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Uplink Spectral and Energy Efficiency of Cell-Free

Massive MIMO with Optimal Uniform Quantization
Manijeh Bashar, Member, IEEE, Hien Quoc Ngo, Senior Member, IEEE, Kanapathippillai Cumanan, Senior

Member, IEEE, Alister G. Burr, Senior Member, IEEE, Pei Xiao, Senior Member, IEEE, Emil Björnson, Senior

Member, IEEE and Erik G. Larsson, Fellow, IEEE

Abstract—This paper investigates the performance of limited-
fronthaul cell-free massive multiple-input multiple-output
(MIMO) taking account the fronthaul quantization and imperfect
channel acquisition. Three cases are studied, which we refer
to as Estimate&Quantize, Quantize&Estimate, and Decentral-
ized, according to where channel estimation is performed and
exploited. Maximum-ratio combining (MRC), zero-forcing (ZF),
and minimum mean-square error (MMSE) receivers are consid-
ered. The Max algorithm and the Bussgang decomposition are
exploited to model optimum uniform quantization. Exploiting
the optimal step size of the quantizer, analytical expressions
for spectral and energy efficiencies are presented. Finally, an
access point (AP) assignment algorithm is proposed to improve
the performance of the decentralized scheme. Numerical results
investigate the performance gap between limited fronthaul and
perfect fronthaul cases, and demonstrate that exploiting relatively
few quantization bits, the performance of limited-fronthaul cell-
free massive MIMO closely approaches the perfect-fronthaul
performance.
Keywords: Bussgang decomposition, cell-free massive MIMO, C-
RAN, energy efficiency, quantization, optimal uniform quantiza-
tion.

I. INTRODUCTION

A. Why Cell-Free Massive MIMO?

The goal of the fifth generation (5G) wireless network is

to provide greatly increased throughput while supporting very

high density of users. A wireless network that can serve large

numbers of users at the same time must become an ultra-dense

network (UDN). In a UDN, the density of base stations (BSs)

may exceed that of users, and distance between users and BSs

is reduced to a few metres [2], [3]. The huge interference
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from the neighbouring BSs is such that the capacity scaling

law of the cellular paradigm no longer holds and hence

interference becomes a limiting factor [2]–[4]. Exploiting

coordination techniques, several neighbouring BSs can share

data via fronthaul links: however, coordination among BSs

results in a very large overhead in UDNs, which is costly and

practically infeasible. The centralized or “cloud” radio access

network (C-RAN) is a promising network architecture that can

effectively address the interference and coordination issues in

UDNs [2].

In C-RAN, the distributed remote radio heads (RRHs)

service the users while the base-band signal processing is

performed at a central base band unit (BBU) [5], [6]. C-

RAN also allows implementation of a version of coordinated

multipoint processing (CoMP), where the RRHs replace the

coordinated BSs, and everything is processed at the “cloud”

(the centralized processor). While C-RAN was created to

reduce the hardware costs, by allowing multiple base stations

to share a processor, it also enables the implementation of

CoMP-based cooperation between base stations connected to

the same “cloud”-based processor.

C-RAN and cell-free massive multiple-input multiple-output

(MIMO) are not thus alternative technologies. Cell-free mas-

sive MIMO is very different since it is explicitly not based on

the cellular principle. In cell-free Massive MIMO, we process

the physical-layer signals in a different way and we deploy the

access points (APs) in a different way from conventional cel-

lular networks. Specifically, many APs are distributed across

the area, removing the concepts of cell and cell-edge users.

However, since cell-free massive MIMO requires a “central

processing unit” (CPU), it can be implemented using a C-

RAN-like architecture, and similarly the APs are connected

to the CPU through fronthaul links. Nevertheless the software

that we will run and the way that we deploy the APs will be

different from that normally considered in C-RAN, reflecting

the techniques used in massive MIMO. For example, some

functional operations, such as channel estimation through

uplink pilots, are carried out at the APs. Users are supported

using time-division duplex (TDD), as in massive MIMO.

B. State-of-the-Art Limited-Fronthaul C-RAN

The common public radio interface (CPRI) specification

was published by a union of radio equipment manufacturers,

aiming to standardize the fronthaul communication of BBU

and RRHs in C-RAN [7], [8]. In CPRI, each sample is
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quantized exploiting a given large number of bits (around 15

bits) per sample. Based on [9], CPRI is not suitable for large-

scale C-RAN and practical implementations using limited-

fronthaul links are necessary. On the other hand, using a non-

uniform quantizer, the quantization levels can be optimized

as a function of the statistics of the signal using standard

techniques such as the Lloyd-Max algorithm [10], [11]. An-

other approach in C-RAN is exploiting Wyner-Ziv coding.

The coding scheme at the RRHs in order to leverage the side

information at the receiver is known as Wyner- Ziv coding

[12]. Using Wyner-Ziv quantization, the RRH can exploit a

better quantizer with an improved resolution without any need

to increase the fronthaul rate [8]. Another technique in C-RAN

is compute-and-forward, which is originated from network

information theory and nested lattice codes [8]. Finally, many

of the network information theoretic problems for the design

of C-RANs are open and improvement in this domain may

provide a progress in the C-RAN technology [8], [13]. In this

paper, we investigate the performance of limited-fronthaul cell-

free massive using the Bussgang decomposition, which can be

applied to the C-RAN technology.

C. The Limited Capacity of Fronthaul Links in Cell-Free

Massive MIMO

The limited capacity links from the APs to the CPU

constitute one of the most important challenges in cell-free

massive MIMO [14]–[22]. This fronthaul limitation is a more

crucial challenge on the uplink, as in the downlink mode the

signals are sent as bit streams to the APs which then apply

local modulation and coding whereas as the fronthaul links

send the quantized version of the received signals at the APs

to the CPU, which introduces additional self-interference to

the signals at the CPU.

The total data rate required to transmit these quantized

signals with sufficient precision to avoid performance loss is

several times the total user data rate supported by those signals.

In the C-RAN literature, this has been estimated as 20-50 times

the corresponding data rate [23], implemented using the CPRI

standard [7], typically over optical fiber.

The assumption of infinite fronthaul in [24] is not realistic in

practice. It is reasonable to assume, however, that the fronthaul

network will carry quantized signals, at least in the uplink

direction, and that this will affect the network performance.

This paper therefore provides an approach for the analysis of

the effect of fronthaul quantization on the uplink of cell-free

massive MIMO. While there has been significant work in the

context of network MIMO on compression techniques such as

Wyner-Ziv coding for interconnection of base stations, here for

simplicity (and hence improved scalability) we assume simple

uniform quantization. J. Max in [25] developed an algorithm to

solve the problem of minimizing the mean-squared distortion

(or mean-squared error (MSE)). In addition, P. Zillmann in

[26] studied the problem of minimising the MSE of the uni-

form quantizer exploiting the Bussgang decomposition [27].

Note that the Max algorithm and the scheme in [26] provide

the same signal-to-distortion-plus-noise ratio (SDNR). In this

paper, we exploit both the Max algorithm and the Bussgang

decomposition to model optimal uniform quantization.

D. Different Implementations of Cell-Free Massive MIMO

In this paper, we study four cases for the implementation of

cell-free massive MIMO networks with linear processing and

present a fair comparison between the different schemes. By

fair comparison, we refer to the fact that we assume the same

fronthaul rate for all schemes. We investigate an uplink cell-

free massive MIMO system with limited-fronthaul links and

three different linear detection schemes, namely, maximum-

ratio combining (MRC), zero-forcing (ZF), and minimum

mean-square error (MMSE). We study the case in which

the APs estimate the channel and the quantized versions of

the estimated channels are transferred to the CPU through

limited fronthaul links. Moreover, APs also send the quantized

received signals to the CPU: we use the Bussgang decompo-

sition to model the quantized signal. This case is referred to

as Estimate&Quantize. Then, the case Quantize&Estimate is

investigated, in which the quantized version of the received

pilots is sent back to the CPU and the CPU performs the

channel estimation. In this case, the APs also need to transfer

the quantized versions of the received user data to the CPU.

Next, we derive the fronthaul bit rate of limited-fronthaul cell-

free massive MIMO. Finally, a decentralized scheme is investi-

gated, in which the distributed APs multiply the received signal

by the conjugate of the channel estimates, and a quantized

version of this weighted signal is sent back to the CPU. Note

that [28] considers the downlink of cell-free massive MIMO

whereas in this paper, we investigate the uplink transmission.

Moreover, the energy efficiency of cell-free massive MIMO

with only error-free and unlimited capacity fronthaul links is

in investigated in [28].

E. Applications

Considering a limited-capacity fronthaul is practically im-

portant since this is the case that will appear in practice.

For the first time, we investigate the performance of the

system under realistic assumption of limited-capacity fronthaul

links and using different detectors. The analytical results for

the achievable rate and the energy efficiency can be used

for power control optimization and other resource allocation

tasks. Moreover, the analysis in this paper provides the means

for system designers to investigate the outage probability,

user assignment schemes, pilot assignment algorithms and bit

error rate analysis with the realistic assumption of limited-

capacity fronthaul links. Finally, the different implementa-

tions of cell-free massive MIMO (namely, Estimate&Quantize,

Quantize&Estimate and the decentralized scheme) open the

door to investigating flexible functional splits and signal com-

pression techniques in this system model.

F. Contributions

The connection between the APs and the CPU is a challenge

for the practical implementation of cell-free massive MIMO.

One practical and feasible architecture of the cell-free massive

MIMO is the radio stripe system [15], where the fronthaul

links have limited capacity. The analysis in the current paper

show that using only a few quantization bits (resulting in a
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few tens of Mbit/s required fronthaul rate), the performance of

limited-fronthaul cell-free massive MIMO closely approaches

the perfect-fronthaul performance. The required capacity of

fronthaul links obtained in this paper are compatible with

the capacity of Ethernet links: a capacity of 100 Mbit/s can

be achieved by using twisted pair Ethernet [29]. Moreover,

energy-efficient techniques are considered as one of the key

avenues for addressing these issues in the development of

future wireless systems. As shown in the paper, the energy

efficiency of the system is a function of the number of

quantization bits. We accordingly find the optimal number of

quantization bits to maximize the energy efficiency. As a re-

sult, the proposed uniform quantization scheme has low-power

consumption and easy deployment which is very suitable for

the practical implementation of cell-free massive MIMO. A

“tradeoff ” between the energy efficiency (as measured in

bit/J) and spectral efficiency (as measured in bit/sec/Hz) of

the cell-free massive MIMO system is an important perfor-

mance metric [30]. However, the authors in [30] consider

co-located massive MIMO whereas the investigation of the

tradeoff between spectral efficiency and energy efficiency in

cell-free massive MIMO is essential. Therefore, using the

achievable rate obtained in the paper, we evaluate the tradeoff

between the spectral efficiency and energy efficiency of the

cell-free massive MIMO system. The contributions of the

paper can be summarized as follows:

1. We exploit the Bussgang decomposition and the Max

algorithm to model the effect of uniform quantization

with Estimate&Quantize, Quantize&Estimate and decen-

tralized schemes. We derive analytical expressions for

the user signal-to-interference-plus-noise ratio (SINR) for

different schemes with three linear receivers, namely

MRC, ZF and MMSE, taking into account the effects

of limited fronthaul links, quantization errors and pilot

contamination. We show that to analyse the performance

of the aforementioned schemes with quantized channel

gain at the receiver and non-Gaussian noise, we need to

exploit the scheme in [31]. Note that this is the first paper

which investigates the scheme in [31] and shows that the

achievable rate can be obtained through a similar way as

in [31, Section 2.3.5 and Table 2.3]. These analyses are

novel and not presented anywhere else.

