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A Distributed Control Strategy for Parallel
DC-DC Converters

Mahdieh S. Sadabadi

Abstract— This letter addresses the problem of volt-
age regulation and balanced current sharing in a parallel
connection of heterogeneous DC-DC converters sharing a
common ZIP (constant impedance, constant current, and
constant power) load. To this end, a distributed dynamic
control approach is developed. The proposed control ap-
proach does not rely on the load profile and the number
of active converters. The paper describes theoretical as-
pects in rigorous Lyapunov-based stability analysis, load-
independent characteristic, scalability, and plug-and-play
feature of the control design, and verifies the performance
of the proposed control mechanism via simulation case
studies in MATLAB/Simscape Electrical environment.

Index Terms— Distributed control, parallel DC-DC con-
verters, stability analysis, constant power load.

I. INTRODUCTION

D
UE to a limited output power capacity of a single DC-DC

converter, the parallel interconnection of DC-DC con-

verters is drawing continually increasing attention. A parallel-

converter system offers improved efficiency, high reliability,

and ease of maintenance [1], [2]. Additionally, a parallel

collection of DC-DC converters may reduce the size and

weight of the required power units [1]. With more widespread

use of parallel converter systems in high-performance low-

voltage/high-current applications, the appropriate design of

control strategies that ensure stability and reliability plays an

important role.

A. Literature Review on Parallel DC-DC Converters

A main challenge in the parallel interconnection of DC-DC

converters is to ensure voltage stability and balanced current

sharing amongst all the active converters. An inappropriate

current sharing causes overloading and overheating of the

constituent converters, leading to the reduced system reliability

and/or the failure of the overall system [3]. Several current

sharing approaches have been proposed in the literature. The

current sharing strategies can be classified into droop (e.g.

[4], [5]) and active-sharing categories (e.g. [1], [3], [6]–[13]).

The droop methods are based on a virtual resistance added to

the output characteristic of the individual converters. In these

approaches, the output voltage of each converter droops by

increasing the load current. Although droop-based approaches
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are simple and have a decentralized structure, they might

lead to poor voltage regulation [7]. Active current-sharing

schemes are widely used control approaches in the parallel-

connected converter systems. These approaches generally rely

on a dual-loop control structure, composed of an outer voltage

control loop and an inner current control loop, where the

dynamics of the control loops are decoupled based on a

frequency consideration basis [2]. However, as shown in [14],

the frequency separation and different bandwidth of each loops

deteriorate the transient performance and might affect the

closed-loop stability. To deal with this issue, a geometrical

decomposition-based approach has been recently proposed

in [14]. In this approach, the dynamics of the load voltage

regulation and current sharing are decoupled with no frequency

separation assumptions. The results of [14] have been pre-

sented in a port-controlled-Hamiltonian framework in [15]. In

these techniques, the voltage regulation and current sharing

are achieved via a centralized control framework, where the

controller of each converter has access to the sum of all the

converter currents. This centralized communication protocol

is crucial for stability and proper operation of such control

schemes. Although these approaches could tackle the problem

of frequency separation in the active current-sharing control

strategies, their centralized control architecture limits their

reliability and scalability. Furthermore, due to the dependency

of these approaches on the number of existing converters and

the physical parameters of the converters, they are susceptible

to parametric uncertainties and cannot provide a plug-and-play

framework.

Distributed averaging-based control approaches for DC

systems have been developed in [16]–[19]. Although these

approaches do not rely on the frequency separation arguments

for the current sharing and voltage regulation, they are based

on several assumptions and significant simplifications which

are not necessary valid in the real-world applications or hard

to satisfy. These include considering lossless inductors and

linear loads (e.g. [16]), a simplified model of the individual

converters as ideal voltage sources or first-order dynamics (e.g.

[18], [19]), and specific voltage/control state initialization (e.g.

[17], [19]).

B. Contributions

Motivated by the challenges stated above, in this letter, a

distributed dynamic control approach for the parallel intercon-

nection of heterogeneous DC-DC buck converters is proposed.

