders, Steven P. Armes, Judith A. Hoyland

Figure S1. Digital photographs illustrating the shear-thinning 'injectable' nature of the synthetic worm gel used in this study.

