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Photoproduction cross sections are reported for the reaction γ p → pη using energy-tagged photons and the

CLAS spectrometer at Jefferson Laboratory. The η mesons are detected in their dominant charged decay mode,

η → π+π−π 0, and results on differential cross sections are presented for incident photon energies between 1.2

and 4.7 GeV. These new η photoproduction data are consistent with earlier CLAS results but extend the energy

range beyond the nucleon resonance region into the Regge regime. The normalized angular distributions are also

compared with the experimental results from several other experiments, and with predictions of η-MAID 2018

and the latest solution of the Bonn-Gatchina coupled-channel analysis. Differential cross sections dσ/dt are

presented for incident photon energies Eγ > 2.9 GeV (W > 2.5 GeV), and compared with predictions which are

based on Regge trajectories exchange in the t-channel (Regge models). The data confirm the expected dominance

of ρ, ω vector-meson exchange in an analysis by the Joint Physics Analysis Center.

DOI: 10.1103/PhysRevC.102.065203

I. INTRODUCTION

The photoproduction of pseudoscalar mesons on the nu-
cleon has remained of interest in recent years for the study
of meson production in hadronic reactions across a wide
range of energies. At low energies using incident photon
energies below 3.0 GeV, information about the nucleon ex-
citation spectrum can be extracted, whereas at higher energies
above Eγ ≈ 4 GeV, details of the residual hadron interac-
tions due to the t-channel exchange of massive quasi-particles

known as Reggeons can be studied [1]. These two regimes
are analytically connected, but the scarcity of cross section
and polarization data for the energy range 3–6 GeV have
thus far hindered our understanding of the transition from
the baryon resonance regime to high-energy photoproduction.
While each Reggeon exchange has a known energy behavior,
the dependence on the momentum exchange in the reaction is
initially unknown. However, dispersion relations can be used
to derive the t-dependence of the Regge amplitudes from the
low-energy amplitude, which is usually described in terms

065203-2



PHOTOPRODUCTION OF η MESONS OFF THE PROTON … PHYSICAL REVIEW C 102, 065203 (2020)

of a finite number of partial waves. This technique of finite-
energy sum rules (FESR) was recently applied to π0 and η

photoproduction [2,3]. In these reactions, the resonance and
the Regge regions can be effectively separated. Low-energy
amplitudes, which directly contain the resonance dynamics,
should then smoothly connect with the high-energy region
[4]. Alternatively, FESR can be derived to constrain the low-
energy amplitudes by the t-channel Reggeon exchanges [5]
and ultimately, to extract nucleon resonance parameters. Both
approaches were recently explored for π0 photoproduction in
Ref. [6].

In the nucleon resonance region, abundant data on η pho-

toproduction on the proton are available from the reaction

threshold at W thres. ≈ 1.49 GeV up to the fourth resonance

region just below W ≈ 2 GeV. The data situation has even im-

proved in recent years, particularly for (double-)polarization

observables with the availability of longitudinally and trans-

versely polarized targets at several photoproduction facilities

around the world, e.g., Jefferson Laboratory [7] in Newport

News, USA, ELSA [8] in Bonn, Germany, and MAMI [9]

in Mainz, Germany. Data using high-intensity photon beams

with excellent linear polarization are also available from the

GRAAL facility [10] in Grenoble, France, and from LEPS

[11] at SPring-8 in Hyogo, Japan. The photo-induced produc-

tion of η mesons is a selective probe for the study of nucleon

excitations. Although photons incident on protons couple to

both isospin I = 0, 1 initial states, the η meson in the final

state serves as an isospin filter for baryon excitations since

isospin I = 3/2 states (� resonances) are prohibited from

decaying into Nη final states.

Near the production threshold, the dominance of the two

nucleon resonances N (1535) 1/2− and N (1650) 1/2− in η

photoproduction is undisputed [12,13]. Small contributions

have also been observed in (γ , η) from the N (1520) 3/2−

state, which itself couples strongly to the Nη decay mode. The

state was identified mainly from the S11-D13 interference term

in the description of the photon-beam asymmetry [14–17]

indicating the importance of polarization observables. Also

available are results from MAMI for the transverse target

asymmetry T , and the beam-target asymmetry F [18]. The

helicity asymmetry E was reported by the CLAS Collabora-

tion at Jefferson Lab [19] and the A2 Collaboration at MAMI

[20]. More recently, results on the target asymmetry T and

the double-polarization observables E , G (longitudinal target

polarization) as well as P, H (transverse target polarization)

in the photoproduction of η mesons off protons were reported

by the CBELSA/TAPS Collaboration at ELSA [21].

In their biannual editions, the listing of nucleon resonances

by the Particle Data Group (PDG) in the Review of Particle

Physics [22] has undergone significant upgrades based on the

recent photoproduction data from the above facilities with

almost no N∗ resonance left untouched since 2010. Several

new nucleon states have been added, some of which show

strong couplings to Nη. Above 1700 MeV in overall center-

of-mass energy, a third 1/2− state, N (1895) 1/2−, is now

listed as a new resonance with a four-star rating indicating

its existence is certain in both its overall status and its Nη

decay mode. In the 1/2+ wave, a large contribution in (γ , η)

is observed from the N (1710) 1/2+ resonance, the status of

N N 

N N 

N* R 

  

  

FIG. 1. Dominant contributions to η photoproduction off the nu-

cleon: s-channel intermediate nucleon resonance excitation (left) and

t-channel exchange of Reggeons (right).

which has been upgraded to three stars in its Nη decay mode.

In the fourth resonance region and above, discrepancies oc-

cur in various amplitude analyses. Such ambiguities are not

surprising in light of the remaining incompleteness of the

η photoproduction database. The experimental status of η

photoproduction from nucleons and nuclei, as well as phe-

nomenological progress was recently reviewed in Ref. [23].

The theoretical description of high-energy photoproduc-

tion provides constraints on the amplitudes utilized in

low-energy meson photoproduction to extract the spectrum

of excited baryons [6]. Moreover, understanding the meson

photoproduction mechanism at high energies is a crucial com-

ponent of a broader program to search for gluonic excitations

in the meson spectrum, which is the primary goal of the GlueX

experiment in Hall D at Jefferson Lab [24,25].

In a brief summary, η photoproduction off the nucleon

is dominantly described by s-channel intermediate nucleon

resonance excitation (left side of Fig. 1) close to the produc-

tion threshold with an admixture of t-channel exchange of

Reggeons (right side of Fig. 1) as the incident photon energy

increases, whereas the t-channel Reggeon exchange domi-

nates the production of η mesons at higher energies above

7 GeV.

In this paper, differential cross sections are presented for

the reaction γ p → pη from CLAS at Jefferson Lab, where

the η was identified through the detection of its decay prod-

ucts π+π−π0. The new data reported here cover an incident

photon energy range Eγ from 1.2 GeV up to 4.7 GeV.

This paper has the following structure. A summary of

previous measurements in η photoproduction is presented in

Sec. II. Section III gives an introduction to the CLAS-g12 ex-

perimental setup. The data reconstruction and event selection

are discussed in Sec. IV and the extraction of the cross sec-

tions is described in Sec. V. Finally, the experimental results

and a discussion of the physics including possible nucleon

resonance contributions are presented in Secs. VI and VII,

respectively.

II. PREVIOUS MEASUREMENTS

Cross sections for the reaction γ p → pη were measured at

many different laboratories over a wide kinematic range and

in various η decay modes using either tagged-photon beams

produced in Compton scattering of laser photons off elec-

trons in the accelerator [16,26,27] or via the bremsstrahlung

technique [28–33]. A summary of the experimental data on
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TABLE I. Summary of experimental data on cross sections for η

photoproduction off the nucleon.

Reaction W [GeV] −t [GeV2] Reference

γ p → pη 1.49 – 1.96 − A2 [32,33]

1.55 – 2.80 − CLAS [30,48]

1.51 – 2.55 − CB-ELSA [28,29]

1.57 – 2.38 − CBELSA/TAPS [31]

1.49 – 1.92 − GRAAL [16,26]

1.97 – 2.32 − LEPS [27]

2.36 & 2.55 0.2–1.2 Daresbury [35]

2.90 & 3.48 0.0–1.4 DESY [36]

2.90 <1.0 MIT [38]

3.48–5.56 0.2–0.9 SLAC [40]

2.90–3.99 0.3–0.8 Cornell [39]

γ n → nη 1.49–1.88 − A2 [45]

1.50–2.18 − CBELSA/TAPS [46]

1.59–2.07 − CBELSA/TAPS [47]

η photoproduction cross sections from the nucleon is given

in Table I. The current status of single-η meson production

using photon beams is reviewed in Ref. [34], and in particular

the information that can be obtained on the spectrum of light,

nonstrange baryons.

A whole “industry” of photoproduction experiments

recorded data for several meson-production channels in the

1960s and ’70s. Results were mostly published at higher en-

ergies and only a few data points bridge the gap down to the

resonance region below Eγ ≈ 3 GeV. Particularly interesting

for the discussion of cross sections is the normalization tech-

nique of these older data since tagged-photon beams were not

available at these facilities.