By means of the proposed control scheme, the voltage regu-

lation and current sharing are simultaneously achieved with
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Fig. 1. Configuration of a parallel connection of N DC-DC converters.

no frequency separation assumptions. We provide theoretical

foundations and concise stability certificates of the control

design that are grounded on the Lyapunov stability methods

and graph theory. We also propose a new framework based

on switched system theory to characterize the plug-and-play

functionality of the DC-DC converters. By virtue of this

framework, the control mechanism allows the plug-and-play

operation of the DC-DC converters as long as the commu-

nication topology of the controllers forms an undirected and

a connected graph. The performance of the proposed control

scheme is verified using simulation case studies carried out

in the MATLAB/Simscape Electrical. The obtained results

confirm the effectiveness of the proposed distributed control

approach in load voltage regulation and current sharing.

The contributions of this letter lie in the following aspects:

(i) Compared with the recent works in [14], [15], the proposed

control mechanism has a distributed structure and does not rely

on load characteristics, the number of active converters, and

the output capacitance. It also guarantees the robust stability

against the load variations and uncertainties in the converter

parameters. (ii) Unlike the proposed current-sharing schemes

in [1], [3], [6]–[12], the proposed control strategy in this

letter simultaneously achieves balanced current sharing and

voltage regulation without any frequency separation assump-

tions and/or decoupling between voltage regulation and current

distribution dynamics. (iii) Furthermore, unlike the proposed

distributed averaging control approaches in [16], the proposed

control approach in this letter is robust against the parasitic

resistance of the inductors in the DC-DC converters. (iv)

Moreover, the proposed control strategy in this letter adopts

a nonlinear ZIP (constant impedance, constant current, and

constant power) load, which is not considered in [3], [7], [14]–

[16], and provides a rigorous robust local stability certificate

for the parallel DC-DC converters.

Notation: The notation used in this paper is standard. In

particular, 1n is an n× 1 vector of ones and In is an n× n

Identity matrix. The symbols XT and X = [xi, j] denote the

transpose of matrix X and a matrix with entries xi, j. Through-

out the paper, col(xi) =
[

xT
1 xT

2 . . . xT
n

]T
and [a] =

diag(a1,a2, . . . ,an). For a symmetric matrix X , the positive

definite and positive semidefinite operators are respectively

shown by X ≻ 0 and X � 0. We define the sets R+ := {x ∈
R |x > 0} and R≥0 := {x ∈ R |x ≥ 0}.

II. PARALLEL DC-DC CONVERTERS

Fig. 1 shows the general configuration of a parallel connec-

tion of N DC-DC buck converters sharing a common load. The

load is considered as a nonlinear ZIP (constant impedance,

constant current, and constant power) load. In this figure,

V (t), IL(t), Ii(t), di(t), and Ei respectively the load voltage,

the load current, the converter current, the duty cycle of the

converter, and the voltage of the input side of the converter i.

The parameters Li and C are the inductance of the converter i

and the output capacitance, respectively.

A. Model of Parallel DC-DC Buck Converters

Based on an average model, the dynamics of each DC-DC

converter can be described as follows [20]:

CV̇ (t) =
N

∑
i=1

Ii(t)− IL(t),

Li İi(t) =−V (t)− riIi(t)+ui(t),

IL(t) =
V (t)

R
+ I∗L +

PL

V (t)
,

(1)

for i = 1, . . . ,N, where ui(t) = Eidi(t), 0 ≤ di ≤ 1, ri ∈ R+,

R ∈ R+, I∗L ∈ R≥0, and PL ∈ R≥0 are the control input, the

duty cycle of the DC-DC converter, the internal resistance of

Li, the load resistance, the constant current, and the constant

power demand of the common load, respectively.

B. Control Objectives

The main objective is to design a control algorithm for the

parallel-connected DC-DC converters such that 1) the steady-

state value of the load voltage V (t) is regulated at a given

reference value V ∗ for the unknown load profile (Voltage

Regulation), and 2) the total current demand is proportionally

distributed amongst the converters at the steady state (Current

Sharing). The objectives can be mathematically formulated as

lim
t→∞

V (t) = V̄ =V ∗
,

lim
t→∞

Ii(t) = Īi = i∗, i = 1, . . . ,N
(2)

where i∗ ∈R is a constant, V̄ and Īi respectively are the steady-

state value of V (t) and the converter current Ii(t).

