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Abstract

This article is concerned with parameter estimation, kink points detection and

statistical inference for a new Multi-Kink Quantile Regression (MKQR) model. It

assumes different linear quantile regression forms in different regions of the domain of

the threshold covariate but are still continuous at kink points. First, we investigate

parameter estimation, kink point detection and statistical inference in MKQR models.

We propose an iterative segmented quantile regression algorithm for estimating both

the regression coefficients and the locations of kink points. The proposed algorithm is

much more computationally efficient than the grid search algorithm and not sensitive

to the selection of initial values. Second, asymptotic properties, such as selection

consistency of the number of kink points and asymptotic normality of the estimators

of both regression coefficients and kink effects, are established to justify the proposed

method theoretically. Third, a score test based on partial subgradients is developed to

verify whether the kink effects exist or not. Test-inversion confidence intervals for kink

location parameters are also constructed. Monte Carlo simulations and two real data

applications on the secondary industrial structure of China and the triceps skinfold

thickness of Gambian females illustrate the excellent finite sample performances of

the proposed MKQR model. Last, a new R package MultiKink is developed to easily

implement the proposed methods.

Keywords: Change point detection, hypothesis testing, kink regression, model selection,

quantile regression.
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1 Introduction

The kink regression model (Hansen, 2017) or the bent line regression (Li et al., 2011) assumes

that linear regression forms are separately modelled on two sides of an unknown threshold

but still continuous at the threshold. It is a very useful tool to deal with the nonlinearity in

data analysis. Let Yt be a response variable of interest, Xt be a univariate threshold variable

and Zt be a p dimensional random vector of additional covariates, t = 1, 2, · · · , n. Hansen
(2017) considered the following kink regression model with an unknown threshold,

Yt = α0 + α1(Xt − δ)I(Xt ≤ δ) + α2(Xt − δ)I(Xt > δ) + γTZt + et, (1.1)

where et is the random error with E(et|Xt, Zt) = 0. The threshold variable Xt has different

slopes on different segments formed by δ, but the regression function is continuous inXt. This

kind of non-linear pattern is commonly referred to as kink effect (Hansen, 2017) or bent line

effect (Li et al., 2011). The parameter δ is called “kink point”, “change point” or “threshold”

exchangeably to represent the point where the regression function form changes. Compared

with the linear models, the kink regression model relaxes the linearity assumption and thus

is able to capture the necessary nonlinearity. Compared with the full nonparametric models,

the kink regression model has the better interpretability by maintaining linear regression

models in different regions of the domain of Xt. Thus, the kink regression model enjoys both

the interpretability of linear models and the flexibility of nonparametric models.

In the literature, the kink regression models with a single unknown threshold point have

been intensively studied. For example, Hansen (2017) combined the least squares estimation

and a grid search algorithm to estimate the regression coefficients and the kink point in Model

(1.1). The F-type statistic test was also proposed for testing H0 : α1 = α2 in Model (1.1).

In the application, Hansen (2017) demonstrated the famous inverted U-shaped relationship

between the GDP growth rate and the ratio of debt to GDP (Reinhart and Rogoff, 2010). Li

et al. (2011) proposed a bent line quantile regression model and showed that the logarithm of

maximal running speed of land mammals linearly increases with the logarithm of mass up to

a certain point and then decreases as the mass rises. Zhang and Li (2017) studied estimation

and hypothesis testing for a continuous threshold expectile model. Fong (2019) developed

fast bootstrap confidence intervals for a continuous threshold linear regression. Hidalgo et al.

(2019) discussed whether there experiences a discontinuous jump or a continuous kink at the

threshold point by using the quasi-likelihood-ratio test and constructed a robust confidence

interval for the threshold.

However, the kink regression models with only one threshold point are not sufficient

in some applications. In our second real data example, the logarithm of triceps skinfold

thickness (TSF) as an important measure of body density decreases with the age in the

childhood up to about 10 years old, then experiences a growth spurt at adolescence up to

about 18-20 years old and finally stays almost stable for adults (see Figure 4). The kink
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regression models with one threshold are clearly not appropriate for this case. It would be

more sensible to consider the kink regression models with multiple threshold points. Muggeo

and Adelfio (2010) studied a piecewise constant model in mean regression with multiple

change points and used the penalized method to select change points. However, the mean

regression is not robust to outliers and we find that the penalized method has relatively poor

performance to select change points.

Moreover, to achieve the robustness to outliers and heavy-tailed errors which are often

present in the data, we consider quantile regression to analyze data with heterogeneous

conditional distributions. Quantile regression is able to provide a comprehensive picture

of the conditional distribution of the response Yt given the covariates, especially when its

upper or lower quantiles are particularly of interest. Thus, we are motivated to study the

Multi-Kink Quantile Regression (MKQR) model and establish the proper estimation and

inference procedures. For a given quantile level τ ∈ (0, 1), the MKQR model is

Yt = α0 + α1Xt +
K∑

k=1

βk(Xt − δk)I(Xt > δk) + γTZt + et, (1.2)

where βk represents the difference in slopes for Xt between two adjacent segments, γ is the

coefficient vector of covariates Zt, which stays constant on the whole domain of Zt and et
are independent random errors such that P (et < 0|Xt,Zt) = τ . Note that βk 6= 0 implies

the existence of a kink effect at Xt = δk and thus {δk, k = 1, · · · , K} represent the kink

points or the locations where kink effects happen satisfying δ1 < · · · < δK . So There are

K + 1 regimes in total divided by K kink points where the number of kink points K as

well as their locations are both unknown. We emphasize once again that the regression for

MKQR model is continuous everywhere. Note that all the unknown parameters depend on

the quantile index τ , but we omit the subscript τ for ease of notations throughout the paper.

We remark that the MKQR model (1.2) is different from traditional threshold regression

models (Hansen, 2000; Caner, 2002) that specify different regression functions in subsamples

segmented by a threshold variable and jumps at the threshold points are allowed. However,

the threshold variable Xt in the MKQR model is the predictor of interest in the regression

and the regression curves are everywhere continuous on the domain of Xt. We also remark

that the MKQR models can be also regarded as a special semiparametric partially linear

quantile regression model where the nonparametric function of Xt is specifically modelled

by a continuous piecewise linear curve.

In this paper, we focus on parameter estimation, kink points detection and statistical

inference for the new MKQR model (1.2) where the number of kink points and their lo-

cations are both unknown using quantile regression. We contribute the literature in the

following several aspects. First, the MKQR model (1.2) extends the existing kink regres-

sion with an unknown threshold to wider applications with unknown multiple kink points.

We propose a Bootstrap Restarting Iterative Segmented Quantile (BRISQ) regression al-
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gorithm for estimating both the regression coefficients and kink effects. This algorithm is

much more computationally efficient than the grid search algorithm and not sensitive to

the initial values due to the bootstrap restarting idea of Wood (2001). Furthermore, we

suggest a backward elimination algorithm to identify the number of kinks by transforming

change points detection into a model selection problem based on a strengthened quantile

BIC. Second, we theoretically demonstrate that the selection consistency of the number of

kink points and the asymptotical normality of the estimators for both regression coefficients

and kink effects. Third, the MKQR model inherits the merits of quantile regression and

thus is able to robustly model data with heterogeneous conditional distributions especial-

ly when upper or lower quantiles of the response are particularly of interest. Forth, from

the statistical inference perspective, we develop a score test based on partial subgradient of

quantile objective function under the null hypothesis to verify whether the kink effects exist

or not. A test-inversion confidence interval based on a smoothed rank score test for a kink

location parameter is also proposed and can be extended to multiple kink parameters by

sample splitting. Fifth, two real data applications on the secondary industrial structure of

China and the triceps skinfold thickness for Gambian females are studied to identify the kink

points, which would be of interest for economists and biologists, respectively. Last, a new R

package MultiKink is developed to implement all the estimation and inference procedures,

and is free to use.

The rest of the paper is structured as follows. In Section 2, we describe the estima-

tion procedures for the MKQR model and investigate the asymptotic properties. Section 3

presents a testing procedure for the existence of kink effects and construct the test-inversion

confidence intervals for the kink locations. The finite sample performances of the proposed

methods are evaluated via simulation experiments in Section 4. Section 5 presents two real

data applications. Section 6 concludes the paper. The technical proofs are presented in the

Appendix.

2 Estimation and Algorithm

2.1 Parameter Estimation When K is Known

From model (1.2), the τth conditional quantile of Yt given Xt and Zt is denoted by

QY (τ |Xt,Zt) = α0 + α1Xt +
K∑

k=1

βk(Xt − δk)I(Xt > δk) + γTZt. (2.1)

For notation convenience, we let β = (β1, · · · , βK)T, η = (α0, α1,β
T,γT)T and δ = (δ1, · · · , δK)T.

Notice that both the dimensions of η and δ hinge on K. Let Wt = (Xt,Z
T
t )

T and θ =

(ηT, δT)T. We rewrite the τth conditional quantile of Yt given Wt as QY (τ ;θ|Wt) to em-

phasize the dependence on the parameter θ. In the ideal case where the true number of kink
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points denoted by K0 is known, we can estimate θ by the following objective function,

Sn(θ) = n−1

n∑

t=1

ρτ{Yt −QY (τ ;θ|Wt)}, (2.2)

where ρτ (u) = u{τ − I(u < 0)}. A common estimator for θ is thereby

θ̂ = (η̂T, δ̂
T

)T = argmin
η∈B,δ∈Γ

Sn(θ), (2.3)

where B ⊂ R
2+K+p and Γ ⊂ ΩK are compact sets, in which Ω denotes the support of the

threshold variable Xt.

If all kink locations parameters δ are known, a simple quantile regression can be directly

used for (2.1). For the single kink regression with an unknown threshold, the greedy grid

search algorithm (Li et al., 2011; Hansen, 2017) can be used to exhaustively seek the kink

point. However, without any prior information, we have to assume that both the number

of kink points K and the kink locations vector δ are unknown in Model (2.1). It makes

the grid search approach inappropriate especially when K is large, because its computa-

tional cost grows at an exponential rate of K. Since the minimization problem in (2.2) is

non-convex with respect to δ, the convex optimization algorithms can not directly applied.

Bai and Perron (2003) proposed a novel dynamic programming algorithm to detect change

points for the linear model with multiple structural changes. Oka and Qu (2011) used the

dynamic programming algorithm to estimate multiple structural changes in regression quan-

tiles. However, the dynamic programming algorithms can not be directly applied to the kink

models due to the continuity constraints. To this end, we develop a new iterative segmented

quantile regression algorithm to detect the number of kink points and estimate regression

coefficients simultaneously.