A. Summary of older photoproduction experiments

(1960s and 1970s)

At the 5 GeV electron synchrotron NINA at the Dares-

bury Laboratory, a linearly polarized bremsstrahlung beam

was used to extract differential cross sections for the reaction

γ p → pη at incident photon energies of 2.5 and 3.0 GeV, and

for various t-values between −0.2 and −1.2 GeV2 [35]. The

incident photon intensity as a function of energy was derived

from a quantameter, together with the shape of the spec-

trum as measured with a pair spectrometer. At the Deutsches

Elektronen-Synchrotron (DESY), a bremsstrahlung beam was

produced on a tungsten target and the flux was measured with

a gas-filled quantameter. Cross section results for η photopro-

duction were reported at mean photon energies of 4 and 6 GeV

in the momentum transfer range between zero and 1.4 GeV2

[36].

A bremsstrahlung beam from a tungsten target was used

at the Cambridge Electron Accelerator (CEA) at the Mas-

sachusetts Institute of Technology (MIT). The beam was

monitored with a quantameter that was calibrated against a

Faraday cup and whose output was measured with a current

integrator [37]. Results for η photoproduction at 4 GeV were

published in Ref. [38]. Finally, cross section measurements

were also performed at the 10 GeV synchrotron at the Labo-

ratory of Nuclear Studies at Cornell University. Several data

points were published for incident photon energies of 4 and 8

GeV and momentum tranfers −t between 0.3 and 0.8 GeV2

[39].

Measurements at higher incident photon energies in the

range 6.0–16.0 GeV were performed at the Stanford Lin-

ear Accelerator Center (SLAC) using a bremsstrahlung beam

[40]. The beam was monitored by detecting Cherenkov light

of e+e− pairs from a converter in the beam. The Cherenkov

monitor was calibrated against a precision calorimeter [41].

In Ref. [42], the overall uncertainty in normalization was

estimated at 10 %; other references give even smaller uncer-

tainties, see e.g. Ref. [41]. The SLAC high-power quantameter

was used for the measurement of the incident photon flux and

is described in Ref. [43].

B. Experiments using Compton backscattering

The GRenoble Anneau Accelerateur Laser (GRAAL) ex-

periment measured the differential η photoproduction cross

sections from threshold up to 1100 MeV [26] and up to

1500 MeV [16] in incident photon laboratory energy and

for cos θ c.m. < 0.85 of the η meson in the overall center-of-

mass (c.m.) frame. The facility was located at the European

Synchrotron Radiation Facility (ESRF) in Grenoble, France.

For a detailed description of the facility, see Ref. [10]. The

tagged and polarized γ -ray beam was produced by Compton

scattering of laser photons off the 6 GeV electrons circulating

in the storage ring. The photon energy was provided by an

internal tagging system consisting of silicon microstrips for

the detection of the scattered electron and a set of plastic

scintillators for time-of-flight (TOF) measurements [16]. A

thin monitor was used to measure the beam flux (typically

106 γ /s). The monitor efficiency of (2.68 ± 0.03)% was esti-

mated by comparing with the response of a lead/scintillating

fiber calorimeter at a low rate.

At the SPring-8/LEPS facility, the photon beam was pro-

duced by backward-Compton scattering of laser photons off

electrons with an energy of 8 GeV. Data were accumulated

with 1.0 × 1012 photons at the target and cross section results

on the reaction γ p → pη were extracted for the incident

photon energy range Eγ ∈ [1.6, 2.4] GeV in the backward

direction (cos θ c.m. < −0.6) [27].

C. Experiments using bremsstrahlung photons

At the ELectron Stretcher Accelerator (ELSA) [8], two

very different experimental setups extracted cross section data

for the photo-produced pη final state. In 2001, the CB-ELSA

detector recorded data and η photoproduction was studied

in the neutral decays of the η meson into γ γ and π0π0π0

[28,29]. The original experiment consisted of the CsI(Tl)-

based Crystal Barrel (CB) calorimeter covering 97.8 % of the

4π solid angle [44]. For the 2000/2001 data taking, electrons

were extracted in two separate experiments at energies of

1.4 and 3.2 GeV, covering tagged-photon energies from 0.3

up to about 3.0 GeV, with a typical intensity of 1–3 × 106

tagged photons/s. The experimental setup was later modified

and in a series of measurements in 2002/2003, a combination
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FIG. 2. Side view of the CLAS detector in Hall B at Jefferson Lab including the photon tagging facility upstream of CLAS. Reproduced

figure with permission from Ref. [7]. Copyright 2003 by Elsevier.

of the CB calorimeter and the BaF2 TAPS detector in the

forward direction was used. Results of the CBELSA/TAPS

setup on single-η cross section measurements off the proton

can be found in Ref. [31]. The data provide improved angular

coverage in the forward and backward direction in the center-

of-mass system.

At the upgraded Mainz Microtron (MAMI-C), an experi-

mental setup using a combination of the NaI(Tl) Crystal Ball

and BaF2 TAPS multiphoton spectrometers recorded high-

quality data on the reaction γ p → pη in the energy range

from the production threshold at 707 MeV to 1.4 GeV [32,33].

The NaI(Tl) crystals were arranged in two hemispheres that

covered 93 % of the 4π solid angle and the TAPS calorimeter

subtended the full azimuthal range for polar angles from 1◦

to 20◦. Since the TAPS calorimeter was installed 1.5 m down-

stream of the Crystal Ball center, the resolution of TAPS in the

polar angle θ was better than 1◦. For an electron beam energy

of 1508 MeV, a tagger channel in this experiment had a width

of about 2 MeV at Eγ = 1402 MeV and about 4 MeV at the

η-photoproduction threshold of Eγ = 707 MeV.

At the Continuous Electron Beam Accelerator Facility

(CEBAF) at Jefferson Laboratory (Jefferson Lab), the CEBAF

Large Acceptance Spectrometer (CLAS) was optimized for

charged-particle tracking. A detailed description of the spec-

trometer and its various detector components is given below

and in Ref. [7]. The CLAS “g1” experiment accumulated data

in 1998 (g1a) and in 1999 (g1c) using electron beam energies

of 2.49 and 2.45 GeV, respectively. These experiments used

a single-prong trigger configuration. Results for the reaction

γ p → pη were only published from the CLAS “g1a” exper-

iment [48]. For the absolute normalization of the η channel,

the SAID-SM02 solution [49] was used. The normalization

uncertainty for all incident photon energies below 2 GeV was

estimated at 3% [48].

The CLAS “g11a” experiment accumulated a high-

statistics data sample in 2004 of about 20 × 109 triggered

events. An electron beam of energy E e− = 4.023 GeV was

used to generate tagged photons with energies between 0.81

and 3.81 GeV covering center-of-mass energies up to
√

s ≈
2.84 GeV. Results on η cross section measurements for Eγ <

3.5 GeV are published in Ref. [30].

A review of the main photoproduction data sets prior to

2013 and a corresponding comparison of their coverage in

energy and solid angle can be found in Ref. [50].

III. EXPERIMENTAL SETUP

The γ p → pη measurements discussed here were per-

formed at Jefferson Lab from March to June 2008 using the

CLAS spectrometer [7] in Hall B. The experimental setup is

shown in Fig. 2. The incident tagged, bremsstrahlung photon

beam was produced from a 60–65 nA electron beam of en-

ergy E e− = 5.715 GeV delivered by the CEBAF accelerator.

These measurements were part of the CLAS-g12 experiment,

which was a high-luminosity data-taking period. The tagging

system provided a circularly polarized, real-photon beam with

the highest available photon energies of any CLAS experi-

ment of up to Eγ ≈ 5.4 GeV, corresponding to about 95% of

E e− . The photons impinged upon a 40-cm-long unpolarized

liquid-hydrogen target, which was moved upstream by 90 cm

from the center of the CLAS spectrometer to enhance the

acceptance of charged tracks in the forward direction. Various

results from the CLAS-g12 experiment have been recently

published and are discussed in Refs. [51–54]. First cross sec-

tion measurements have been presented in short papers on the

reaction γ p → pπ0 → pe+e− (γ ) [52] and on the reaction

γ p → K+K+ (X ) [54] in the search for excited 
 baryons.

A brief overview of the CLAS performance is given in the

following section; a full description of the CLAS spectrometer

can be found in Ref. [7]. The remaining sections describe at

greater length those components of the experimental setup

that differ from previous CLAS experiments or are particu-

larly relevant for the cross section measurements.
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A. Overview

The charged tracks in the experiment were detected in the

CLAS spectrometer, which provided coverage for charged

particles in the polar-angle range 8◦ < θ lab < 135◦. The three

momentum components of the particles were reconstructed

from their tracks in the toroidal magnetic field of the spec-

trometer by a set of three drift-chamber packages [55].

Time-of-flight (TOF) information was available from plastic

scintillators [56] located about 5 m from the center of CLAS.

The spectrometer provided a momentum and angle resolution

of �p/p ≈ 1% and �θ ≈ 1◦–2◦, respectively. A set of plastic

scintillation counters close to the target (referred to as the start

counter) provided event start times [57]. For this experiment,

coincident signals from the photon tagger, start counter, and

time-of-flight system constituted the event trigger that re-

quired a coincidence between a scattered-electron signal from

the photon tagger and an energy-dependent number of charged

tracks in CLAS (see Sec. III E for details).

