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ABSTRACT 

Studies that quantify speech tempo on acoustic grounds typically use one of various rate measures. The 

availability of multiple measurement techniques yields ‘researcher degrees of freedom’ which call the 
robustness of generalisations across studies into question. However, explicit assessments of the 

possible impact of researchers’ choices among the available measures are rare. In this study we attempt 
such an assessment by comparing the distributions of five common rate measures―canonical and 
surface syllable and phone rates, and CV segment rate―calculated over fluent stretches of unscripted 

speech produced by 100 English speakers. We assess the measures’ inter-correlations across the corpus 

as a whole as well as in relevant data samples to simulate multiple analysis scenarios. We also report 

on deletion rates in our corpus, as they determine the relationship between canonical and surface rates; 

we assess the impact on rate figures of variable assumptions as to what constitutes deletion; and we 

compare the measures’ discriminating powers in a forensic analysis context using Bayesian likelihood 

ratios. Our results suggest that in a sizeable English corpus with normal deletion rates, the five rates 

are closely inter-correlated and have similar discriminating powers; decisions as to the segmental 

make-up of canonical forms also have limited impact on distributions. Therefore, for common 

analytical purposes and forensic applications the choice between these measures is unlikely to 

substantially affect outcomes.  
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1. INTRODUCTION 

Studies that quantify speech tempo through signal-based measurements tend to use one of various 

available measurement techniques. Researchers choose what to count—words, syllables, phones, or 

derived units such as C and V segments (e.g. Dellwo, Ferrange, & Pellegrino, 2006; Pfitzinger, 1996) 

—and what temporal domains to count in—total speaking time including or excluding pauses, or 

stretches of speech such as clauses, intonation phrases, inter-pause stretches or memory stretches (e.g. 

Dankovičová, 1997; Jessen, 2007). When counting syllables or phones, researchers can count units as 

expected in canonical pronunciations, or as actually observed in their data (e.g. Koreman, 2006). These 

methodological choices are one example of ‘researcher degrees of freedom’ in phonetic and related 

research (Roettger, 2019; Simmons, Nelson, & Simonsohn, 2011): the availability of multiple 

alternative methods for operationalizing a phonetic parameter brings with it the risk that researchers—
intentionally or unintentionally—select the method that produces the clearest analysis results. In any 

case, the availability of multiple methods means that comparing findings across studies is not always 

straightforward (Jessen, 2007). Individual studies typically present the outputs of one technique only, 

and studies that do refer to multiple techniques do not necessarily report on correlations between their 

outputs. We are generally left to wonder, therefore, whether this particular methodological choice has 

been consequential for the reported data patterns. 

One might argue that differences between the distributions of values yielded by alternative 

tempo quantification techniques are likely to be small and therefore do not need our attention. Still, 

empirical confirmation of this likelihood is better than the absence thereof, especially since speech 

tempo is quantified in various applied contexts, such as those of forensic casework (Gold & French, 

2011; Jessen, 2007), speech therapy (Martens et al., 2015; Pellowski, 2010), mental health diagnosis 

(Cummins et al., 2015; Mundt, Snyder, Cannizzaro, Chappie, & Geralts, 2007) and language learner 

assessment (Bosker, Pinget, Quené, Sanders, & de Jong, 2013; Wang et al., 2018). In this paper we 

quantify speech tempo using four commonly used measures: syllable rate based on canonical unit 

counts (‘canonical syllable rate’) and counts of observed units (‘surface syllable rate’), and phone rate 

based on canonical unit counts (‘canonical phone rate’) and counts of observed units (‘surface phone 
rate’). We also include a fifth measure (‘CV rate’) to which we will return below.  

In a language like English, the four common measures just mentioned may yield rather 

different figures on selected stretches of speech. In English, one syllable can correspond to between 

one (V) and seven phonemes (CCCVCCC). The temporal organisation of syllables is such that 

increases in syllable complexity are not associated with uniform increases in syllable duration 

(Browman & Goldstein, 1988; Byrd, 1995; Marin & Pouplier, 2010): therefore, increases in 

complexity tend to correspond to decreases in measured syllable rate but increases in phone rate. In the 

corpus of American English telephone speech of Greenberg, Carvey, Hitchcock, and Chang (2003), 

the mean duration of a stressed CVC syllable is 310 ms, and that of a stressed CCVC syllable is 382 

ms. The former yields a phone rate of 9.7 and a syllable rate of 3.2; the latter a phone rate of 10.5 (up 

8%) and a syllable rate of 2.6 (down 19%). This means that it is not difficult to find utterance pairs for 

which a syllable rate measure identifies one member as faster and a phone rate measure identifies the 

other. Similarly, Jessen (2007) describes the ‘curious artefacts when a speaker in speaking rapidly 

deletes canonical syllables, whereas another speaker might reduce or delete perhaps the same number 

of canonical sounds but still preserves the number of underlying syllables’. In these cases, deciding 
between the four measures is non-trivial.  

With specific reference to ‘canonical’ and ‘surface’ rates, Den Os (1985) reports correlations of 

up to r=0.98 for her experimental stimuli. However, these comprise two sets of nine read sentences (in 

Dutch and Italian). As the relationship between canonical and surface rates is largely determined by 

the prevalence of (syllable or phone) deletion, it is no surprise that in carefully produced speech, 

canonical and surface are close to equivalent. In spontaneous, or at least unscripted speech, by 



3 

 

contrast, differences between ‘canonical’ and ‘surface’ syllable rates may be substantial. A phrase like 

I suppose this terrain is hard produced in 1.6 sec yields a canonical syllable rate of 5; when produced 

with schwa deletion in both suppose and terrain the surface rate would be 3.75. The difference 

between the two figures is well above the ‘just noticeable difference’ for temporal variation in speech 

of around 5% (Quené, 2007). A pertinent question is how such differences translate to measurements 

taken over collections of utterances used in actual studies: for example, stimulus sets used in listening 

experiments, language learner speech samples, or larger corpora.  

One context in which explicit comparison of tempo measures has taken place is that of forensic 

analysis, in which tempo is generally considered a relevant parameter for voice comparison (Gold & 

French, 2011).1 Here, the aim is to establish the relative discriminating power of available 

measurement techniques. For German, Künzel (1997) reports that ‘speech rate’ calculated over 
stretches of speech including pauses and hesitations shows more speaker-internal variation than 

‘articulation rate’ calculated over fluent stretches of speech only; therefore, articulation rate has greater 
speaker-discriminating power. Jessen (2007) reports articulation rate distributions for 100 German 

speakers, and compares population statistics reported across studies of speech tempo in German. Gold 

(2014) presents population statistics for 100 speakers of Southern Standard British English (SSBE), 

comparing articulation rates calculated over inter-pause and memory stretches with variable minimum 

length requirements. Gold (2014) quantifies the discriminating power of the alternative measures using 

Bayesian likelihood ratio (LR) calculations, which provide an assessment of ‘strength of evidence’ 
given competing hypotheses concerning the relationship between samples of speech (Gold & Hughes, 

2014). Gold (2014) reports that syllable rates calculated over inter-pause and memory stretches yield 

near-equivalent discriminating powers: in other words, this particular methodological decision—the 

choice of domain over which to quantify articulation rates—has no substantial impact on analysis 

outcomes. Gold also investigated the effect of imposing different minimum length requirements when 

identifying stretches to calculate articulation rates over. She reports that as the length requirement 

moves up, within-speaker variation goes down; however, this does not have a substantial effect on 

discriminating power. So again, this methodological decision—the choice between possible minimum 

stretch lengths—appears to have little impact on analysis outcomes.   