2. The required fronthaul rate and power consumption of the

Estimate&Quantize, Quantize&Estimate and decentral-

ized cases are investigated, which enables us to formulate

the total power consumption of the system. Given the

effect of the channel coherence time, the capacity of

fronthaul links and the effect the quantization distor-

tion, a closed form expression for an achievable spectral

efficiency and the energy efficiency of the system are

obtained. We show that very high spectral efficiency and

energy efficiency can be obtained even with simple MRC

processing. A tradeoff between the energy efficiency and

spectral efficiency of the system is presented. It is shown

that exploiting a moderately large number of APs can

significantly enhance the spectral and energy efficiency

of the system.

Figure 1. The uplink of a cell-free massive MIMO system with K single-
antenna users and M APs. Each AP is equipped with # antennas. The solid
lines denote the uplink channels and the dashed lines present the limited
capacity fronthaul links between the APs and the CPU.

3. One of the aims of this work is to find a practical user

assignment algorithm for cell-free massive MIMO. A

novel and efficient user assignment algorithm is proposed,

which is based on the capacity of fronthaul links and

improves the performance of decentralized cell-free mas-

sive MIMO. Note that the proposed AP assignment is

different from the AP selection schemes investigated in

[15], [28], [32], as here we investigate the effect of the

limited capacity of the fronthaul links on the total number

of users which can be supported by each AP.

4. We present a performance comparison between the case

of perfect fronthaul links, the Estimate&Quantize,

Quantize&Estimate and the decentralized scheme. Next,

we investigate the optimal number of AP antennas along

with the optimal number of quantization bits and optimal

number of APs to maximize the uplink energy efficiency

of cell-free Massive MIMO. Numerical results confirm

that relatively few quantization bits are needed for the

limited-fronthaul case to meet the performance of the

system with perfect fronthaul, which reveals that limited-

fronthaul cell-free massive MIMO can be considered as

a practical system for beyond 5G.

5. We investigate one of the most important and practical

issues of cell-free massive MIMO: should we allocate

more bits to quantize the estimated channel at the APs or

more bits to quantize the received signal? It is interesting

that the numerical results show that the same number of

bits should be exploited to quantize the estimated channel

at the APs or to quantize the received signal to maximize

the spectral efficiency and energy efficiency of the system.

Outline: The rest of the paper is organized as follows. Section

II describes the system model and Section III reviews the

optimal uniform quantization model. Section IV describes the

Estimate&Quantize scheme. Sections V presents the decen-

tralized processing scheme whereas the Quantize&Estimate

scheme is investigated in Section VI. In addition, Sections VII

and VIII investigate the total energy efficiency and proposed

AP assignment schemes, respectively. Numerical results are

presented in Section IX, and finally Section X concludes the

paper.
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II. SYSTEM MODEL

We consider the uplink transmission in a cell-free massive

MIMO system with " APs and  single-antenna users arbi-

trarily distributed in a large area, as shown in Fig. 1. Moreover,

we assume each AP has # antennas. The channel coefficient

vector between the :th user and the <th AP, g<: ∈ C#×1, is

modeled as

g<: =
√
V<:h<: , (1)

where V<: is the large-scale fading coefficient and h<: ∼
CN(0, I# ) is a complex Gaussian random vector with covari-

ance matrix I# which represents the small-scale fading [28].1

A. Channel Estimation at the APs

All pilot sequences transmitted by the  users in the channel

estimation phase are collected in a matrix � ∈ Cg?× , where

g? is the length of the pilot sequence for each user and the

:th column, qqq: , represents the pilot sequence used by the :th

user, where ‖qqq: ‖2 = 1. Let
√
gqqq: ∈ �g×1, where ‖qqq: ‖2 = 1,

be the pilot sequence assigned to the :th user. The MMSE

estimate of the channel coefficient is given by [28]

ĝ<: = 2<:

(√
g???g<:+

√
g???

 ∑
:′≠:

g<:′qqq
�
:′qqq:+
?,<qqq:

)
,(2)

where 
?,< denotes the noise vector at the <th AP whose

elements are independent and identically distributed (i.i.d.)

CN(0, 1), ?? represents the normalized signal-to-noise ratio

(SNR) of each pilot symbol, where it is assumed that ?̄?

denotes the power of pilot sequence where ?? =
?̄?
?=

and

?= is the noise power [28]. Moreover, we have 2<: =√
g? ??V<:

g? ??
∑ 
:′=1

V<:′ |qqq�:′qqq: |
2+1

and W<: =
g? ??V

2
<:

g? ??
∑ 
:′=1

V<:′
���qqq�
:′qqq:

���2+1

[28].

B. Uplink Transmission

In this subsection, we consider the uplink data transmission,

where all users send their signals to the APs. The transmitted

signal from the :th user is denoted by G: =
√
d @: B: , where

B: (E{|B: |2} = 1) and @: denotes the transmitted symbol and

the transmit power, respectively. Moreover, d refers to the

normalized uplink SNR. The # × 1 received signal at the <th

AP is given by

y< =
√
d

 ∑
:=1

g<:
√
@: B: + n<, (3)

where n< ∼ CN(0, I# ) is the noise vector at the <th AP. The

baseline of cell-free massive MIMO with perfect fronthaul and

linear receivers has been presented in [14], [37]–[39]. Hence,

we only present the performance analysis for the limited

fronthaul cases.

1With multiple antennas at the users, if the users do not have channel state
information, then a system with  # -antenna users have the same sum uplink
spectral efficiency as a system having  # single-antenna users. However,
in the case that users have channel state information, the effect of multiple
antennas at the user terminals is investigated in [33] and is out of scope of the
current paper. A proper and realistic channel model [34]–[36] is necessary.
This is left aside for future research.

III. OPTIMAL UNIFORM QUANTIZATION MODEL

In this section, we provide an overview of the optimal

uniform quantization. Note that J. Max in [25] developed an

algorithm to define the necessary conditions to minimize the

distortion of a scalar quantizer [40]. In addition, the Bussgang

decomposition [27] is also used in this paper, enabling us to

exploit the scheme proposed by P. Zillmann in [26] to model

the quantization and hence find the optimum step size of the

quantizer by maximizing the SDNR. Note that the Max algo-

rithm and the scheme based on the Bussgang decomposition in

[26] result in the same SDNR. The main difference between

them is that using the Bussgang decomposition, the output

of the quantizer can be represented by a scalar multiple of

the input plus an uncorrelated distortion [26], [27] whereas

exploiting the Max algorithm, the quantization distortion and

the output of the quantizer are uncorrelated [25], [41], [42].

The details of the optimal uniform quantization models are

provided in the following subsections.

A. Optimal Uniform Quantization with the Bussgang Decom-

position

Based on the Bussgang decomposition [27], the output of a

quantizer can be represented by a scalar multiple of the input

plus uncorrelated distortion as follows [16], [26], [43]:

Q(I) = ℎ(I) = 0I + =3 , ∀:, (4)

where Q(·) denotes the quantization operation, and ℎ(I)
denotes a memoryless nonlinear function with the Gaussian-

distributed input I, 0 is a constant, =3 refers to the dis-

tortion noise which is uncorrelated with the input of the

quantizer, I [26]. The term 0 is given by 0 =
E{Iℎ (I) }
E{I2 } =

1
?I

∫
Z Iℎ(I) 5I (I)3I, where ?I = E{I2} denotes the power

of I and we drop absolute value as I is a real number, and

5I (I) represents the probability distribution function of I. In

general, the terms 0 is a function of the power of the quantizer

input, ?I . Similar to the methodology in [16], to remove this

dependency, we normalize the input signal by dividing the

input signal, I, by the square root of its power,
√
?I , and then

multiply the quantizer output by its square root,
√
?I . Hence,

by introducing a new variable Ĩ = I√
?I

, we have

Q(I) = √
?IQ( Ĩ) = 0̃√?I Ĩ +

√
?I =̃3 = 0̃I + √

?I =̃3 . (5)

In other words, 0̃ is the constant term in the Bussgang

decomposition for the case of normalized input. Finally, the

optimum step size of the quantizer and the corresponding 0̃

are given in [16, Subsection II-B], which are summarized in

Table I.

B. Max Algorithm for Optimal Uniform Quantization

Based on the analysis provided by J. Max in [25], the linear

quantization can be modeled as:

Q(I) = ℎ(I) = I + =3 , ∀:. (6)

Note that based on the analysis in [42], [44, Chapter 3], the

quantization model in (6) is a special case of (5), where 0̃ =
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Table I
THE OPTIMAL STEP SIZE AND DISTORTION POWER OF A UNIFORM

QUANTIZER with and without the Bussgang decomposition AND UNIT

VARIANCE INPUT SIGNAL.

U Δopt f2
=̃3

= 1̃ − 0̃2 = f2
4̃,�

0̃ f2
=̃3

= f2
4̃

1 1.596 0.2313 0.6366 0.3634 [25]

2 0.9957 0.10472 0.88115 0.1188 [25]

3 0.586 0.036037 0.96256 0.03744 [25]

4 0.3352 0.011409 0.98845 0.01154 [25]

5 0.1881 0.003482 0.996505 0.00349 [25]

6 0.1041 0.0010389 0.99896 -

7 0.0568 0.0003042 0.99969 -

8 0.0307 0.0000876 0.999912 -

9 0.0165 0.0000249 0.999975 -

10 0.0088 6.99696 × 10−6 0.999993 -

11 0.004649 1.94441 × 10−6 0.999998 -

12 0.0024484 5.35536 × 10−7 0.999999 -

13 0.001283 1.46369 × 10−7 0.9999998 -

14 0.001283 3.97394 × 10−8 0.99999997 -

15 0.000349 1.0727 × 10−8 1 -
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Figure 2. Cumulative distribution of the input of the quantizer with  = 10
and # = 1.

1 − f2
4̃

. Using J. Max algorithm, the output of the quantizer

and the distortion are uncorrelated [25], [41], [42]. For this

case, to calculate the variance of the quantization error, we

exploit the following scheme:

f2
=̃3

=

{
f2
4̃
, obtained in [25], U ≤ 5,

0̃(1 − 0̃), [45], U ≥ 6,
(7)

where U denotes the number of quantization bits. In the

following sections, we investigate the performance of limited-

fronthaul cell-free massive MIMO with the aforementioned

optimal uniform quantization schemes.

IV. ESTIMATE&QUANTIZE SCHEME

In this section, we present the Estimate&Quantize scheme.

With this scheme, the <th AP quantizes the estimated chan-

nels, ĝ<: , ∀: , and the received signal, y<, using the optimal

uniform quantization, and forwards the quantized channel

and the quantized signal to the CPU. In the following sub-

sections, we exploit the Bussgang decomposition [26], [27]

and the Max algorithm [25] to quantize the received signal

and the estimated channel, respectively. These enable us to

exploit the scheme in [30] to derive the SINR of the limited-

fronthaul cell-free massive MIMO system with the considered

Estimate&Quantize scheme.

A. Quantization of the Received Signal

Using the Bussgang decomposition [26], [27], the quantized

signal can be obtained as:

y̌< = 0̃y< + e
H
<, ∀<, (8)

where y< is the received signal at the <th AP and is defined

in (3). Exploiting the analysis in Section IV, the variance of

the distortion noise is given by f2

[eH< ]=
= f2

[ẽH< ]=
E

{��[y<]=��2}.

Hence, we have

f2

[eH< ]=
= f2

[ẽH< ]=

(
d

 ∑
:′=1

V<:′@:′ + 1

)

= f2
4̃H

(
d

 ∑
:′=1

V<:′@:′ + 1

)
,∀<, =, (9)

where f2

ẽ
H
<

is the variance of the distortion noise with unit

variance input for the given number of quantization bits.