B. The tagging system

The bremsstrahlung beam was produced from a thin

gold radiator and photons were tagged by detecting energy-

degraded electrons, which were deflected in the magnetic

field of a single dipole magnet. The CLAS tagging system

used a hodoscope that contained two planar arrays of plastic

scintillators [58]. The first layer of 384 partially overlapping

small scintillators (E-counters) provided the photon energy

accuracy of ≈1 × 10−3 E e− , while the second layer of 61

larger scintillators (T-counters) provided the timing resolution

of about 160 ps necessary to form a coincidence with the

corresponding charged particles that were produced in the

nuclear interaction triggered by the tagged photon.

The arrangement of the E-counters is relevant for the dis-

cussion of the cross-section results presented here. The widths

of the counters ranged from 6 to 18 mm to provide approx-

imately constant momentum intervals of 0.003 E e− . Since

each counter optically overlapped its adjacent neighbors by

one-third of their respective widths, a total of 767 separate in-

cident photon energy bins was available with an energy range

of approximately r = 0.001 E e− . Assuming equal acceptance

along the length of each paddle, the element for the photon

energy in the covariance matrix is given by

σ 2
Eγ

= 1

r

∫ r/2

−r/2

E2 dE = r2

12
. (1)

The CLAS-g12 experiment recorded data at the highest pos-

sible CEBAF energies of E e− = 5.715 GeV and therefore,

σEγ
= 1.65 MeV, which is about 80% greater than the number

for the CLAS-g11a experiment [30]. Thus, a slightly broader

binning in center-of-mass energy W was chosen for W <

2.1 GeV. In particular, very close to the low-energy end of the

tagging range at about 21% of E e− , the width of the W bins

translates into the smallest bin width in incident photon energy

for the entire analyzed energy range. This resolution effect,

combined with observed small fluctuations in our extracted

cross sections at the lower end of the tagging range, which

are believed to originate from the measured incident photon

flux, required adjusting the W binning from 20 to 40 MeV for

W < 1.88 GeV.

C. Particle identification

Particle identification (PID) of charged final-state hadrons

in this experiment was based on the combined information

from the drift chamber and TOF systems. A value for β,

defined as the ratio of the particle speed relative to the speed

of light, could be measured in two different ways:

(1) An empirically measured value for each particle, βm =
v/c = �t/(c l ), was based on timing information from

the time-of-flight and start counter systems (where l

denotes the length of the track as determined from the

drift-chamber track reconstruction), and

(2) Independently, a value for each particle, β c = p/E ,

could be determined from the measured momentum

using the CLAS drift chambers and the PDG mass [22]

for the particle.

PID could then proceed by evaluating the distribution of

�β = |β c − βm| values and defining proper event-by-event

selection criteria.

The CEBAF electrons were delivered to the CLAS-g12

experiment in 2-ns bunches. Several bunches arrived at the

tagger within the trigger coincidence window and each bunch

contained many electrons. Therefore, many photon candi-

dates were recorded for each event; random hits could also

occur from background sources, e.g., cosmic radiation. To

determine the correct initial-state photon, which triggered the

hadronic reaction at the event vertex in the liquid-hydrogen

target, the time differences were used between the event

vertex-time based on the final-state tracks and the tagger

vertex-time for each photon candidate.

The event vertex-time, t event, was given as an average over

the event’s track times,

t track = t ST − d

c βm

, (2)

where t ST denotes the start-counter time and d is the distance

from the interaction point to the corresponding start-counter

paddle. The time, tγ , for each photon candidate is given by

the recorded electron-triggered tagger time corrected for the

propagation from the center of the liquid-hydrogen target to

the event vertex along the beam axis. Figure 3 shows the co-

incidence time �t TGPB = t event − tγ . The 2-ns time structure

is clearly visible. In the CLAS-g12 experiment, selecting pho-

tons from the central coincidence peak and discarding events

with more than one photon candidate resulted in a remaining

nonnegligible accidental background of about 13% due to the

relatively high electron beam current of 60–65 nA.

D. The liquid-hydrogen target

In the CLAS-g12 experiment, the liquid-hydrogen target

was not positioned at the center of CLAS but was moved

upstream by 90 cm to allow for the enhanced detection of

peripherally produced mesons off the proton with the goal

to search for and study excited mesons at the highest avail-

able CEBAF energies. Peripheral reactions are characterized

065203-6



PHOTOPRODUCTION OF η MESONS OFF THE PROTON … PHYSICAL REVIEW C 102, 065203 (2020)

 [ns]
TGPB

t
-4 -2 0 2 4

C
o

u
n

ts

0

5

10

6
10

FIG. 3. Distribution of the tagger-start counter coincidence

times. The 2-ns bunch structure is visible. Events were considered

for further analysis only if a single photon candidate remained after

a timing cut of |�t TGPB| < 1 ns.

by small values of the exchanged four-momentum −t and

are strongly forward peaked at high energies since the cross

section is almost exponentially falling with t . The target cell

was 40 cm in length and 2 cm in diameter. The z-vertex dis-

tributions (coordinate along the beamline) for data and Monte

Carlo events are shown in Fig. 4. The target length and the

position offset from the CLAS center are clearly visible.

In the CLAS-g12 experiment, the target temperature and

pressure were sampled continuously throughout each run.

Since the overall uncertainty in the target density was smaller

than the geometrical uncertainty in the dimensions of the Kap-

ton cell, the uncertainty in the liquid-hydrogen density was

not considered a factor in the budget of the various systematic

uncertainties.

E. Trigger

The entire CLAS-g12 data set was classified into many dif-

ferent groups of runs according to their trigger configurations.

Some of these configurations applied a tagger prescaling to

enhance events with high photon energies. For this analysis,

we used a fraction of the total statistics that was not subject

to prescaling to avoid additional complications in the absolute

normalization of the measured angular distributions.

The TOF counters generated signals for the CLAS level-1

trigger. These detectors were positioned outside the CLAS

tracking system in a symmetric six-sector arrangement, ge-

ometrically defined by the coils of the CLAS toroidal magnet.

For the data presented here, the trigger required a scattered

electron in the bremsstrahlung tagger in coincidence with

z Vertex [ cm ]
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C
o

u
n

ts

0

500

1000

1500

z-vertex cut

FIG. 4. The z-vertex distribution of γ p → pη Monte Carlo

(black) and data events (blue). The target length of 40 cm is clearly

visible. In this experiment, the target cell was moved upstream from

the CLAS center by 90 cm. The vertical lines define the range of the

z-vertex cut.

either (a) (at least) three charged tracks in different sectors

with no restrictions on any photon energy, or (b) only two

tracks in different sectors with the additional requirement of

observing at least one tagger photon with an energy above

3.6 GeV. Along with several ancillary trigger conditions, these

requirements resulted in a live time of the data-acquisition

system of about 87%. About 20–30 recorded photons per

event were observed using a trigger coincidence window of

approximately 100 ns.

IV. CALIBRATION AND EVENT RECONSTRUCTION

The calibration of the individual spectrometer components

followed the CLAS standard procedures [59]. In the process,

inefficient TOF paddles were identified and later removed

from the analysis in a standardized approach for real data and

simulated events. The latter is particularly important for the

trigger simulation. The details of the Monte Carlo simulations

are described in Sec. IV C.

Charged particles emerging from the event vertex interact

with various detector components and materials, e.g., target,

beam pipe, and start counter, and therefore, are subject to en-

ergy loss along their trajectories. A standard CLAS software

package [60] was applied to account for these interactions.

The CLAS drift chambers existed as three drift-chamber re-

gions, which were located at three positions in the radial

direction [55]. Therefore, each particle track also needed to

be corrected for momentum owing to small misalignments of

these three regions and fluctuations in the toroidal magnetic

field. The momentum corrections for each charged particle

were determined in kinematic fitting for the exclusive γ p →
pπ+π− reaction, where the mean values of the corresponding

momentum pull distributions were tuned in an iterative proce-

dure. The corrections were small and typically of the order of
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FIG. 5. Left and middle: �β = | βc − βm| distributions for protons and positively charged pions, respectively. The blue area indicates the

3σ cut according to Eq. (3). Right: The distribution of βm vs. particle momentum before and after (inset) the 3σ cut. Note that the momentum

range in the inset is limited to p < 3.1 GeV to better illustrate the separation of the two bands at low momenta.

a few MeV. The set of simulated events did not undergo any

momentum corrections.

A. Preparation of the π+π−π0 final state

The reconstruction of the pη channel was based on prepar-

ing a data set of photoproduced pπ+π−π0 events. The same

data set was also used to extract the cross sections for the

reactions γ p → pω → p (π+π−π0)ω and γ p → K0 �+ →
(π+π−) K0 (pπ0)�+ , which will be discussed in subsequent

publications. The only major difference in extracting the cross

sections for these three reactions was the subtraction of back-

ground events. For this reason, this section will focus on

the reconstruction of the general reaction γ p → pπ+π−π0,

followed by a separate section on describing the background

subtraction. The preparation of the final pη event sample

resulted in the reconstruction of ≈293 000 η → π+π−π0

signal events for the incident photon energy range 1.18 <

Eγ < 4.72 GeV or 1.76 < W < 3.12 GeV in center-of-mass

energy. Note that 4.72 GeV corresponds to 82.6% of E e− =
5.715 GeV and is the highest incident-photon energy that just

provides sufficient statistics for this analysis.