III. PROPOSED CONTROL STRATEGY

This section presents a load-independent distributed dy-

namic control mechanism for the voltage regulation and bal-

anced current sharing problem in the parallel-connected DC-

DC buck converters.

A. Distributed Control Approach

In order to guarantee both voltage regulation and current
sharing problems in (2), the following control law is proposed
for each converter i, i = 1 . . . ,N:

ui(t) =k1,iV + k2,iIi + k3,iwi +(1− k1,i)αi (vi − Ii) ,

Twi
ẇi(t) =−V (t)+V ∗+αi (vi(t)− Ii(t)) ,

Tvi
v̇i(t) =−αi (vi − Ii)−KP

N

∑
j=1

ηi, j(vi − v j)−KI

N

∑
j=1

γi, j

(

θi −θ j

)

,

Tθ θ̇i(t) =
N

∑
j=1

γi, j

(

vi(t)− v j(t)
)

,

(3)



where Twi
∈ R+, Tvi

∈ R+, Tθ ∈ R+, KI ∈ R+, ηi j ∈ R≥0,

γi j ∈R≥0, KP ∈R+, αi ∈R+, and (k1,i,k2,i,k3,i) are the design

parameters of the distributed control protocol that can be used

to tune the closed-loop performance. In the following, we show

that the proposed control scheme in (3) guarantees the voltage

regulation and balanced current sharing amongst the DC-DC

converters. The parameters ηi j = η ji and γi j = γ ji determine

the communication topology amongst different converters.

Using vector notation, the overall parallel-connected DC-

DC converters in (1) with the proposed control strategy in (3)

can be described as follows:

CV̇ (t) = 1
T
NI(t)−

1

R
V (t)− I∗L −

PL

V (t)
,

[L] İ(t) = [k1 −1]1NV (t)+([k2]− [1− k1] [α]− [r]) I(t)

+ [k3]w(t)+ [1− k1] [α]v(t),

[Tw] ẇ(t) =−1NV (t)+1NV ∗+[α] (v(t)− I(t)),

[Tv] v̇(t) =− [α] (v(t)− I(t))−KPLPv(t)−KILI θ(t),

Tθ θ̇(t) = LI v(t),

(4)

where [k1 −1] = [k1]−IN , u(t) = col(ui(t)), w(t) = col(wi(t)),
v(t) = col(vi(t)), θ(t) = col(θi(t)), and I(t) = col(Ii(t)) for

i = 1, . . . ,N. Matrix LP ∈R
N×N is the proportional Laplacian

matrix with an adjacency matrix BP = [ηi, j] and LI ∈R
N×N

is the integral Laplacian matrix with an adjacency matrix

BI = [γi, j].
Assumption 1: It is assumed that the communication graphs

associated with LP and LI are connected and undirected.

Lemma 1: Let LI be a Laplacian matrix associated with

a connected undirected graph. For any Tθ ∈R+, the trajectory

θ(t) in (4) starting from any initial condition θ(0)= col(θi(0))
satisfies the following condition:

N

∑
i=1

θi(t) =
N

∑
i=1

θi(0), ∀t ≥ 0. (5)

Proof: The row vector 1
T
N is the left eigenvector of LI

associated with a zero eigenvalue [21]. Hence, pre-multiplying

both sides of Tθ θ̇(t) =LI v(t) in (4) by 1
T
N leads to 1

T
N θ̇(t) =

0. As a result, 1
T
Nθ(t) = 1

T
Nθ(0) ∀t ≥ 0.

B. Steady-State Performance and Existence of Equilibria

Lemma 2: Consider the dynamics of the overall parallel-

connected converters in (4) with a nonsingular matrix [k3]
1.

Under Assumption 1, the following statements hold:

1) The proposed distributed control approach in (3) si-

multaneously achieves voltage regulation and balanced

current sharing objectives in (2).

2) The steady-state solutions (V̄, Ī, v̄, θ̄ , w̄) are obtained as

follows:

V̄ =V ∗
, Ī =

1

N
1N

(

1

R
V ∗+ I∗L +

PL

V ∗

)

,

v̄ = Ī, θ̄ =
1

N
1N

(

1
T
Nθ(0)

)

,

w̄ = [k3]
−1 ([1− k1]1NV ∗+([r]− [k2]) Ī) .

