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Abstract. The paper deals with an assessment of the seismic fragility of multi-drum ancient 
columns in the probabilistic assessment framework of incremental dynamic analysis (IDA). 
The dynamic response of multi-drum ancient is governed by the motion of stone-drums which 
can rock and slide individually or in group, individuating different possible collapse 
mechanisms, which are also depending on ground motion intensity. In this research, two 
different in geometry columns i.e. different height and number of drums analysed. The 
columns were modelled using the UDEC software based on the discrete element method 
(DEM). IDA was carried out for 10 ground motion records with and without considering the 
vertical component of earthquake excitation, in order to assess also its influence on the 
resulting fragility. Results are provided in terms of fragility curves and allow evaluating the 
influence of the geometrical assembly of the columns and vertical component of the ground 
motions. 

1.  Introduction 
Natural events such as earthquakes represent a major threat to cultural heritage structures including 
ancient temples [1, 2]. Ancient temples consist of multi-drum or monolithic columns made of marble 
or limestone. Multi-drum columns were constructed by placing each drum (or block of stone) on top 
of each other. Thus, during shaking of the ground, drums are free to rock and slide, either individually 
or in groups. Today, due to damage, destruction, and restoration purposes, many of the ancient 
columns are free standing, which makes them more vulnerable to the earthquake load [3]. Over the last 
decades, the dynamic performance of ancient freestanding columns has received increasing scientific 
attention. Mainly, this was to understand their seismic performance and better select conservation and 
rehabilitation techniques for their survival during strong earthquakes. In the last four decades, many 
researchers studied the rocking response of rigid blocks analytically, numerically, and experimentally 
[4-6]. In addition, over the last three decades, advanced computational methods were used to solve 
numerical procedures to evaluate the response performance of multi-drum columns subjected to strong 
seismic excitations. An alternative to the available FEM is the Discrete (or distinct) Element Method 
(DEM). DEM was developed by Cundall for evaluating the stability of jointed or fractured rocks [7, 
8]. The key features of the method are: a) blocks can be represented as rigid or deformable; b) large 
displacement and rotation of blocks are allowed; c) new contacts are automatically detected as the 
simulation proceeds [8, 9]. The two-dimensional (2D) discrete element software UDEC was used by 
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Psycharis et al. [10] to investigate the in-plane seismic response of two multi-drum columns and 
identify their stability under earthquake excitations. They found that earthquakes with large dominant 
periods are more threatening than short-period ones for multi-drum columns. In addition, the seismic 
reliability of multi-drum columns has been studied by Psycharis et al. [11] with the use of synthetic 
ground motions obtained from a stochastic analysis using Monte-Carlo simulations. The aim of this 
paper is to investigate the dynamic response of ancient multi-drum columns subjected to horizontal 
and combined horizontal and vertical harmonic excitations. Using a software based on the Discrete 
Element Method (DEM), two typical ancient multi-drum columns were subjected to incremental 
dynamics analysis (IDA) to derive their fragility curves. With respect to existing contributions 
dedicated to the harmonic response of monolithic and multi-drum columns, this work considers the 
combined effect of horizontal and vertical seismic components on column collapse and maximum 
displacements, showing that collapse conditions and displacements increase significantly with respect 
to the simpler case of horizontal excitation. 

2.  Reference case studies 
The archaeological literature presents a huge variety of columns characterized by different geometrical 
dimensions and variable number and shape of blocks, [12,13] are shown in figures 1 and 2. 

The assessment of seismic vulnerability of columns depends on the reproduction of the real 
imperfections of the column and on the strong sensitivity of the structure to small changes of the 
geometric and seismic features. The geometric features undergo imperfection caused by past 
earthquakes. The most common imperfections are [13]: 

- collapsed parts of the structure, which reduce the contact areas; 
- foundation problems, which can cause the tilting of the columns; 
- residual displacements of the drums, due to previous earthquakes; 
- cracking of the structural elements, which can sometimes split the blocks into two parts. 

 
Past research has demonstrated that the seismic response is governed by the main vibration period 

[14]. Low frequencies can cause an intensive rocking of the column, while high one may cause a 
sliding motion between the blocks which increases proportionally to the quote of the drum [15, 16]. 
For this reason, the choice of the ground motions to be used in the non-linear dynamic analysis must 
be accurate. In order to provide a framework for future studies, it was decided to analyse two 
simplified limit cases, namely a low column composed by 4 drums (case a) and a high column 
composed by 14 drums (case b). The two case studies are shown in figure 1. The properties of the 
columns are summarized in table 1. As it can be observed the overall slenderness ratio of the two 
columns (H/Db) is similar, while the slenderness of the respective blocks (Hb/Db) is quite different 
(Case a column blocks are three times more slender). 