B. Event reconstruction and selection criteria

The CLAS spectrometer was optimized for detecting and

measuring charged particles. However, the overconstrained

event kinematics allows for the reconstruction of a single neu-

tral meson. The reaction γ p → pπ+π− (π0) with a missing

π0 was identified in a first step by requiring exactly one proton

track and two charged-pion tracks. Positively and negatively

charged pions were distinguished by their track curvatures in

the toroidal field. The acceptance of π− mesons was smaller

than for π+ mesons since negatively charged tracks were bent

toward the beamline and a large fraction escaped through the

forward hole of the CLAS spectrometer. The π0 meson was

later identified in kinematic fitting.

Standard particle identification was then improved by eval-

uating �β distributions and applying a 3σ cut on either the

proton or the π+ meson:

�β = | βc − βm| =
∣

∣

∣

∣

∣

√

p2

m2 + p2
− βm

∣

∣

∣

∣

∣

< 3σ, (3)

where βm and β c are based on information from the TOF and

the drift-chamber system, respectively, as defined in Sec. III C.

While the quantity �β depends on particle momentum, the

�β distribution is approximately Gaussian when summed

over all βm values, with width σ = 0.009 and 0.011 for the

proton and pions, respectively. Figure 5 shows the �β dis-

tributions for protons (left) and charged pions (center). The

tail on the left side of the �β peak for pions originates from

misidentified electrons. This small lepton contamination is not

a concern since these events did not pass the kinematic fitter,

which is described below. Also shown in Fig. 5 (right) is the

distribution of βm versus particle momentum before and after

(inset) the 3σ cut according to Eq. (3). Clear bands for the

proton and the pions are visible.

Standard fiducial cuts [59] geometrically suppressed events

outside of the active detector regions where the acceptance

was well behaved and reliably reproduced in simulations. For

example, the magnetic field varied rapidly close to the torus

coils rendering these regions difficult to simulate. This effect

was more dramatic in the forward direction, where the coils

occupied a larger amount of the solid angle for small polar

angles. Such regions were studied for charged hadrons with

exclusive γ p → pπ+π− events and defined as upper and

lower limits of the azimuthal angle φ lab from the center of

a given sector. Due to the hyperbolic geometry of CLAS and

the presence of a toroidal magnetic field, the fiducial bound-

aries of φ lab are functions of a track’s momentum, charge,

and polar angle. Moreover, events were removed from this

analysis if the primary interaction z-vertex was very close to

the downstream boundary of the liquid-hydrogen target. The

z-vertex resolution was dependent on the track angle and best

for tracks that were perpendicular to the beam axis. In this

experiment, the upstream shift of the long target cell from the

center of the CLAS spectrometer affected the reconstructed

upstream and downstream edges of the z-vertex distribution

differently. Figure 4 shows that the downstream region could
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FIG. 6. Confidence-level distribution for the missing-π 0 hypothesis after all corrections for Monte Carlo (MC) events (left) and CLAS-g12

data (center). The covariance matrix for both data and MC events was initially tuned using fully exclusive γ p → pπ+π− events. Right:

Distribution of normalized slopes for data events, see text for more details.

not be sufficiently well reproduced in the Monte Carlo sim-

ulations. Therefore, a cut of −110 cm < z-vertex < −72 cm

was applied to the final event sample.

The exclusive pπ+π− channel was identified as a domi-

nant background source. This charged double-pion reaction

has a significantly larger cross section than any other com-

peting reaction leading to an additional π0 meson in the

final state. In this analysis, pπ+π− leakage into the selected

pπ+π− (π0) data sample was observed due to the relatively

small difference in the missing masses of these two final

states. If an incorrect initial-state photon candidate was se-

lected with an energy higher than the correct incident photon,

then this additional energy and z-momentum would allow for

the reconstruction of an artificial π0 in the final state that

would move along the incident photon-beam direction. There-

fore, leakage from the γ p → pπ+π− channel was observed

as an excess of π0 mesons in the very forward direction. To

reduce the contribution from γ p → pπ+π− background, only

events with cos θ π0

c.m. < 0.99 were retained for further analysis.

In a final step, all events were subject to kinematic fit-

ting. Events were tested separately for energy and momentum

conservation in a four-constraint (4C) fit to identify the re-

action γ p → pπ+π− and in a one-constraint (1C) fit to test

for a missing π0. Three pieces of information are needed

for a missing particle. The missing four-momentum initially

introduces four additional unknown parameters. However, the

particle’s energy and momentum are related by the invariant

mass. Since energy and momentum conservation provides

four constraints, the missing-particle hypothesis reduces to a

one-constraint fit. The exclusive reaction γ p → pπ+π− was

used to tune the covariance matrix with a set of common

parameters that have also been applied in other CLAS-g12

analyses involving kinematic fitting. This procedure secures

Gaussian pull distributions and a flat confidence-level (CL)

distribution, where the CL denotes the goodness of fit of the

statistical model applied to the data and is defined as the

integral over the χ2 probability density function in the range

[χ2,∞] [61].

Figure 6 (center) shows the confidence-level distribution

for the missing-π0 hypothesis after all corrections; the distri-

bution is fairly flat. In addition to the quality of the global CL

and pull distributions, the flat shape of the CL distributions

was also checked in all relevant kinematic regions by consid-

ering the normalized slope of each distribution:

ā = a

a/2 + b
, (4)

where a is the slope and b is the y intercept obtained by fitting

a first-order polynomial to the confidence-level distribution on

the interval [0.6, 1.0]. Figure 6 (right) shows the respective

normalized slopes integrated over all analyzed energies and

η center-of-mass angles. The distribution is symmetric and

centered at zero demonstrating the relative flatness of the

CL distributions in all kinematic bins and thus, the good

understanding of the measurement uncertainties. Events in

this analysis were retained with a confidence-level cut of

p > 0.01.

Figure 7 shows the missing mass using nonkinematically

fitted four-vectors in the reaction γ p → pη → pπ+π− (X ),

integrated over all available incident photon energies, after all

cuts and the final η background subtraction described in the

following section. A clean π0 peak is visible with a Gaussian

width of σ = 17.0 MeV.

C. Monte Carlo simulations

The performance of the experimental setup was studied

in GEANT3-based [62] Monte-Carlo (MC) simulations. The

acceptance for the reaction γ p → pη → pπ+π−π0 was de-

termined by generating events, which were evenly distributed

across the available phase space. The MC events were then

analyzed using the same reconstruction and selection criteria,

which were applied to the measured data events. The sim-

ulated tracks were corrected for the energy loss along their

trajectories but were not subject to any momentum corrections

since all the DC components were perfectly positioned in the

simulations and a homogeneous magnetic field was used. The

same hypotheses were tested in the kinematic fits and events

selected with the same confidence level cut. The acceptance

for each kinematic bin was then defined as the ratio of the
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FIG. 7. Missing mass X in the reaction γ p → pη →
pπ+π− (X ) after all cuts and the final η background subtraction. A

clean π 0 peak is visible.

number of generated to reconstructed MC events:

A γ p→ pη = N rec, MC

Ngen, MC

. (5)

In the real CLAS-g12 data, information about the trigger

condition was encoded in the so-called trigger word, which

was available in the data stream for every event. The overall

trigger (in)efficiency was evaluated by studying the efficiency

of individual charged tracks to produce a trigger-level signal

in a sample of exclusive γ p → pπ+π− events, where each

final-state particle was detected in a different sector of CLAS.

Since one of the trigger conditions required only (at least)

two charged tracks in two different sectors (see Sec. III E),

any inefficiencies could be studied by comparing with the en-

coded trigger information. The trigger efficiency for a charged

track was then given as the fraction of events where a third

particle could be reconstructed in a different sector but the

information was not recorded in the corresponding trigger bit.

Trigger efficiency maps were developed for each particle type

(proton, π+, π−) as a function of sector ID, TOF counter,

and azimuthal angle, φ. The average CLAS-g12 efficiency

values for the proton, π+, and π− are 0.89, 0.83, and 0.75,

respectively. These maps were applied in the Monte Carlo

simulations by generating a random number for each track

and removing the track if the random number exceeded the

corresponding efficiency stored in the map.

D. Background subtraction

In the determination of the η photoproduction cross

sections reported here, nonsignal background events were

removed in a probabilistic event-based approach called the

“Q-factor method,” which is fully described in Ref. [63]. A

brief summary of the method and its application to the data

from CLAS-g12 is given in this section.

For every event in this analysis, a quality factor (or Q

value) was determined that describes the probability for an

event to be a signal event as opposed to background. The

approach used the unbinned maximum-likelihood technique.

For every selected γ p → pη event and its Nc kinematically

nearest neighbors, the following function was fit to the invari-

ant Mπ+π−π0 mass distribution:

f (x) = N · [ fs · S(x) + (1 − fs) · B(x)], (6)

where S(x) and B(x) denote the signal and the background

probability density functions, respectively, and x = Mπ+π−π0 .

A double-Gaussian profile was chosen for the signal and

the background shape was modeled with a second-order

Chebyshev polynomial. The parameter N in Eq. (6) is a nor-

malization constant and fs is the signal fraction with a value

between 0 and 1.