2.1.1 Bootstrap Restarting Iterative Segmented Quantile Algorithm

Although K0 is given, (X − δk)I(X > δk) for k = 1, · · · , K are not observable and still

non-differentiable at δk’s. Given an initial location vector δ(0) = (δ
(0)
1 , · · · , δ(0)K )T, we employ

the first-order Taylor expansion to approximate (Xt − δk)I(Xt > δk) around δ
(0)
k ,

(Xt − δk)I(X > δk) ≈ (Xt − δ
(0)
k )I(Xt > δ

(0)
k )− (δk − δ

(0)
k )I(Xt > δ

(0)
k ).

Then, Model (2.1) can be approximated by

QY (τ ;θ|Wt) ≈ α0 + α1Xt +
K∑

k=1

βkŨkt +
K∑

k=1

φkṼkt + γTZt, (2.4)
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where φk = βk(δk − δ
(0)
k ), Ũkt = (Xt − δ

(0)
k )I(Xt > δ

(0)
k ) and Ṽkt = −I(Xt > δ

(0)
k ) are two

new covariates with coefficients βk and φk, respectively. Denote β = (β1, · · · , βK)T and

φ = (φ1, · · · , φK)
T. This local linear approximation technique has been also used in the

change point detection for the piecewise constant model (Muggeo and Adelfio, 2010) and

nonconcave penalized regression (Zou and Li, 2008).

By fitting the standard linear quantile model (2.4), a new estimator for δk can be updated

by δ̂
(1)
k = δ

(0)
k + φ̂k/β̂k, for k = 1, . . . , K. The estimator could be iteratively updated.

However, if initial values are not appropriately chosen, some elements of δ̂
(i)

at the ith

iteration are possible to jump out of the support of the threshold covariate Xt or be very

close to another kink point to make them hard to distinguish. We define the inadmissible

set T as

T =
{
δ̂k : (δ̂k /∈ Ω, the support of Xt)

⋃
(|δ̂k − δ̂k′ | < ∆, where ∆ is small and k 6= k

′

)
}
.

In practice, we need to discard all δ̂k in the inadmissible set T . In our simulation, we choose

∆ to be one thirtieth of the range of the threshold variable Xt. The underlying reason is that

the local linear approximation technique is sensitive to the initial values δ(0), which makes

the algorithm easy to get stuck in local optima. To deal with this drawback, we iteratively

update the initial values using the bootstrap samples to make the new algorithm insensitive

to the original initial values. It shares the similar spirit of the bootstrap restarting idea of

Wood (2001). Thus, we call it Bootstrap Restarting Iterative Segmented Quantile (BRISQ)

regression algorithm.

The main idea of the BRISQ algorithm is illustrated as follows. We first initialize pa-

rameters δ(0) evenly dispersed on the domain of Xt given K and obtain the estimator

θ̂(0) = (η̂T

(0), δ̂
T

(0))
T by iteratively fitting the working model (2.4). Then, we generate a

bootstrap sample X ∗
n in the classic way that we randomly select original observations with

replacement and estimate Model (2.4) again using δ̂(0) as the initial kink locations to ob-

tain the bootstrap estimator θ̃
∗
(1) = (η̃∗T

(1), δ̃
∗T
(1))

T. And then, we estimate Model (2.4) again

based on the original sample using the bootstrap estimator δ̃
∗
(1) as initial values and ob-

tain the new estimator θ̃(1) = (η̃T

(1), δ̃
T

(1))
T. Next, we compare Sn(θ̃(1)) with Sn(θ̂(0)). If

Sn(θ̃(1)) < Sn(θ̂(0)), we update θ̂(1) = θ̃(1); otherwise, θ̂(1) = θ̂(0). Last, we repeat the pre-

vious procedure until convergence. The flowchart of this BRISQ algorithm is displayed in

Figure 1. In practice, this algorithm can efficiently jump out of local minima and substan-

tially improve the stability and accuracy of estimation, therefore less sensitive to the original

initial values. The detailed procedures are summarized in Algorithm 1 and easily imple-

mented using the newly developed R package MultiKink. The convergence of the BRISQ

algorithm is studied in Section S.1 of the Supplement.
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Figure 1: The flowchart of the BRISQ algorithm. Stage I contains Steps 1-3 and Stage II
contains Step 4 in the Algorithm 1.

2.1.2 Limiting Distribution

We then derive the asymptotic properties for θ̂. Denote the true parameters as θ0 =

(ηT
0 , δ

T

0 )
T = argminS(θ), where S(θ) = E [ρτ{Yt −QY (τ ;θ|Wt)}]. Define

Gn = E

{(
∂Sn(θ)

∂θ

)(
∂Sn(θ)

∂θ

)T} ∣∣∣
θ=θ0

= n−1

n∑

t=1

τ(1− τ)E{h(Wt;θ0)h
T(Wt;θ0)},

Dn = E

{
∂2Sn(θ)

∂θ∂θT

} ∣∣∣
θ=θ0

= n−1

n∑

t=1

∂

∂θ
E[ψτ{Yt −QY (τ ;θ|Wt)}h(Wt;θ)]

∣∣∣
θ=θ0

,

where ψτ (u) = τ − I(u ≤ 0). To establish the asymptotic distribution of θ̂, we need to intro-

duce some notations. Denote h(Wt;θ) = (1, Xt, (Xt − δ1)+, · · · , (Xt − δK)+,Z
T
t ,−β1I(Xt >

δ1), · · · ,−βKI(Xt > δK))
T and the τth conditional quantiles of et given Wt as F

−1
t (τ |Wt) =

inf{u : F (u|Wt) ≥ 0}. We then make the following assumptions.

(A1) Ft ≡ F (·|Wt) has a continuous density ft(·|Wt) that satisfies 0 < inft ft(·) < supt ft(·) <
∞ at the point F−1(τ |Wt) for any sequence of values of Wt.
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Algorithm 1: Bootstrap Restarting Iterative Segmented Quantile (BRISQ) Algorithm.

Step 1. Initialize parameters δ(0) evenly dispersed on the domain of Xt;
Step 2. Fit Model (2.4) using the standard linear quantile regression based on the

initial kink locations δ(0) and obtain estimators β̂
(1)

and φ̂
(1)

for β and φ, respectively.

Update the kink locations estimators δ̂
(1)

by δ̂
(1)
k = δ

(0)
k + φ̂

(1)
k /β̂

(1)
k , for k = 1, . . . , K.

Step 3. Repeat Step 2 iteratively until convergence or any δ̂
(i)
k at the ith step falls into

T . The resulting estimator is denoted by θ̂(0) = (η̂T

(0), δ̂
T

(0))
T;

Step 4. for b=1:B do
Step 4.1. Generate a bootstrap sample X ∗

n .

Step 4.2. Find θ̃
∗
(b) = (η̃∗T

(b), δ̃
∗T
(b))

T for the bootstrap sample X ∗
n using δ̂(b−1) as the

initial kink locations using the same procedures as Steps 2-3;

Step 4.3. Find θ̃(b) = (η̃T

(b), δ̃
T

(b))
T for the original sample Xn using δ̃

∗
(b) as the

initial kink locations using the same procedures as Steps 2-3;
Step 4.4. Compare Sn(θ̃(b)) with Sn(θ̂(b−1)). If Sn(θ̃(b)) < Sn(θ̂(b−1)), θ̂(b) = θ̃(b);

otherwise, θ̂(b) = θ̂(b−1).

end

Step 5. Obtain the final estimators θ̂ = 1
Bǫ

∑
bǫ
θ̂(bǫ), where

Bǫ = #
{
bǫ :
∣∣∣Sn(θ̂(bǫ))−Sn(θ̂min)

Sn(θ̂min)

∣∣∣ ≤ ǫ
}
, θ̂min = argmin{θ̂(b):1≤b≤B} Sn(θ̂(b)).

(A2) The objective function S(θ) has a unique global minimum at θ0.

(A3) The threshold variable Xt has a continuous density function with a compact support

[−M,M ], where M is a positive constant.

(A4) max1≤t≤n ‖ Zt ‖= op(n
1/2) and E(‖ Z ‖3) is bounded.

(A5) Given K and β 6= 0, there exist a nonnegative definite matrix G and a full rank matrix

D, such that limn→∞ Gn = G and limn→∞ Dn = D.

Assumption (A1) is generally assumed in quantile regression. Assumption (A2) ensures

the identifiability of estimation. Assumptions (A3)-(A4) impose some conditions on the

threshold variable and other covariates, respectively, which can also be found in Li et al.

(2011) and Zhang et al. (2017). Assumptions (A1)-(A4) are used for the proof of consistency

of θ̂ and additional Assumption (A5) suffices for the asymptotical normality. The following

theorem demonstrates the limiting distribution of the proposed estimator for θ0.

Theorem 2.1. Suppose the true number K0 of kink points in Model (2.1) is given and

Assumptions (A1)-(A5) hold, as n→ ∞, we have

√
n(θ̂ − θ0)

d−→ N(0,Σ),

where Σ = D−1GD−1.
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According to Theorem 2.1, the regression coefficients η and the threshold parameters δ

are jointly asymptotically normal with
√
n convergence rate. In conventional jump threshold

model, the threshold parameter estimators converge to a nonstandard asymptotic distribu-

tion with n convergence rate, see Hidalgo et al. (2019) for more details.

Moreover, we estimate Σ by a plugging estimator Σ̂n = D̂−1
n ĜnD̂

−1
n , where Ĝn =

n−1
∑n

t=1 τ(1 − τ)h(Wt; θ̂)h
T(Wt; θ̂) and D̂n = n−1

∑n
t=1 f̂t(êt)h(Wt; θ̂)h

T(Wt; θ̂). D̂n re-

quires consistent estimate for conditional density function ft(·) of error term et. We suggest

using the method called Hendricks-Koenker Sandwich based on the difference quotients dis-

cussed by Hendricks and Koenker (1992). To select the bandwidth, two choices are often

used. One is based on Edgeworth expansions of studentized quantiles described by Hall

and Sheather (1988), the other is based on the minimum of the mean squared error of the

density estimator suggested by Bofingeb (1975). In our R package MultiKink, we provide

both versions to estimate the covariance matrix.