 
Figure 1. Geometric properties of the two case studies 
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Table 1. Geometric properties of the two selected columns 

 H [m] Db [m] nd [-] Hb [m] Hb/Db [-] H/Db [-] 

Case a) 6.10 0.70 4 1.5 2.14 8.57 
Case b) 16.80 2.00 14 1.2 0.60 8.40 

3.  Performance based earthquake engineering assessment framework 
A performance-based earthquake engineering framework can be generally divided into four main 
steps: hazard analysis, structural analysis, damage analysis, and loss analysis (Cornell and Krawinkler, 
2000 [17]). These steps are totally generic in the PBEE concept and hence they are here specialized to 
properly face specific issues which are typical of the structural systems under investigation. For the 
purpose of this framework, the first two steps are described in detail and used in the following 
sections.   

3.1. Incremental Dynamic Analysis (IDA) 
Incremental dynamic analyses (IDA) is adopted as a reference method to get a structural response. 
IDA has been recently widely employed by different authors (e.g. [18-24]) as it allows considering the 
uncertainty related to ground motions variability by obtaining a statistical distribution of the intensity 
measures inducing a limit state. In the current IDA framework, a set of 10 ground motions is scaled in 
amplitude up to the achievement of the specified limit states defined as limit engineering demand 
parameters (EDPs) or achievement of structural performances during the analyses (damage or collapse 
mechanisms). The ground motions set is first selected based on a spectrum compatibility criterion with 
respect to the site target spectrum. Selected ground motions are then scaled with respect to the peak 
ground acceleration (PGA), which is used IM. The obtained spectra, and the associated records, are 
then scaled up and down. Time history analyses are run for each ground motion at every scaling 
factor. IDA curves will provide the relationship between =IM PGA and engineering demand 
parameters (EDPs)  assumed at the achievement of structural performance.  
 
3.2. Fragility analysis (derivation of fragility curves) 
Results of IDA allow deriving fragility curves expressing the probability of exceeding a specified limit 
state as a function of a specified IM. Fragility curves can be represented using a lognormal cumulative 
distribution function (e.g. Baker 2015 [25]) using the following analytical expression: 

                                                   ln( x )

ln( x )

ln( x )
P[ C D | IM x]

µ
Φ

σ
 −

≤ = =   
 

                                        (1) 

where P[ C D | IM x]≤ = is the probability that a ground motion with IM x=  will cause the 
achievement of a limit state, Φ  is the standard cumulative distribution function, ln( x )  is the natural 
logarithm of the variable x  representing the intensity measure (PGA), ln( x )µ  and ln( x )σ are the mean 
and the standard deviation of the natural logarithms of the distribution of x , respectively. Fragility 
curves are derived for each monitored limit states during IDA. The definition of limit states for the 
investigated structures will be described in the following sections. 

4.  Structural modelling and limit states definition 
 
4.1. Discrete Element Method (DEM) modelling of the columns 
The discrete modelling approach was proposed for the first time in 1971 [7] to find a solution for 
problems due to rock mechanics, where distinct elements were used to simulate the movement of 
masses of rocks; thereafter this approach was extended to simulate the in-plane and out-of-plane 
behaviour of blocky masonry structures [13-16]. Within DEM, blocks can be assumed as rigid or 
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deformable elements. In this study, drums were assumed infinitely rigid. The latter assumption leads 
to many advantages from the computational point of view because accelerations are applied to each 
block centre of gravity. Blocks are connected to each other by a set of kinematical contact points 
which are placed on the external perimeter of the units, which use the contact hypothesis [8]. In this 
case, the contact interface is face-to-face, therefore consisting of a contact zone and two sub-contact 
zones (figure 2a); each contact zone has two different connections, one normal and one tangential, 
made by springs and dashboards. A sample of modelling (Case b) is illustrated in figure 2b. 

 a) b) 

Figure 2. DEM modelling: a) Contact zones between two units; b) Case b model. 

In the normal direction, the mechanical behaviour of the joints (i.e. the zero-thickness contact 
interface) is governed by the following equation:  

n n nk uσ∆ = ∆      (2) 
 
where is the normal stiffness of the contact and is the increment in normal contact displacement, 

i.e., the relative displacement between the blocks at the contact point. Similarly, in the shear direction, 
the mechanical behaviour is controlled by the constant shear stiffness using the following expression: 

s s sk uτ∆ = ∆       (3) 
 

where is the change in shear stress, and is the increment in shear displacement. 
 
4.2. Definition of ground motion set and scaling 
Ten horizontal ground motions have been selected and scaled with respect to PGA to five intensity 
levels, namely 0.1,0.5,0.9,1.0 and 2.0 g. A sample of horizontal components ground motion spectra 
scaled to PGA=1 g is represented in figure 3. Two analysis scenarios have been considered: in the 
first, the sole horizontal component is used, while in the second, the respective vertical components 
are added in the analysis.  
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Figure 3.  Ground motion spectra scaled with respect to 1.0 g PGA. 

 
4.3. Definition of structural limit states 
The maximum normalized displacement at the top (ut) with respect to the base diameter (Db) of the 
column is used as EDP [11] as shown in Eq. (4) and figure 4. Limit EDP values are assumed as 
suggested in [18] and illustrated in table 2. 
  