The kinematically nearest neighbor events were selected

by defining a distance metric for the phase space spanned by

a set of kinematic variables Ok . These independent quantities

were chosen to be

cos θ η
c.m., cos θHEL, φHEL, φ

η

lab, λ, (7)

where cos θ
η

c.m. denotes the cosine of the polar angle of the

η in the center-of-mass frame, cos θHEL and φHEL describe

the orientation of the η decay plane in the helicity frame, and

φ
η

laboratory is the azimuthal angle of the η in the laboratory

frame. The variable λ = | 
pπ+ × 
pπ− |2 / λmax is defined in

terms of the pion momenta in the η rest frame and is propor-

tional to the η → π+π−π0 decay amplitude as a consequence

of isospin conservation [64], with λmax defined as [65]

λmax = K2

(

K2

108
+ mK

9
+ m2

3

)

, (8)

for a totally symmetric decay, where K = T1 + T2 + T3 is the

sum of the π±, 0 kinetic energies and m is the π± mass.

Initially defined for vector mesons, λ has a limited physics

interpretation for pseudoscalar mesons but still serves as an

independent kinematic variable in this analysis. The back-

ground subtraction described in this section was performed

simultaneously for the ω and η meson decaying to the same

π+π−π0 final state. Results on cross section measurements

for γ p → pω will be presented in a forthcoming publication

[66]. The parameter λ varies between 0 and 1 and the number

of events as a function of λ shows a linearly increasing behav-

ior for vector mesons, whereas a flat distribution is expected

for the η meson. This is nicely observed in Fig. 8. Using the

quantities listed in Eq. (7), the kinematic distance between two

events i and j is defined as

d2
i j =

5
∑

k=1

(

Oi
k − O

j

k

�k

)2

, (9)

where the Ok denotes the set of kinematic variables for the

two events i and j, and �k is the full range for the kinematic

variable k.

The Q value for a selected γ p → pη event is finally given

as the signal component at the event’s invariant π+π−π0 mass

in the overall mass distribution of the event and its Nc = 500
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FIG. 8. Typical example of a normalized λ = | 
pπ+ × 
pπ− |2 dis-

tribution for the center-of-mass energy bin W ∈ [2360, 2400] MeV.

nearest neighbors:

Q = s(x)

s(x) + b(x)
, (10)

where x is again the invariant mass of the π+π−π0

system, s(x) = fsS(x), and b(x) = (1 − fs)B(x) [see also

Eq. (6)].

The Q values were then used as weight factors for various

kinematic distributions in this analysis. Figure 9 shows ex-

amples of the resulting separation of signal and background

in the invariant π+π−π0 mass distribution. Three angle bins

are presented in the energy range W ∈ [1.90, 1.92] GeV. The

sum of the signal (white area) and the background (blue

area) is identical to the total unweighted mass distribution,

whereas the invariant 3π mass of each event weighted by

1 − Q gives the background alone. Figure 10 shows the total

invariant π+π−π0 mass distribution for the energy range W ∈
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FIG. 10. Total invariant π+π−π 0 mass distribution for the

center-of-mass energy W ∈ [1.76, 2.36] GeV corresponding to the

combined γ p → pη event statistics of Figs. 11–15.

[1.76, 2.36] GeV representing the underlying event statistics

in Figs. 11–15. An excellent signal/background separa-

tion is observed with ≈269 000 η events in the signal

peak.

V. EXTRACTION OF CROSS SECTIONS

The differential cross sections, dσ/d�, for the reaction

γ p → pη are determined according to

dσ

d�
= Nγ p → pη

A γ p → pη

1

Nγ ρ target

1

��

1

BR
, (11)
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FIG. 9. Examples of π+π−π 0 mass distributions for the center-of-mass energy range W ∈ [1.90, 1.92] GeV for events that were subject

to the Q-factor fitting (background subtraction). These events survived all kinematic cuts. The invariant 3π mass of each event weighted by

1 − Q gives the blue area (background), whereas the signal peak comes from the invariant mass weighted by Q.
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FIG. 11. The differential cross sections dσ/d� for three 40-MeV-wide center-of-mass energy W bins. The new CLAS data are shown as the

black solid circles (•) and the uncertainties associated with each point comprise the statistical uncertainty and contributions from the Q-value

correlation uncertainty added in quadrature. Also shown for comparison are data from CLAS-g11a [30] ( �), the A2 Collaboration at MAMI

[33] ( �) using their published center-of-bin energies of W = 1.78 GeV (left), 1.82 GeV (center), 1.86 GeV (right), and the CBELSA/TAPS

Collaboration at ELSA [31] (�). The blue solid and purple dashed curves denote the η-MAID 2018 [4] and the BnGa 2019 [21] description of

the γ p → pη cross section, respectively.

where

ρ target: target area density

Nγ p → pη: number of reconstructed signal events

in a (W , cos θ c.m.) bin

Nγ : number of photons in an incident Eγ bin

A γ p → pη: acceptance in a (W , cos θ c.m.) bin

��: solid-angle interval �� = 2π �cos (θ c.m.)

BR: decay branching fraction.

The target area density, i.e., the number of atoms in the tar-

get material per cross-sectional area (orthogonal to the photon

beam), is given by

ρ target = 2
ρ (H2) NA L

M mol (H2)
= 16.992 × 10−7μb−1, (12)

where ρ (H2) = 0.0711 g/cm3 [59] is the average density,

M mol = 2.01588 g/mol is the molar mass of liquid H2, and

L = 40.0 cm is the length of the CLAS-g12 target cell. Fi-

nally, NA = 6.022 × 1023 mol−1 is Avogadro’s number. The
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FIG. 12. The differential cross sections dσ/d� for the energy

bin 1.84 < W < 1.88 GeV. The new CLAS data are shown as the

black solid circles (•) and the uncertainties associated with each

point comprise the statistical uncertainty and contributions from the

Q-value correlation uncertainty added in quadrature. Also shown for

comparison are data from the GRAAL Collaboration [16] ( �).

factor of two accounts for the molecular composition of hy-

drogen (H2).

The solid angle in steradians equals the area of a segment

of a unit sphere. The full solid angle of a sphere measured

from any point in its interior is thus 2 × 2π = 4π sr, where

2π originates from integrating over the azimuthal angle and

the factor of two from integrating over sin θ dθ (polar angle).

Since the differential cross sections are integrated over φ lab

but are binned in cos θ c.m., �� = 2π �cos (θ c.m.) was used

in Eq. (11) and �cos (θ c.m.) = 2 / (# of angle bins). In this

analysis, the available statistics allowed for 20 angle bins and

thus, �� = 0.6283.

The branching fraction for the charged decay mode η →
π+π−π0 of Ŵπ+π−π0 /Ŵ = (22.92 ± 0.28)% was taken from

Ref. [22], where Ŵ = (1.31 ± 0.05) keV [22].

A. Normalization

The photon flux for the absolute normalization of the

extracted differential cross sections was determined using

 <  -0.70θ-0.80  <  cos 

 <  -0.60θ-0.70  <  cos 
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FIG. 13. The differential cross sections dσ/d� for the back-

ward angle bins −0.8 < cos θ < −0.7 (top) and −0.7 < cos θ <

−0.6 (bottom). The new CLAS data are shown as the black solid

circles (•) and the uncertainties associated with each point com-

prise the statistical uncertainty and contributions from the Q-value

correlation uncertainty added in quadrature. Also shown for com-

parison are data from CLAS-g11a [30] ( �) and from the LEPS

Collaboration [27] (�).
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FIG. 14. The differential cross sections dσ/d� in 20-MeV-wide center-of-mass bins for W ∈ [1.88, 2.12] GeV. The new CLAS data are

shown as the black solid circles (•) and the uncertainties associated with each point comprise the statistical uncertainty and contributions

from the Q-value correlation uncertainty added in quadrature. Also shown for comparison are data from CLAS-g11a [30] (�) and from the

CBELSA/TAPS Collaboration at ELSA [31] (�). The blue solid and purple dashed curves denote the η-MAID 2018 [4] and the BnGa 2019

[21] description of the γ p → pη cross section, respectively.

standard CLAS procedures. The method is described in

Ref. [67] and based on comparing the number of “good”

electrons in the tagger with the number of photons traversing

the liquid-hydrogen target measured with a total absorption

counter (TAC) placed directly in the photon beam. Such

normalization runs were carried out at about 10% of the

production beam current using a thinner bremsstrahlung ra-

diator to determine the tagging ratio ǫT of each T-counter.

The tagging ratio is given by the ratio of “good” tagger hits

in coincidence with the TAC to the total number of “good”

hits in the tagger and is approximately between 75% and 80%.

Photons can be lost on the way from the tagger to the target

due to dispersion of the beam, collimation, and Møller scat-

tering, for instance. The number of “good” electrons is given

by integrating the observed electron rates at the tagger over

the data acquisition (DAQ) live time of the experiment, which

is measured with a clock. The number of tagged photons per

T-counter is then given by

NT
γ = NT

e− × ǫT

1 − α
, (13)

where NT
e− is the number “good” electrons per T-counter

and the photon attenuation factor, α, denotes the small

fractional loss of photons from the liquid-hydrogen target to

the TAC.