In this study we build on this previous work by comparing further alternative tempo measures, 

calculated on the memory stretch corpus of Gold (2014), in terms of their inter-correlations and 

relative discriminating powers. By reporting inter-correlations, we hope to inform any future studies in 

which the analyst is faced with a choice between the alternative tempo measures, and may wonder 

whether the choice is likely to be consequential for analysis outcomes. The higher the inter-

correlations, the lower the likelihood that the methodological choice is consequential. We report 

correlations calculated across a sizeable corpus of Standard Southern British English unscripted 

speech, as well as correlations calculated over various data subsets, to simulate analysis scenarios that 

involve sampling stretches of speech from a larger corpus. By reporting relative discriminating 

powers, quantified using Bayesian LR calculations, we provide an example of one particular type of 

analysis in which a choice between alternative measures might in theory be consequential. High inter-

correlations across speakers should translate to small differences in this analysis. 

We should emphasize at the outset that it is impossible to concretely quantify the likelihood 

that a choice between two alternative measures will affect analysis outcomes. Consequently, there is 

no simple criterion for deciding whether two variables are correlated closely enough to be considered 

‘effectively equivalent’. Still, some general guidance can be gleaned from the literature on collinearity 

                                                
1 In relation to automatic speech recognition, Fosler-Lussier and Morgan (1999) summarize some inconsistent findings as 

to whether word rates are more predictive of system error than syllable and phone rates. In the clinical domain, comparison 

between rate measures has focused on finding automated rate extracting methods whose output figures map closely to 

syllable counts by human practitioners (e.g. Bakker, Brutten, & McQuain, 1995).  
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in multivariate analysis (e.g. Dormann et al., 2013; Tomaschek, Hendrix, & Baayen, 2018; Tu, Kellett, 

Clerehugh, & Gilthorpe, 2005). Collinearity is observed when two predictor variables are linearly 

related to each other; when both are entered into a model predicting a third variable, the resulting 

model parameters can be difficult to interpret and unstable across alternative stepwise model building 

procedures. A common remedy is to reduce the number of predictor variables prior to modelling, 

either by conflating linearly related variables or by simply not entering individual predictors that are 

linearly related to others (Dormann et al., 2013). The latter approach is justified when it is not clear to 

what extent the information provided by an individual collinear predictor adds to that provided by the 

predictor with which it is collinear (Tu et al., 2005). In relation to pairwise correlations between 

predictors, Dormann et al. (2013) refer to a ‘folk lore’ threshold’ of r>0.70 for potentially removing 

predictors. They conclude on the basis of regression modelling simulations that deselecting predictors 

correlated with each other at r>0.70 is indeed an effective ‘rule of thumb’. This suggests that for a 
range of analytical purposes, variables which are correlated with each other at r>0.70 overlap 

sufficiently in the information they can provide to be considered ‘effectively equivalent’. We will 
interpret observed inter-correlations among our tempo measures with reference to this criterion.  

We compare articulation rates derived from syllable, phone and CV segment counts; for 

syllable and phone rates, we compare rates based on canonical and surface unit counts. To elucidate 

the latter comparison, we also report syllable and phone deletion rates for our corpus. Canonical and 

surface syllable and phone rates are reported in a wide range of studies. We additionally included the 

less widely used ‘CV rate’. This is an available measure in the multilingual BonnTempo corpus 

(Dellwo, Steiner, Aschenberner, Dankovičová, & Wagner, 2005), and Dellwo et al. (2006) assert that 

it ‘has the advantage [over syllable rate] that labelling can be performed more objectively especially 

for the faster speech rates because acoustically phonetic categories such vowel and consonants are 

easier identifiable on an acoustic level than the phonological category ‘syllable’’. We were therefore 

particularly interested in the correlation between syllable and CV rates. 

2. METHOD 

2.1. CORPUS 

Our corpus comprises 2786 ‘memory stretches’ extracted from the Dynamic Variability in Speech 

Corpus (DyViS) (Nolan, McDougall, De Jong, & Hudson, 2009) by Gold (2014). The DyViS database 

was designed primarily to yield reliable population statistics for forensic phonetic work on British 

English (see Hughes, Wood, & Foulkes, 2016; McDougall & Duckworth, 2017). It comprises 

recordings of 100 male speakers of Standard Southern British English (SSBE) in the age range 18–25 

undertaking two role-play tasks relevant in a forensic context (a simulated police interview and a 

telephone call with a supposed accomplice) and two reading tasks, all recorded in studio conditions. 

Gold (2014) used the recordings of telephone calls with a supposed accomplice to derive population 

statistics for articulation rate. In this task, participants were engaged in a conversation with an 

interlocutor who wanted to compare accounts of a fictional crime. Participants were given visual 

stimuli such as pictures of people and places to allow them to construct their accounts.  

 Gold (2014) adopted the general methodology of Jessen (2007), segmenting the recordings for 

each participant into 26–32 ‘memory stretches’. In this procedure, ‘the phonetic expert goes through 
the speech signal and selects portions of fluent speech containing a number of syllables that can easily 

be retained in short-term memory’ (Jessen, 2007). According to Jessen, this method is more efficient in 

casework practice than delimiting inter-pause stretches or intonation phrases, which are commonly 

used as phrasal domains in non-forensic studies (e.g. Dankovičová, 1997; Jacewicz, Fox, & Wei, 2010; 
Mixdorff & Pfitzinger, 2005; Quené, 2008). Gold extracted a total of 2993 memory stretches, of which 

we excluded 207 from our analysis for reasons given below. Like Jessen, Gold (2014) stipulated a 

minimum stretch length of four (canonical) syllables, and left the maximum stretch length up to her 
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own judgement of ease of recollection. Gold counted syllables through close listening and native 

speaker intuition as to the canonical syllabic make-up of each memory stretch; articulation rate values 

were derived from these counts.  

 Gold (2014) produced a verbatim transcription for each memory stretch. For the purpose of 

automatic alignment we had to edit some of these transcriptions, as explained below. Table 1 provides 

summary statistics derived from the edited transcriptions. For numbers of words, contracted forms 

(e.g. don’t) were counted as single words. Abbreviations had to be written out as multi-word phrases, 

as explained below, and were therefore counted as multiple words. Street names (e.g. Harper Avenue) 

were also counted as multiple words. For numbers of canonical phones, the verbatim transcriptions 

were translated into SAMPA symbols (Wells, 1997). Long vowels, diphthongs and affricates were all 

counted as single phones on phonological grounds. The distributions summarised in Table 1 all show 

positive skew, exemplified in Figure 2 for duration: they approximate a normal shape up to about 2 

seconds duration, 10 words, 12 syllables and 35 phones, covering approximately 80% of the corpus—
and the remainder of memory stretches have values up to the maxima in Table 1.  

 

 mean minimum maximum 

duration (sec) 1.43 0.43 3.45 

N words 7 2 24 

N syllables (canonical) 9 4 26 

N phones (canonical) 25 9 72 

Table 1. Summary statistics for stretch length, calculated across our corpus of 2786 memory stretches 

 

 

Figure 1. Distribution of memory stretch durations across our corpus of 2786 memory stretches. 