(6)

1In Theorem 1, it is shown that k3,i 6= 0, i = 1, . . . ,N.

Proof: Consider the closed-loop system in (4) with the

distributed dynamic control strategy given in (3). In the steady

state, one obtains that

LI v̄= 0, (7a)

− [α] (v̄− Ī)−KPLP v̄−KILI θ̄ = 0, (7b)

−1NV̄ +1NV ∗+[α] (v̄− Ī)= 0, (7c)

1
T
N Ī −

1

R
V̄ − I∗L −

PL

V̄
= 0, (7d)

−1NV̄ − [r] Ī + ū= 0, (7e)

−ū+[k1]1NV̄ +[k2] Ī +[k3] w̄− [k1 −1] [α] (v̄− Ī) = 0, (7f)

where (V̄, Ī, ū, θ̄ , v̄, w̄) are the steady-state values of the load

voltage V (t), the converter current I(t), the control input u(t),
and controller states (θ(t),v(t),w(t)), respectively.

From (7a) one obtains v̄ = 1Nv∗, where v∗ ∈R is a constant.

By left multiplying both sides of (7b) by 1
T
N and replacing v̄

with 1Nv∗, the following equation is obtained.

−1
T
N [α] (v̄− Ī)−1

T
NKPLP1Nv∗−KI1

T
NLI θ̄ = 0. (8)

Since [α]≻ 0, LP1N = 0, and 1
T
NLI = 0, we can conclude

that 1
T
N [α] v̄ = 1

T
N [α] Ī. Left multiplying (7c) by 1

N
1

T
N and

considering 1
T
N [α] (v̄ − Ī) = 0 yield that V̄ = V ∗ (Voltage

Regulation).

By replacing V̄ with V ∗ in (7c), we obtain that Ī = v̄;

therefore, Ī = 1Nv∗ (Balanced Current Sharing), where v∗ =
1
N

(

V ∗

R
+ I∗L +

PL
V ∗

)

. Moreover, replacing Ī = v̄ and v̄ = 1Nv∗

in (7b) yields that LI θ̄ = 0 and hence θ̄ = 1Nθ ∗, where

θ ∗ ∈ R. Considering 1
T
N θ̄ = 1

T
Nθ(0) (see Lemma 1) imposes

that θ ∗ = 1
N

1
T
Nθ(0). From (7e) and (7f), it follows that

w̄ = [k3]
−1 ([1− k1]1NV̄ +([r]− [k2]) Ī) . (9)

IV. STABILITY ANALYSIS

In this section, we discuss the stability analysis of the

dynamical closed-loop system in (4) with the proposed dis-

tributed control mechanism in (3). By change of the variables

as eV (t) =V (t)− V̄ , eI(t) = I(t)− Ī, ev(t) = v(t)− v̄, eθ (t) =
θ(t)− θ̄ , and ew(t) =w(t)−w̄, where eV (t)∈R, eI(t)∈R

N×1,

ev(t) ∈ R
N×1, ew(t) ∈ R

N×1, and eθ (t) ∈ R
N×1, the equilibria

of the closed-loop system are shifted to origin with their

corresponding dynamics as:

CėV (t) = 1
T
NeI(t)−

1

R
eV (t)+

PL

(eV (t)+V̄ )V̄
eV (t),

[L] ėI(t) = [k1 −1]1NeV (t)+([k2]− [1− k1] [α]− [r])eI(t)

+ [k3]ew(t)+ [1− k1] [α]ev(t),

[Tv] ėv(t) =− [α] (ev(t)− eI(t))−KPLPev(t)−KILI eθ (t),

Tθ ėθ (t) = LI ev(t),

[Tw] ėw(t) =−1NeV (t)+ [α] (ev(t)− eI(t)).
(10)

In the following theorem, we show that the overall parallel-

converter system in (4) is locally stable.