Note that using y< defined in (3), the elements of y< are

uncorrelated, i.e., E
{
y<y�<

}
= 0. Moreover, in the second

equality in (9) we used the same number of bits in all APs

and all antennas to quantize the received signal and hence

f2

[ẽH< ]=
= f2

4̃H
= f2

4̃,�
,∀<, =. Note that subscript B denotes

the Bussgang decomposition. The optimal values of f2
4̃,�

for

different numbers of quantization bits are given in Table I.

Remark 1. J. Bussgang in his original work [27] assumes

that the input of quantizer has Gaussian distribution. Since the

input of quantizer is the sum of many random variates, from

the central limit theorem, it has near Gaussian distribution.

Therefore, we use the Bussgang decomposition, making the

approximation that the input of the quantizer is Gaussian

distributed. The Gaussian approximation can be verified nu-

merically, as shown in Fig. 2. We can see that the cumulative

distribution of the empirical distribution matches very well

with that of the Gaussian distribution.

Remark 2. Using the Bussgang decomposition, the quantizer

input is uncorrelated with the distortion noise. This implies

that E
{
y<e

H
<
�
}
= 0, ∀:.

B. Quantization of the Estimated Channel

We quantize the estimated channel with the optimal quan-

tizer obtained using the Max algorithm [25] as follows:

ǧ<: = ĝ<: + e
6

<:
, ∀:. (10)

Using the analysis in Section IV, the variance of the quantiza-

tion error is obtained as f2

[e6
<:

]=
= f2

[ẽ6
<:

]=
E

{
[ĝ<: ]= |2

}
, which

results in

f2

[e6
<:

]=
= f2

[ẽ6
<:

]=
W<: = f

2
4̃6W<: , ∀<, :, =, (11)

where for simplicity we use the same number of bits in all

APs to quantize the estimated channels.
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Remark 3. Note that J. Max investigated the case of an input

signal with Gaussian distribution, and here the input signal,

i.e., ĝ<: has Gaussian distribution.

Remark 4. Based on [25], [41], [42], the quantizer output is

assumed to be uncorrelated with the distortion noise. Hence,

we have

E

{
ǧ<:e

6

<:

�
}
= 0, ∀:. (12)

Note that the reason why we do not use the Bussgang

decomposition to model the quantization of the estimated

channel is explained later after the proof of Proposition 5.

Remark 5. If the probability density function of input of the

quantizer is even, and exploiting the symmetrical quantizer,

the distortion noise has zero mean [25], [41], [42]. Hence,

we have:

E
{
e
6

<:

}
= 0 & E

{
e
H
<

}
= 0. (13)

C. Data Detection

Let V̌ ∈ C"#× be the linear detector matrix depending on

the side information at the receiver ǧ<: ,∀<, : . We let v̌: =[
v̌)

1:
, · · · , v̌)

":

])
refer to the :th column of the detector matrix

V̌, and v̌<: ∈ C# . The received signal after using the linear

detector at the CPU is given by

B̌: = v̌�:
[
y̌)1 , · · · , y̌)"

]
, (14)

where y̌< is defined in (8). Next, the received signal for the

:th user is re-written as:

B̌: =

"∑
<=1

v̌�<: y̌< =

"∑
<=1

v̌�<:
(
0̃y< + e

H
<

)

=

"∑
<=1

v̌�<:

(
0̃
√
d

 ∑
:=1

g<:
√
@: B: + 0̃n< + e

H
<

)

=

"∑
<=1

v̌�<:

(
0̃
√
d

 ∑
:=1

(
ǧ<: − e

6

<:
+ g̃<:

) √
@: B: + 0̃n< + e

H
<

)

= 0̃
√
d@:

"∑
<=1

v̌�<: ǧ<:

︸                 ︷︷                 ︸
�1

B: + 0̃
√
d

 ∑
:′≠:

√
@:′

"∑
<=1

v̌�<: ǧ<:′B:′

︸                                ︷︷                                ︸
�2

+ 0̃
"∑
<=1

v̌�<:n<

︸       ︷︷       ︸
�3

+
"∑
<=1

v̌�<:e
H
<

︸      ︷︷      ︸
�4

−0̃√d
"∑
<=1

v̌�<:

 ∑
:′=1

√
@:′e

6

<:′B:′

︸                              ︷︷                              ︸
�5

+ 0̃√d
"∑
<=1

v̌�<:

 ∑
:′=1

√
@:′ g̃<:′B:′

︸                               ︷︷                               ︸
�6

. (15)

D. Capacity Bound with Quantized Channel and Non-

Gaussian Noise

Note that the quantized version of the estimated channel

is available as side information at the CPU to decode the

signal, where we use the term Ω = Ǧ to refer to it.

Moreover, the received signal in (15) can be re-written as

B̌: = 0̃�1B: + 0̃�2 + 0̃�3 + �4 − 0̃�5 + 0̃�6, and , =

�2 + �3 + �4 + �5 + �6. Note that here we use the scheme

in [31, Section 2.3.5 and Table 2.3] for fading channel with

additive non-Gaussian noise , and side information Ω. Let us

suppose the following four conditions hold: 1. Terms �1B: , �2,

�3, �4, �5 and �6 are mutually uncorrelated, 2. E {, |Ω} ≈ 0,

3. E
{
B∗
:
, |Ω

}
≈ 0, and 4. E

{
�∗

1
B∗
:
, |Ω

}
≈ 0. Then the

closed-form expression for the achievable rate of the :th user

is given by ': ≈ E
{
log2 (1 + SINR: )

}
, where the SINR:

is the achievable SINR of the :th user and the expectation

is taken over Ǧ. Using the analysis in [31], the achievable

SINR is obtained by (16) (defined at the bottom of this page).

In the following lemmas, we prove the four aforementioned

conditions.

Lemma 1. Terms �1B: , �2, �3, �4, �5 and �6 are mutually

uncorrelated.

Proof: Please refer to Appendix A. �

Lemma 2. We have E {, |Ω} ≈ 0. Note that the approximation

term in E {, |Ω} ≈ 0 means that the term E {, |Ω} is small

enough and can be neglected.

Proof: Please refer to Appendix B. �

Lemma 3. We have E
{
B∗
:
, |Ω

}
≈ 0, where approximation

sign indicates that the term E
{
B∗
:
, |Ω

}
is small enough and

can be neglected.

Proof: Please refer to Appendix C. �

Lemma 4. We have E
{
�∗

1
B∗
:
, |Ω

}
≈ 0.

Proof : Please refer to Appendix D. �

Next, the achievable SINR of the :th user is obtained in the

following theorem.

Theorem 1. The SINR of the :th user in cell-free massive

MIMO for the case when APs send back the quantized

versions of the estimated channels and the quantized version

of the received signals to the CPU through limited fronthaul

links is given by (17) (defined at the top of the next page),

where in SINR
E&Q,lf

:
, the superscript “E&Q,lf” stands for

Estimate&Quantize and limited fronthaul.

Proof: Using Lemma 1 and the analysis in [31], the achiev-

able SINR is obtained by (16). Next, using (15) and (11), and

after some mathematical manipulation, we have (18), where

W
E&Q,lf

:′ and FE&Q,lf are defined in (20). It is straightfor-

ward to calculate the terms E
{���1B: |Ǧ

��2}, E
{���2 |Ǧ

��2}, and

SINR
E&Q,lf

:
=

��E {
�1 |Ǧ

}��2
E

{
|�2 |2

��Ǧ}
+ E

{
|�3 |2

��Ǧ}
+ 1
0̃2E

{
|�4 |2

��Ǧ}
+ E

{
|�5 |2

��Ǧ}
+ E

{
|�6 |2

��Ǧ} . (16)
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SINR
E&Q,lf

:
=

d@:
��∑"
<=1 v̌�

<:
ǧ<:

��2
d
 ∑
:′≠:

@:′

���� "∑
<=1

v̌�
<:

ǧ<:′

����
2

+d
"∑
<=1

| |v̌<: | |2
 ∑
:′=1

@:′

[
V<:′

(
1+
f2
4̃H ,B

0̃2

)
−W<:′

(
1 − f2

4̃6

) ]
+
(
1+
f2
4̃H ,B

0̃2

)
"∑
<=1

| |v̌<: | |2
.(17)

1

0̃2
E

{���4 |Ǧ
��2} + E {���5 |Ǧ

��2} + E {���6 |Ǧ
��2} =

"∑
<=1

| |v̌<: | |2
:∑
:′=1

d@:′

[
V<:′

(
1 +

f2
4̃H ,B

0̃2

)
− W<:′

(
1 − f2

4̃6

)]

+
"∑
<=1

| |v̌<: | |2
f2
4̃

0̃2
= v̌�:

(
d

 ∑
:′=1

@:′W
E&Q,lf

:′ + FE&Q,lf

)
v̌: . (18)

E

{���3 |Ǧ
��2}. Finally, by substituting (18) into (16), we obtain

(17), which completes the proof. �

In this case, we will consider the following linear detectors.

V̌ =




Ǧ, for MRC

Ǧ
(
Ǧ� Ǧ

)−1

, for ZF(
0̃2d

 ∑
:′=1

@:′ ǧ:′ ǧ
�
:′ + RE&Q,lf

)−1

Ǧ, for MMSE

(19)

where Ǧ = [ǧ1, · · · , ǧ ], and RE&Q,lf is obtained as follows:

RE&Q,lf
= d

 ∑
:′=1

@:′W
E&Q,lf

:′ + I"# + FE&Q,lf,

W
E&Q,lf

:′ = S
E&Q,lf

:′ − T
E&Q,lf

:′

S
E&Q,lf

:′ =

(
f2
4̃H ,B

0̃2
+1

)
diag (rep (V1:′ , #)· · · rep (V":′ , #)),

T
E&Q,lf

:′ =

(
1−f2

4̃6

)
diag (rep (W1:′ , #) · · · rep (W":′ , #)) ,

FE&Q,lf
=
f2
4̃H ,B

0̃2
I"# .

(20a)

(20b)

(20c)

(20d)

(20e)

Note that the MMSE detector is optimal as it maximizes the

instantaneous SINR of each user.

V. DECENTRALIZED PROCESSING SCHEME

In this section, we investigate MRC, which due to its

low complexity and can be designed in a distributed fashion

where most processing is locally performed at the APs [24].

First, the received signal from the :th user at the <th AP,

i.e., y<, is multiplied by the Hermitian of the local channel

estimate ĝ�
<:

. Following the terminology in [16], the <th AP

quantizes the term I<,: = ĝ�
<:

y<,∀: . Next, the AP forwards

the quantized signals, i.e., I<,: , in each symbol duration to the

CPU. Similar to [42], [46], a low resolution analog-to-digital

converter (ADC) quantizes the real and imaginary parts of

I<,: with U bits each, which introduces quantization errors

to the received signals [42], [44], [45], [47]. Exploiting the

Bussgang decomposition, the relation between I<: and its

quantized version, Ĩ<: , is given by

Ĩ<: = 0̃I<: + 4I<: , (21)

where the term 4I
<:

is the distortion noise of the <th AP.

Note that the input of quantizer, i.e., I<,: = ĝ�
<:

y<,∀: , is the

sum of many random variates, from the central limit theorem,

it has a near Gaussian distribution. This allows us to exploit

Bussgang theorem [48, Section II-D]. The aggregated received

signal at the CPU can be written as (22) (defined at the

top of the next page), where DS: and BU: are the desired

signal (DS) and beamforming uncertainty (BU) for the :th

user, respectively, and IUI: is the inter-user-interference (IUI)

caused by the : ′th user. Moreover, TN: accounts for the total

noise (TN) following the MRC detection, and finally TQE:
is to the total quantization error (TQE) at the :th user. Using

the fact that the terms DS: , BU: , IUI::′ , TN: , and TQE:
are mutually uncorrelated, the achievable uplink rate of the

kth user with the decentralized processing is given by (23)

(defined at the top of the next page), where the index dec

refers to the decentralized scheme [16, Section III].