 

2.2 SEGMENTATION AND RATE CALCULATION 

We used WebMAUS (Kisler, Reichel, & Schiel, 2017) for segmentation, using a ‘pipeline’ of G2P 
(which converts input graphemes to SAMPA phones), MAUS (which does the automatic alignment) 

and PHO2SYL (which adds syllable boundaries to output segmentations). We used the ‘English (GB)’ 
language model, which was trained on the phonetic transcriptions of the Aix-MARSEC database 

(Auran, Bouzon, & Hirst, 2004). We initially worked with Gold’s total corpus of 2993 memory 
stretches. The input orthographic transcriptions were those provided by Gold (2014) with some edits to 

prevent recurrent errors identified in G2P trials: for example, abbreviations had to be written out 

‘phonetically’ (e.g. ‘vee double you’ for ‘VW’) for the corresponding phones to be identified, while 
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‘no’ had to be rewritten ‘know’ to avoid it being treated as an alternative spelling of ‘number’. 
Syllabification was done within word boundaries. The second author manually checked the output 

phone and syllable segmentations using Praat (Boersma & Weenink, 2017). An example TextGrid is 

shown in Figure 2. As we were interested in syllable and phone rates, the precise location of 

boundaries was not a major concern. The second author therefore applied a relatively light correction 

protocol to deal with misalignments: when two or more successive segments with clear acoustic 

correlates in the signal missed their targets (i.e. the segment clearly did not accurately delimit the 

acoustic correlates), the segments’ boundaries were manually moved to a more accurate position. 

Approximately 7% of memory stretches underwent this kind of correction. 

 

Figure 2. Segmentation of one memory stretch (didn’t strike me as particularly important, with phone 

and syllable deletions in didn’t, particularly and important). Tier 1 shows the simplified orthographic 

transcription; Tier 2 the canonical form transcription with syllable boundaries marked by full stops; 

Tier 3 the surface form transcription by syllable; and Tier 4 the surface form transcription by phone. 

The word boundaries overlaying Tiers 1 and 2 and the syllable boundaries overlaying Tier 3 are 

derived from the phone-level segmentation shown on Tier 4. 

 

As we were interested in phone and syllable deletions, the second author applied a more 

elaborate correction protocol to deal with WebMAUS’ inaccuracies in judging whether phones were 

delimitable as segments. First, the second author identified a set of frequent lexical items whose 

productions included heavily reduced ones which WebMAUS recurrently segmented inaccurately. 

These items included actually, probably, occasionally, remember, and didn’t. All productions of this 

set of items were transcribed independently by the first author and another phonetician, and 

segmentations were corrected to match consensus transcriptions. Second, leaving these frequent lexical 

items aside, WebMAUS sometimes treated a phone (most commonly schwa) as deleted when a 

segmental acoustic correlate could be delimited relatively easily; this happened in approximately 10% 

of memory stretches. More commonly, in approximately 30% of stretches, WebMAUS treated a phone 

(again most commonly schwa) as present in the surface form when no segmental acoustic correlate 

could be delimited. All of these cases were manually corrected by the second author in consultation 
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with the first author. Third, WebMAUS often correctly identified the presence or absence of a schwa in 

‘syllabic consonant’ contexts such as bottle [ˈbɒtəl]~[ˈbɒtl̩]—but inaccurately treated the surface forms 

as monosyllabic when schwa was absent. These syllabification errors (which occurred in 

approximately 12% of memory stretches) were also corrected. Several additional issues were identified 

while checking the segmentations, including a small number of stretch-internal silent pauses with a 

duration above 50 ms (although short enough for Gold not to have identified them), missing initial or 

final phones, excessive creak and signal disturbances making accurate segmentation impossible. We 

excluded the relevant memory stretches (N=207, or 7%) from our analysis, taking the corpus size 

down to 2786 memory stretches.  

We extracted canonical and surface syllable and phone rates (in syllables and phones per 

second) from the corrected segmentations, alongside syllable and phone deletions per memory stretch. 

As indicated above, we also calculated CV segment rates, following Dellwo et al. (2006). For this, we 

grouped any immediately consecutive consonantal phones (within and across word boundaries) into a 

combined C segment, and any immediately consecutive vocalic phones into a V segment. Following 

Arvaniti (2012) we treated /w/ and /j/ as consonantal if there was evidence of frication in their 

production; we treated /l/ and /ɹ/ as consonantal throughout. We then divided the total number of C and 

V segments in each memory stretch by the stretch’s duration. 

2.3 DERIVING DELETION RATES 

We coded all phone deletions for the phones involved, and mapped both syllable and phone deletions 

to part-of-speech tags for the words they occurred in. The latter allowed us to complement our primary 

analysis of articulation rates by memory stretch with analysis of syllable and phone deletions at the 

word level, as well as analysis of phone deletions at the phone level. In particular, it allowed us to 

quantify deletions within and across function and content words, for comparison with Johnson (2004) 

and others, and to rank canonical phones according to their individual deletion rates. For the word-

level analysis, we derived part-of-speech tags from the KELLY English lexicon (Kilgarriff et al., 

2014), which comprises approximately 7500 lemmas with part-of-speech tags. As the KELLY lexicon 

does not list individual word forms, we manually tagged plural, possessive, past tense, and other 

inflected forms (e.g. friends, sister’s, got, drives). We also manually tagged the small number of words 

in our corpus whose lemmas are not included in the KELLY lexicon; many of these are proper nouns.  

We then followed Bell, Brenier, Gregory, Girand, and Jurafsky (2009) in coding nouns, verbs, 

adverbs and adjectives as content words and all other words as function words. Like Bell et al., we 

excluded from analysis at the word level the high-frequency sequences you know (N=58) and I mean 

(N=14), the discourse markers yeah (N=41) and eh (N=24), acronyms parsed as individual words 

(N=71) and utterances of three words or fewer (108 utterances). We also excluded contracted forms 

such as didn’t and I’m, which WebMAUS parsed as single word forms (N=618). Moreover, we 

excluded words that could be classed as either function or content depending on context (N=2693), 

such as about, in, on, over (preposition or adverb) and homonyms like can (modal verb and noun). 

Finally, we excluded a small number of short function words such as a and are that were transcribed 

by Gold (2014) because grammatically licensed, but not associated with a segmental realisation 

(N=76).2 These exclusions took our corpus size for the word- and phone-level analyses of deletion 

down to 16,041 words comprising 20,596 canonical syllables and 51,741 canonical phones. 

                                                

2 Greenberg (1999) acknowledges that ‘Under extreme conditions words of high frequency (and hence predictability) may 
be entirely deleted from the utterance, but without the listener’s conscious awareness’ and reports that this affects less than 

1% of words in the Switchboard Corpus (Godfrey & Holliman, 1993). This is accurate for our corpus too: 76/(16,041+76) 

=0.47%.   
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2.4 QUANTITATIVE ANALYSIS 

We carried out all quantitative analysis in R (R Development Core Team, 2008). We used basic 

tidyverse functionality (Wickham et al., 2019) for exploring distributions, running Pearson’s 
correlation tests and data visualisation, along with two tailored scripts for implementing the ‘moving 
window’ and random sampling methods we describe below.  

We used the package fvclrr (Lo, 2018) for calculating the discriminant power for each of the 

five tempo measures in terms of Bayesian likelihood ratios (LRs). This package is based on the 

MATLAB implementation of Aitken and Lucy’s multivariate kernel-density (MVKD) formula (Aitken 

& Lucy, 2004) by Morrison (2007). We used the package to run cross-validated, univariate same 

speaker (SS) and different speaker (DS) LR calculations. Same-speaker LR tests were run for each 

tempo measure individually, such that each of the 100 speakers acted as a same-speaker comparison 

(whereby their tokens were split in half for comparison purposes) and the remaining 99 speakers acted 

as the reference population. Different-speaker LR tests were run for each tempo measure as well, such 

that each speaker was compared to every other of the 100 speakers, while the remaining 98 speakers in 

each test would serve as the reference population. In total we ran 100 same-speaker tests and 9900 

different-speaker tests. 