Theorem 1: Let LP and LI be Laplacian matrices associ-

ated with connected and undirected communication graphs. If



(Tθ ,KP,KI)∈R+, [α]≻ 0, [Tv]≻ 0, [Tw]≻ 0, and (k1,i,k2,i,k3,i)
belongs to the set

χ1
[i] =







k1,i < 1, k2,i < ri,

0 <
k3,i

Twi

<
1

Li

(1− k1,i)(ri − k2,i)







. (11)

and (R,PL,V
∗) belongs to the following set

χ2 =

{

(R,PL,V
∗) :

1

R
−

PL

V ∗2
> 0

}

. (12)

then, the origin in (10) is locally asymptotically stable. More-

over, the origin in (10) is globally asymptotically stable if

PL = 0 (Z and ZI load).

Proof: We should show that the conditions given in χ1
[i]

and χ2, guarantee the local asymptotic stability of the origin

of the closed-loop system in (10). To this end, the following

quadratic-type Lyapunov function V is proposed:

V =
1

2
Ce2

V (t)+
1

2
eT

v (t) [Tv] ev(t)+
KI

2
eT

θ (t)Tθ eθ (t)

+
1

2

N

∑
i=1

[eIi(t) ewi
(t)]Pi [eIi(t) ewi

(t)]T ,
(13)

where Pi ≻ 0 is defined as follows:

Pi =







Liρi − Li
Twi

ρiνi

− Li
Twi

ρiνi νi

(

1+ Li

T 2
wi

ρiνi

)






, (14)

where ρi > 0 and νi > 0 are determined based on

(k1,i,k2,i,k3,i,Twi
) in χ1

[i] in (11) as follows:

ρi =
(ri − k2,i)

(ri − k2,i)(1− k1,i)−
Li

Twi
k3,i

, νi = Twi

k3,i

(ri − k2,i)
. (15)

Note that trace(Pi) > 0 and det(Pi) > 0 (Pi ≻ 0). Moreover,
V≥ 0 for all (eV ,eI ,ev,ew,eθ ) and V= 0 if and only if eV = 0,
eI = 0, ev = 0, ew = 0, and eθ = 0. The time derivative of V

along the closed-loop trajectories of (10) is obtained as:

V̇ =−

(

1

R
−

PL

(eV (t)+V̄ )V̄

)

e2
V (t)+1

T
NeI(t)eV (t)

−
1

2

(

eT
v (t) [α] (ev(t)− eI(t))+(ev(t)− eI(t))

T [α]ev(t)
)

−
KP

2
eT

v (t)
(

LP +L
T
P

)

ev(t)−
KI

2
eT

v (t)LI eθ (t)

−
KI

2
eT

θ (t)L
T
I

ev(t)+
KI

2

(

eT
θ (t)LI ev(t)+ eT

v (t)L
T
I

eθ (t)
)

+
1

2

N

∑
i=1

[

eIi(t) ewi
(t)
]

Qi

[

eIi(t) ewi
(t)
]T

+
1

2

N

∑
i=1

(

eV (t)B
T
i Pi

[

eIi(t) ewi
(t)
]T

+
[

eIi(t) ewi
(t)
]

PiBieV (t)
)

−
1

2

N

∑
i=1

αi

[

eIi(t) ewi
(t)
]

PiBi(evi
(t)− eIi(t))

−
1

2

N

∑
i=1

αi(evi
(t)− eIi(t))B

T
i Pi

[

eIi(t) ewi
(t)
]T

.

(16)

where Qi = AT
i Pi +PiAi,

Ai =

[

−ri+k2,i

Li

k3,i

Li

0 0

]

, Bi =

[

−1+k1,i

Li

− 1
Twi

]

. (17)

By direct calculations and taking into account (14)-(15), it
follows that

ρi

(

(k1,i −1)+
Li

T 2
wi

νi

)

=−1 (18)

Therefore, it can be shown that Qi and PiBi can be written
as

Qi =−2ρi







(ri − k2,i) −
(ri−k2,i)

Twi
νi

−
(ri−k2,i)

Twi
νi

ν2
i

T 2
wi

(ri − k2,i)






, PiBi =

[

−1
0

]

. (19)

Since Qi ∈ R
2×2, det(Qi) = 0, and trace(Qi) < 0 in the set

χ1
[i] (k2,i < ri), we can conclude that Qi � 0. Hence, taking

into account (19) and invoking the properties of the Laplacian
matrix as L T

I
= LI and L T

P
= LP , V̇ can be rewritten as

follows:

V̇ =−

(

1

R
−

PL

(eV (t)+V̄ )V̄

)

e2
V (t)+1

T
NeI(t)eV (t)

−
1

2

(

eT
v (t) [α] (ev(t)− eI(t))+(ev(t)− eI(t))

T [α]ev(t)
)

−KPeT
v (t)LPev(t)+

1

2

N

∑
i=1

[

eIi(t) ewi
(t)
]

Qi

[

eIi(t) ewi
(t)
]T

−
N

∑
i=1

eV (t)eIi(t)+
N

∑
i=1

αieIi(t)(evi
(t)− eIi(t)).