B. Systematic uncertainties

The statistical uncertainties were determined from the

number of pη events in each (W , cos θ
η

c.m.) or (W , −t) bin, and

are included in the uncertainties shown for all data points. In

this analysis, the effective number of events in each kinematic

bin was given by summing over all Q values of the contribut-

ing events.

The overall systematic uncertainty includes uncer-

tainties in the normalization, as well as contributions

from reconstruction-related sources and the background-

subtraction method. An overview of the different fractional

contributions (% uncertainties) is given in Table II. These

contributions are not included in the following results figures.

A brief discussion of the contribution from the background-

subtraction method is given in this section below. Such

contributions are included in the uncertainty shown for each

data point (added in quadrature to the statistical uncertainty).

An individual event’s Q value is based on a fit to the in-

variant π+π−π0 mass distribution that is formed by the event

and its kinematically nearest neighbors using the maximum-

likelihood technique. The covariance matrix, Cη, for the set of

fit parameters, 
η, was used to determine the uncertainty of the
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FIG. 15. The differential cross sections dσ/d� in 20-MeV-wide center-of-mass bins for W ∈ [2.12, 2.36] GeV. The new CLAS data are

shown as the black solid circles (•) and the uncertainties associated with each point comprise the statistical uncertainty and contributions

from the Q-value correlation uncertainty added in quadrature. Also shown for comparison are data from CLAS-g11a [30] ( �) and from the

CBELSA/TAPS Collaboration at ELSA [31] (�). The blue solid and purple dashed curves denote the η-MAID 2018 [4] and the BnGa 2019

[21] description of the γ p → pη cross section, respectively.

Q value for the given event:

σ 2
Q =

∑

k, m

∂Q

∂ηk

(

C−1
η

) ∂Q

∂ηm

, (14)

where the summation runs over all signal and background

parameters used in the total fit function f (x), which is defined

in Eq. (6).

The Q factor method naturally led to some correlations

among events and their nearest neighbors because events

could serve as neighbors for many seed events. The systematic

TABLE II. Summary of the fractional contributions to the overall

systematic uncertainty.

Source of uncertainty % Uncertainty

Sector-by-sector relative acceptance [59] 5.9

Fiducial cuts 2.5

z-vertex cut 2.6

Upstream / downstream target half 1.5

Kinematic fitting (CL cut) 1.6

Trigger efficiency correction 1.1

Liquid-hydrogen target [59] 0.5

Normalization (photon flux) [59] 5.7

Branching fraction (η → π+π−π 0) 0.28

“correlation” uncertainty of the η yield in each kinematic bin

due to the method as such was given by

σ 2
η =

∑

i, j

σ i
Q ρi j σ

j

Q, (15)

where the sum i, j was taken over all the events in the kine-

matic bin, σ i
Q and σ

j

Q denote the fit uncertainties for events i

and j, and ρi j represents the correlation factor between events

i and j. The correlation factor is simply the fraction of shared

nearest-neighbor events and a number between zero and one.

In high-statistics event samples, the correlation among events

is typically small and the corresponding contribution to the

overall systematic uncertainty is negligible, whereas in low-

statistics samples, the contribution can quickly exceed the

basic statistical uncertainty.

The contribution from the Q-factor method was then added

to the statistical uncertainty in quadrature to obtain the total

“statistics-based” uncertainty that is shown for each data point

in subsequent figures:

σ 2 = σ 2
η + σ 2

statistical. (16)

An additional CL cut of p > 0.05 was examined and the

resulting differential cross sections were compared with the

original results when a nominal cut of just p > 0.01 was used.

Both the difference and ratio distributions were observed to

be symmetric and Gaussian reflecting a change in the results,
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FIG. 16. The differential cross sections dσ/d� in 40-MeV-wide center-of-mass bins for W ∈ [2.36, 3.12] GeV. The new CLAS data are

shown as black solid circles (•) and the uncertainties associated with each point comprise the statistical uncertainty and contributions from the

Q-value correlation uncertainty added in quadrature. Also shown for comparison are data from CLAS-g11a [30] ( �). The blue solid curve

denotes the η-MAID 2018 [4] description of the γ p → pη cross section.

which is mostly statistical in nature due to the loss of events

when using a larger p value. A possible contribution from

the different slopes of the z-vertex distributions in data and

Monte Carlo (observed in Fig. 4) was studied by comparing

the differential cross section results based on events which

originated from either the upstream or downstream half of

the liquid hydrogen target. The ratio distribution was found

to be symmetric, but shifted away from unity by about 1.5%.

Finally, this analysis was also repeated without any z-vertex

cut. A Gaussian fit to the corresponding (very narrow and

symmetric) ratio distribution resulted in a small shift of 2.6%.

In the ideal CLAS-g12 experiment, the detector response

will be the same in each of the six CLAS sectors. How-

ever, a contribution to the overall systematic uncertainty can

arise from small sector-by-sector relative acceptance effects.

To quantify such a contribution, acceptance-corrected event

yields were determined for each sector and compared with the

average for all six sectors [59]. The resulting sector-by-sector

systematic uncertainty of 5.9% was found to be consistent

with the systematic uncertainty quoted for CLAS-g11a [30].

The trigger efficiency maps discussed in Sec. IV C were func-

tions of only sector-related quantities. Therefore, the same

uncertainty of 5.9% was considered for the average trigger

efficiency correction of about 18%.

The contribution from the liquid hydrogen target to the

overall systematic uncertainty accounts for effects such as

the contraction, length, etc. Previous CLAS experiments have

determined that the effect is approximately at the 0.5% level

[59]. Finally, the systematic uncertainty associated with the

incident-photon flux normalization was estimated by studying

the distribution of flux-normalized event yields for all produc-

tion runs at different electron-beam currents [59].

VI. EXPERIMENTAL RESULTS

The cross section data presented in this section have been

analyzed by varying the energy-bin width in three different

energy ranges to adjust for the available statistics in this ex-

periment and to facilitate the comparison with other published

data. Differential cross sections in terms of dσ/d� are shown

for all energies in Figs. 11–17. Representations in terms of

W and momentum transfer −t are given in Figs. 18–20.

The uncertainty associated with each data point comprises

contributions from the statistical uncertainty and the Q-value

correlation uncertainty added in quadrature.

A. Differential cross sections dσ/d�

Figure 11 shows the differential cross sections dσ/d� for

the W range [1.76, 1.88] GeV in 40-MeV-wide energy bins

and 0.1-wide angle bins in cos θ
η
c.m. of the η meson in the

center-of-mass frame. The CLAS-g12 data are given as the
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FIG. 17. The differential cross sections dσ/d� in 40-MeV-wide center-of-mass bins for W ∈ [2.36, 3.12] GeV and just the forward

direction cos θ η
c.m. > 0.5. The new CLAS data are shown as the black solid circles (•) and the uncertainties associated with each point are

comprised of the statistical uncertainty and contributions from the Q-value correlation uncertainty added in quadrature. The blue solid curve

denotes the η-MAID 2018 description [4] of the γ p → pη cross section, whereas the red long-dashed curve represents the Regge model

discussed in Ref. [3].

black data points. For comparison, the distributions also show

the earlier published CLAS-g11a data [30] as the red points.

These data are available in 20-MeV-wide energy bins and

therefore, adjacent bins were averaged. The agreement is very

good within the given uncertainties. Moreover, data from the

A2 Collaboration at MAMI [33] are shown as the blue points

with the published center-of-bin W energy closest to any of

the center-of-bin energies presented in the figure. The overall

agreement is good. Finally, data from CBELSA/TAPS [31]

are given as the green points. Again, the overall agreement

of all four data sets ranges from fair to very good. Some

discrepancies can be attributed to small energy mismatches

in the presentation of the data. The CLAS-g12 data tend to be

systematically lower in the backward direction for cos θ
η
c.m. <

−0.5. A possible explanation is the poor CLAS acceptance in

this kinematic range since the target was significantly shifted

upstream for this experiment. The A2 and CBELSA/TAPS

data seem to slightly underestimate the CLAS data in the

forward direction for 1.80 < W < 1.84 GeV. However, no

significant normalization discrepancy is observed in any of

these W bins.

Figure 12 shows a comparison of the new CLAS data

(black points) with previous results from the GRAAL Col-

laboration [16] (red points) for the center-of-mass energy

bin 1.84 < W < 1.88 GeV. The agreement is excellent in the

forward direction and no overall normalization discrepancy is

observed. However, the CLAS-g12 data are again found to be

slightly lower in the backward direction for cos θ
η
c.m. < −0.2.