 We evaluated the discriminant performances of the tempo measures in terms of equal error rate 

(EER), which provides a ‘hard’ accept–reject measure of validity, and log-LR cost (Cllr), which 

provides a more ‘gradient’ measure of performance (Morrison, 2009). EER is the point at which the 

percentages of false hits and false misses are equal (Brümmer & Du Preez, 2006). Cllr is a Bayesian 

error metric that quantifies the ability of a system to align correctly with the expected outcome of 

whether speech samples are produced by the same or different speakers. As this paper is largely 

concerned with the relative performance of the five speaking tempo measures against one another, we 

did not calibrate the results in order to maximize the number of same speaker and different speaker 

tests that we could run. 

3. RESULTS 

3.1. SYLLABLE AND PHONE DELETIONS 

We first consider the extent of syllable and phone deletion in our corpus, as this determines the 

relationship between canonical and surface rates. Our method identified 1305 syllable deletions and 

9835 phone deletions. This means that 5% of canonical syllables and 14% of canonical phones in the 

corpus as a whole lack a surface realisation. Deletion of at least one syllable is observed in 33% of 

memory stretches. As shown in Figure 3, the maximum number of deleted syllables per stretch is 7, 

but most stretches with deletions have just one missing syllable. Stretches with 4 or more syllable 

deletions are all long, at 15 canonical syllables or above (total range 4–22); stretches with no deletion 

or deletion of up to 3 syllables cover the full range of stretch lengths. Deletion of at least one phone is 

observed in 90% of memory stretches. As shown in Figure 3, the maximum number of deleted phones 

per stretch is 17, but most stretches with deletions have between 1 and 4. Memory stretches with 10 or 

more phone deletions all have more than 20 canonical phones; still, zero deletion is observed in 

stretches of up to 45 canonical phones (16 words). The relationship between syllable and phone 

deletions is reasonably linear (r=0.59), but each observed number of syllable deletions maps to a 

considerable range of phone deletions. For example, a stretch without any syllable deletions may still 

have up to 40% of its canonical phones missing a surface realisation. 

 



9 

 

 

Figure 3: Histograms for N syllable and phone deletions, excluding stretches with zero deletion 

 

While in-depth analysis of word- and phone-level deletion patterns is outside of the scope of 

this paper, we report summary statistics for comparison with those observed in other English corpora. 

The corpus as a whole has 6889 function words and 9152 content words. 5% of all words (N=809) are 

subject to at least one syllable deletion and 18% (N=2844) are subject to at least one phone deletion. 

Table 2 breaks these deletion rates down by word type. Table 2 shows that function words are on 

average shorter than content words and function words are slightly less likely to exhibit deletion.  

 

Word type Unit N 

canonical 

Median canonical 

units per word  

N and % words with at 

least one unit deletion 

Function Syllables 7309 1 310 (5%) 

 Phones 14,532 2 1008 (15%) 

Content Syllables 13,287 1 499 (6%) 

 Phones 37,209 4 1836 (20%) 

Table 2: Summary statistics for word-level syllable and phone deletion rates.  

 

At the phone level, the two consonants most prone to deletion (across content and function 

words) are /d/ (32% of canonical phones deleted) and /h/ (15% deleted); the two vowels most prone to 

deletion are /ʊ/ (32% of canonical phones deleted) and /ə/ (25% deleted). Of course word-specific 

pronunciation patterns influence these numbers: for example, more than half of /d/-deletions occur in 

the function word and; /h/-deletion is the norm in him, her, his and so on; and more than half of /ʊ/-

deletions occur in the content word actually. These observations arguably call the validity of our 

canonical forms into question. While we consider this an interesting theoretical question (Ernestus, 

2014; Kohler, 2000; Pierrehumbert, 2002), we must leave it aside here: for the purpose of our 

articulation rate analyses, we follow common practice in defining relevant linguistic units, and this 

entails referring to a standard lexicon of canonical word forms. 

The deletion rates reported above are roughly comparable to those reported in previous corpus-

based studies of English—although admittedly the pool for comparison is small and focused on 

American English. In comparison with our gross syllable deletion rate of 5%, Fosler-Lussier and 

Morgan (1999) cite a rate of 3% in the Switchboard Corpus (Godfrey & Holliman, 1993). In 

comparison with our gross phone deletion rate of 14%, Greenberg (1999) and Fosler-Lussier and 

Morgan (1999) both report a rate of 13% in Switchboard, while Shattuck-Hufnagel and Veilleux 

(2007) report deletion of 8% of all ‘acoustic landmarks’ in a small corpus of American English 
dialogue. In comparison with the percentages of words with at least one unit deletion reported above, 

Johnson (2004) reports that ‘over 20%’ of words in the Buckeye Corpus of Conversational Speech 
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(Kiesling, Dilley, & Raymond, 2006) have at least one phone deletion; Dilts (2013) reports 22% for 

the same corpus. Johnson reports identical percentages for syllable deletion to those in Table 2: at least 

one syllable deletion in 5% of function words and 6% of content words.  

This means that collectively, the speakers in our corpus do not appear to be unusually careful 

articulators or speakers of a variety of English with relatively little deletion. Therefore, we can be 

reasonably confident that correlations between canonical and surface rates observed in our corpus 

generalize to other English corpora.  

They may indeed generalize beyond English: for example, for Dutch, Van Bael, Baayen, and 

Strik (2007) report a gross syllable deletion rate of 6% and a gross phone deletion rate of 8% in speech 

selected from the Spoken Dutch Corpus (Oostdijk, 2002); Schuppler, Ernestus, Scharenborg, and 

Boves (2011) report a gross syllable deletion rate of 9% in the Ernestus Corpus of Spontaneous Dutch 

(Ernestus, 2000). Van Bael et al. (2007) also report that 7% of words have at least one syllable deletion 

and 20% of words have at least one phone deletion. Strik, van Doremalen, and Cucchiarini (2008) 

report that 15% of words in a different selection of speech from the Spoken Dutch Corpus (Oostdijk, 

2002) have at least one phone deletion. For German, Zimmerer (2009) reports that in the Kiel Corpus 

of Spontaneous Speech (IPDS, 1994), 16% of all segments lack a surface realisation. For French, 

Adda-Decker, Boula de Mareuil, Adda, and Lamel (2005) report an overall syllable deletion rate of 

6%, as well as deletion rates of 13% for consonants and 15% for vowels in a corpus of spontaneous 

speech from radio interviews,. This means that these corpora are likely to yield similar correlations 

between canonical and surface articulation rates to those reported below, too. 

We should note that in our corpus there is considerable inter-speaker variation in the 

prevalence of deletion: gross syllable deletion rates vary from close to zero to 14% between speakers 

(cf. 5% across speakers), and gross phone deletion rates vary between 4% and 16% (cf. 14% across 

speakers). For this reason we consider correlations between canonical and surface articulation rates by 

speaker below.  