(20)

Therefore,

V̇ =−

(

1

R
−

PL

(eV (t)+V̄ )V̄

)

e2
V (t)−KPeT

v (t)LPev(t)

− (ev(t)− eI(t))
T [α] (ev(t)− eI(t))

+
1

2

N

∑
i=1

[eIi(t) ewi
(t)]Qi [eIi(t) ewi

(t)]T .

(21)

It is illustrated that [α] ≻ 0, LP � 0, Qi � 0. To show

that V̇ ≤ 0, one needs to show that 1
R
− PL

(eV (t)+V̄ )V̄
> 0. Since

(R,PL,V
∗) ∈ χ2, there exists an open interval of eV (t) con-

taining the origin such that 1
R
− PL

(eV (t)+V̄ )V̄
> 0. Furthermore,

it is always possible to find a (sufficiently small) compact
level set of the Lyapunov function V that is included in a

neighbourhood in which 1
R
− PL

(eV (t)+V̄ )V̄
> 0 holds. Hence,

V̇ ≤ 0 implies that such a compact set is forward invariant,
hence the LaSalle’s invariance principle [22] can be applied.
To this end, we should show that the the largest invariant set in
Z =

{

(eV ,eI ,ev,ew,eθ ) : V̇(eV ,eI ,ev,ew,eθ ) = 0
}

is origin.
Based on (21), the set Z is characterized as follows:

Z =



























(

1

R
−

PL

(eV (t)+V̄ )V̄

)

e2
V = 0,

(ev − eI)
T [α] (ev − eI) = 0, eT

v LPev = 0,
[

eIi(t)
ewi

(t)

]T

Qi

[

eIi(t)
ewi

(t)

]

= 0, i = 1, . . . ,N



























. (22)

From the above set, it follows that eV = 0, ev = eI , and ev =
1Ne∗v , where e∗v ∈ R. From the system dynamics in (10), one

obtains that 1
T
NeI = 0; therefore, 1

T
Nev = 0, e∗v = 0, ev = eI = 0,

ew = 0, and LI eθ = 0. Hence, eθ = 1Ne∗θ , where e∗θ ∈ R.

According to Lemma 1, 1
T
Neθ = 1

T
Nθ −1

T
N θ̄ = 0; hence, e∗θ = 0

and eθ = 0. As a result, the largest invariant set of Z is origin.



TABLE I

PARAMETERS OF THE SYSTEM UNDER STUDY.
Converter 1 L1 = 1.3mH r1 = 0.1Ω E1 = 24V

Converter 2 L2 = 1.2mH r2 = 0.1Ω E2 = 24V

Converter 3 L3 = 1.6mH r3 = 0.1Ω E3 = 24V

Converter 4 L4 = 1.4mH r4 = 0.1Ω E4 = 24V

Load parameters R = 1Ω I∗L = 5A PL = 120W

Load capacitance C = 40µF

Switching frequency fsw = 40kHz Sampling frequency fs = 20kHz

Hence, the origin in (10) is locally asymptotically stable. By

virtue of the stability certificate and the conditions given in

(11) and (12), the solutions to (4) asymptotically converge

to the steady-state values (V̄, Ī, v̄, θ̄ , w̄) in (6), achieving the

voltage regulation and balanced current sharing objectives. If

PL = 0, the condition in (12) is always feasible; therefore, the

origin in (10) is globally asymptotically stable for Z/ZI loads.