2.2 Parameter Estimation When K is Unknown

The aforementioned BRISQ algorithm works well when the exact number of kink points is

given. However, the true number K0 is usually unknown in practice. To estimate K0, we

first start with a large initial value Kmax(≫ K0) and then iteratively fit the working model

(2.4) using the BRISQ algorithm in which we discard all δ̂k’s and corresponding Ũk’s and

Ṽk’s if δ̂k ∈ T at each iteration. When it stops, we obtain an estimator for the number of

kink points, denoted by K∗(< Kmax).

However, we find that K∗ often overestimates the true value K0 in practice. To im-

prove the selection and estimation accuracy, one can evaluate each MKQR model with

k = 0, 1, · · · , K∗ kink points according to a prescribed information criterion and find the

final model with the smallest information criterion. In our algorithm, we suggest a strength-

ened quantile Bayesian information criterion (sBIC) to refine the kink points detection,

sBIC(K) = log
(
Sn(θ̂K)

)
+NK

log n

2n
Cn, (2.5)

where θ̂K denotes the estimator of parameters θ = (ηT, δT)T with K kink points, NK equals

to 2 + p+ 2K and Cn is a positive constant that allows to approach infinity as n increases.

When Cn = 1, sBIC in (2.5) becomes the standard quantile BIC studied by Lian (2012) for

consistent model selection. When Cn > 1, it is similar to the modified BIC of Lee et al.

(2014). The selection consistency of the sBIC selector will be demonstrated in the next

section. The BIC-type criteria have been widely used in model selection. For example,

Wang et al. (2007) proved that the BIC tuning parameter selector is able to identify the true

linear model consistently. Chen and Chen (2008) further proposed an extended BIC (EBIC)

to take into account both the model complexity and the sample size for consistent model

8



selection. Lee et al. (2014) showed that a modified BIC is consistent in model selection for

high dimensional linear quantile regression. Fryzlewicz (2014) proposed a strengthened BIC

for sequential change points detection.

We can estimate the number of the kink points by K̂ = argminK=0,1,··· ,K⋆
sBIC(K). When

K⋆ is large, it is possible to improve the computational efficiency by using the following

backward elimination procedure (Chan et al., 2015). Given K∗, we re-estimate the new

MKQR model with K∗ − 1 kink points using the BRISQ algorithm, and then compare

the sBIC values of two models. This procedure is repeated until the sBIC values does not

decrease. Then, the final estimators forK0 and θ are obtained corresponding to the minimum

sBIC. The detailed algorithm is summarized in Algorithm 2. Simulations will illustrate that

this algorithm is able to identify the true kink points consistently.

Algorithm 2: Backward Elimination Algorithm for Estimating K.

Step 1. Given Kmax initial kink points, repeat Step 2 of Algorithm 1 iteratively and
remove any δ̂k at each iteration if δ̂k ∈ T until convergence. K∗ denotes the resulting
estimated number of kink points.
Step 2. Estimate the working model (2.4) with K∗ − 1 initial kink points using

Algorithm 1 to obtain θ̂K∗−1 and sBIC(K∗ − 1).
Step 3. If sBIC(K∗ − 1) < sBIC(K∗), then update K∗ = K∗ − 1 and go to Step 2; If

sBIC(K∗ − 1) ≥ sBIC(K∗), then stop, set K̂ = K∗ and θ̂ = θ̂K∗
. If K∗ = 0, then stop

and there is no kink point.

We then show the selection consistency of K̂ and make the two additional assumptions.

(A6) The matrix E {h(Wt;θ)h
T(Wt;θ)} is finite and positive definite.

(A7) Cn log(n)/n→ 0 as n→ ∞.

Assumption (A6) is similar to Assumption (A) in Lian (2012). Assumption (A7) requires

that Cn = o(n/ log(n)) which means Cn cannot diverge too fast to the infinity as n increases

to avoid underfitting the true model.

Theorem 2.2. Under Assumptions (A1) and A(6)-(A7), let K̂ = argminK=0,··· ,K∗
sBIC(K),

we have P (K̂ = K0) → 1 as n→ ∞.

Theorem 2.2 shows that the quantile sBIC is able to consistently select the true number

of kink points. This result plays a fundamental role since the limiting distribution of the

parameter estimators θ̂ is established under the true number of kink points in Theorem 2.1.
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3 Statistical Inference

3.1 Testing the Existence of Kink Effects

The kink effect estimation is meaningful if and only if the kink effect truly exists. In this

section, we are interested in testing the existence of kink effects in the conditional quantiles.

For τ ∈ (0, 1), we consider the following null (H0) and alternative (H1) hypotheses for the

quantile regression (2.1),

H0 : βk = 0, for all k = 1, · · · , K. v.s. H1 : βk 6= 0, for some k = 1, · · · , K. (3.1)

Note that the parameters βk’s depend on τ . Under the null hypothesis, the MKQR model

(2.1) degenerates to an ordinary quantile regression without any kink point. Under the

alternative hypothesis, there exists at least one statistically significant kink point at the τth

quantile. Thus, we suggest the following score-based test statistic based on kink quantile

regression with an unknown threshold,

Tn(τ) = sup
δ∈Γ

|Rn(δ)|, (3.2)

where Rn(δ) = n−1/2
∑n

t=1 ψτ (Yt − α̂
T
Vt)(Xt − δ)I(Xt ≤ δ), ψτ (u) = τ − I(u ≤ 0), δ

denotes the location of an unknown threshold, Vt = (1, Xt,Z
T
t )

T, α = (α0, α1,γ
T)T and

α̂ = argminα

∑n
t=1 ρτ (Yt −αTVt). Note that Rn(δ) is essentially the partial subgradient of

the objective function with respect to β1 evaluated at β1 = 0 and α = α̂ up to a constant

in the model (2.1) with K = 1 ∗. Tn(τ) can be viewed as a weighted CUSUM (cumulative-

sum) type test statistic based on the signs of quantile residuals. Intuitively, under the null

hypothesis, residuals Yt − α̂
T
Vt are evenly located below or above zero which result in a

relatively small value of Tn(τ). On the other hand, under the alternative hypothesis, the

model is misspecified and the residuals would be consistently positive or negative which

implies the large values of Tn(τ). The idea of subgradient-based tests has been studied in

the literature. For example, Qu (2008) constructed the subgradient test statistic in quantile

regression for testing the structural changes. Zhang et al. (2014) proposed a score test based

on the subgradient to test for the jumping threshold effect in threshold models. Zhang and

Li (2017) developed a related test for the continuous threshold effect in asymmetric least

square regression.

Theorem 3.1 in the following derives the asymptotic behavior of Tn(τ). To derive the

large-sample property for Tn(τ), we consider the local alternative model

QY (τ |Wt) = α0 + α1Xt + n−1/2β(Xt − δ)I(Xt > δ) + γTZt, (3.3)

∗In fact, Rn(δ) is the partial subgradient of the quantile objective function with respect to β1 evaluated
at β = 0 and α = α̂ up to a constant for the model QY (τ ;θ|Wt) = α0+α1Xt+β(Xt−δk)I(Xt ≤ δ)+γT

Zt,

which is essentially same as the model (2.1) with K = 1 after simple reparameterizations.

10



where δ denotes one kink point location, β 6= 0 is a nonzero constant and n−1/2β 6= 0

is the corresponding kink effect to represent the local alternative signal which diverges to

zero as the rate of n1/2. Model (3.3) implies that there exists at least one kink effect. We

also introduce some notations. Define H1n(δ) = n−1
∑n

t=1E {Vt(Xt − δ)I(Xt < δ)ft(et)},
Hn = n−1

∑n
t=1E {VtV

T
t ft(et)} and H2n(δ, β) = n−1

∑n
t=1E{Vtβ(Xt − δ)I(Xt > δ)ft(et)}.

We further assume that

(A8) There exists a positive definite matrix H such that limn→∞ Hn = H and another two

matricesH1(δ) andH2(δ, β) such that limn→∞ H1n(δ) = H1(δ) and limn→∞ H2n(δ, β) =

H2(δ, β) uniformly hold in δ.

(A9) The density function of et, ft(·) for t = 1, · · · , n, has a bounded first-order derivative.

Theorem 3.1. Suppose Assumptions (A1) and (A8)-(A9) hold. Under both the null hypoth-

esis H0 and the local alternative model (3.3), we have

Tn(τ) ⇒ sup
δ

|R(δ) + q(δ, β)|, (3.4)

where “⇒” denotes weak convergence, R(δ) is a Gaussian process with mean zeros and

covariance functionW (δ, δ
′

) = τ(1−τ)E[{(Xt−δ)I(Xt ≤ δ)−HT

1(δ)H
−1Vt}{(Xt−δ′)I(Xt ≤

δ
′

)−HT

1(δ
′

)H−1Vt}] and q(δ, β) = −H1(δ)H
−1H2(δ, β).

According to Theorem 3.1, under the null hypothesis, q(δ, β) = 0 and Rn(δ) would

converge to a Gaussian process R(δ) with mean zeros. When the kink effect exists under the

alternatives, q(δ, β) 6= 0 and Tn(τ) would be significantly larger than zero. Therefore, large

values of Tn(τ) provide the evidence against the null hypothesis. The score-type statistic is

only built on the null hypothesis without fitting models under the alternative hypothesis, so it

can also be directly used to test the existence of multiple kink points. Since the asymptotical

null distribution of Tn(τ) is nonstandard, we approximate the P-values using wild bootstrap

(Feng et al., 2011). The detailed procedures are relegated to Section S.2 in the Supplement.

3.2 Confidence Intervals for Kink Location Parameters

Next, we construct a test-inversion confidence interval for δ based on a smoothed rank score

test. Consider the following hypotheses for a given δ̃ in the domain of Xt and τ ∈ (0, 1),

H0 : δ = δ̃ v.s. H1 : δ 6= δ̃. (3.5)

Under H0, we can obtain the estimator η̂(δ̃) of the regression coefficients η given δ̃ by fitting

the standard linear quantile regression. Muggeo (2017) pointed that naive score statistic in

threshold models may lower the test power due to the non-differentiable and non-smooth
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nature. To deal with the non-smoothness of the indicator function I(Xt > δk), we use the

smoothed Gaussian distribution function Φ((Xt− δk)/hk) to approximate I(Xt > δk), where

hk is the bandwidth. The smoothed objective function becomes

Q̃Y (τ ;η, δ|Wt) = α0 + α1Xt +
K∑

k=1

βk(Xt − δk)Φ((Xt − δk)/hk) + γTZt.