3.2. CANONICAL SYLLABLE RATE: GOLD (2014) VS WEBMAUS 

As indicated above, we derived our five rate measures from a semi-automatic syllabification and 

forced alignment workflow in WebMAUS. However, we also had access to the syllable rate figures of 

Gold (2014), which were derived from Gold’s own estimations of canonical syllable counts. Of course 

decisions as to the composition of canonical forms have an impact on canonical syllable rate measures, 

as well as on the relationship between canonical and surface rate measures—that is, on what 

constitutes deletion. As these decisions are open to debate (Cangemi & Niebuhr, 2018; Ernestus, 2014; 

Kohler, 2000; Pierrehumbert, 2002), they can be considered another layer of ‘researcher degrees of 
freedom’. To explore this layer, we compared the syllable counts of Gold (2014) with those generated 

by PHO2SYL in our WebMAUS workflow. We found that these are identical for 2500 out of 2786 

memory stretches (90%). Over half of the discrepancies (167 out of 286, 58%) are related to lexical 

items whose syllabification is indeed debatable, such as actually (3~4 syllables), particularly (4~5), 

secondary (3~4) camera (2~3) and tour (1~2);3 most of the remainder contain contracted forms, which 

Gold (2014) appears to have ‘reconstructed’ (e.g. he’s 2 syllables) and PHO2SYL has not (e.g. he’s 1 

syllable); and in a small number of cases Gold’s counts simply seem erroneous.  
Unsurprisingly, given the high level of agreement on syllable counts, the canonical syllable 

rates of Gold (2014) and WebMAUS are very strongly correlated, at r=0.97 (CI 0.972–0.975). This is 

illustrated in Figure 4. In what follows, we will leave the syllable rate values of Gold (2014) aside and 

                                                
3 The complete list of lexical items is actually, Barbara, camera, evening, eventually, every, general, geography, 

interest(ed), memory, occasionally, particularly, really, regularly, secondary, several, specifically, theatre, tour, travelling, 

usually.    
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quantify the relationships among the five rate measures derived from our semi-automatic 

syllabification and segmentation using WebMAUS. 

3.3. RATE DISTRIBUTIONS 

Before turning to our five rate measures, we can note one distant outlier in Figure 4: a single memory 

stretch produced at an extremely high tempo (e.g. canonical syllable rate > 18 sylls/sec, surface 

syllable rate > 13 sylls/sec). While the memory stretch in question (What do you do for a living?) 

appears to have been segmented accurately, and Figure 4 confirms that Gold’s syllable count was the 
same as that of WebMAUS, we deemed it appropriate to exclude it from the data set for the purpose of 

our correlation analysis. Figure 5 shows that after the removal of this one data point, the distributions 

of the five rate measures are reasonably symmetrical. For both syllable and phone rates, the surface 

rate distribution appears somewhat closer to normal than the canonical rate distribution: canonical 

syllable rate shows some right skew which is less obvious for surface syllable rate, while canonical 

phone rate has several positive outliers that are absent in the surface phone rate distribution. The data 

points making the difference here are memory stretches produced at high tempo with multiple 

instances of syllable or phone deletion: these have high canonical rates but substantially lower surface 

rates.  

 

 

Figure 4: Scatterplot illustrating the correlation between the canonical syllable rates derived from 

WebMAUS syllabification (x-axis) and calculated by Gold (2014) (y-axis), with LOESS fit lines 

 

With reference to the observed rate ranges and means (see the vertical dashed lines in Figure 

5), comparison with figures reported in other studies of speech tempo in British English is not 

straightforward due to methodological variation (cf. Jessen, 2007): for example, Tauroza and Allison 

(1990) report a mean canonical syllable rate of 4.3 sylls/sec (to be precise, 260 sylls/minute) for their 

sample of conversational speech, but appear to have quantified speaking rate (including pauses) as 

opposed to articulation rate. Moreover, it is clear from variationist research that there is considerable 

variation in speech tempo within language varieties delimited as broadly as ‘British English’ (see 

Clopper & Smiljanic, 2015; Coats, 2019; Jacewicz et al., 2010; Kendall, 2013; Kowal, Wiese, & 

O'Connell, 1983; Quené, 2008). The corpus of Lee and Doherty (2017) seems comparable in design to 

the DyViS database, although its speakers are simply described as ‘Irish English’.  
In very general terms, we can note that the mean syllable rates (6.55 canonical sylls/sec, 6.21 

surface sylls/sec) seem high compared with similarly quantified rates reported for samples of 

American English spontaneous speech by Jacewicz et al. (2010), Kendall (2013) and Clopper and 
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Smiljanic (2015). The latter tend to be closer to 5 for males. Note that Gold (2014) calculated a mean 

canonical syllable rate of 6.59 sylls/sec on our data set (see Figure 4 above). Lee and Doherty (2017), 

who motivate their investigation of speech tempo in Irish English with the impressionistic observation 

that Irish English speakers speak faster than speakers of other varieties of English, report a mean 

articulation rate of 5.88 surface sylls/sec for male speakers’ spontaneous speech. Unlike in Kendall’s 
data, but as in Jacewicz et al.’s, measured rates are negatively correlated with stretch duration: shorter 
memory stretches are (weakly) associated with higher articulation rates (canonical syllable rate: r=–
0.17, surface syllable rate: r=–0.16, canonical phone rate: r=–0.20, surface phone rate: r=–0.18, CV 

rate: r=–0.22).4 

     

    

 

Figure 5: Histograms for articulation rates: canonical and surface syllable rates (top, bin size 0.5 

sylls/sec), canonical and surface phone rates (middle, bin size 1 phone/sec) and CV rate (bottom, bin 

size 1 segment/sec); in each graph, the dotted vertical line locates the mean. 

  

                                                
4 Quené (2008) and Schwab and Avanzi (2015) observe the same effect of duration as Kendall does, in analyses of Dutch 
and French corpora, respectively—that is, longer phrases are associated with higher articulation rates. Quené (2008) 

accounts for this effect in terms of ‘anticipatory shortening’. Note that this account makes sense if the stretches of speech 
under study constitute planning units in speech production. This is arguably less obvious for memory stretches than for 

inter-pause stretches or intonation phrases. 
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In relation to inter-speaker variation, Figure 6 plots means calculated by speaker (that is, across 

the approximately 30 memory stretches produced by each speaker) against corresponding coefficients 

of variance. The coefficient of variance, or ‘relative standard deviation’ is calculated here by dividing 
the standard deviation by the mean for each individual speaker’s rate distribution. It is a conservative 
measure of variance which corrects for the general finding in the analysis of temporal events that 

higher means are associated with higher standard deviations (see Jessen, 2007; Shaw, Gafos, Hoole, & 

Zeroual, 2009; Shaw, Gafos, Hoole, & Zeroual, 2011). As shown in Figure 5, speaker means vary 

substantially around the across-speaker means (shown again by the vertical dashed lines). We also see 

considerable variation in within-speaker variance: for example, for all rates the most highly variable 

speakers have a coefficient of variance that is at least twice that of the least variable speakers. There is 

no obvious linear relationship between means and coefficients of variance: that is, faster speakers are 

not necessarily more variable relative to their means.  

 

     

     

 

Figure 6: Scatterplots illustrating variation in measured rate by speaker, plotting means (x-axis) 

against coefficients of variance (y-axis). Each data point represents one speaker, and in each graph, the 

dotted vertical line locates the overall mean. 
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3.4. INTER-CORRELATIONS 

We now turn to the inter-correlations among the five rate measures. In what follows, we compare 

syllable and phone rates, canonical and surface rates, and syllable and CV rates in turn. For each 

individual comparison, we provide a correlation plot and associated statistics, and we examine how the 

relationship between the two measures in question varies by speaker.  

3.4.1 SYLLABLE ~ PHONE RATES  

Figure 7 shows scatterplots for two comparisons of syllable and phone rate: one in which both are 

calculated on the basis of canonical unit counts (left), and one in which both are calculated on the basis 

of observed unit counts (right). It is clear that in both cases, the syllable and phone rate are strongly 

correlated. Note that the straight lines of data points visible in both plots represent stretches for which 

the phone rate is exactly twice or three times the syllable rate. The strength of the correlations is 

confirmed by Pearson’s correlation tests, results of which are shown in Table 2. The correlation for 

canonical rates is stronger by a small margin.  

 

    

Figure 7: Scatterplots illustrating the correlations between canonical syllable and phone rates (left) 

and surface syllable and phone rates (right), with LOESS fit lines. 