Remark 1: (Robustness Feature of the Proposed Control

Strategy) If the parameters of the ZIP load are uncertain and

belong to the intervals
¯
R ≤ R ≤ R̄,

¯
I∗L ≤ I∗L ≤ Ī

∗
L, and

¯
PL ≤

PL ≤ P̄L, then it can be shown that the robust local stability

of the parallel connection of the converters is guaranteed if

(R̄, P̄L,V
∗) ∈ χ2. Moreover, the voltage regulation and current

sharing are achieved for all values of Li ∈ R+ and C ∈ R+.

Remark 2: (Plug-and-Play Operation of DC-DC Convert-

ers) The plug-and-play (PnP) operation of converters affects

the dynamic topology of the system. The parallel-converter

system with the dynamic topology can be modeled by a

switched dynamical system with a piecewise constant switch-

ing function σ(t) : [0,∞) → {1, . . . ,k}, where k is the total

number of possible changes in the dynamic communication

graph due to changes in the system dynamics. For simplicity

of the presentation, it is assumed that L = LP = LI .

The finite set of all possible communication network topolo-

gies is denoted by Γ = {G 1, . . . ,G k}. It is assumed that

the communication graphs {G 1, . . . ,G k} are undirected and

connected. Therefore, the Lyapunov function proposed in (13)

can be considered as a common Lyapunov function for the

switched dynamical behaviour of the parallel converter system,

providing a guarantee of the stability under the PnP operation

of the converters [23].

V. SIMULATION RESULTS

In this section, the effectiveness of the proposed distributed

dynamic control approach in (3) is illustrated on a parallel-

converter system consisting of N = 4 DC-DC converters. The

system parameters are given in Table. I. The simulation case

studies are carried out in MATLAB/Simscape Electrical en-

vironment, where the realistic model of the PWM-based DC-

DC converters is considered. It is assumed that the topology

of the proposed distributed control strategy in (3) is based on

the incidence matrices BP = [ηi, j] and BI = [γi, j], where

ηi, j = γi, j =

{

1 if | i− j |= 1 or | i− j |= N −1,

0 otherwise.
(23)

The parameters of the controllers in (3) are chosen as KP =
10, KI = 1, [α] = 10× I4, Tθ = 10−3, [Tv] = 10−3 × I4, [Tw] =

10−1 × I4, [k1] = 0.1× I4, [k2] =−I4, and [k3] = 30× I4.

Voltage Tracking. In this case study, the performance of

the proposed control strategy in (3) is assessed in terms of

voltage regulation and balanced current sharing. To this end,

it is assumed that the reference voltage V ∗ is stepped up from

12V to 18V at t = 0.3s. In order to show the independency of

the current sharing and voltage regulation on the initial values

of θ(t), θ(0) is randomly chosen. The dynamic responses the

closed-loop parallel-converter system are depicted in Fig. 2.

Comparison with [14] and [16] for the Case of a Common

Resistive Load. We compare our results (Approach I) with the

distributed averaging control strategy in [16] (Approach II)

and the centralized control approach in [14] (Approach III).

The performance of all three control approaches is assessed in

terms of voltage regulation and balanced current sharing. To

this end, it is assumed that the reference voltage V ∗ is stepped

up from 12V to 18V at t = 1s. The dynamic responses of

all the control approaches are depicted in Fig. 3. Note that

due to the voltage and current ripples caused by PWMs, it is

not easy to observe the transient behaviour and compare the

performance of the control approaches in voltage regulation

and current sharing. Due to this reason, an ideal model of the

DC-DC converters is employed in the second case study.

The results indicate that the performance of Approach I and

Approach III is similar in terms of the settling time. However,

Approach I relies on the less communication links among the

converters. Moreover, the results show that Approach II is not

robust against the internal resistances of the inductors. As it

can be observed from Fig. 3 (part (a) and (c)), neglecting these

resistances in the control design leads to steady-state errors in

the load voltage and the current of the converters.

VI. CONCLUSION

In this letter, we address the problem of voltage regulation

and balanced current sharing in the parallel interconnection

of heterogeneous DC-DC converters with a common ZIP

load. A distributed dynamic control approach is presented to

simultaneously achieve voltage regulation and equal current

distribution amongst the converters. A rigorous stability anal-

ysis based on the Lyapunov stability theory and the LaSalle’s

invariance principle is provided. The effectiveness of the

results is illustrated both theoretically and numerically.
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