VI. QUANTIZE&ESTIMATE SCHEME

In this section, we provide the Quantize&Estimate scheme.

With this scheme, the APs quantize the received signal and

received pilot, using the optimal uniform quantization, and

forwards the quantized versions of the received signal and

received pilot to the CPU. In the following subsections, we

exploit the Bussgang decomposition [26], [27] to quantize the

received signal and the received pilot.

A. Quantization of Received Pilot

The users simultaneously transmit their pilot sequences, and

similar to [24] we assume the pilot sequence for the :th user

is
√
g?qqq: ∈ Cg?×1, where | |qqq: | |2 = 1. Hence, the received

signal at the <th AP is given by [24]

Y
?
< =

√
g???

 ∑
:=1

g<:qqq
�
: + W

?
<, (24)

where matrix W
?
< ∈ C#×g? is the noise whose elements are

i.i.d. CN(0, 1). Next each AP quantizes the received signal

and sends the quantized versions of the received signals to the
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A: =

"∑
<=1

©­­­«
0̃ ĝ�<:y<︸ ︷︷ ︸

I<:

+4I
<:

ª®®®¬
= 0̃

√
dE

{
"∑
<=1

ĝ�<:g<:
√
@:

}
︸                          ︷︷                          ︸

DS:

B: + 0̃
√
d

(
"∑
<=1

D<: ĝ
�
<:g<:

√
@: − E

{
"∑
<=1

ĝ�<:g<:
√
@:

})
︸                                                             ︷︷                                                             ︸

BU:

B:

+
 ∑
:′≠:

0̃
√
d

"∑
<=1

ĝ�<:g<:′
√
@:′

︸                     ︷︷                     ︸
IUI::′

B:′ + 0̃
"∑
<=1

ĝ�<:n<

︸       ︷︷       ︸
TN:

+
"∑
<=1

4I
<:

︸   ︷︷   ︸
TQE:

. (22)

SINRdec
k (23)

=

#2@:

(∑"
<=1 W<:

)2

#2
 ∑
:′≠:

@:′

(
"∑
<=1

W<: V<:′

V<:

)2 ��qqq�
:
qqq:′

��2+ # 2f2
4̃,�

0̃2

 ∑
:′=1

@:′
"∑
<=1

W2
<:′

��qqq�
:
qqq:′

��2+#
(
f2
4̃,�

0̃2
+1

)
"∑
<=1

W<:
 ∑
:′=1

@:′V<:′+
#

d

(
f2
4̃,�

0̃2
+1

)
"∑
<=1

W<:

.

CPU. Using the Bussgang theorem, the quantized version of

the recieved pilot signal at the <th AP is given by

Y̌
?
< = 0̃Y

?
< + E

(H?)
<

= 0̃
√
g???

 ∑
:=1

g<:qqq
�
: + 0̃W

?
< + E

(H?)
< , (25)

where E
(H?)
< is the quantization distortion.

Remark 6. Note that Y
?
< has Gaussian distribution as

it is sum of Gaussian variables, i.e.,
√
g???g<1qqq

�
1

, · · · ,√
g???g< qqq

�
 

, W
?
<. This enabels us to exploit Bussgang’s

approach in [27]. In this case, the inputs are also independent

which implies that the outputs will be independent (based on

the analysis in [44, Section 2.2].

B. Channel Estimation at the CPU

Next, the CPU exploits the pilot sequence qqq: to correlate

the received quantized signal from the <th AP with the pilot

sequence as follows:

ˇ̌y
?

<,:
= Y̌

?
<qqq:

= 0̃
√
g???g<:+0̃

√
g???

 ∑
:′≠:

g<:′qqq
�
:′qqq:+0̃ ¤w

?

<:
+¤e(H

?)
<:

, (26)

where ¤w , W
?
<qqq: , and ¤e(H

?)
<:
, E

(H?)
< qqq: .

Lemma 5. Linear minimum mean-square error (LMMSE)

estimate of g<: given ˇ̌y
?

<,:
is:

ˇ̌g<: =
E

{
g�
<:

ˇ̌y
?

<,:

}
E

{
ˇ̌y
?

<,:

� ˇ̌y
?

<,:

} ˇ̌y
?

<,:
= 2<: ˇ̌y

?

<,:
, (27)

where 2<: =
0̃
√
g???V<:

0̃2

(
g???

 ∑
:′=1

V<:′
��qqq�
:
qqq:′

��2+1

)
+f2

4̃

(
??

 ∑
:=1

V<:+1

).

Proof: It is easy to show that E
{
g�
<:

ˇ̌y
?

<,:

}
= #0̃

√
g???V<: .

In addition, using (26), the denominator of 2<: is obtained as

follows:

E

{
ˇ̌y
?

<,:

� ˇ̌y
?

<,:

}

=#0̃2

(
g???

 ∑
:′=1

V<:′
��qqq�: qqq:′ ��2+1

)
+ #E

{����
[
E
(H?)
<

]
=,C

����
2
}
,(28)

where again Y̌
?
< is the input of the quantizer at the <th AP,

given in (25), and [ . ]=,C refers to the (=, C)-th element, and

= = 1, · · · , # , and C = 1, · · · , g? . Hence, the variance of the

quantization error can be obtained as follows:

E

{����
[
E
(H?)
<

]
=,C

����
2
}
= f2

4̃E

{��� [Y?
<

]
=,C

���2
}

= f2
4̃

(
??

 ∑
:′=1

V<: + 1

)
, (29)

which completes the proof.

The mean-square of the =th element of ˇ̌g<: is denoted by

W<: , and given by

W<: , E
{��[ ˇ̌g<: ]=��2

}

=
0̃2g???V

2
<:

0̃2

(
g???

 ∑
:′=1

V<:′
��qqq�
:
qqq:′

��2+1

)
+f2

4̃

(
??

 ∑
:=1

V<:+1

). (30)

Note that the channel estimation error ˜̃g<: is given by

˜̃g<: = g<: − ˇ̌g<: , (31)

where the elements of ˜̃g<: ∼ CN(0, V<: − W<: ) are i.i.d.

random variables and independent of ĝ<: . This is obtained

from the fact that the term in (25) is the sum of many

random variates, from the central limit theorem, it has near

Gaussian distribution [43]. Therefore, the MMSE estimation

has Gaussian distribution. This fact is also observed in Fig. 3

with " = 40, # = 1,  = 20 and U<,2 = 1 bit.
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Figure 3. Cumulative distribution of the channel estimation with " = 40,
# = 1,  = 20 and U<,2 = 1 bit.

C. Quantization of Received Signal

The received signal at the <th AP from all users, i.e., y<,

is given by (3). Exploiting the Bussgang decomposition, the

quantized version of y< is

ˇ̌y< = 0̃y< + e
H
<, ∀<, (32)

where the quantization noise is uncorrelated with the input of

the quantizer, i.e., E
{
y<e

H
<
�
}
= 0, ∀<. Moreover, note that

f2

[eH< ]=
= f2

[ẽH< ]=

(
d

 ∑
:′=1

V<:′@:′ + 1

)

= f2
4̃H

(
d

 ∑
:′=1

V<:′@:′ + 1

)
, (33)

where in second equality of (33), we assumed the same

number of bits at all APs, i.e., f2

[ẽH< ]=
= f2

4̃,�
,∀<, for

simplicity. Note that in Remark 1, we prove that y< has

Gaussian distribution, which enables us to use J. Bussgang’s

approach in [27].

D. Data Detection

Let ˇ̌V ∈ C"#× be the linear detector matrix, which

depends on the side information at the receiver, ˇ̌g<: ,∀<, : .

We assume ˇ̌v: =
[
ˇ̌v)

1:
, · · · , ˇ̌v)

":

])
refers to the :th column

of the detector matrix ˇ̌V, and ˇ̌v<: ∈ C# . The received signal

for the :th user after using the detector at the CPU is given

by

ˇ̌B: = ˇ̌v�:
[
ˇ̌y)1 , · · · , ˇ̌y)"

]
, (34)

where ˇ̌y< is defined in (32). Next, ˇ̌B: is re-written as

(35) (defined at the top of the next page), where ˇ̌v: =[
ˇ̌v)

1:
, · · · , ˇ̌v)

":

])
, and refer to the :th column of a "# ×  

detector matrix ˇ̌V, and ˇ̌V =
[
ˇ̌v1, · · · , ˇ̌v 

]
.

E. Capacity Bound with Quantized Channel and Non-

Gaussian Noise

The CPU exploits the estimated channel as side informa-

tion to detect the signal, where here we refer to the side

information at the CPU as ℧ =
ˇ̌
G, and the received signal

in (33) is re-written as ˇ̌B: = 0̃�1B: + 0̃�2 + 0̃�3 + 0̃�4 + �5,

where Ξ = �2 + �3 + �4 + �5 is the additive non-Gaussian

noise. Based on [31, Section 2.3.5 and Table 2.3], if the

following four conditions hold: 1. Terms �1B: , �2, �3,

�4, and �5 are mutually uncorrelated, 2. E {Ξ|℧} ≈ 0, 3.

E
{
B∗
:
Ξ|℧

}
≈ 0, and 4. E

{
�∗

1
B∗
:
Ξ|℧

}
≈ 0. The closed-form

expression for the achievable rate of the :th user is given by

': ≈ E
{
log2 (1 + SINR: )

}
, where the SINR: is the achievable

SINR of the :th user and the expectation is taken over
ˇ̌
G. The

achievable SINR is obtained by

SINR: (36)

=

���E {
�1 | ˇ̌G

}���2
E

{
|�2 |2

�� ˇ̌
G

}
+E

{
|�3 |2

�� ˇ̌
G

}
+E

{
|�4 |2

�� ˇ̌
G

}
+ 1

0̃2
E

{
|�5 |2

�� ˇ̌
G

} .
Therefore, in the following lemmas, we show that the four

above-mentioned required conditions hold.

Lemma 6. Terms �1, �2, �3, �4, and �5 are mutually

uncorrelated.

Proof: First, we use ˇ̌B: given in (35)

y< =
√
d

 ∑
:=1

g<:
√
@: B: + n<

=
√
d

 ∑
:=1

(
ˇ̌g<:+ ˜̃g<:

) √
@: B: + n<. (37)

As n< and ˜̃g<: are uncorrelated i.i.d. Gaussian noise and

i.i.d. Gaussian MMSE error, respectively. Moreover, based

on the analysis in Section III, using the Bussgang theorem,

the quantization noise is uncorrelated with the input of the

quantizer. Hence, the terms the terms �1 and �5 and the

terms �2 and �5 are uncorrelated. Note that terms �3 and

�4 include i.i.d. Gaussian noise and i.i.d. Gaussian MMSE

error, respectively. Hence terms �2 and �6 are uncorrelated

with other terms. These reveal that the terms �1, �2, �3, �4,

and �5 are mutually uncorrelated, which completes the proof

of Lemma 6. �

Lemma 7. We have E {Ξ|℧} ≈ 0. Note that the approximation

term in E {Ξ|℧} ≈ 0 means that the term E {Ξ|℧} is small

enough and can be neglected.

Proof: Please refer to Appendix E. �

Lemma 8. We have E
{
B∗
:
Ξ|℧

}
≈ 0.