Then, we take the first partial derivative of Q̃Y (τ ;η, δ|Wt) with respect to δ evaluated at

δ = δ̃ and η = η̂(δ̃), denoted by Pt(τ ; η̂(δ̃), δ̃) = (pt1, · · · , ptK)T, where ptk = −β̂kΦ((Xt −
δ̃k)/hk) − β̂k(Xt − δ̃k)φ((Xt − δ̃k)/hk)h

−1
k and φ(·) is the first derivative of Φ(·). Motivated

by the rank score tests in Gutenbrunner and Jurečková (1992), Gutenbrunner et al. (1993)

and Zhang et al. (2014), we define a smoothed rank score (SRS) test statistic as

SRSn(τ) = S∗T
n V−1

n S∗
n, (3.6)

where S∗
n = n−1/2

∑n
t=1 P

∗
t{τ ; η̂(δ̃), δ̃}ψτ (ẽt), ẽt = Yt−QY {τ ; η̂(δ̃), δ̃|Wt} is the tth residual

under H0, and Vn = n−1
∑n

t=1 τ(1 − τ)P∗
t{τ ; η̂(δ̃), δ̃}P∗

t{τ ; η̂(δ̃), δ̃}T. Here, P∗
t{τ ; η̂(δ̃), δ̃}

is defined as follows. Let Mt(δ̃) = (1, Xt, (Xt − δ̃1)+, · · · , (Xt − δ̃K)+,Z
T
t )

T and M(δ̃) =

(M1(δ̃), · · · ,Mn(δ̃))
T. Let P = (P1{τ ; η̂(δ̃), δ̃}, · · · ,Pn{τ ; η̂(δ̃), δ̃})T, and define P∗ =

(In − Λ)P, where In is an n × n identity matrix, Λ = M(δ̃){MT(δ̃)ΨM(δ̃)}−1MT(δ̃)Ψ,

Ψ = diag(f̂1(ẽ1), · · · , f̂n(ẽn)). P∗
t{τ ; η̂(δ̃), δ̃} is defined as the tth row of the n ×K matrix

P∗ which is considered as the residuals by projecting the partial score vector P on M(δ̃).

Intuitively, underH0, the partial scores tend to be zero which implies that the test statistic

is relatively small; otherwise, the large test statistic values provide the strong evidence against

H0. The following proposition demonstrates the null asymptotic distribution of SRSn(τ) and

its proof is shown in Section S.3 of the Supplement.

Proposition 3.1. Suppose that Assumptions (A1) and (A6)-(A9) hold. Under the null

hypothesis H0 in (3.5) for any τ ∈ (0, 1), as n→ ∞, we have SRSn(τ)
d−→ χ2

K.

For one kink point δ, the confidence interval can be obtained by inverting the rank score

test due to the fact that the test statistic SRSn(τ) is convex in δ. Specially, we first obtain

the estimator δ̂ for δ and then test H0 : δ = δ̃ for δ̃ = δ̂ + ̺, where ̺ is a small positive

increment. If H0 is not rejected, then increase δ̃ by δ̃ = δ̃ + ̺ and test H0 : δ = δ̃ again. We

repeat the previous testing procedure until H0 is rejected and set the upper bound of the

confident interval for δ as the minimum rejection point, denoted by δ̂u. In the similar way, we

obtain the lower bound δ̂l. Thus, we can obtain a (1−α)th confidence interval for δ, [δ̂l, δ̂u].

For multiple kink model (2.1), we separately construct the confidence interval for each kink

location parameter by controlling other kink estimators. The details are summarized in

Section S.3 of the Supplement.
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4 Monte Carlo Simulations

4.1 Parameters Estimation

We generate data from the following model

Yt = α0 + α1Xt +
K∑

k=1

βk(Xt − δk)I(Xt > δk) + γZt + σ(Xt, Zt)et, t = 1, . . . , n, (4.1)

whereXt ∼ U(−5, 5), Zt ∼ N(1, 12), et ∼ N(0, 1) or t3 distribution and σ(Xt, Zt) controls the

heteroscedasticity. Specially, σ(Xt, Zt) equals to 1 for a homoscedastic model and 1 + 0.2Xt

for a heteroscedastic model. We set α0 = 1, α1 = 1, γ = 1 and consider three different cases

for kink effects: (1) K = 1, β1 = −3 and δ1 = 0.5; (2) K = 2, (β1, β2) = (−3, 4) and

(δ1, δ2) = (−1, 2); (3) K = 3, (β1, β2, β3) = (−3, 4,−4) and (δ1, δ2, δ3) = (−3, 0, 3).

We first check the selection consistency of Theorem 2.2. Since Condition (A3) requires

that Cn log(n)/n→ 0 as n→ ∞, we consider Cn = 1, log(log(n)) and log(n) in the definition

of sBIC. We set the sample size n = 500. Table 1 reports the percentages of correctly selecting

K̂ = K based on 1000 replications under both homoscedastic and heteroscedastic models.

All selection rates are very high and close to 100%. It shows that a diverging number for Cn

is favorable of identifying the true model when the number of parameters is not fixed. It is

in accord with the results of Fryzlewicz (2014) for sequential change points detection. These

results validate the selection consistency of Theorem 2.2.

Table 1: The percentages of correctly selecting K̂ = K for Cn = 1, log(log(n)), log(n).

et τ
K = 1 K = 2 K = 3

1 log(log(n)) log(n) 1 log(log(n)) log(n) 1 log(log(n)) log(n)
Homoscedasticity

N 0.3 91.6% 99.8% 100.0% 92.8% 99.1% 99.6% 92.3% 97.5% 98.5%
0.5 94.2% 100.0% 100.0% 92.4% 99.6% 99.6% 95.6% 99.0% 99.6%
0.7 91.1% 98.8% 100.0% 91.5% 99.6% 99.6% 94.8% 97.7% 98.9%

t3 0.3 96.1% 99.8% 99.8% 95.5% 99.8% 99.6% 96.0% 98.3% 97.5%
0.5 98.0% 100.0% 100.0% 96.8% 100.0% 99.8% 97.8% 99.4% 99.0%
0.7 96.7% 99.8% 100.0% 95.3% 99.1% 99.8% 94.8% 99.8% 96.6%

Heteroscedasticity
N 0.3 84.5% 97.3% 100.0% 86.8% 98.3% 99.8% 90.2% 97.7% 97.7%

0.5 87.2% 96.2% 100.0% 87.0% 98.7% 99.8% 91.3% 98.1% 98.6%
0.7 83.5% 97.1% 100.0% 83.8% 97.6% 99.8% 89.3% 97.1% 98.8%

t3 0.3 89.5% 99.8% 99.8% 89.5% 98.0% 99.6% 95.4% 98.8% 99.2%
0.5 91.6% 98.4% 100.0% 92.1% 98.1% 99.8% 96.1% 98.8% 97.9%
0.7 91.4% 98.6% 100.0% 91.6% 98.1% 99.4% 94.0% 99.8% 99.8%

Next, we evaluate the finite sample performance of parameter estimators to check the

validity of Theorem 2.1. For Case (1) with single kink effect, we compare the proposed
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estimation method with the bent line quantile estimators proposed by Li et al. (2011) and the

kink regression least squares estimators proposed by Hansen (2017). Both existing methods

assume there is only a single kink effect. We denote two methods as SKQR and SKLS, short

for Single Kink Quantile Regression and Single Kink Least Square, respectively. We conduct

the simulations 500 times and report the estimation biases (Bias), the empirical standard

deviations (SD) and the mean square errors (MSE) for each parameter based on 500 estimates

as well as their average estimated standard errors (SE) based on the asymptotical variance in

Theorem 2.1. All simulation results are summarized in Table 2. All estimates have ignorable

biases, and the standard deviations (SD) are close to the estimated standard errors (SE).

In the homoscedastic model with normal random errors, the SKLS estimators have smaller

mean square errors (MSE) than others. However, when the model is heteroscedastic or the

errors follow t3 distribution, our method works better than the other two in terms of MSE,

which demonstrate the robustness and efficiency of the proposed estimators.

Table 2: Estimation results (multiplied by a factor of 10) of three methods for Case (1).

et
Homoscedasticity Heteroscedasticity

α0 α1 β1 γ δ α0 α1 β1 γ δ

N SKQR Bias -0.020 -0.014 -0.002 -0.058 0.089 0.054 0.001 -0.042 0.022 -0.002
SD 1.481 0.480 0.572 0.795 0.875 1.081 0.236 0.246 1.086 0.888
SE 1.415 0.470 0.576 0.808 0.752 1.110 0.272 0.368 1.018 0.829
MSE 0.218 0.023 0.033 0.063 0.077 0.117 0.006 0.006 0.117 0.078

SKLS Bias 0.068 -0.017 -0.009 -0.028 0.019 0.096 -0.118 -0.003 -0.005 0.036
SD 1.124 0.444 0.358 0.612 0.669 1.074 0.519 0.261 0.863 0.683
SE 1.132 0.444 0.377 0.639 0.599 1.056 0.508 0.264 0.849 0.692
MSE 0.126 0.020 0.013 0.037 0.045 0.116 0.028 0.007 0.074 0.047

MKQR Bias 0.051 -0.010 -0.031 -0.052 0.114 0.077 -0.043 0.007 0.011 -0.014
SD 1.482 0.577 0.475 0.779 0.822 1.036 0.243 0.226 1.075 0.843
SE 1.435 0.555 0.480 0.813 0.758 0.998 0.234 0.219 1.022 0.818
MSE 0.219 0.033 0.023 0.061 0.069 0.107 0.006 0.005 0.115 0.071

t3 SKQR Bias 0.109 0.021 -0.059 0.095 -0.101 0.064 0.017 0.001 -0.026 -0.097
SD 1.539 0.481 0.707 0.784 0.909 1.173 0.268 0.303 1.165 1.024
SE 1.606 0.543 0.641 0.923 0.865 1.304 0.335 0.478 1.152 0.936
MSE 0.237 0.023 0.050 0.062 0.083 0.137 0.007 0.009 0.135 0.105

SKLS Bias 0.025 -0.048 0.019 0.033 -0.064 -0.058 -0.004 -0.013 0.104 -0.083
SD 1.907 0.766 0.613 1.037 1.029 1.887 0.857 0.481 1.487 1.322
SE 1.893 0.741 0.628 1.084 1.010 1.764 0.852 0.440 1.449 1.170
MSE 0.362 0.059 0.037 0.107 0.106 0.355 0.073 0.023 0.221 0.175

MKQR Bias 0.063 -0.055 0.009 0.105 -0.086 0.087 -0.001 0.023 -0.054 -0.080
SD 1.495 0.706 0.474 0.801 0.891 1.138 0.307 0.256 1.181 0.962
SE 1.560 0.607 0.526 0.892 0.841 1.080 0.264 0.239 1.125 0.889
MSE 0.223 0.050 0.022 0.065 0.080 0.130 0.007 0.007 0.135 0.093

Bias: the empirical bias; SD: the empirical standard deviation; MSE: the mean square error; SE: the average
estimated standard error. The minimum MSE among three estimators is highlighted in bold.