The set of angular distributions for the energy range

W ∈ [1.88, 2.36] GeV corresponding to the incident pho-

ton energy Eγ ∈ [1.41, 2.50] GeV is shown in Figs. 14 and

15 in 20-MeV-wide W bins and 0.1-wide angle bins in

cos θ
η
c.m.. For comparison, as before, the CLAS-g11a [30] and

CBELSA/TAPS [31] data are also shown; MAMI data are

only available below Eγ < 1.45 GeV and therefore, are not

included in these figures. The earlier CLAS data have not been

averaged for these distributions since they were published in

20-MeV-wide bins. While the agreement of the two CLAS

data sets is excellent, the CBELSA/TAPS data tend to be

systematically higher. The CBELSA/TAPS data had to be

converted to W bins and for this reason, some discrepancies

can be explained in terms of small energy mismatches. Nev-

ertheless, the ELSA data seem to be systematically higher

especially in the very forward and backward direction above

Eγ ≈ 2.0 GeV or W ≈ 2.2 GeV. This observation was already

discussed in Refs. [30,31] and was also reported for other

reactions, e.g., in ω photoproduction [68]. The latter suggests

an energy-dependent normalization issue of unknown nature

065203-16



PHOTOPRODUCTION OF η MESONS OFF THE PROTON … PHYSICAL REVIEW C 102, 065203 (2020)

2.52 < W < 2.56 GeV 2.56 < W < 2.60 GeV 2.60 < W < 2.64 GeV 2.64 < W < 2.68 GeV 2.68 < W < 2.72 GeV

2.72 < W < 2.76 GeV 2.76 < W < 2.80 GeV 2.80 < W < 2.84 GeV 2.84 < W < 2.88 GeV 2.88 < W < 2.92 GeV

2.92 < W < 2.96 GeV 2.96 < W < 3.00 GeV 3.00 < W < 3.04 GeV 3.04 < W < 3.08 GeV 3.08 < W < 3.12 GeV

-3
10

-210

-110

1

-3
10

-210

-110

1

-3
10

-210

-110

1

0 10 10 10 10 1

]2 -t [ GeV

 ]2
b

/G
e

V
μ

/d
t 

[
σ

 d

FIG. 18. The differential cross sections dσ/dt in 40-MeV-wide center-of-mass bins for W ∈ [2.52, 3.12] GeV and for the −t range

[0, 2] GeV2. The new CLAS data are shown as the black solid circles (•) and the uncertainties associated with each point are comprised

of the statistical uncertainty and contributions from the Q-value correlation uncertainty added in quadrature. In the energy range 2.52 < W <

2.56 GeV, data from NINA at the Daresbury Laboratory [35] ( �) are given for comparison. And in the energy range 2.88 < W < 2.92 GeV,

also shown are data from DESY [36] (�), MIT [38] (�), and Cornell [39] (�). The red long-dashed curve represents the Regge model discussed

in Ref. [3] and the blue solid curve denotes the η-MAID 2018 description [4].

but it is also worth emphasizing that the calorimeter-based

CBELSA/TAPS experimental setup has better acceptance in

the very forward direction. Given the excellent agreement

of the two CLAS data sets, the reason for this discrepancy

remains unclear, though.

The shapes of the angular distributions are indicative of

nucleon resonance production in the entire energy range pre-

sented in Figs. 14 and 15. Moreover, the very prominent

forward-peaking develops around and above W ≈ 1.96 GeV,

which suggests that t-channel processes become increasingly

relevant.
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FIG. 19. The differential cross section dσ/dt for

W ∈ [2.88, 2.92] GeV and for the −t range [0, 2] GeV2 using

a linear scale. For the color code and an explanation of the curves,

see the caption of Fig. 18.

Figure 13 shows the energy dependence of these new

CLAS data (black points) for two backward angle bins in

comparison with results from CLAS-g11a [30] (red points)

and from the LEPS Collaboration [27] (blue points). Note

that the acceptance of this CLAS experiment was significantly

reduced in the backward direction since the liquid hydrogen

target was moved upstream. The agreement between the two

CLAS data sets within their respective uncertainties is ex-

cellent, though. The SPring-8/LEPS facility has also better

acceptance for the detection of mesons in the backward direc-

tion. In comparison, the LEPS data points are observed to be

higher than the CLAS points for the entire energy range shown

in the figure. Moreover, the LEPS data in Fig. 13 indicate

the presence of a bump structure around W ≈ 2.1 GeV. In

Ref. [27], the authors claim that a contribution from nucleon

resonances is needed to explain this structure. Both CLAS

data sets are consistent with the presence of this bump struc-

ture. However, the CLAS-g12 acceptance and the available

statistics in this kinematic region does not facilitate further

studies into the nature of the bump.

Finally, differential cross section results for the energy

range W ∈ [2.36, 3.12] GeV corresponding to incident pho-

ton energy Eγ ∈ [2.50, 4.71] GeV are shown in Fig. 16 in

40-MeV-wide W bins and 0.1-wide angle bins in cos θ
η
c.m..

Note that the vertical axis switches from a linear to a log-

arithmic scale for W > 2.56 GeV (second row), seemingly

changing the shape of the angular distributions and visibly

increasing the reported uncertainties. The agreement with the
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FIG. 20. The differential cross sections dσ/dt in 40-MeV-wide center-of-mass bins for W ∈ [2.52, 3.12] GeV and for the full range

−t ∈ [0, 4] GeV2. The new CLAS data are shown as the black solid circles (•) and the uncertainties associated with each point are comprised

of the statistical uncertainty and contributions from the Q-value correlation uncertainty added in quadrature.

CLAS-g11a data remains very good. Above W = 2.72 GeV

(Eγ ≈ 3.5 GeV), the presented data are first measurements.

CLAS-g12 data are not available for the energy bin 2.56 <

W < 2.60 GeV, caused by an established tagger inefficiency

in the detectors of the tagger focal plane in this region, and

for the energy bin 3.00 < W < 3.04 GeV because the total

number of events in this bin was smaller than Nc = 500 (see

Sec. IV D) and the background subtraction (using the Q-factor

method) could not be performed. Figure 17 is similar to

Fig. 16 but for the same W range of [2.36, 3.12] GeV, only

shows the forward direction 0.5 < cos θ
η
c.m. < 1.0 using an

angle bin size of 0.05, which is a factor of two smaller than

the binning used for the data shown in the previous figures.

The reason for changing the binning in this representation of

the data is to study more closely the t-channel production of η

mesons beyond the baryon resonance regime and to compare

the measured angular distributions with the model described

in Ref. [3].

B. Differential cross sections dσ/dt

In an effort to study η photoproduction beyond the baryon

resonance regime, the differential cross sections have been

extracted also in a (W, −t) representation. This approach facil-

itates the comparison of the data with Regge models that aim

at describing the reaction in terms of the t-channel exchange

of massive quasi-particles. These new CLAS results are par-

ticularly important since they provide the missing data link

in the energy range Eγ ∈ [3.5, 4.5] GeV between the baryon

resonance and the Regge-dominated regime.

Figure 18 shows the differential cross sections dσ/dt

for the energy range W ∈ [2.52, 3.12] GeV corresponding to

incident photon energies Eγ ∈ [2.91, 4.72] GeV using 0.2-

GeV2-wide −t bins for 0 < −t < 2 GeV2. Also shown in the

figure are older data from NINA at the Daresbury Laboratory

[35] for the energy bin 2.52 < W < 2.56 GeV as well as

data from DESY [36], the Cambridge Electron Accelerator

at MIT [38], and Cornell [39], which are only available at

W = 2.9 GeV. For the higher W bin, the comparison between

the data from the 1960s and 1970s, and the CLAS data is

also presented in Fig. 19 using a linear scale. The MIT data

are consistent with the new CLAS results, whereas all other

data are found to be significantly higher. The older data

from DESY and Cornell were used to constrain the model

developed by the Joint Physics Analysis Center (JPAC) [3]

for −t < 1.0 GeV2 at these fairly low energies in the Regge

regime. This model is shown as a red long-dashed curve.

While the Regge model of Ref. [3] describes the DESY and

Cornell low-t data fairly well, the prediction clearly overes-

timates the experimental data points for −t > 1.0 GeV2. The

observed discrepancy between the older data (from DESY and

Cornell) and the new CLAS data is indicative of the scale

discrepancy between these new data and the JPAC curve.

The full set of new data points is shown in Fig. 20 for the

entire analyzed −t range, 0 < −t < 4 GeV2, on a logarith-

mic scale. The almost linear fall-off of the differential cross

sections in the low −t region is expected and can clearly be

observed.

C. Comparison with previous CLAS data

Figure 21 shows a comparison of the new CLAS data with

the previously published CLAS data on η photoproduction
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FIG. 21. Comparison between the new and the published [30]

CLAS data in form of a difference distribution normalized to their

uncertainties. See text for more details.

[30] in the form of a normalized difference distribution:
(

dσ
d�

)

g12
−

(

dσ
d�

)

g11a
√

(�σ )2
g12 + (�σ )2

g11a

, (17)

where the uncertainties in the denominator are comprised only

of statistical and Q-value correlation uncertainties.

With the exception of a small structure around −1.0 due to

a possible poorly understood acceptance effect in either exper-

iment, the distribution is symmetric and Gaussian indicating

that any discrepancies in the shape of the differential cross

sections are mostly statistical in nature. The Gaussian width

of σ = 1.13 suggests that the uncertainties in the denominator

of Eq. (17) are slightly underestimated.

As a matter of fact, no additional uncertainties are included

beyond those listed in Table II to guarantee consistency be-

tween the two data sets. However, the difference distribution

is slightly shifted toward positive values. Figure 22 shows

the unweighted ratio distribution of the same two data sets.
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FIG. 22. Unweighted ratio distribution of the new and the pub-

lished [30] CLAS data.