Proof: Please refer to Appendix F. �

Lemma 9. We have E
{
�∗

1
B∗
:
Ξ|℧

}
≈ 0.

Proof: Please refer to Appendix G. �

Finally, the achievable SINR of the :th user is obtained in

the following theorem.

Theorem 2. The SINR of the :th user in cell-free massive

MIMO for the case when APs send back the quantized version

of received pilots and the quantized version of the received
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ˇ̌B: =

"∑
<=1

ˇ̌v�<:
ˇ̌y< =

"∑
<=1

ˇ̌v�<:

(
0̃
√
d

 ∑
:=1

g<:
√
@: B: + 0̃n< + e

H
<

)
=

"∑
<=1

ˇ̌v�<:

(
0̃
√
d

 ∑
:=1

(
ˇ̌g<: + ˜̃g<:

) √
@: B: + 0̃n< + e

H
<

)

= 0̃
√
@: d

"∑
<=1

ˇ̌v�<:
ˇ̌g<:

︸                ︷︷                ︸
�1

B: + 0̃
√
d

 ∑
:′≠:

√
@:′

"∑
<=1

ˇ̌v�<:
ˇ̌g<:′B:′

︸                                ︷︷                                ︸
�2

+0̃√d
"∑
<=1

ˇ̌v�<:

 ∑
:′=1

√
@:′ ˜̃g<:′B:′

︸                               ︷︷                               ︸
�3

+0̃
"∑
<=1

ˇ̌v�<:n<

︸       ︷︷       ︸
�4

+
"∑
<=1

ˇ̌v�<:e
H
<

︸       ︷︷       ︸
�5

. (35)

SINR
Q&E,lf

k
=

d@:
��∑"
<=1

ˇ̌v�
<:

ˇ̌g<:
��2

d
 ∑
:′≠:

@:′

���� "∑
<=1

ˇ̌v�
<:

ˇ̌g<:′

����
2

+ d
"∑
<=1

| | ˇ̌v<: | |2
 ∑
:′=1

@:′

((
1 +

f2
4̃,B

0̃2

)
V<:′ − W<:′

)
+

(
1 +

f2
4̃,B

0̃2

)
"∑
<=1

| | ˇ̌v<: | |2
. (38)

E
{[

Y
?
<

]∗
=C

[
Y
?
<

]
=′C′

}
= 0,∀=C ≠ =′C ′, E

{[
Y
?
<

]∗
=C
[y<]=′

}
= 0,∀= ≠ =′, E

{[
Y
?
<

]∗
=C
[y;]=′

}
= 0,∀; ≠ <,

E
{
y<y�;

}
= 0,∀; ≠ <, E

{
[y<]∗= [y<]=′

}
= 0,∀= ≠ =′.

(39a)

(39b)

E
{[

Y
?
<

]∗
=C

[
Y
?
<

]
=′C′

}
=E

{ (
√
g???

 ∑
:=1

[
g<:qqq

�
:

]
=C
+
[
W
?
<

]
=C

)∗ (
√
g???

 ∑
:=1

[
g<:qqq

�
:

]
=′C′+

[
W
?
<

]
=′C′

)}
=0,∀=C ≠ =′C ′,

E
{[

Y
?
<

]∗
=C
[y<]=′

}
= E

{ (
√
g???

 ∑
:=1

[
g<:qqq

�
:

]
=C
+

[
W
?
<

]
=C

)∗ (
√
d

 ∑
:=1

√
@: [g<: ]=′ B: + [n<]=′

) }
= 0,∀= ≠ =′,

E
{[

Y
?
<

]∗
=C
[y<]=′

}
= E

{ (
√
g???

 ∑
:=1

[
g<:qqq

�
:

]
=C
+

[
W
?
<

]
=C

)∗ (
√
d

 ∑
:=1

√
@: [g<: ]=′ B: + [n<]=′

) }
= 0,∀= ≠ =′,

E
{[

Y
?
<

]∗
=C
[y;]=′

}
= E

{ (
√
g???

 ∑
:=1

[
g<:qqq

�
:

]
=C
+

[
W
?
<

]
=C

)∗ (
√
d

 ∑
:=1

√
@: [g;: ]=′ B: + [n;]=′

) }
= 0,∀< ≠ ;.

(40a)

(40b)

(40c)

(40d)

signals to the CPU through the limited fronthaul links (and

hence CPU estimates the channel) is given by (38) (defined

at teh top of this page), where in SINR
Q&E,lf

k
, the superscipt

“Q&E, lf” refers to Quantize&Estimate and limited fronthaul.

Proof: First, we present a proposition which helps us to

prove Theorem 1. Note that the proof for ZF and MMSE

follows the same steps as in the MRC case.

Proposition 1. The input signals of the quantizers are uncor-

related.

Proof : As explained in Subsections VI-A and VI-C, we

need to quantize the received signals and the received pilots

in the Quantize&Estimate scheme. To prove that the inputs of

quantizers are uncorrelated, we need to show that the equalities

in (39) hold. Note that using (3) and (24), we have the

equalities in (40). Moreover, we have E
{
y<y�

;

}
= 0, ∀; ≠ <

and E
{
[y<]∗= [y<]=′

}
= 0, ∀= ≠ =′. This completes the proof

of Proposition 1.

By following the proof of Theorem 1 and using Proposition

1, we can arrive at the desired result as in (38). �

Note that the linear receiver is given by

ˇ̌V =




ˇ̌
G, for MRC

ˇ̌
G

(
ˇ̌
G� ˇ̌

G
)−1

, for ZF(
0̃2d

 ∑
:′=1

@:′ ˇ̌g:′ ˇ̌g
�
:′ + RQ&E,lf

)−1
ˇ̌
G, for MMSE

(41)

where
ˇ̌
G =

[
ˇ̌g1, · · · , ˇ̌g 

]
, and RQ&E,lf is obtained as follows:

RQ&E,lf
= d

 ∑
:′=1

@:′W
Q&E,lf

:′ + I"# + FQ&E,lf,

W
Q&E,lf

:′ = S
E&Q,lf

:′ − T
Q&E,lf

:′

S
Q&E,lf

:′ =

(
1+
f2
4̃,B

0̃2

)
diag (rep (V1:′, #) · · · rep (V":′, #)) ,

T
Q&E,lf

:′ = diag (rep (W1:′ , #) · · · rep (W":′ , #)) ,

FQ&E,lf
=
f2
4̃,B

0̃2
I"# .

(42a)

(42b)

(42c)

(42d)

(42e)

VII. ENERGY EFFICIENCY

In this section, we investigate the energy efficiency per-

formance of the limited-fronthaul cell-free massive MIMO



11

system, which is obtained by dividing the system through-

put by the consumed power. In the following subsections,

the required fronthaul capacities of Estimate&Quantize and

Quantize&Estimate cases are investigated. Next, the power

consumption model and energy efficiency analysis are pre-

sented.

A. Fronthaul Bit Rate

Let us assume the length of frame (which represents the

length of the uplink data) is g 5 = g2 − g? , where g2 denotes

the number of samples for each coherence interval. Defining

the number of the quantization bits as U<,8 , for 8 = 1, 2, 3,

corresponding to Estimate&Quantize, Quantize&Estimate and

decentralized scheme, for 8 = 1, 8 = 2 and 8 = 3,

respectively, where the index < denotes the <th AP. For

Estimate&Quantize, the required number of bits for each AP

to quantize the estimated channel and the uplink data during

each coherence interval is 2U<,1 × (# + #g 5 ) whereas

Quantize&Estimate requires 2U<,2 × (#g? + #g 5 ) = 2U<,2 ×
#g2 bits for each AP to quantize the received pilots and the

uplink data during each coherence interval. Moreover, we need

2 g 5 U<,3 bits to quantize the signal during each coherence

interval for the case of the decentralized scheme. Finally 'fh,<

is the fronthaul rate of cell-free massive MIMO at the <th AP

to the CPU, is given by

'bh,m=




2#
(
 +g 5

)
U<,1

)2
, Estimate&Quantize,

2#g2U<,2

)2
, Quantize&Estimate,

2 g 5 U<,3

)2
, Decentralized scheme,

(43a)

(43b)

(43c)

where )2 (in sec.) refers to coherence time.

B. Power Consumption Model

The total power consumption can be defined as follows:

%total = %TX + %CP, where %TX is the uplink power am-

plifiers (PAs) due to transmit power at the users and PA

dissipation [49], and %CP refers to the circuit power (CP)

consumption [49]. The power consumption %TX is given

by %TX =
1
Z
d#0

∑ 
:=1 @: , where Z is the PA efficiency

at each user. The power consumption %CP is obtained as

%CP = "%fix + %U +∑"
<=1 %fh,<, where %fix is a fixed power

consumption (including control signals and fronthaul) at each

AP, %* denotes the required power to run circuit components

at each user and finally, fronthaul power consumption from

the <th AP to the CPU is obtained as follows [50], [51]:

%fh,< = %BT,<

'fh,<

�fh,<

, (44)

where %BT,< is the power required for fronthaul traffic (BT) at

the <th AP, and �fh,< introduces the capacity of the fronthaul

link between the <th AP and the CPU.

C. Total Energy Efficiency

In this section, we formulate the total energy efficiency of

cell-free massive MIMO uplink. The total energy efficiency

is achieved by dividing the sum throughput by the total

consumed power which is give by

�4

(
V(8) , U<,8

)
=
� . (

(
V(8) , U<,8

)
%total

(
U<,8

) (
bit

Joule

)
, (45)

where � is the bandwidth, and

V(8)
=

{
V̌, if 8 = 1 (Estimate&Quantize) ,
ˇ̌V, if 8 = 2 (Quantize&Estimate) ,

(46)

and the sum spectral efficiency is given by

(
(
V(8) , U<,8

)
=

 ∑
:=1

(:

(
V(8) , U<,8

)
, (47)

where the spectral efficiency (in bit/s/Hz) is defined by

(:

(
V(8) , U<,8

)
=

(
1 −

g?

g2

)
E

{
log2

(
1 + SINR

(8)
:

)}
, (48)

where SINR
(8)
:

refers to the SINR at the :th user and the

term (8) refers to E&Q,lf and Q&E,lf for 8 = 1 and 8 = 2,

respectively. Note that the expectation is taken over small-

scale fading. Next, for the case of decentralized scheme, the

total energy efficiency is give by

�4
(
U<,3

)
=
� . (

(
U<,3

)
%total

(
U<,3

) (
bit

Joule

)
, (49)

where the sum spectral efficiency is given by

(
(
U<,3

)
=

 ∑
:=1

(:
(
U<,3

)
, (50)

where the spectral efficiency (in bit/s/Hz) is defined as

follows:

(:
(
U<,3

)
=

(
1 −

g?

g2

)
log2

(
1 + SINRdec

:

)
. (51)

VIII. AP ASSIGNMENT

For the case of the decentralized scheme, the total fronthaul

rate required between the <th AP and the CPU increases

linearly with the total number of users served by the <th AP,

which is obvious from (43c). This reveals the need to pick a

proper set of active users for each AP, i.e., |U|<, ∀<. Using

(43c) and the constraint 'bh,m ≤ �fh,<, we have

U<,3 × |U|< ≤ �fh,<)2

2g 5
,∀<. (52)

The important result of (52) is that reducing the number

of active users at each AP allows for using more bits to

quantize each weighted signal at the APs. To find the proper

number of active users for each AP, we modify the proposed

antenna selection schemes in [28]. The proposed modified

received power based AP assignment scheme is summarized

in Algorithm 1, where fth is a predetermined threshold. We

will investigate the effect of fth on the system performance

in the next section. Moreover, inspired by the methodology
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Algorithm 1 Modified received power based AP assignment

1. Initialize fth.

2. Find set A: : First sort PRP (<, :) as PRP (: (1) , :) ≤ · · · ≤
PRP (: (" ) , :) where we define  (<) ∈ {1, · · · , "}. Suppose

A: = {: (1) }.
for 8 = 2 : "

if
∑
<∈A:

P(<, :) ≥ fth%, then stop,

else A: = A: ∪ {: (8) }
end

end

3. Calculate U< from A: . Next, set U<,3 =

⌊
)2�fh,<

2|U< |g 5

⌋
and

calculate 0̃ and f2
4̃H

from Table I. Finally, set W<: = 0 when

: ∉ U<, and calculate the SINR given in (23).

in [28], we use PRP (<, :) =

√
@:W<:∑"

<′=1

√
@:W<′:

in Algorithm

1. Next, we enhance the large-scale antenna selection scheme

proposed in [28]. For the modified large-scale AP assignment,

run Algorithm 1 with PLS (<, :) =
V<:∑"

<′=1
V<′:

. Note that in

Algorithm 1, A: is the set of active APs for the :th user.