For the multi-kink models, both SKLS and SKQR methods are not able to detect the

multiple kink points. Thus, we only present the simulation results of the proposed MKQR

estimators for Case (2) with K = 2 in Table 3. All the biases are sufficiently close to zero
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and the SEs are compatible with the SDs for both homoscedastic and heteroscedastic errors.

To save the space, we omit the similar simulation results for Case (3) with K = 3. These

results demonstrate the validity of Theorem 2.1 for the multiple kink effects.

4.2 Power Analysis

We now assess the power performances for testing the existence of kink effects in Section 3.1.

We generate the data from Case (1) except β = n−1/2c, where n = 1000, c = 0, 2, 4, 6, 8, 10

and c = 0 corresponds to the null hypothesis. We compare our proposed test with two

existing tests, the lack-of-fit (L.O.F) test proposed by He and Zhu (2003) and the F-type

test proposed by Hansen (2017). The lack-of-fit test is a general test for checking model

specification, which was also used in Li et al. (2011). For our score-based test, we compute

the P-values using wild bootstrap in Algorithm ?? with 300 replicates. Figure 2 displays

the power curves of three tests over different signal strength values of c. Under the null

hypothesis when c = 0, all methods have satisfactory type I errors close to the nominal

significance level 5% for homoscedastic errors. However, the L.O.F test can not control the

type I errors when there exists heteroscedasticity. As c increases, i.e. the kink effect gets

enhanced, the empirical powers to identify the kink effect for all methods gradually increase

to one for each scenario. Our proposed test have the higher empirical powers than the other

two tests, especially when the errors follow the t3 distribution or exist the heteroscedasticity.

4.3 Confidence Intervals

Next, we evaluate the finite sample performances of the smoothed rank score (SRS) test-

inversion confidence intervals (CIs) for the kink location parameter δ. For a comparison

purpose, we additionally consider the Wald-type CIs and the bootstrap CIs. The Wald-type

(1−α)th CIs are constructed based on the asymptotical normality in Theorem 2.1, i.e., δ̂k±
zα/2SE(δ̂k), for k = 1, · · · , K̂, where zα/2 is the α/2 upper tailed critical value of the standard

normal distribution and SE(δ̂k) is the estimated standard error of δ̂k. The Bootstrap CIs

are defined as [δ̂∗k,α/2, δ̂
∗
k,1−α/2], the (α/2)th and (1−α/2)th quantiles of bootstrap estimators

{δ̂∗k,b, b = 1, 2, · · · , B} with B paired bootstrap samples.

We generate data from the MKQR model of Case (2) with K = 2 and n = 500. To save

the space, we only report the simulation results for the heteroscedastic model with the errors

from t3 distribution. Table 4 reports the coverage probabilities and the mean width of 95%

confidence intervals as well as the average running time per replication at different quantile

levels τ = 0.3, 0.5, 0.8 based on 1000 simulations.

From Table 4, the coverage probabilities of Wald-type intervals are generally lower than

the 95% nominal level. Hansen (2017) and Fong et al. (2017) also found that Wald-type
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Table 3: Estimation results (multiplied by a factor of 10) of the proposed
MKQR method for Case (2) with K = 2.

et τ α0 α1 γ β1 β2 δ1 δ2

N(0, 1)

Homoscedasticity
0.2 Bias 0.001 0.001 0.001 0.000 0.000 0.000 0.001

SD 0.067 0.020 0.014 0.037 0.044 0.024 0.019
SE 0.067 0.020 0.014 0.038 0.045 0.024 0.019
MSE 0.005 0.000 0.000 0.001 0.002 0.001 0.000

0.5 Bias -0.001 0.000 0.000 -0.001 0.002 0.000 -0.001
SD 0.061 0.019 0.014 0.035 0.042 0.022 0.019
SE 0.065 0.019 0.017 0.043 0.049 0.026 0.022
MSE 0.004 0.000 0.000 0.001 0.002 0.000 0.000

Heteroscedasticity
0.2 Bias 0.002 0.001 0.000 0.001 0.000 -0.001 0.001

SD 0.032 0.007 0.007 0.035 0.063 0.019 0.027
SE 0.032 0.007 0.006 0.035 0.064 0.019 0.027
MSE 0.001 0.000 0.000 0.001 0.004 0.000 0.001

0.5 Bias -0.001 0.000 0.000 0.000 0.000 -0.001 -0.002
SD 0.030 0.007 0.006 0.032 0.059 0.018 0.026
SE 0.030 0.006 0.006 0.033 0.060 0.018 0.025
MSE 0.001 0.000 0.000 0.001 0.003 0.000 0.001

Homoscedasticity

t3

0.2 Bias 0.007 0.001 -0.002 -0.017 0.021 0.005 -0.003
SD 0.333 0.101 0.072 0.175 0.227 0.132 0.097
SE 0.318 0.097 0.067 0.181 0.216 0.114 0.093
MSE 0.111 0.010 0.005 0.031 0.052 0.017 0.009

0.5 Bias -0.010 -0.001 0.002 -0.007 0.013 0.004 -0.003
SD 0.299 0.092 0.060 0.161 0.196 0.119 0.089
SE 0.278 0.085 0.060 0.158 0.188 0.101 0.081
MSE 0.089 0.009 0.004 0.026 0.038 0.014 0.008

Heteroscedasticity
0.2 Bias 0.009 0.003 -0.001 -0.016 0.035 0.001 0.002

SD 0.147 0.032 0.033 0.174 0.320 0.098 0.142
SE 0.152 0.033 0.030 0.168 0.308 0.089 0.130
MSE 0.022 0.001 0.001 0.030 0.104 0.010 0.020

0.5 Bias -0.005 -0.001 0.000 -0.005 0.024 0.000 0.001
SD 0.135 0.030 0.026 0.155 0.278 0.087 0.133
SE 0.131 0.028 0.026 0.148 0.269 0.080 0.113
MSE 0.018 0.001 0.001 0.024 0.078 0.008 0.018

Bias: the empirical bias; SD: the empirical standard deviation; MSE: the mean
square error; SE: the average estimated standard error.
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Figure 2: Power comparison of the proposed test at τ = 0.5 (black circle), the lack-of-fit test
at τ = 0.5 (brown triangle) and the F-type test (orange plus) at the significance level 5%.

CIs have poor finite sample performance, especially for threshold parameters due to the

parameter-effects curvature. The bootstrap intervals have the highest coverage rates, but

they have the largest interval lengths and need much more computing time. The boot-

strap method is less computationally efficient. The proposed smoothed rank score (SRS)

test-inversion CIs provide a balance between the estimation accuracy and the computation

efficiency. They have higher coverage probabilities than the Wald-type intervals and also

need much less computing time than the Bootstrap intervals.

5 Empirical Analysis

5.1 Secondary Industrial Structure of China

The past few decades have witnessed the miracle of China’s economic growth. Since China

introduced the policy of reform and opening in 1978, GDP per capita has experienced a
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Table 4: 95% confidence intervals for each kink point parame-
ter in Case (2) in the heteroscedastic model with the t3 errors.

τ Type
Coverage probability Mean interval length

Time(s)
δ1 δ2 δ1 δ2

0.3 Wald 0.933 0.923 0.353 0.518 5.07
Boot 0.964 0.970 0.391 0.689 377.81
Score 0.930 0.957 0.343 0.641 12.70

0.5 Wald 0.923 0.933 0.307 0.436 4.45
Boot 0.968 0.982 0.323 0.575 375.07
Score 0.927 0.953 0.303 0.530 11.38

0.8 Wald 0.913 0.883 0.451 0.619 4.53
Boot 0.970 0.974 0.501 0.801 378.38
Score 0.917 0.930 0.449 0.774 13.82

Wald: Wald-type CIs; Boot: bootstrap CIs; Score: SRS test-
inversion CIs. Time is the average running time for one simulation.

considerable growth and the industrial structure has also undergone tremendous changes.

Classical development economic theory tells us that in the process of development, the

proportion of first industry decreases while the tertiary industry instead increases gradually

for one country. Meanwhile, the proportion of secondary industry experiences a process of

increasing rapidly at first and then gradually stops growing or even decreases, which implies

the presence of a kink pattern. The economic development model of China, as the biggest

developing country in the world, has been aroused a great of research interest, see Song et al.

(2011), Brandt et al. (2013), Cao and Birchenall (2013) and etc.

In this section, we aim to investigate whether there exist kink effects between secondary

industrial structure and the economic growth from the quantile regression perspective using

the prefecture-level cities data in China. After removing the missing values, we collect data

for 280 Chinese prefecture-level cities of year 2016 from the Organisation for Economic Co-

operation and Development (OECD) database available at https://insights.ceicdata.

com/. We consider the MKQR model

QY (τ |Xt,Zt) = α0 + α1Xt +
K∑

k=1

βk(Xt − δk)I(Xt > δk) + γTZt, t = 1, · · · , 280, (5.1)

where Yt represents the proportion of secondary industry of the tth city, Xt is the GDP

per capita (104 Chinese Yuan) and Zt includes the fiscal expenditure (FE) and fixed assets

investment (FAI), which are generally deemed to be correlated with the industrial structure.

To eliminate effect by the difference of economic scales, we divide the FE and FAI by the

total GDP for each city, denoted by Zt1 and Zt2, respectively
∗. We let τ = 0.1, 0.3, 0.5, 0.7

and 0.9 to study the prefectural-level cities at different development levels.

∗We also separately test the existence of kink effects between Yt and Zt1, Yt and Zt2 at different quantiles.
The resulting p-values are all greater than 0.1 across all quantiles indicating no kink effect on FE and FAI.
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Table 5: Parameter estimation and test results of the MKQR model at different
quantile levels for secondary industrial structure data of China.