This distribution is also fairly symmetric with a mean value

of 1.06, which indicates that an overall increase of about

6% is observed in the new data. The electron rates detected

by the tagger and used to compute the number of photons

incident on the target are integrated over the live time of

the experiment. In the previous CLAS measurement [30],

the clock-based live time calculation was checked by using

the counts of a Faraday cup located downstream of CLAS.

Despite high statistical uncertainties in these secondary mea-

surements, a current-dependent live time was observed and

at maximum electron beam current, the dead time was deter-

mined to be about a factor of two higher than the one given

by the clock-based measurement used for the flux normal-

ization. The corresponding correction resulted in the largest

single-source contribution to the overall systematic uncer-

tainty. Such a current-dependent live time was not observed

for the CLAS-g12 data. The reason for this effect in the previ-

ous CLAS experiment remains poorly understood. However,

the observed overall scale discrepancy between the two CLAS

measurements of the γ p → pη cross sections is well within

the reported uncertainties for these two experiments.

VII. PHYSICS DISCUSSION

Various theoretical and phenomenological approaches

have been applied and studied to describe η photoproduction

on the nucleon, in particular, to understand nucleon resonance

contributions to this reaction, e.g., effective field theory [69],

dispersion theoretical calculations [70], and Regge models

[71,72].

A special group of models are isobar models, e.g.,

Refs. [73–75], which treat nucleon resonances in terms

of s-channel Breit-Wigner parametrizations using energy-

dependent widths due to their couplings with other decay

channels. The nonresonant background amplitude is typically

written as a sum of Born terms and t-channel meson-exchange

contributions. In η photoproduction, Born terms are usually

suppressed because their coupling constants are fairly small.

In such isobar models, the double-counting of terms due to

the quark-hadron duality is often concerning since the sum

of an infinite series of s-channel resonances is equivalent to

an infinite sum of t-channel meson-exchange amplitudes. In

the η-MAID 2018 isobar model described in Ref. [4], the

double-counting is removed by introducing a damping factor

to the Regge amplitudes. Moreover, despite the minor role

of Born terms, their couplings are determined from fitting

experimental data.

The latest η-MAID 2018 solution is shown as a blue

solid curve in Figs. 11–19. The experimental data are de-

scribed very well over the entire energy range. All known

N∗ states listed in the RPP [22] were used to describe the

resonance regime from the γ p → pη threshold up to W <

2.5 GeV. For a given partial wave α, the set of Nα nucleon

resonances were added as generalized Breit-Wigner functions

with a unitary phase φ for each resonance [4]. For the higher-

energy regime, Regge phenomenology was applied and in

an effort to provide a continuous description of η photopro-

duction from threshold to about W ≈ 5 GeV, the damping

fator was introduced, which goes to zero at the η production
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threshold and approaches unity above W = 2.5 GeV, where

Regge description fully sets in Ref. [4]. Only two resonances

were found to be insignificant in their contribution to γ p →
pη: The N (2040) 3/2+ resonance, a one-star state observed by

BES II in J/ψ decays to NNπ [76,77], and the N (2220) 9/2+

resonance. In their description, the reaction is dominated by

the 1/2− partial wave that is associated with contributions

from the N (1535) 1/2−, N (1650) 1/2−, and N (1895) 1/2−

states. In the fourth resonance region, the most significant

contributions beyond the 1/2− partial wave come from the

N (1875) 3/2−, N (1900) 3/2+, and the N (1860) 5/2+ nucleon

resonances.

The multichannel Bonn-Gatchina (BnGa) partial wave

analysis (PWA) uses a large experimental database, which

includes data on pion- and photo-induced meson-production

reactions, with up to two pseudoscalar mesons in the final

state [78]. The approach is based on a fully relativisti-

cally invariant operator expansion method and combines the

analysis of different reactions imposing directly analytic-

ity and unitarity constraints [79]. Figures 11–15 show the

BnGa solution BnGa 2019 as a purple curve; more details

are discussed in Ref. [79]. Overall, the BnGa curve de-

scribes the experimental data very well. Deviations from the

η-MAID 2018 solution can be observed, mostly in the for-

ward direction above W ≈ 2 GeV. The difference between

the two curves can be traced back to very similar discrep-

ancies between the CLAS and CBELSA/TAPS data sets,

which received different weights in the interpretation of the

data. The 1/2− partial wave also dominates the BnGa de-

scription of the γ p → pη reaction. However, in the fourth

resonance region, the N (1900) 3/2+ resonance plays a signif-

icantly more important role than in η-MAID 2018, whereas

contributions from the other two states found significant in

η-MAID, N (1875) 3/2− and N (1860) 5/2+, are practically

negligible [80]. The identification of significant contribu-

tions from different nucleon resonances in η photoproduction

is not surprising since the polarization observables are still

scarce.

The high-energy regime above Eγ = 4 GeV is studied in

terms of the Regge amplitudes discussed in Ref. [3]. While

each Regge exchange has a known energy dependence, the

t behavior is a priori unknown. In the approach of the Joint

Physics Analysis Center (JPAC) [3], information from the

resonance region is used through dispersion relations and

finite-energy sum rules (FESR) to extract the t-dependence

of the differential cross sections at high energies. Specifically,

the η-MAID 2001 model [73] was used for the low-energy

parametrizations. Data from DESY [36] and Cornell [39] for

0 < −t < 1 GeV2 were used to constrain the JPAC model.

The available data sets and the model are shown in Fig. 19

for Eγ ≈ 4.0 GeV. The red JPAC curve describes the DESY

and the Cornell data well but is observed to be systematically

off in its description of the new CLAS data and the data from

MIT [38]. This scaling problem is also observed in Fig. 18.

For the Regge exchanges in the JPAC approach, two

high-energy models have been developed. In the first

more conservative approach, shown in Figs. 17–19, only

t-channel exchanges associated with the known (JPC = 1−−)

vector- (ω, ρ) and (JPC = 1+−) axial-vector (h1, b1) meson

resonances are considered, whereas the second model

includes exchanges that correspond to, as yet, unobserved

mesons. The latter approach explores the possible impact of

a 2−− exchange that would result in increased cross sections

and in a beam asymmetry smaller than one. The conservative

JPAC predictions are observed to systematically overestimate

the new CLAS data and the inclusion of a 2−− exchange

would only increase this discrepancy. The preliminary

conclusion is that these new data and more importantly,

recent results on the beam asymmetry in η photoproduction

at high energies reported by the GlueX Collaboration [24,81]

are in clear contradiction with these predictions. The 2−−

exchange has also not been considered in the η-MAID 2018

model. The C-parity conservation prohibits exchanges of

scalar and pseudoscalar mesons.

In conclusion, these experimental data confirm the expecta-

tion that the γ p → pη reaction proceeds primarily through ρ

and ω vector-meson 1−− exchange. Other η data also confirm

the predicted rapid decline of the cross sections in the very

forward direction of the η meson in the center-of-mass frame,

which corresponds to the differential cross sections at very

small values of −t . This behavior is clearly visible in the

model descriptions shown in Figs. 17–19. For cos θ c.m. = 1 or

t ′ = t − t min = 0 GeV2, conservation of angular momentum

requires conservation of helicities:

λγ − λ proton = λ η − λ proton ′ , (18)

where the right-hand side denotes the helicity of the recoiling

proton with λ η = 0. In Regge models, this imposes an even

stronger constraint since conservation of angular momentum

is required at the top (γ -η) vertex and at the bottom (N-N)

vertex in the right diagram of Fig. 1. Since the helicity of a

real photon, λ = ±1, cannot turn into λ = 0 for the η meson,

the amplitude needs to vanish and the cross section decreases

to zero. In Regge pole theory, this behavior is thus built into

the top vertex by factorization [1]. In contrast, using virtual

photons, the cross section in the very forward direction pro-

ceeds primarily via the photon’s longitudinal component.

VIII. SUMMARY AND OUTLOOK

Photoproduction cross sections have been presented for

the reaction γ p → pη using tagged photons and the CLAS

spectrometer at Jefferson Laboratory. The results are shown

for incident photon energies between about 1.2 and 4.7 GeV.

These new η photoproduction data are consistent with earlier

CLAS results but extend the energy range beyond the nucleon

resonance regime. Cross sections dσ/dt are also presented

for W > 2.52 GeV and studied in terms of the dominant

Regge exchange amplitudes. While axial vector exchanges

are negligible, the data confirm the expected dominance of

vector-meson exchanges. Calculations using finite-energy

sum rules (FESR) indicate that the 2−− exchange could be

relevant but predictions are inconsistent with the differential

cross section data presented here and with beam-asymmetry

results recently reported by the GlueX Collaboration. In light

of these new CLAS-g12 data and the new η-MAID 2018

model, it would certainly be interesting to revisit the JPAC

approach. Upcoming data from the GlueX Collaboration

will extend the differential cross section measurements to
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W ≈ 4.2 GeV and further prepare the foundation for a global

analysis of low- and high-energy data of related reactions

within the framework of FESR.

In the baryon resonance regime, a comparison of the dif-

ferential cross sections dσ/d� with predictions of the isobar

model η-MAID 2018 and the BnGa coupled-channel analy-

sis confirms the dominance of the 1/2− partial wave close

to the reaction threshold. The unambiguous identification of

resonance contributions in the fourth resonance region is still

challenging owing to the lack of polarization observables

around W ≈ 2 GeV.
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