Finally, we turn off the <th AP, if U< is empty.

IX. NUMERICAL RESULTS AND DISCUSSION

In this section, we provide numerical results to evaluate

the performance of the cell-free massive MIMO system with

different parameters and different beamforming schemes. A

cell-free massive MIMO system with " APs and  single-

antenna users is considered in a � × � simulation area,

where both APs and users are uniformly distributed in random

locations. In the following subsections, we define the simula-

tion parameters and then present the corresponding simulation

results. Throughout the rest of the paper, the index < is

dropped from U<,8 as we consider the same number of bits to

quantize the signal at all APs. Note that the term “orthogonal

pilots” refer to the case where orthogonal pilots are assigned

to all users, while in “random pilot assignment” each user is

randomly assigned a pilot sequence from a set of orthogonal

sequences of length g? (<  ), following the approach of [24],

[52].

A. Simulation Parameters

The channel coefficients between users and APs are mod-

eled in (1) where the coefficient V<: is given by [24] V<: =

PL<:10

fBℎ I<:

10 , where PL<: is the path loss from the :th

user to the <th AP and 10
fBℎI<:

10 denotes the shadow fading

with standard deviation fBℎ = 8 dB, and I<: ∼ N(0, 1). In the

simulation, an uncorrelated shadowing model and a three-slope

model for the path loss in [24] are considered. Moreover, it is

assumed that that ?̄? and d̄ denote the pilot sequence and the

uplink data powers, respectively, where ?? =
?̄?
?=

and d =
d̄

?=
.

In simulations, we set %̄? = 100 mW and d̄ = 100 mW,

%BT = 5 Watt, and � = 1 km unless otherwise stated. Similar

to [24], we assume that the simulation area is wrapped around

at the edges, and hence simulate an area without boundaries.

Hence, the square simulation area has eight neighbours. We

evaluate the average sum spectral and energy efficiency of the

system over 300 random realizations of the locations of APs,

users and shadow fading. Moreover, we set Z = 0.3, %* = 0.1

Watt, %fix = 0.825 Watt [49]–[51], [53].

B. Numerical Results

1) Effect of Number of Quantization Bits: This section

investigates the spectral efficiency and energy efficiency per-

formance of different cases of cell-free massive MIMO with

fixed capacity of fronthaul links and different numbers of

quantization bits. We assume that " = 40 APs each with

# = 10 antennas are uniformly distributed in the area.

Moreover, we assume  = 40 users and g? = 40 as the

length of pilot sequences. In Fig. 4a, the average sum spectral

efficiency of the system is plotted versus the number of

quantization bits while assuming a fixed �fh = 64 Mbits/s as

the capacity of fronthaul links and three different receivers,

namely the MMSE, ZF and MRC receivers. As the figure

shows only U1 = U2 = 6 bits for Case Q&E and E&Q

and U3 = 2 bits for decentralized scheme are enough to

closely achieve the performance of perfect fronthaul links.

Note that exploiting (39), U1 = U2 = 6 and U3 = 2 bits

lead to 'fh = 24 Mbit/s for all cases. In addition, the figure

demonstrates that the performance of decentralized scheme

can be significantly improved by using the proposed AP

assignment schemes. Note that in the figures, legends RP-

assignment and LS-assignment refer to the proposed modified

received power based AP assignment and the large-scale based

AP assignment, respectively. Note that for a fixed fronthaul

rate, the performance gap between decentralized scheme and

MRC with limited-fronthaul is due to the fact that in the

decentralized scheme, the CPU does not have access to the

quantized channel estimates and exploits only the statistics of

the channel to decode the data. Next, the average total energy

efficiency performance of the system is investigated in Fig.

6b. As the figure shows U1 = U2 = 6 and U3 = 2 bits are

the optimal values to maximize the performance of energy

efficiency of cell-free massive MIMO for Q&E and E&Q and

decentralized schemes, respectively.

2) Effect of the Capacity of fronthaul Links: In this section,

the effect of capacity of fronthaul links on the spectral effi-

ciency and energy efficiency performance of cell-free massive

MIMO is presented. We assume " = 40 distributed APs each

equipped with # = 10 antennas serve  = 40 uniformly

distributed users. We also consider g? = 40 orthogonal pilots.

Figs. 5a and 5b demonstrate the spectral efficiency and energy

efficiency performance of the system versus the capacity of

fronthaul links, respectively. To exploit the available fronthaul

capacity we exploit different numbers of bits for different

situations. For example, let us consider the first point, i.e.,

�fh = 12.8 Mbits/s. Using the fronthaul rate given in (43)

and setting U1 = 3, U2 = 3 and U3 = 1, we have 'fh = 12

Mbit/s, 'fh = 12 Mbit/s and 'fh = 12.8 Mbit/s, respectively.

As expected the average sum spectral efficiency increases as

the capacity of fronthaul links increase which is shown in
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(b) Average total energy efficiency.

Figure 4. Here, we set " = 40, # = 10,  = 40, g? = 40, �fh = 64 Mbits/s, %BT = 1 Watt, g2 = 200, and )2 = 1 ms. We set U1 = U2 = {3, 6, 9, 13, 16},
and U3 = {1, 2, 3, 4, 5} which using (43) results in 'fh = {12, 24, 36, 52, 64} Mbit/s for all three cases. Moreover for the case of AP assignment we use
Xth = {96%, 99%, 99%, 99%, 100%}.

2 4 6 8 10
Capacity of fronthaul links (C

fh
)

10
7

50

100

150

200

250

A
v
er

ag
e 

sp
ec

tr
al

 e
ff

ic
ie

n
cy

 (
b
it

/s
/H

z)

MMSE, perfect backhaul

MMSE, Q&E

MMSE, E&Q

ZF, perfect backhaul

ZF, Q&E

ZF, E&Q

MRC, perfect backhaul

MRC, Q&E

MRC, E&Q

MRC, dec. proc. with RP-assignment

MRC, dec. proc. with LS-assignment

MRC, dec. proc.
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(b) Average energy efficiency vs. the capacity of fronthaul links.

Figure 5. Here, we set " = 40, # = 10,  = 40, g? = 40, %BT = 1, g2 = 200, and )2 = 1 ms. We use U1 = U2 = {3, 6, 9, 13, 16, 19, 22, 26}
which using (43a) and (43b) results in 'fh = {12, 24, 36, 52, 64, 76, 88, 104} Mbit/s, respectively whereas we set U3 = {1, 2, 3, 4, 5, 6, 7, 8}
which leads to 'fh = {12.8, 25.6, 38.4, 51.2, 64, 76, 89.6, 102.4} Mbit/s using (43c). Moreover for the case of AP assignment we use Xth =

{95%, 99%, 99.6%, 99.6%, 99.7%, 100%, 100%, 100%}.

Fig. 5a. Moreover, interestingly Fig. 5a reveals that using

'fh = 38.4 Mbits/s the spectral efficiency performance of

the cell-free massive MIMO system is very close to the

performance of the system with perfect fronthaul links. Next,

Fig. 5b demonstrate the average total energy efficiency of the

cell-free massive MIMO system. As it can be observed to

maximize the energy efficiency of the system we need to set

'fh = 38.4 Mbits/s. Note that the proposed AP assignment

algorithms can significantly improve the performance of cell-

free massive MIMO in the low fronthaul rate regime. Note

that both the spectral efficiency and the power consumption

increase with the number of quantization bits. The increasing

spectral efficiency will lead to an increasing energy efficiency

as long as the quantization bits have a negligible impact

on the total power consumption. After a certain point, the

energy efficiency reduces instead since the power consumption

increases faster than the spectral efficiency. Finally, Figs. 5a

and 5b demonstrate that the performance of the ZF receiver is

closer to the performance of the MMSE receiver in the high

fronthaul rate regime.

3) Effect of Number of Antennas at APs: This section

investigates the effect of number of antennas per AP in cell-

free massive MIMO, where we fix the total number of service

antennas (i.e., "#), and change the number of antennas per

AP, # , and total number of APs, " . Fig. 6b shows the average

total energy efficiency of the system with "# = 300,  = 40,

g? = 40 and �fh = 122.4 Mbits/s. For the sets of " =

{2, 4, 5, 10, 15, 20, 25} and # = {150, 75, 60, 30, 20, 15, 12},
we use U1 = U2 = {2, 4, 5, 10, 15, 20, 25} and U3 = 12 which

using (43) result in 'fh = 120 Mbit/s, 'fh = 120 Mbit/s

'fh = 122.4 Mbit/s, for Q&E and E&Q and decentralized

schemes, respectively. We observe that to maximize the energy

efficiency, one can determine optimal values of " and # .

In addition, for this system set-up, the average sum spectral
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Figure 6. Here, we assume a fixed total service antennas "# = 300,  = 40, g? = 40, �fh = 122.4 Mbits/s and g2 = 200, )2 = 1 ms.
For the sets of " = {2, 4, 5, 10, 15, 20, 25} and # = {150, 75, 60, 30, 20, 15, 12}, we use U1 = U2 = {2, 4, 5, 10, 15, 20, 25} and U3 = 12 which
using (43) result in 'fh = 120 Mbit/s, 'fh = 120 Mbit/s 'fh = 122.4 Mbit/s, for Q&E and E&Q and decentralized schemes, respectively. Finally,
Xth = {100%, 100%, 100%, 100%, 100%, 99.5%, 99.5%}.

efficiency performance is shown in Fig. 6a. As expected,

the average sum spectral efficiency increases by distributing

more antennas in the area , i.e., increasing " (as it will

bring APs close to the users and improve the quality of the

channel). Therefore, Figs. 6b and 6a present a tradeoff between

" and # . Moreover, as expected, Figs. 6a and 6b reveal

that the proposed AP assignment schemes are not able to

improve the performance for the case of a few APs. Moreover,

for the case of MRC, there is a performance gap between

the decentralized scheme and the centralized scheme (Q&E

and E&Q). This is due to the fact that in general the level

of channel hardening in cell-free massive MIMO is small

which is a result of [54]. Interestingly, Fig. 6a shows that by

increasing the number of antennas per AP, the performance

gap between the decentralized and the centralized schemes

reduces.

4) More Bits to Quantize the Estimated Channel or the

Received Signal in Case E&Q?: In Section IV, we investigate

the case when the AP estimates the channel and sends back the

quantized channel estimate as well as the quantized received

signal to the CPU. Using (43a), the fronthaul rate for this case

is obtained by 'fh =
2(# +# g 5 )U<,1

)2
, when we exploit the

same number of bits to quantize the channel estimate and the

received signal. However, we could exploit different numbers

of bits to quantize the received signal and the channel estimate.