τ = 0.1 τ = 0.3 τ = 0.5 τ = 0.7 τ = 0.9

P-values 0.000 0.000 0.000 0.000 0.000

K̂ 1 1 1 1 1
α̂0 −0.012(0.067) 0.184(0.057) 0.090(0.057) 0.182(0.057) 0.273(0.054)
α̂1 0.114(0.022) 0.059(0.014) 0.102(0.019) 0.084(0.017) 0.074(0.015)
β̂1 −0.109(0.023) −0.054(0.014) −0.098(0.019) −0.079(0.017) −0.068(0.015)
δ̂1 3.457(0.307) 4.490(0.355) 3.468(0.227) 3.571(0.191) 3.777(0.301)

Wald [2.856, 4.058] [3.794, 5.184] [3.023, 3.913] [3.195, 3.946] [3.187, 4.367]
Boot [2.567, 7.377] [2.729, 4.831] [2.599, 4.801] [3.027, 4.834] [2.782, 6.552]
Score [2.537, 4.561] [2.786, 4.808] [3.196, 4.967] [2.651, 5.410] [3.236, 4.409]
γ̂1 −0.985(0.405) −0.916(0.229) −0.711(0.159) −0.828(0.199) −0.687(0.252)
γ̂2 0.078(0.024) 0.086(0.020) 0.090(0.015) 0.098(0.014) 0.060(0.012)

The figures in parentheses denote the standard errors of estimators.
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Figure 3: Scatter plot between secondary industrial structure of China and GDP per capita
with the fitted MKQR curves at different quantile levels. N denotes the estimated kink point.

Table 5 reports P-values for testing the existence of kink effects based on 1000 bootstrap

replicates, the estimated number of kink points, the estimated parameters as well as their the

standard errors, and the confidence intervals for kink locations. Figure 3 displays the scatter

plot between secondary industrial proportions of 280 cities in China and their GDP per capita
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with the fitted MKQR curves at different quantile levels. According to Table 5, P-values are 0

and K̂ = 1 for all different quantiles, which indicate that there exists a significant kink point.

α̂1 > 0 and β̂1 < 0 for all quantiles are statistically significant which means that the second

industrial proportions Yt first quickly increase with GDP per capita and then stabilizes with

a slow increasing rate of β̂1 + α̂1 (e.g. β̂1 + α̂1 = 0.004 for τ = 0.5). This empirical finding

demonstrates the classical economic theory about the process of development. It is also of

interest to observe that the estimated kink points are around 35000 to 45000 Chinese Yuan

(roughly 5000-6500 United States Dollar). Based on the Chenery industrialization stage

theory (Chenery et al., 1986)†, GDP per capita in this interval indicates that an economic

entity is going through an important turning period. During this period, if one economy

can skip the threshold value and achieve economic restructuring, it will move into high-

income group. Otherwise, the middle-income trap may loom. In addition, both regressors

Zt1 and Zt2 are statistically significant based on the Wald-type test. It is confirmed that the

proportions of secondary industry are indeed correlated to the government fiscal expenditure

and the fixed assert investment.

5.2 Triceps Skinfold Thickness of Gambian Females

Triceps skinfold thickness (TSF) as an important measure for body density experiences the

dynamic changes with the increase of age. People whose TSFs are above the 85th percentile

are more likely to suffer from obesity, while those whose TSFs are lower the 20th percentile

are usually skinny. Exploring the relationship between TSF and age at different quantiles

has been of great interest in biological and human health studies. For instance, Durnin and

Womersley (1974) divided the 481 subjects aged from 16-72 into four subgroups based on

the ages and used the linear regression to fit the logarithm of TSF and body densities for

each subsample. The results showed that the regression coefficients of each group exhibited

significant differences from the others. Cole and Green (1992) demonstrated that there

existed cubic splines non-linear pattern between the logarithm of TSF and age by using the

smooth fitting curves. Perperoglou et al. (2019) fitted the Gambian females dataset using the

spline regression to depict the nonlinearity between TSF and the age. Although the spline

regression captures the nonlinear trend, it does not provide any information concerning

thresholds and is lack of interpretability in each segment. The nonparametric spline method

is either not robust to the outliers and heavy-tailed data.

We consider the dataset collected by Royston and Sauerbrei (2008) from an anthropom-

etry survey at three Gambian villages in 1989, containing 892 women between the ages of

0 and 55. To investigate the relationship between their TSFs and the age and identify the

† Professor Hollis B. Chenery at Harvard University believed that modern economic growth can be under-
stood as a comprehensive transformation of the economic structure. He divided the structural transformation
process of GDP per capita into three stages: Initial, Intermediate and Post-industrial stages, corresponding
to the GDP per capita less than 1495 dollars, 1495-11214 dollars and greater than 11214 dollars.
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potential kink points at different quantiles, the following MKQR model is considered

QY (τ |Xt) = α0 + α1Xt +
K∑

k=1

βk(Xt − δk)I(Xt > δk), t = 1, · · · , 892, (5.2)

where Yt is log(TSF), Xt is the age, K is the unknown number of kink points. We set

τ = 0.1, 0.3, 0.5, 0.7 and 0.9 to study the different conditional quantiles of log(TSF) on age.

Table 6 reports P-values for testing the existence of kink effects based on 1000 bootstrap

replicates, the estimated number of kink points, the estimated parameters as well as their

the standard errors, and the confidence intervals for kink locations. The resulting P-values

are all close to zeros, implying that log(TSF) has significant kink effects on the age for all

quantiles. We estimate the MKQR models at different quantiles by setting 10 initial kink

points and identify K̂ = 2 kink points located round 10 years and 20 years. This result is

in accord with the biological intuition. Two kink points split the domain of the age into

the three growth periods of human beings: childhood, adolescence and adults. Figure 4 also

displays the scatter plot between log(TSF) and their age with the fitted MKQR curves at

different quantile levels. One can observe that the logarithm of TSF decreases quickly with

the age in the childhood up to about 8-11 years old, then experiences a growth spurt at

adolescence up to about 18-21 years old and finally stays almost stable after then for adults.

The variance of TSF increases with the age, which makes quantile regression necessary

to handle with the heteroscedasticity. It is also interesting to notice that the kink points

estimators are heterogeneous across different quantiles. For the higher quantiles such as

τ = 0.9, log(TSF) tend to experience the smaller kink points locations than other quantiles,

for example δ̂1 = 8.604 years for τ = 0.9. It means that Gambian females with obesity reach

the biological limits earlier, making their TSFs get changed sooner in the growth process.

As a comparison, we also analyze the dataset by using SKLS and SKQR methods. Both

methods can only detect with a single kink point at around 6-8 years, which is much lower

than our first threshold estimator δ̂1. However, if the Wald-type test of Li et al. (2011)

and the F-type test of Hansen (2017) are used to check the existence of kink effects using

subsmaple in the second segment divided by the threshold estimator, we find that both tests

reject the null hypothesis indicating that some potential kink effect is ignored. In contrast,

our MKQR method is flexible and robust in practice to capture multi-kink effects.

6 Conclusion

In this article, we studied the flexible multi-kink quantile regression (MKQR) model without

knowing the number of kink points. It is robust to outliers and heavy-tailed errors and more

flexible for modelling data with heterogeneous conditional distributions. We proposed a

BRISQ algorithm for estimating parameters. It is much more computationally efficient and
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Table 6: Parameter estimation and test results of the MKQR model at different quantile levels
for triceps skinkfold thickness data for Gambian females.

τ = 0.1 τ = 0.3 τ = 0.5 τ = 0.7 τ = 0.9

P-values 0.000 0.000 0.000 0.000 0.007

K̂ 2 2 2 2 2
α̂0 1.895(0.021) 2.042(0.029) 2.183(0.027) 2.241(0.023) 2.426(0.037)
α̂1 −0.041(0.002) −0.040(0.005) −0.046(0.005) −0.037(0.003) −0.049(0.008)
β̂1 0.096(0.013) 0.106(0.010) 0.129(0.010) 0.136(0.012) 0.144(0.015)
β̂2 −0.056(0.014) −0.058(0.010) −0.075(0.009) −0.090(0.012) −0.086(0.013)
δ̂1 10.035(0.130) 10.117(0.379) 10.030(0.306) 10.635(0.425) 8.604(0.472)

Wald [9.781, 10.290] [9.373, 10.861] [9.430, 10.630] [9.803, 11.467] [7.679, 9.530]
Boot [8.206, 12.988] [9.086, 12.235] [9.425, 12.050] [8.223, 12.202] [7.737, 10.679]
Score [8,217, 13.930] [8.979, 12.393] [9.418, 12.478] [7.663, 12.758] [7.665, 10.967]

δ̂2 20.414(2.927) 19.689(1.525) 18.993(1.048) 18.964(0.845) 18.720(1.489)
Wald [14.678, 26.150] [16.700, 22.678] [16.939, 21.047] [17.307, 20.621] [15.801, 21.639]
Boot [14.530, 47.470] [17.280, 29.735] [17.562, 23.226] [18.067, 24.724] [16.588, 24.821]
Score [17.487, 49.680] [16.639, 42.566] [17.945, 25.282] [18.119, 25.728] [15.742, 26.166]
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Figure 4: Scatter plot between the logarithm of TSF and ages for Gambian females with
the fitted MKQR curves at different quantile levels. N denotes the estimated kink point.

not sensitive to the initial values. The selection consistency and the asymptotic normality

were established and the statistical inference for kink effects were also developed. A R

package MultiKink has been developed for all the estimation and inference procedures. In
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the future studies, several topics could be considered. It is interesting to test whether the

regression curve is continuous or not at the change points and how to estimate the parameters

if jumps happen at the change points. We may also consider some additional restrictions

on the regression coefficients such as nondecreasing slopes in the MKQR model. We can

also consider the composite quantile regression idea to enhance the estimation efficiency to

identify the kink points under the commonality assumption of kink points across multiple

quantile levels. Besides, extensions to other regressions such as generalized linear models,

Cox proportional hazards models or censored models can be also considered for the future

research.

Supplementary Material. The convergence of the BRISQ Algorithm, the Wild bootstrap

algorithm for P-Values, the proof of Proposition 3.1 for the null asymptotic distribution of

the smoothed rank score (SRS) test statistic and additional simulation results are included

in a separate online supplemental file.
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7 Appendix

A.1 Proof of Theorem 2.1

To show the asymptotic normality of θ̂, we need derive its consistency at first.

Lemma A.1. Under Assumptions (A1)-(A4), θ̂ is a consistent estimator of θ0.

Proof of Lemma A.1: We first need to show that supθ∈Θ |Sn(θ)−S(θ)|
p−→ 0 as n→ ∞.

Notice that S(θ) is continuous and has the following first derivative

∂S(θ)

∂θ
= E [ψτ{Yt −QY (τ ;θ|Wt)}h(Wt;θ)] .