 

 Canonical rates Surface rates 

r 0.85 0.82 

CI 0.84–0.86 0.81–0.84 

linear model CPR = 2.9 + 2.2 × CSR SPR = 3.9 + 1.8 × SSR 

r range (by speaker) 0.63–0.94 0.50–0.95 

Table 2: Summary statistics for the correlations between canonical syllable and phone rates (left) and 

surface syllable and phone rates (right); r is the Pearson’s correlation coefficient and CI the 
corresponding 95% confidence interval. In the linear model equations, CPR = canonical phone rate, 

CSR = canonical syllable rate, SPR = surface phone rate, SSR = surface syllable rate. 

 

Table 2 also shows that the correlation coefficients vary considerably by speaker. This is of 

course to be expected: correlation coefficients calculated over about 30 data points are far more likely 

to be influenced by small sets of data points, or even individual ones, compared with coefficients 

calculated over hundreds of data points. It also makes sense that surface rates show more variation by 

speaker: for canonical rates, the relationship between syllable and phone rate is primarily determined 

by the phonotactics of the speakers’ memory stretches, while for surface rates, the relationship depends 
on phonotactics and on speakers’ production tendencies. As shown in Figure 8, for canonical rates 

only 5 out of 100 correlation coefficients are below 0.7; for surface rates 15 out of 100 are below 0.7. 
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Note that the speaker with the lowest correlation coefficient for surface rates seems somewhat of an 

outlier on that measure, but closer inspection suggests that the coefficient is heavily influenced by the 

speaker’s production of a single memory stretch. In this stretch, friends from secondary school [fɹɛnz 

fəm sɛkdɹɪ skuːl], the syllable deletion in secondary (assumed canonical form /sɛkəndɹɪ/) yields an 

untypically low surface syllable rate given the surface phone rate. Excluding this single stretch from 

the speaker’s sample increases the speaker’s correlation coefficient to r=0.63, which is no longer 

separated from the rest of the distribution.    

 

    

Figure 8: Histograms for correlation coefficients (Pearson’s r) calculated by speaker: correlations 

between canonical syllable and phone rates (left) and surface syllable and phone rates (right). 

 

3.4.2 CANONICAL ~ SURFACE RATES  

Figure 9 shows scatterplots for two comparisons of canonical and surface rate: one for syllables (left) 

and one for phones (right). Again it is clear that in both cases, the syllable and phone rate are strongly 

correlated. Note that the prominent straight lines of data points in both plots represent stretches with no 

deletions: for these stretches, canonical and surface rates are equivalent. Most other data points 

predictably fall below these lines: for these stretches, deletions lower the surface rate relative to the 

canonical rate. Just a few data points fall above the lines; these have no deletions and one syllable or 

phone insertion each. There were 83 such instances, 74 of which reflect insertion of a phone due to 

linking /r/, for example in the sequences for a, or whether I. As it was trained on SSBE, a non-rhotic 

variety, the MAUS forced aligner did not parse postvocalic /r/ as a canonical realisation. Nevertheless, 

since these insertions only occur in 0.5% of words it is clear that their impact is minimal. The strength 

of the correlations is confirmed by Pearson’s correlation tests, results of which are shown in Table 3. 

Excluding the memory stretches with no deletions has almost no impact on the strength of the 

correlations (r=0.90 for syllable rates, r=0.83 for phone rates).  

However, it should be clear from the shape of the data scatters in Figure 9 that the correlations 

vary systematically with overall tempo. Some of the memory stretches produced at the higher ends of 

the rate ranges are produced with very few deletions; at the same time, ‘massive deletion’ is more 
likely than at the lower ends of the rate ranges. As a result, the range of differences between canonical 

and surface rates increases as rates increase, and corresponding correlations weaken. This is shown by 

the LOESS fit lines in Figure 9. To get closer to capturing this pattern with linear correlations, we 

implemented a ‘moving window’ approach to sampling: for both syllable and phone rate, we sampled 

5 subsets of memory stretches, each making up a 60-percentile portion of the canonical rate 

distribution, with a step size of 10 percentiles—0–60, 10–70, 20–80, 30–90 and 40–100—and ran 

correlation tests on these subsets. We chose these window and step sizes to have reasonably sizeable 

samples to calculate correlations over (>1500 data points). Figure 10 plots the correlation coefficients 

against the central canonical rates in the percentile ranges. The figure suggests that for both syllable 
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and phone rates, the overall correlation reported in Table 3 is strongly determined by the correlation 

observed at lower rates. Still, for syllable rate, correlation coefficients stay above r=0.7 throughout, 

while for phone rate, correlation coefficients stay above r=0.6.5 

 

    

Figure 9: Scatterplots illustrating the correlations between canonical and surface syllable rates (left) 

and canonical and surface phone rates (right), with LOESS fit lines. 

 

 Syllable rates Phone rates 

r 0.90 0.84 

CI 0.89–0.91 0.83–0.85 

linear model CSR = 0.2 + 1.0 × SSR CPR = –0.1 + 1.2 × SPR 

r range (by speaker) 0.73–0.99 0.57–0.98 

Table 3: Summary statistics for the correlations between canonical and surface syllable rates 

(left) and canonical and surface phone rates (right); r is the Pearson’s correlation coefficient and CI the 
corresponding 95% confidence interval. In the linear model equations, CSR = canonical syllable rate, 

SSR = surface syllable rate, CPR = canonical phone rate, SPR = surface phone rate. 

 

       

                                                
5 We also examined how the correlations vary with stretch duration, particularly as syllable and phone deletions have a 

proportionally greater impact on articulation rates in shorter stretches of speech. We sampled 5 subsets of memory 

stretches, each making up a 60-percentile portion of the stretch duration distribution, with a step size of 10 percentiles and 
ran correlation tests on these subsets. This revealed minimal variation around the correlation coefficient calculated across 

the entire distribution, so we do not report the resulting figures. Comparison runs with alternative sizes yielded very similar 

results, so we are confident in concluding that stretch duration does not substantially affect the relationships among the rate 

measures we report. 
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Figure 10: Correlation coefficients (Pearson’s r) calculated by percentile range in the canonical rate 

distribution: correlations between canonical and surface syllable rates (left) and canonical and surface 

phone rates (right). The x-axis value of each data point is the central value in a 60-percentile portion of 

the canonical rate distribution. 

 

Again, the correlation coefficients vary by speaker; however, the range of this variation is 

narrower than in the comparison of syllable and phone rates. For syllable rates no individual speaker 

sample has a correlation between canonical and surface rates with a coefficient below r=0.7. As shown 

in Table 3 and Figure 11, for phone rates only one speaker’s sample has a correlation coefficient below 
r=0.7. Inspection of the sample for this speaker suggests that the low correlation coefficient (r=0.57) is 

not due to individual memory stretches with atypical rate values: the sample is simply characterised by 

a wide range of phone deletion numbers per stretch, yielding a wide range of differences between 

canonical and surface rate values. The speaker produces only one memory stretch with no phone 

deletion; by comparison, he produces 16 stretches with no syllable deletions, which means the 

correlation coefficient for canonical and surface syllable rates in the same sample is considerably 

higher (r=0.80). 

 

    

Figure 11: Histograms for correlation coefficients (Pearson’s r) calculated by speaker: correlations 

between canonical and surface syllable rates (left) and canonical and surface phone rates (right). 

 

3.4.3 CV RATE  

As CV rate is a surface rate, we compare it with surface syllable and phone rates. Figure 12 and Table 

4 show that the two correlations are almost identical, at r=0.78. Note that the straight lines of data 

points visible in the left plot in Figure 12 correspond to memory stretches for which the CV rate is 

exactly 1.5 times or twice the syllable rate; these are fairly frequent. Again there is considerable 

variation between speakers, and again there are some apparent ‘outlier’ speaker samples, as seen in 

Figure 13. We leave the details of these samples aside here.  
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Figure 12: Scatterplots illustrating the correlations between surface syllable and CV rates (left) and 

surface phone and CV rates (right), with LOESS fit lines. 