Let us assume U
H

<,1
,∀< and U

6

<,1
,∀< refer to the quantization

bits to quantize the received signal and the channel estimate,

respectively. Hence we have 'fh =
2
(
# U

6

<,1
+# g 5 UH<,1

)
)2

,∀<,

where we drop the index < as we use the same number of bits

at all APs and use 'fh =
2(# U61 +# g 5 UH1 )

)2
. First we consider

a cell-free massive MIMO system with " = 20, # = 20,

 = 40, g? = 40, g2 = 200, )2 = 1 ms, and �fh = 40

Mbits/s. Figs. 9a and 9b demonstrate the average sum spectral

efficiency and energy efficiency, respectively. We assume

pairs (UH
1
, U
6

1
) = {(21, 1), (17, 2), (13, 3), (9, 4), (5, 5), (1, 6)}

where using 'fh =
2(# U61 +# g 5 UH1 )

)2
results in 'fh = 40 Mbits/s

for all pairs. Figs. 9a and 9b show that the pair for this network

set-up, having the same number of bits to quantize the channel

estimate and the signal, i,e., (UH
1
, U
6

1
) = (5, 5) is optimal.

Next, we assume a cell-free massive MIMO network

with " = 200, # = 2,  = 40, g? = 40, g2 = 200,

)2 = 1 ms, and �fh = 12 Mbits/s. To quantize the channel

estimate and the received signal we consider pairs (UH
1
, U
6

1
) =

{(71, 1), (67, 2), (63, 3), (59, 4), (55, 5), (51, 6) (47, 7), (43, 8)
, (39, 9), (35, 10), (31, 11), (27, 12) (23, 13), (19, 14), (15, 15)
, (11, 16), (7, 17), (3, 18)} where using 'fh =

2(# U61 +# g 5 UH1 )
)2

results in 'fh = 12 Mbits/s for all pairs. The average sum

spectral efficiency for this network set-up is presented in Fig.

8a. As the figure shows exploiting the same number of bits

to quantize the received signal and the channel estimate is

optimal and maximizes the spectral efficiency performance of

the cell-free massive MIMO system.

To investigate the effect of coherence time on the sys-

tem performance, we present the average sum spectral effi-

ciency the cell-free massive MIMO system with " = 200,

# = 2,  = 50, g? = 40, g2 = 750, )2 = 2.5 ms,

and �fh = 12 Mbits/s in Fig. 8. The pairs (UH
1
, U
6

1
) =

{(80, 5), (66, 6), (52, 7), (38, 8), (24, 9), (10, 10)} are consid-

ered where exploiting 'fh =
2(# U61 +# g 5 UH1 )

)2
we have 'fh =

12 Mbits/s for all pairs. As the figure shows exploiting the

same number of bits to quantize the channel estimate and the

received signal, i.e., (UH
1
, U
6

1
) = (5, 5) maximizes the spectral

efficiency of the system.

5) The Optimal Xth for the Proposed AP Assignment

Schemes for the Centralized Scheme: In this section, we inves-

tigate the optimal value of Xth for the proposed AP assignment

schemes. Figs. 9a and 9b present spectral efficiency and the

energy efficiency of the cell-free massive MIMO, respectively,

with " = 40, # = 10,  = 40, �fh = 12.8 Mbits/s, %fh = 1

Watt, and U3 = 1.
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Figure 7. Here, we set " = 20, # = 20,  = 40, g? = 40, g2 = 200, )2 = 1 ms, and �fh = 40 Mbits/s. We assume the pairs(UH
1
, U
6

1
) =

{(21, 1) , (17, 2) , (13, 3) , (9, 4) , (5, 5) , (1, 6) } and 'fh = 40 Mbits/s.
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(b) Here, we set  = 50, g? = 40, g2 = 750, )2 = 2.5

ms, and �fh = 12 Mbits/s in Fig. . The pairs (UH
1
, U
6

1
) =

{(80, 5) , (66, 6) , (52, 7) , (38, 8) , (24, 9) , (10, 10) } are considered
and 'fh = 12 Mbits/s for all pairs.

Figure 8. Average sum spectral efficiency versus U
H

1
with " = 200, # = 2.

6) The Effect of Total Number of Users:: In this section,

we investigate the of total number of users on the system

performance. In Fig. 10 with " = 40, # = 10 and �fh = 30

Mbit/s. As expected, by increasing total number of users, the

average per-user rate of the cell-free massive MIMO system

decreases. In this paper, we investigate the ergodic rates so

there is no concept of outage performance. One possible

application of the results of the current paper is power control

where we could provide the exact rates that the users are

requesting, instead of the rates that are obtained with a given

uplink power. This is left aside for future research.

X. CONCLUSIONS

We have considered limited-fronthaul cell-free massive

MIMO, and a performance comparison between different ways

of implementing cell-free massive MIMO uplink has been

presented. First, we have investigated the performance of cell-

free massive MIMO with perfect fronthaul links and linear

receivers. Next, two other different cases have been studied:

(i) Estimate&Quantize: when APs estimate the channel and

transfer the quantized version of the estimated channel and

the quantized versions of the received signals to the CPU and

(ii) Quantize&Estimate, APs transfer the quantized version

of the received uplink pilot and the quantized version of the

received uplink data to the CPU, and hence CPU estimates the

channels. We have made use of the Bussgang decomposition,

which enables us to find a linear relationship between the

input of the quantizer and the quantization noise. Spectral

and energy efficiency of the different cases with different

linear receivers have been derived. Numerical results have

been provided and showed that the performance of limited-

fronthaul cell-free massive MIMO is fairly close to the per-
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Figure 9. Here, we set " = 40, # = 10,  = 40, �fh = 12.8 Mbits/s, %fh = 1 Watt, and U3 = 1.
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Figure 10. The average per-user rate of the system
with " = 40, # = 10 and �fh = 30 Mbits/s. For
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we set U1 = U2 = 5 (which comes from (43a) and (43b)) and
U3 = {3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1} (coming from (43c)).

formance of the perfect-fronthaul system while exploiting

only a few bits for quantization. Moreover, the performance

of Quantize&Estimate is only marginally better than that of

Estimate&Quantize. Finally, it was shown that in the limited-

fronthaul cell-free massive MIMO, to achieve the best perfor-

mance the same number of bits should be used to quantize

the estimated channel at the APs and to quantize the received

signal.

APPENDIX A: PROOF OF LEMMA 1

We use the following proposition and remarks to prove

Lemma 1 for the MRC case. Note that the proof for ZF and

MMSE follows the same steps as in the MRC case.

Proposition 2. The input signals of quantizers defined in (8)

and (10) are uncorrelated.

Proof : As explained in Subsections IV-A and IV-B, we

need to quantize the received signal and the estimated channel

in the Estimate&Quantize scheme. To prove that the inputs of

quantizers are uncorrelated, it is sufficient to prove that the

following equalities hold:

E
{
y<y�;

}
= 0,∀; ≠ <, E

{
[y<]∗= [y<]=′

}
=0,∀= ≠ =′,

E
{
ĝ<: ĝ

�
;:

}
= 0,∀; ≠ <,

E
{
[ĝ<: ]∗= [ĝ<: ]=′

}
=0,∀= ≠ =′, E

{
y<ĝ�;:

}
=0,∀; ≠ <,

E
{
[y<]∗= [ĝ<: ]=′

}
=0,∀= ≠ =′,

(53a)

(53b)

(53c)

(53d)

where 0 refers to a matrix with size "# × 1 with

all zero elements. Note that using (2) and (3) we

have the equalities in (54) (defined at the top of

the next page), which completes the proof of Lemma

1. �

Proposition 3. Using Remark 4, terms �1B: and �5 are

uncorrelated.

Proposition 4. Terms �1B: and �4 are uncorrelated.

Proof: We have

E
{
�∗

1B
∗
:�4

}
= E

{(
0̃
√
d@:

"∑
<=1

ǧ�<: ǧ<: B:

)∗ (
"∑
<=1

ǧ�<:e
H
<

)}

= "0̃
√
d@:E

{
| |ǧ: | |2ǧ�: eHB∗:

}
= 0, (55)

where eH =
[
e)

1
, · · · , e)

"

])
, and the second equality is due

to the following facts: E
{
ǧ�
:
B:

}
= 0,E

{
ǧ�
:

eH
}

= 0, and

E {eHB: } = 0, where 0 = [0, · · · , 0]) ∈ C"#×1. This

completes proof of Proposition 4. �

Proposition 5. Terms �4 and �5 are uncorrelated.

Proof: Note that we have

E
{
�∗

4�5

}
=E

{ (
"∑
<=1

ǧ�<:e
H
<

)∗ (
0̃
√
d

"∑
<=1

ǧ�<:

 ∑
:′=1

√
@:′e

6

<:′B:′

)}
=0, (56)
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E
{
y<y�;

}
= E

{
(g<: B: + n<) (g;: B: + n;)�

}
=

 ∑
:=1

E
{
g<:g

�
;:

}
= 0,∀; ≠ <,

E
{
[y<]∗= [y<]=′

}
= E

{(
[g<: ]= B: + [n<]=

)∗ ( [g<: ]=′B: + [n<]=′)
}
= 0,∀= ≠ =′,

E
{
ĝ<: ĝ

�
;:

}
=E



2<:

(
√
g???

 ∑
:′=1

g<:′qqq
�
:′qqq:+
?,<qqq:

)
=2;:

(
√
g???

 ∑
:′=1

g;:′qqq
�
:′qqq:+
?,;qqq:

)� 

=0,∀; ≠ <,

E
{
[ĝ<: ]∗= [ĝ<: ]=′

}
=E

{
2<:

(
√
g???

 ∑
:′=1

[g<:′]= qqq�:′qqq:+
[

?,<qqq:

]
=

)∗
2<:

(
√
g???

 ∑
:′=1

[g<:′]=′ qqq�:′qqq:+
[

?,<qqq:

]
=′

)}

= 0,∀=≠=′,

E
{
y<ĝ�;:

}
= E

{
(g<: B: + n<) 2;:

(
√
g???

 ∑
:′=1

g;:′qqq
�
:′qqq:+
?,;qqq:

)� }
= 0,∀; ≠ <,

E
{
[y<]∗= [ĝ<: ]=′

}
= E

{ (
[g<: ]= B: + [n<]=

)∗
2<:

(
√
g???

 ∑
:′=1

[g<:′]=′ qqq�:′qqq:+
[

?,<qqq:

]
=′

) }
0,∀= ≠ =′,

(54a)

(54b)

(54c)

(54d)

(54e)

(54f)

where the second equality is due to the following facts:

E
{
ǧ�<: B:′

}
= 0, E

{
e
6

<:′
�
B:′

}
= 0,

E
{
ǧ�<:e

6

<:′
}
= 0, E

{
ǧ�<:e

H
<

}
= 0, (57)

where the first two equalities are due to the fact

that there is no correlation between the transmitted

signal B: and the quantized version of the estimated

channel. Note that the third equality in (57) comes

from Remark 4. This completes the proof or Proposition

5. �

Note that in the proof of Proposition 4, we used the property

of Max algorithm that the output of the quantizer and the

distortion are uncorrelated (which is explained in Section

III-B of the current paper). Otherwise, without using the Max

algorithm,, it is not possible to prove that the term �4 and

�5 are uncorrelated in Proposition 4.

Proposition 6. Using Remark 4, terms �2 and �5 are uncor-

related.

Proposition 7. As terms �3 and �6 include i.i.d. Gaussian

noise and i.i.d. Gaussian MMSE error, respectively, �2 and

�6 are uncorrelated with other terms.