By the Assumptions (A3) and (A4), we can get that E supθ |h(Wt;θ)| <∞. Together with

ψτ{Yt−QY (τ ;θ|Wt)} ≤ max(τ, 1−τ), we can show that E supθ∈Θ ψτ{Yt−QY (τ ;θ|Wt)}h(Wt;θ)
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is finite. By using the mean-value theorem, for any θ1,θ2 ∈ Θ, there exists a θ∗ such that

Sn(θ
1)− Sn(θ

2) =
1

n

n∑

t=1

[ψτ{Yt −QY (τ ;θ
∗|Wt)}h(Wt;θ

∗)]T (θ1 − θ2)

By using Assumptions (A3) and (A4) again,

E
∣∣∣ 1
n

n∑

t=1

ψτ{Yt −QY (τ ;θ
∗|Wt)}h(Wt;θ

∗)
∣∣∣ ≤ Bn <∞,

where Bn = E supθ∈Θ

∣∣∣max(τ, 1− τ)h(Wt;θ)
∣∣∣. Hence Bn = Op(1) and |Sn(θ

1)− Sn(θ
2)| ≤

Bn‖θ1 − θ2‖ for every Xn. By applying the Lemma 2.9 of Newey and McFadden (1994), we

have supθ∈Θ |Sn(θ)− S(θ)| p−→ 0 for θ ∈ Θ.

Since Sn(θ) is continuous w.r.t θ, and S(θ) uniquely reaches its global minimum at θ0

(Assumption (A4)), together with supθ∈Θ |Sn(θ) − S(θ)| p−→ 0, then we can immediately

induce that θ̂
p−→ θ0 as n→ ∞ by using the Theorem 2.1 of Newey and McFadden (1994).�

The following lemma is sufficient for deriving the Bahadur representation of θ̂.

Lemma A.2. Suppose Assumptions (A1) and (A3)-(A4) hold, for any positive sequence dn
converging to zero, we have

sup
‖θ−θ0‖≤dn

∣∣∣∣∣

∣∣∣∣∣n
−1/2

n∑

t=1

[ψτ{Yt −QY (τ ;θ|Wt)}h(Wt;θ)− ψτ{Yt −QY (τ ;θ0|Wt)}

×h(Wt;θ0)]− n−1/2E

[
n∑

t=1

ψτ{Yt −QY (τ ;θ|Wt)}h(Wt;θ)

] ∣∣∣∣∣

∣∣∣∣∣ = op(1)

Proof of Lemma A.2: Define

ut(θ,θ0) =

K0+1∑

k=1

[ψτ{Yt −QY (τ ;θ|Wt)}h(Wt;θ)− ψτ{Yt −QY (τ ;θ0|Wt)}

h(Wt;θ0)] · I(δk−1,0 < Xt < δk,0)

=

K0+1∑

k=1

ut,k(θ,θ0)

For any δk ∈ (δk−1,0, δk+1,0), ut,k(θ,θ0) can be partitioned into several parts based on the
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range of Xt,

ut,k(θ,θ0) = ut,k(θ,θ0)I{max(δk, δk,0) < Xt < δk+1,0}+ ut,k(θ,θ0) ·
I{δk−1,0 < Xt ≤ min(δk, δk,0)}+ ut,k(θ,θ0)I(δk ≤ Xt < δk,0)

+ut,k(θ,θ0)I(δk,0 ≤ Xt < δk)

= ut,k,1(θ,θ0) + ut,k,2(θ,θ0) + ut,k,3(θ,θ0) + ut,k,4(θ,θ0)

To prove Lemma A.2, it is sufficient to show sup‖θ−θ0‖≤dn ‖n−1/2
∑n

t=1[ut,k,j − E(ut,k,j)]‖ =

op(1) for k = 1, · · · , K0 and j = 1, · · · , 4. The proofs directly follow from the result of Lemma

4.6 in He and Shao (1996). We only take ut,k,1(θ,θ0) for illustration and the remaining are

the same. For this, we need to check the conditions (B1), (B3) and (B5
′

) in He and Shao

(1996).

The measurability is straightforward for (B1). For (B3), by using mean-value theorem ,

we have

EYt
[‖ut,k,1(θ,θ0)‖2|Wt] ≤ Ldnf

∗
t ‖Ut‖3,

where L is some positive constant, Ut = (1, Xt,Z
T
t )

T and f ∗
t is some intermediate density

satisfying f ∗
t → ft(0) almost surely when n → ∞. It is obvious to obtain (B3). For (B5

′

),

let An = L
∑

t f
∗
t ‖Ut‖3. Under Assumptions (A5) and (A6), we have An = Op(n), and

max1≤t≤n ‖ut,k,1(θ,θ0)‖ = Op(n
1/2). Thus, (B5

′

) is satisfied. By using Lemma 4.6 of He and

Shao (1996), Lemma A.2 is therefore established. �

Proof of Theorem 2.1: Based on Lemmas A.1 and A.2, we have

n−1/2

n∑

t=1

[
ψτ{Yt −QY (τ ; θ̂|Wt)}h(Wt; θ̂)− ψτ{Yt −QY (τ ;θ0|Wt)}h(Wt;θ0)

]

−n−1/2

[
E

n∑

t=1

ψτ{Yt −QY (τ ;θ|Wt)}h(Wt;θ)

] ∣∣∣∣∣
θ=θ̂

= op(1) (A.1)

Applying the Taylor expansion, we obtain

[
E

n∑

t=1

ψτ{Yt −QY (τ ;θ|Wt)}h(Wt;θ)

] ∣∣∣∣∣
θ=θ̂

= nDn(θ̂ − θ0) +Op(n(θ̂ − θ0)
2) (A.2)
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where

Dn = n−1

n∑

t=1

∂Eψτ{Yt −QY (τ ;θ|Wt)}h(Wt;θ)

∂θ

∣∣∣
θ=θ0

= n−1

n∑

t=1

∂([τ − Ft{Yt −QY (τ ;θ|Wt)}]h(Wt;θ))

∂θ

∣∣∣
θ=θ0

= n−1

n∑

t=1

(
[−ft{Yt −QY (τ ;θ0|Wt)}h(Wt;θ0)h

T(Wt;θ0)]

+[τ − Ft{Yt −QY (τ ;θ0|Wt)}]
∂h(Wt;θ0)

∂θ

)

= n−1

n∑

t=1

[−ft{Yt −QY (τ ;θ0|Wt)}h(Wt;θ0)h
T(Wt;θ0)] .

Combined with the subgradient condition of quantile regression, we have

n−1/2

n∑

t=1

ψτ{Yt −QY (τ ; θ̂|Wt)}h(Wt; θ̂) = op(1) (A.3)

Together with (A.1), (A.2) and (A.3), we have

−n−1/2

n∑

t=1

[ψτ{Yt −QY (τ ;θ0|Wt)}h(Wt;θ0)]

= n1/2Dn(θ̂ − θ0) +Op(n
1/2(θ̂ − θ0)

2) + op(1). (A.4)

Because the left-hand side term n−1/2
∑n

t=1[ψτ{Yt−QY (τ ;θ0|Wt)}h(Wt;θ0)]
d−→ N(0,G)

by using the central limit theorem and Dn is positive definite by Assumption (A5), we have

‖θ̂ − θ0‖ = Op(n
−1/2). Therefore,

n1/2(θ̂ − θ0) = −D−1
n n−1/2

n∑

t=1

ψτ{Yt −QY (τ ;θ0|Wt)}h(Wt;θ0) + op(1).

By Assumption (A3), it follows that n1/2(θ̂ − θ0) is asymptotically normal with mean zero

and variance matrix D−1GD−1 using the central limit theorem. This completes the proof of

Theorem 2.2. �
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A.2 Proof of Theorem 2.2:

The proof of Theorem 2.2 shares the similar strategy as Wang et al. (2007). Note that

Theorem 2.2 is equivalent to

P

(
min
K 6=K0

sBIC(K) > sBIC(K0)

)
→ 1. (A.5)

To prove (A.5), we identify two different cases i.e Case 1 for K < K0 and Case 2 for K > K0.

Denote θ⋆
K as the pseudo-true parameters for a given K, that is θ⋆

K = argminθK
ESn(θK).

Case 1: when K < K0, we need first prove S0(θ
⋆
K) = Eρτ{Y − QY (τ ;θ

⋆
K |W)} >

S0(θ
⋆
K0
) = Eρτ{Y −QY (τ ;θ

⋆
K0
|W)}. From Knight’s identity, we can directly obtain that

ρτ{Y −QY (τ ;θ
⋆
K |W)} − ρτ{Y −QY (τ ;θ

⋆
K0
|W)}

= {QY (τ ;θ
⋆
K |W)−QY (τ ;θ

⋆
K0
|W)}{I(e0 ≤ 0)− τ}

+

∫ QY (τ ;θ⋆

K
|W)−QY (τ ;θ⋆

K0
|W)

0

{I(e0 ≤ s)− I(e0 ≤ 0)}ds,

where e0 = Y −QY (τ ;θ
⋆
K0
|W) and therefore

E[ρτ{Y −QY (τ ;θ
⋆
K |W)}]− E[ρτ{Y −QY (τ ;θ

⋆
K0
|W)}]

= E

∫ QY (τ ;θ⋆

K
|W)−QY (τ ;θ⋆

K0
|W)

0

[F0(s)− F0(0)]ds.

From Assumption (A1), density value f0(·|W) is always bounded away from zero. We

can immediately obtain that E
∫ QY (τ ;θ⋆

K
|W)−QY (τ ;θ⋆

K0
|W)

0 [F0(s) − F0(0)]ds > 0 no matter

QY (τ ;θ
⋆
K |W)−QY (τ ;θ

⋆
K0
|W) is positive or negative. Thus, S0(θK) > S0(θK0) holds.

Denote θ̂
⋆

K = argminθK
Sn(θK). By using similar argument in the proof of Lemma A.1,

it is easy to show that θ̂
⋆

K is a consistent estimator for θ⋆
K . Note that in the proof of Lemma

A.1, we mainly use the Theorem 2.1 of Newey and McFadden (1994), which does not requires

the model to be correctly specified. Then we have

sBIC(K)− sBIC(K0) =
[
log
(
Sn(θ̂

⋆

K)
)
− log

(
Sn(θ

⋆
K0
)
)]

+ (K −K0)
log n

n
Cn

Since the first term can asymptotically dominate the second term and (K−K0)
logn
n
Cn = o(1)

by Assumption (A7),

sBIC(K)− sBIC(K0) → log (S0(θ
⋆
K))− log

(
S0(θ

⋆
K0
)
)
> 0, as n→ ∞.