 

 

 Syllable rate Phone rate 

r 0.78 0.78 

CI 0.77–0.80 0.77–0.80 

linear model CVR = 2.2 + 1.5 × SSR CVR = 1.1 + 0.7 × SPR 

r range (by speaker) 0.43–0.91 0.42–0.90 

Table 4: Summary statistics for the correlations between surface syllable and CV rates (left) and 

surface phone and CV rates (right); r is the Pearson’s correlation coefficient and CI the corresponding 
95% confidence interval. In the linear model equations, CVR = CV rate, SSR = surface syllable rate, 

SPR = surface phone rate. 

 

    

Figure 13: Histograms for correlation coefficients (Pearson’s r) calculated by speaker: correlations 

between CV and surface syllable rates (left) and CV and surface phone rates (right). 

 

3.4.4 CORRELATIONS IN RANDOM DATA SAMPLES  

So far we have reported correlations calculated across our entire corpus and correlations calculated by 

level or percentile range for relevant variables, such as speaker and stretch duration. As a final step in 

our examination of inter-correlations among our five rate measures, we also implemented a random 

sampling procedure. This was to simulate a range of research or applied scenarios in which analysis 

might be done on smaller versions of a corpus such as ours—for example, on a language learner 

production corpus with fewer speakers and utterances per speaker, or on a small set of phrases sampled 

from a corpus for use as stimuli in a listening experiment—and articulation rates are to be quantified 
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for analysis. Even if correlations calculated across our whole corpus are very strong, smaller subsets 

may show less predictable relationships between rates: we have already seen this in the results of the 

analysis by speaker. We were interested in how low correlation coefficients might go in random data 

samples of varying sizes. To check this, we created random samples of memory stretches with the 

sizes N=10, N=25, N=50, N=100, N=150, N=200, N=250, N=500 and N=1000. For each size, we 

created 100 random samples. We ran a Pearson’s correlation test in each of the 100 samples at each of 
the nine sample sizes: this way, each sample size generated a distribution of 100 correlation 

coefficients. We ran this procedure separately for each pairwise rate comparison. We were particularly 

interested in how many of the coefficients were below r=0.7.  

 Figure 13 visualizes the output of this procedure. For each pairwise rate comparison and each 

sample size, it shows a boxplot summarizing the distribution of correlation coefficients (N=100 

random samples of the specified size).6 Looking first at the plot for the correlation between canonical 

syllable and phone rates (top row, left), we see that the correlation coefficient distributions are centred 

close to the coefficient calculated across the whole corpus (r=0.85, see Table 2) for all sample sizes, 

and the distributions for sample sizes of 150 and up are very narrow. This means that the correlation 

between these two measures comes out in the region of r=0.85 pretty much whatever random data 

sample we consider even when working with sample sizes as small as 150 (about 5% of the total 

corpus). Distributions are predictably widest for the smallest sample sizes, but fewer than 10 individual 

samples yield a correlation coefficient below r=0.7, at sample sizes 10 and 25.  

Interpreting the other plots in the same way, we see that the correlation between surface 

syllable and phone rates is somewhat weaker than that between the canonical rates, as also reflected in 

the correlation coefficient calculated across the corpus (r=0.82, see Table 2). Here fewer than 30 

correlation coefficients fall below r=0.7, at sample sizes 10, 25 and 50. The correlation between 

canonical and surface syllable rates is the strongest overall (r=0.90, see Table 3), and fewer than 5 

individual samples yield a correlation coefficient below r=0.7. The correlation between canonical and 

surface phone rates (r=0.84, see Table 3) is very similar to that between surface syllable and phone 

rates; here correlation coefficients fall below r=0.7 at sample sizes 10 and 25. The correlations 

between CV rate and surface syllable and phone rates are the weakest overall (r=0.78 for both 

comparisons, see Table 4), and this is reflected in comparatively large proportions of coefficients 

below r=0.7 (maximum around 30 out of 100, for CV and surface phone rates at sample size 10) 

spread across a comparatively wide range of sample sizes. 

  

                                                
6 Note that because sampling is random, the procedure produces different output each time it is run. We therefore ran it 

multiple times for each pairwise comparison, and were satisfied that the general shapes of the output distributions are stable 

across runs. 
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Figure 14: Boxplots showing correlation coefficient distributions in random data samples of varying 

sizes; for each size, 100 samples were taken. 

 

3.5 DISCRIMINATING POWER 

As indicated above, we decided to compare our five rate measures in one particular type of analysis in 

which the choice between alternative measures might in theory be consequential. Given the results of 

our correlation analysis, we can predict that the five measures are highly similar in discriminant power 

as quantified through Bayesian likelihood ratio calculations. Table 5 confirms that this is the case. As 

indicated above, the equal error rate (EER) provides a ‘hard’ accept–reject measure of validity while 

the log-likelihood ratio cost (Cllr) provides a more ‘gradient’ measure of discriminant performance. 

For both, higher values are interpreted as poorer performance. For Cllr, values close to zero indicate a 

good system performance; values above 1 a poor one. The figures in Table 5 suggest that tempo is a 

relatively poor speaker discriminant parameter on its own, regardless of methodology, as it is 

characterized by rather high EER values and Cllr values close to 1, and that the differences among the 

five rate measures are small. Still, it is interesting to note that canonical syllable rate as calculated by 
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Gold (2014) appears to be the weakest measure: therefore, relying on a semi-automated syllabification 

and segmentation workflow certainly does not have a negative effect on discriminant performance.  

Figure 15 plots the EER and Cllr figures alongside those for other parameters quantified by 

Gold (2014) on the same corpus. All figures were derived using the same method used in this paper, 

without calibration, using the MATLAB or R implementation of Aitken and Lucy’s multivariate kernel-
density (MVKD) formula (Aitken & Lucy, 2004). In this kind of plot, measures closest to the bottom 

left have the greatest discriminating power. Our five rate measures occupy a narrow region of the plot 

close to several individual formant measurements, but at considerable distance from fundamental 

frequency. Moreover, several studies have shown that measures generalising over multiple formants 

have considerably greater discriminating powers than individual formant measures (see Gold, French, 

& Harrison, 2013; Hughes et al., 2016). The figure confirms that the differences between canonical 

and surface variants of phone and syllable rates are particularly small. The two phone rate measures 

are somewhat stronger discriminant parameters than the syllable rate ones, particularly for EER. CV 

rate is weaker for EER than its closest comparison measure, surface syllable rate. 

 

 Equal error rate (EER) Likelihood ratio cost (Cllr) 

Canonical phone rate 28% 0.80 

Surface phone rate 29% 0.84 

Surface syllable rate 32% 0.87 

Canonical syllable rate 

(WebMAUS) 

34% 0.86 

CV rate 37% 0.88 

Canonical syllable rate 

(Gold 2014) 

40% 0.94 

Table 5: Summary results of a Bayesian likelihood ratio analysis comparing the five rate measures: 

equal error rate (EER) and likelihood ratio cost (Cllr). The rate measures are presented in descending 

order by EER.  