                                                            top
t

b

u
u max

D
 

=  
 

                                                                    (4) 

  
 

Figure 4. Definition of the Engineering Demand Parameter (EDP) ut. 

Table 1. Limit EDP values of tu  [11] 

tu  Performance level Description 

0.15 
 

Damage limitation 
 

No danger for the columns. No permanent drum 
dislocations expected. 

 
0.35 

 
Significant damage 

 

Large opening of the joints with probable 
damage due to impacts and considerable residual 

dislocation of the drums. No serious danger of 
collapse. 

 1.00 Near collapse Very large opening of the joints, close to partial 
or total collapse. 
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5.  Incremental dynamic analysis and fragility assessment results and discussions 
Figure 5 reports IDA curves for the short column case (a) of the horizontal component (H) and 
horizontal and vertical component (H+V). The EDP threshold is represented in figure 5 as vertical 
dashed lines. The comparison between the IDA curves evidences a small influence of the vertical 
component of the ground motions on the overall trend. This is confirmed by the analytical and discrete 
fragility curves in figures 6a, 6b and form the comparisons in figure 6c, where it can be observed that 
the probability of exceeding the different limit states is quite similar in correspondence to the different 
PGA levels. In figure 7, IDA curves for the high column case (b) are reported for both H and H+V 
combinations of earthquake excitation. In this case, a significant reduction of the capacity is associated 
with the H+V combination. This can be also clearly observed from fragility curves in figure 8a and 8b 
and their comparison in figure 8c, where the H+V fragility curves appear clearly shifted on the left, 
except for the early damage limit state which seems being not significantly affected by the vertical 
component. A sample of the different damage configurations achieved by a column model (case b) 
during a time history analysis is also shown in figure 9, where the limit state thresholds achievement is 
highlighted. 

a) b) 

Figure 5. Case a IDA curves:  a) horizontal component (H); b) horizontal and vertical components 
(H+V) 

a) b) c) 

Figure 6. Case a analytical and discrete fragility curves: a) horizontal component; b) horizontal and 
vertical components; c) comparison between H and H+V combinations 
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(a)       (b)  

Figure 7. Case b IDA curves:  a) horizontal component (H); b) horizontal and vertical components 
(H+V) 

a) b) c) 

Figure 8. Case b analytical and discrete fragility curves: a) horizontal component; b) horizontal and 
vertical components; c) comparison between H and H+V combinations 

a) b) c) 

Figure 9. Case b model response to different ut levels: a) damage limitation; b) severe damage; c) near 
collapse 
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where 50c , %,HPGA is the PGA with the 50% probability of collapse, in case of the sole horizontal 
earthquake component and 50c , %,H VPGA + is the one with the 50% probability of collapse, in case of both 
horizontal and vertical components. For the case a, one obtains 1 18.β = , therefore, estimations made 
by considering the sole horizontal component of the ground motion lead to a slight overestimation of 
the capacity in comparison with the case of considering both components. On the contrary, for the case 
b 1 96= .β  is obtained. This brings the overestimation error to +50%.  

Another consideration should be referred to the different fragility associated with the different 
column types, especially for the collapse limit state. The overall slenderness ratio of the two columns 
(H/Db) is almost the same, while the slenderness of the respective drums (Hb/Db) is quite different. 
Case a column drums are four times slenderer (Hb/Db=2.14) than Case b column drums (Hb/Db=0.6). 
The larger fragility associated with Case a column is clearly related to the slenderness of its drums 
which forces overturning collapse mechanisms rather than sliding. On the contrary, the Case b column 
has larger than high drums which strongly limit rocking while sliding is prevailing. The collapse is 
still associated with the overturning of the column, but this is induced by an excess of sliding. 
A comparison between Case a and Case b analytical fragility curves is shown in Figure 10. 

 
Figure 10. Comparison between Case a and Case b columns collapse limit state fragilities 

6.  Conclusions 
The paper has presented the results of incremental dynamic analysis applied to two different 
typologies of classical columns with and without considering the simultaneous effect of the vertical 
component of the ground motions. IDA allowed determining fragility curves of the column in both the 
conditions and for three different limit states. Results obtained show that the slenderness of the drums 
is a key parameter influencing the overall collapse mechanism and therefore the fragility of columns. 
Column a, having three times the slenderness of column b, achieved collapse to PGA values reduced 
by 40%. A further conclusion can be drawn observing the effect of the vertical component of the 
ground motion on the fragility. Case a column has shown a slight influence of the vertical earthquake 
component on its overall fragility, on the other hand, noticeable reduction of the resisting capacity was 
found for the Case b column. Again, this can be related to the slenderness ratio of the drums, in fact, 
the rocking mechanism associated with the slender drums is less sensitive to the variation of vertical 
inertial forced. On the contrary, sliding mechanisms occurring between squat drums significantly 
depend on friction forces which are strongly altered during the variation of vertical inertial action. 
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