Therefore, sBIC(K)− sBIC(K0) > 0 for K < K0 when n goes to the infinity.

27



Case 2: i.e. when K > K0, by using the proposed BRISQ algorithm, the estimator for

θ⋆
K is denoted by θ̂

⋆

K = (η̂K(δ̂
⋆

K)
T, δ̂

⋆T

K )T. Recall that Mt(δK) = (1, Xt, (Xt−δ1)+, · · · , (Xt−
δK)+,Z

T
t )

T. Then QY (τ ;θK |Wt) = Mt(δK)
TηK is a linear regression conditional on δK . By

using similar arguments in pages 121-122 of Koenker (2005), we can show that ‖η̂⋆
K(δ

⋆
K) −

η⋆
K‖ = Op(n

1/2) conditional on pseudo-true δ⋆
K . More specially, letting η̃

⋆
K = η⋆

K + u/
√
n

where u ∈ R
K , we have

∑

t

ρτ{Yt −QY (τ ; η̃
⋆
K , δ

⋆
K |Wt)} −

∑

t

ρτ{Yt −QY (τ ;η
⋆
K , δ

⋆
K |Wt)}

=
1√
n

∑

t

Mt(δ
⋆
K)

Tu{I(et ≤ 0)− τ}+
∫

Mt(δ
⋆

K
)Tu/

√
n

0

{I(et ≤ s)− I(et ≤ 0)}ds.

For the first term of right hand, we have 1√
n

∑
t Mt(δ

⋆
K)

Tu{I(et ≤ 0)− τ} = Op(1) by using

central limit theorem. For the second term, it converges to a positive definite matrix. Thus

we can obtain that η̂⋆
K(δ

⋆
K) is a root-n consistent estimator and

∥∥∥∥∥
∑

t

ρτ{Yt −QY (τ ; η̂
⋆
K(δ

⋆
K), δ

⋆
K |Wt)} −

∑

t

ρτ{Yt −QY (τ ;θ
⋆
K |Wt)}

∥∥∥∥∥ = Op(1).

In addition, since θ̂
⋆

K is a consistent estimator for θ⋆
K and

∑
t ρτ{Yt−QY (τ ; η̂

⋆
K(δ

⋆
K), δ

⋆
K |Wt)}

is continuous in δ⋆
K , we have

∥∥∥∥∥
∑

t

ρτ{Yt −QY (τ ; θ̂
⋆

K |Wt)} −
∑

t

ρτ{Yt −QY (τ ; η̂
⋆
K(δ

⋆
K), δ

⋆
K |Wt)}

∥∥∥∥∥ = Op(1).

Hence
∥∥∥
∑

t ρτ{Yt −QY (τ ; θ̂
⋆

K |Wt)} −
∑

t ρτ{Yt −QY (τ ;θ
⋆
K |Wt)}

∥∥∥ = Op(1), and

sBIC(K)− sBIC(K0)

= log

(
1 +

1
n

∑n
t=1 ρτ{Yt −QY (τ ; θ̂

⋆

K , |Wt)} − 1
n

∑n
t=1 ρτ{Yt −QY (τ ;θ

⋆
K0
|Wt)}

1
n

∑n
t=1 ρτ{Yt −QY (τ ;θ

⋆
K0
|Wt)}

)

+(K −K0)
log n

n
Cn

= log

(
1 +

1
n

∑n
t=1 ρτ{Yt −QY (τ ;θ

⋆
K |Wt)} − 1

n

∑n
t=1 ρτ{Yt −QY (τ ;θ

⋆
K0
|Wt)}

1
n

∑n
t=1 ρτ{Yt −QY (τ ;θ

⋆
K0
|Wt)}

+
O( 1

n
)

1
n

∑n
t=1 ρτ{Yt −QY (τ ;θ

⋆
K0
|Wt)}

)
+ (K −K0)

log n

n
Cn

= O

(
1

n

)
+ (K −K0)

log n

n
Cn

Since K−K0 > 0, then sBIC(K)−sBIC(K0) > 0. The proof of Theorem 2.2 is completed. �
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A.3 Proof of Theorem 3.1

The following lemma is used for proving the Theorem 3.1.

Lemma A.3. Under the Assumptions (A1), (A3)-(A4) and (A8), as n→ ∞, we have

(I) supδ |n−1
∑n

t=1 f̂t(êt)Vt(Xt − δ)I(Xt < δ)−H1(δ)|
p−→ 0;

(II) supδ |n−1
∑n

t=1 f̂t(êt)Vtβ̂(Xt − δ)I(Xt > δ)−H2(δ, β)|
p−→ 0;

(III) supδ |n−1
∑n

t=1 VtV
T

t f̂t(êt)−H| p−→ 0.

Proof of Lemma A.3: We only give the proof for (I), since the proof for (II) and (III)

are the same. For (I), it is sufficient to show that supδ |Ĥ1(δ) − H1(δ)| = op(1), where

Ĥ1(δ) = n−1
∑n

t=1 f̂t(êt)Vt(Xt − δ)I(Xt < δ). We have

Ĥ1(δ)−H1(δ)

= n−1

n∑

t=1

{f̂t(êt)− ft(êt)}Vt(Xt − δ)I(Xt < δ) +

{
n−1

n∑

t=1

ft(êt)Vt(Xt − δ)I(Xt < δ)−H1n(δ)

}
+ {H1n(δ)−H1(δ)}

= (a) + (b) + (c) (A.6)

supδ |(a)| = op(1) holds directly by the uniform convergence property of kernel estimator.

For (b), note that

|(b)| ≤ n−1

n∑

t=1

Vt(Xt − δ)I(Xt < δ) max
1≤t≤n

{ft(Yt − α̂
T
Vt)− ft(Yt −αTVt)}.

By our Assumptions (A1), (A3) and (A9), and ‖α̂−α‖ = op(n
−1/2) in Lemma A.4, together

with the mean value theorem, we have

max
1≤t≤n

{ft(Yt − α̂
T
Vt)− ft(Yt −αTVt)} ≤ max

1≤t≤n
‖Vt‖ · |f

′

(Yt − ξTVt)| · ‖α̂−α‖ = op(1).

where ξ lies between α̂ and α. Hence supδ |(b)| is op(1).

Finanlly, for (c), we have n−1
∑n

t=1 ft(et)Vt(Xt − δ)I(Xt < δ)
p−→ Eft(et)Vt(Xt −

δ)I(Xt < δ) = H1(δ) for any given δ by using law of large numbers. Then supδ |(c)| = op(1),

whose proof follows the similar line of Lemma 1 in Hansen (1996) and thus is omitted. Since

29



(a), (b) and (c) are op(1) uniformly in δ ∈ Γ, then supδ |Ĥ1(δ) −H1(δ)| = op(1). The proof

is completed. �

Lemma A.4. Under Assumptions (A1), (A3)-(A4) and (A8), and the local alternative model

(3.3), α̂ has the following Bahadur representation:

α̂−α = H−1

{
n−1

n∑

t=1

ψτ (et)Vt

}
+ n−1/2H−1H2(δ, β) + op(1).

where et = Yt −αTVt − n−1/2β(Xt − δ)I(Xt > δ).

Proof of Lemma A.4: By using Lemma 4.1 of He and Shao (1996), we have

sup
‖α−α0‖≤cn

∣∣∣∣∣

∣∣∣∣∣n
−1/2

n∑

t=1

{ψτ (Yt −αTVt)− ψτ (et)}Vt −

n−1/2

n∑

t=1

E{ψτ (Yt −αTVt)Vt|Vt}
∣∣∣∣∣

∣∣∣∣∣ = Op

(
(cn + n−1/2)1/2 log n

)
,

where cn = o(1) as n→ ∞. Since E{ψτ (Yt−αTVt)|Vt} = τ −F{(Yt−αTVt)|Vt}, then we

can obtain

n−1/2

n∑

t=1

[ψτ (Yt −αTVt)− {τ − Ft(Yt −αTVt)}]Vt

= n−1/2

n∑

t=1

ψτ (et)Vt +Op

(
(‖ α̂−α ‖ +n−1/2)1/2 log n

)
. (A.7)

Based on the subgradient condition of quantile regression, we get

n−1/2

n∑

t=1

ψτ (Yt −αTVt)Vt = op(1).
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Hence,

n−1/2

n∑

t=1

[ψτ (Yt − α̂
T
Vt)− {τ − Ft(Yt − α̂

T
Vt)}]Vt

= n−1/2

n∑

t=1

{Ft(Yt − α̂
T
Vt)− τ}Vt + op(1)

= n−1/2

n∑

t=1

ft{Yt −αTVt − n−1/2β(Xt − δ)I(Xt > δ)}VtV
T

t (α̂−α)

−n−1

n∑

t=1

ft{Yt −αTVt − n1/2β(Xt − δ)I(Xt > δ)}Vt(Xt − δ)I(Xt > δ)

+op(1) + op
(
n1/2(α̂−α)

)

= n1/2H(α̂−α)−H2(δ, β) + op(1) + op
(
n1/2(α̂−α)

)
.

Together with (A.7), the proof of Lemma A.4 is completed. �

Proof of Theorem 3.1: Under the null hypothesis β = 0, q(δ, β) = 0 and thus Theorem

3.1 holds under H0. It remains to show that Theorem 3.1 holds under local alternative model

(3.3). By Lemmas A.3 and A.4, and after some simple algebraic manipulation, it is easy to

obtain that

Rn(δ) = n−1/2

n∑

t=1

ψτ (Yt − α̂
T
Vt)(Xt − δ)I(Xt ≤ δ)

= n−1/2

n∑

t=1

ψτ{et + n−1/2β1(Xt − δ)I(Xt > δ)− (α̂−α)TVt}(Xt − δ)I(Xt ≤ δ)

= n−1/2

n∑

t=1

ψτ (et)(Xt − δ)I(Xt ≤ δ)−H1(δ)H
−1n−1/2

n∑

t=1

ψτ (et)Vt

−H1(δ)H
−1H2(δ, β) + op(1)

= n−1/2

n∑

t=1

ψτ (et){(Xt − δ)I(Xt ≤ δ)−H1(δ)H
−1Vt} −H1(δ)H

−1H2(δ, β) + op(1)

= R(δ) + q(δ, β) + op(1).

The weak convergence of R(δ) can be obtained directly by following the proof of Stute (1997).

This completes the proof of Theorem 3.1. �
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