 

 

 

Figure 15: Scatterplot showing equal error rates (x-axis) and log-likelihood ratio costs (y-axis) for our 

five rate measures and selected comparison measures from Gold (2014). 
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4. DISCUSSION 

In this study we investigated the extent to which articulation rates derived from syllable, phone and 

CV segment counts are correlated, and how they compare in terms of Bayesian likelihood ratios. For 

syllable and phone rates, we included canonical and surface rate calculations; for canonical syllable 

rate, we included figures calculated ‘manually’ by Gold (2014) and figures derived from the 
syllabifications generated in our WebMAUS workflow. As indicated at the outset of this paper, explicit 

comparisons of the distributions generated by such alternative measures are rare, although they 

elucidate whether the methodological choice between these measures is likely to be consequential for 

analysis outcomes. As such, they also inform comparisons of findings across studies in which different 

methodological choices were made.  

 In comparing the relevant distributions, we have proposed to adopt the ‘rule of thumb’ that 
variables which are correlated with each other at r>0.70 overlap sufficiently to be considered 

‘effectively equivalent’ (Dormann et al., 2013). If we do, our general conclusion can be that canonical 

syllable rate, surface syllable rate, canonical phone rate, surface phone rate and CV rate are 

‘effectively equivalent’ in our corpus, and alternative decisions as to the constitution of canonical 

forms do not jeopardise this effective equivalence. We examined correlation coefficients across the 

corpus as well as within a series of subsets—by speaker, by stretch duration, by quantile range and by 

random sampling—and in the majority, correlations stay at r>0.70. Some individual speakers show 

weaker correlations, and when randomly sampling very small sets of utterances from the corpus, such 

as sets of 10, it seems likely that different measures place individual utterances quite differently on a 

rate scale. It is debatable, of course, whether correlation coefficients calculated over 30 or fewer data 

points are reliable; in any case, most comparisons confirmed the strong inter-correlations among the 

five rate measures.  

We also noted that the measures yield very similarly shaped distributions with similar patterns 

of inter-speaker variation. Unsurprisingly, our Bayesian log-likelihood analysis revealed very similar 

performance across the five measures. This confirms that in a forensic context, it is unlikely that a 

choice between these five measures of speech tempo will be consequential for analysis outcomes. 

More generally, our findings suggest that we can assume with some confidence that past studies which 

used one of the five measures to quantify speech tempo would not have yielded substantially different 

results had they used another of the five measures: since the measures produce very similarly-shaped 

distributions, so that any analyses involving group comparisons or using speech tempo as a control 

variable should produce very similar results whichever measure is implemented.  

Of course the measures do produce figures on different scales, so absolute values cannot be 

directly compared across studies. However, the regression equations we have reported above can be 

used as conversion formulas, and our comparisons of rate distributions provide an insight into the 

quantitative effects of several of the methodological decisions analysts are faced with when measuring 

tempo. In particular, Jessen (2007) suggests that Künzel (1997) may have reported a mean syllable rate 

of about 0.7 sylls/sec above that of his own observed mean (5.89 vs 5.21) because Künzel (1997) 

measured canonical syllable rate, not surface syllable rate. This seems reasonable, although in our 

study the difference in mean between the two measures is considerably smaller, at around 0.3 sylls/sec 

(6.55 vs 6.21). Moreover, our comparison between the canonical syllable rates calculated by Gold 

(2014) and WebMAUS suggests that making different decisions on the canonical syllable make-up of 

contentious lexical items has a small effect on canonical syllable rate figures: WebMAUS’ 
syllabification yielded a mean of only 0.05 sylls/sec below Gold’s. Gold (2014) reports a similarly 

small difference between means calculated over sets of memory stretches and inter-pause stretches for 

the same 25 speakers (5.96 vs 5.98 respectively).  
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It seems unlikely, therefore, that the observed differences between Gold’s and our means on the 

one hand and those of previous studies on other English corpora on the other—which are in the region 

of 1 syll/sec—can be attributed to differing decisions of the type just described. As Jessen (2007) 

suggests, another methodological decision that is likely to have an impact on rate figures is whether 

stretches with filled pauses or other markers of hesitation, in particular noticeable segmental or 

syllabic lengthenings, are included or excluded. They were excluded in our study and, insofar as we 

can make out, in the studies of Jacewicz et al. (2010), Kendall (2013), Clopper and Smiljanic (2015) 

and Lee and Doherty (2017). As Jessen (2007) points out, studies in which they are included are likely 

to report lower mean rates. Unfortunately our analysis has not allowed us to quantify the impact of this 

decision.    

Our results have at least two further practical implications. First, CV rate was described by 

Dellwo et al. (2006) as an efficient alternative to syllable rate, as its calculation does not involve 

making phonological decisions as to where syllable boundaries may be, how to treat ‘syllabic’ 
consonants and so on. In our corpus, CV rate is correlated with surface syllable rate below r=0.80 and 

its by-speaker correlation coefficients include some of the lowest that we have observed across 

comparisons. The measure is not particularly strong in terms of discriminating power, so offers no 

obvious advantage over phone or syllable rates in a forensic context. Furthermore, we can question its 

efficiency as an alternative to syllable rate given that its calculation requires phone-level segmentation 

and phone rates are more closely correlated with syllable rates than CV rate; moreover, phone rates 

appear to be the strongest rates in terms of discriminating power. In a workflow like ours, therefore, 

there would seem to be no practical advantage to calculating CV rates compared with calculating 

syllable or phone rates.  

Second, our findings suggest that at least for English and languages with similar phonotactics, 

speech rate estimators that depend on the automatic identification of acoustic correlates of syllables, 

(Bakker et al., 1995; de Jong & Wempe, 2009; Heinrich & Schiel, 2010; Martens et al., 2015) may 

well yield very similar output distributions to ‘rough-and-ready’ phone rate calculations using a 

general-purpose forced alignment system, or even canonical syllable rate calculations based on the 

output of a text-to-syllables conversion. This is because these estimators are typically evaluated against 

‘manual’ syllable rate calculations. As we have seen, in our data set the ‘manual’ syllable rate 
calculations of Gold (2014) are very strongly correlated with the syllable rate figures derived from the 

syllabifications generated in our WebMAUS workflow. Therefore, while acoustically-based estimators 

are valuable models of speech tempo perception, for practical purposes much more basic tools may 

well produce ‘effectively equivalent’ figures. 

 

5. CONCLUDING REMARKS 

The quantification of speech tempo is just one example of a procedure in phonetic analysis that can be 

operationalized in multiple ways, yielding ‘researcher degrees of freedom’ (Roettger, 2019; Simmons 

et al., 2011) which call the robustness of generalisations across studies into question. In this study we 

have attempted an explicit assessment of the impact of researchers’ choices among some of the 
available measures. Our results suggests that in a sizeable English corpus with normal deletion rates, 

five common articulation rates are closely inter-correlated and have similar discriminating powers; 

decisions as to the segmental make-up of canonical forms also have limited impact on distributions. 

Therefore, for common analytical purposes and forensic applications the choice between the measures 

considered is unlikely to substantially affect outcomes. 

Of course, the confidence with which we can make methodological recommendations on the 

basis of our results depends on how representative our corpus of Standard Southern British English 
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memory stretches is in terms of the measures under consideration. We established that our corpus 

shows similar syllable and phone deletion frequencies to other English corpora and at least one Dutch 

corpus. This suggests that the relationships between canonical and surface rates should also generalize 

beyond this study. The relationships among syllable, phone and CV rates mostly depend on the 

phonotactics of the utterances under consideration—so while these are language-specific, they should 

in principle generalize reasonably well across varieties of English. 

 We hope that this study makes a valuable addition to available population data for articulation 

rate variation, as well as syllable and phone deletion, in British English—although our results confirm 

Gold’s (2014) conclusion that speech tempo is a relatively weak discriminant parameter. We also hope 

that our study provides a straightforwardly replicable model for research into the ‘researcher degrees 
of freedom’ (Roettger, 2019; Simmons et al., 2011) that alternative operationalizations of major 

phonetic parameters generate.     
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