Finally, using Propositions 2- 7, it is easy to show that terms

�1B: , �2, �3, �4, �5 and �6 are mutually uncorrelated, which

completes the proof of Lemma 1. �

APPENDIX B: PROOF OF LEMMA 2

Firstly, note that �2, �5 and �6 include B: , which has

zero mean and is independent of Ω, hence, E {�2+�5+�6 |Ω}
= 0. Similarly, �3 includes n< which has zero mean and

independent of Ω, resulting is E {�3 |Ω} = 0. Next, we need to

show that E {�4 |Ω} = 0. We have E {�4 |Ω} = E
{
v̌�
<:

e
H
< |Ω

}
=

v̌�
<:
E

{
e
H
< |Ω

}
. Therefore, we need to prove that E

{
e
H
< |Ω

}
= 0.

Note that E
{
e
H
< |v̌<:

}
= 0 is equivalent to E

{
e
H
< |ǧ<:

}
= 0,

as v̌<: is a function of only ǧ<: . Next, approximating the

Bayesian estimator with a linear estimator, we have [42], [45]

E
{
e
H
< |ǧ<:

} (0)≈ f−2
ǧ<:
E

{
e
H
<ǧ�<:

}
ǧ<: . (58)

Note that the approximation in step (0) is widely used in

literature in the concept of uniform quantization [42], [44]–

[46]. Next, we aim to calculate the term E
{
e
H
<ǧ�

<:

}
. As a

remind, the term e
H
< denotes the quantization distortion while

we quantize the received signal, i.e., y<, in (8), and the term

ǧ<: is the output of quantizer where we quantize the estimated

channel, i.e., ĝ<: , in (10). It is easy to show that the input of

these two quantizers are uncorrelated. More precisely, using

(2) and (3), we have

E
{
y<ĝ�<:

}
= 2<:E

{ (
√
d

 ∑
:=1

g<:
√
@: B: + n<

)
(
√
g???

 ∑
:′=1

g<:′qqq
�
:′qqq: +
?,<qqq:

)� }
=0.(59)

This shows that the inputs of quantizers when we separately

quantize the estimated channel and the received signal are

uncorrelated. Moreover, using the analysis in [44, Section 2.2],

when we quantize two uncorrelated signals G1 and G2 using the

uniform quantizer (i.e., Q(G1) = G1 + =1, and Q(G2) = G2 + =2),

we have E {Q(G1)=2} = E {Q(G2)=1} = 0. Exploiting this fact

and (59), we have

E
{
e
H
<ǧ�<:

}
= 0. (60)

Finally, substituting (60) into (58), we get E
{
e
H
< |v̌<:

}
≈ 0,

which completes the proof. �

APPENDIX C: PROOF OF LEMMA 3

Firstly, note that E
{
B∗
:
(�2 + �3 + �4) |Ω

}
= 0, as none of

the terms �2, �3 and �4 include B: , which has zero mean

and is independent of Ω. In the following, we prove that

E
{
B∗
:
(�5 + �6) |Ω

}
= 0. Next, approximating the Bayesian
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estimator with a linear estimator we show that E
{
B∗
:
�5 |ǧ<:

}
≈

0, which is given as follows:

E
{
B∗:�5 |ǧ<:

}
≈ f−2

ǧ<:
E

{
B∗:�5ǧ�<:

}
ǧ<:

= f−2
ǧ<:
E

{
B∗:

(
"∑
<=1

v̌�<:

 ∑
:′=1

√
@:′e

6

<:′B:′

)
ǧ�<:

}
ǧ<:

(01)
= f−2

ǧ<:
E

{
√
@:

"∑
<=1

(
v̌�<:e

6

<:

)
ǧ�<: |B: |2

}
ǧ<:

(02)
= f−2

ǧ<:

√
@:E

{
"∑
<=1

(
v̌�<:e

6

<:

)
ǧ�<:

}
ǧ<:

(03)
= 0, (61)

where in step (01) we used the fact that the terms B:s are

independent variables. Moreover, step (02) is due to the fact

that B: has zero mean and independent of Ω, and E{|B: |2} = 1

whereas step (03) comes from (12). Next we have:

E
{
B∗:�6 |ǧ<:

}
≈f−2

ǧ<:
E

{
B∗:�6ǧ�<:

}
ǧ<:

= f−2
ǧ<:
E

{
B∗:

(
"∑
<=1

v̌�<:

 ∑
:′=1

√
@:′ g̃<:′B:′

)
ǧ�<:

}
ǧ<:

= f−2
ǧ<:

√
@:E

{
"∑
<=1

(
v̌�<: g̃<:

)
ǧ�<: |B: |2

}
ǧ<:

(11)
= f−2

ǧ<:

√
@: E

{
"∑
<=1

(
v̌�<: g̃<:

)
ǧ�<:

}
︸                         ︷︷                         ︸

�1

ǧ<:
(12)≈ 0, (62)

where in step (11) we used the fact that B:s are independent

variables. Moreover, note that the elements of g̃<: are i.i.d.

CN(0, V<:−W<: ) and are uncorrelated and independent of the

input of the quantizer, i.e., E{ĝ<: g̃�<: } = 0, and hence uncor-

related with the output of the quantizer, i.e., E{ǧ<: g̃�<: } = 0.

The step (12) comes from the fact that the output of the quan-

tizer ǧ<: and the channel estimation error g̃<: are uncorrelated

and independent. This independence is shown in Figs. 11a,

11b, 11c, 11d, where the results reveal that %(`, b) ≈ %(`) ×
%(b) while b and ` represent the channel estimation error

and the output of the quantizer, respectively. This completes

the proof. �

APPENDIX D: PROOF OF LEMMA 4

It can be easily shown that E
{
�∗

1
B∗
:
(�2 + �3 + �4) |Ω

}
= 0,

as none of the terms �1, �2, �3 and �4 include B: , which

has zero mean and is independent of Ω. In the following, we

show that E
{
�∗

1
B∗
:
(�5 + �6) |Ω

}
= 0. First, we aim to show

that E
{
�∗

1
B∗
:
�5 |ǧ<:

}
≈ 0, as follows:

E
{
�∗

1B
∗
:�5 |ǧ<:

}
≈ f−2

ǧ<:
E

{
�∗

1B
∗
:�5ǧ�<:

}
ǧ<:

=f−2
ǧ<:
E
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"∑
<=1
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)∗
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:′=1

√
@:′e

6

<:′B:′

)
ǧ�<:

}
ǧ<:

(21)
= f−2
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E
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"∑
<=1
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)∗ ( "∑
<=1
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√
@:e

6

<:

)
|B: |2ǧ�<:

}
ǧ<:

(22)
= f−2

ǧ<:
E

{(
"∑
<=1

v̌�<: ǧ<:

)∗ ( "∑
<=1

v̌�<:
√
@:e

6

<:

)
ǧ�<:

}
ǧ<:

= f−2
ǧ<:
E

{(
v̌�<: ǧ<:

)∗ (
v̌�<:

√
@:e

6

<:

)
ǧ�<:

}
︸                                        ︷︷                                        ︸

�1

ǧ<:

+ f−2
ǧ<:
E

{
"∑
==1

"∑
<≠=

(
v̌�=: ǧ=:

)∗ (
v̌�<:

√
@:e

6

<:

)
ǧ�<:

}
︸                                               ︷︷                                               ︸

�2

ǧ<: =0,(63)

where in step (21) we use the fact that the terms B:s are

independent variables. In addition, step (22) is due to the fact

that B: has zero mean and independent of Ω, and E{|B: |2} = 1.

Moreover, we have �1 = 0, due to (12), and �2 = 0 (as

ĝ<: ĝ
�
=:

= 0,∀= ≠ <, based on the analysis in [44, Section

2.2], we end up with E{ǧ<:e6=:
� } = 0,∀= ≠ <). Next,

approximating the Bayesian estimator with a linear estimator,

we have:

E
{
�∗

1B
∗
:�6 |ǧ<:

}
≈ f−2

ǧ<:
E

{
�∗

1B
∗
:�6ǧ�<:

}
ǧ<:
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ǧ<:
E
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<=1
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√
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)
ǧ�<:

}
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(31)
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ǧ<:
E

{(
"∑
<=1

v̌�<:ǧ<:
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= f−2
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)
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ǧ<:
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ǧ<:
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@: E

{(
v̌�<: ǧ<:

)∗ (
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)
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︸                                  ︷︷                                  ︸
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+ f−2
ǧ<:
E

{
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)∗ (
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ǧ�<:

}
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)
ǧ�<:
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(33)≈ 0, (64)

where in step (31) we used the fact that B:s are independent

variables. Moreover, step (32) is due to the fact that B: has

zero mean and independent of Ω and E{|B: |2} = 1. Again, note

that that the elements of g̃<: are i.i.d. CN(0, V<: − W<: ) and

are uncorrelated and independent of the input of the quantizer,

i.e., E{ĝ<: g̃�<: } = 0, and hence uncorrelated with the output

of the quantizer, i.e., E{ǧ<: g̃�<: } = 0. Next, �4 = 0, which
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Figure 11. Pdf of ` = ǧ<: and b = g̃<: with U = 1 quantization bit.

is due to the fact that the equality E{ĝ<: ĝ�=: } = 0,∀= ≠ <

results in E{ǧ=: ǧ�=: } = 0,∀= ≠ < (based on the analysis in

[44, Section 2.2], we end up with E{ǧ<:e6=:
� } = 0,∀= ≠

<). Finally, the step (33) is due to the fact that the output

of the quantizer ǧ<: and the channel estimation error g̃<:
are uncorrelated and independent. The independence shown in

Figs. 11a, 11b, 11c, 11d where the results show that %(`, b) ≈
%(`) × %(b) while b and ` are the channel estimation error

and the output of the quantizer, respectively. This completes

the proof. �

APPENDIX E: PROOF OF LEMMA 7

Firstly, note that �2 and �3 include B: , which has zero mean

and is independent of ℧, hence, E {�2 + �5 |℧} = 0. Similarly,

�4 includes n< which has zero mean and independent of

℧, resulting is E {�4 |℧} = 0. Next, we need to show

that E {�5 |℧} = 0. We have E {�5 |℧} = E
{
ˇ̌v�
<:

e
H
< |℧

}
=

ˇ̌v�
<:
E

{
e
H
< |℧

}
. Therefore, we need to prove that E

{
e
H
< |℧

}
= 0.

Note that E
{
e
H
< | ˇ̌v<:

}
= 0 is equivalent to E

{
e
H
< | ˇ̌g<:

}
= 0,

as ˇ̌v<: is a function of only ˇ̌g<: . Next, approximating the

Bayesian estimator with a linear estimator, we have [42], [45]

E
{
e
H
< | ˇ̌g<:

} (4)≈ f−2
ˇ̌g<:
E

{
e
H
<

ˇ̌g�<:
}

ˇ̌g<: . (65)

Note that the approximation in step (4) is widely used in

literature in the concept of uniform quantization [42], [44]–

[46]. Next, we aim to calculate the term E
{
e
H
<

ˇ̌g�
<:

}
. As a

remind, the term e
H
< denotes the quantization distortion while

we quantize the received signal, i.e., y<, in (32), and the term

ˇ̌g<: is the output of quantizer where we quantize the estimated

channel, i.e., ĝ<: , in (31). It is easy to show that the input of

these two quantizers are uncorrelated. More precisely, using

(2) and (3), we have

E
{
y<ĝ�<:

}
= 2<:E

{ (
√
d

 ∑
:=1

g<:
√
@: B: + n<

)
(
√
g???

 ∑
:′=1

g<:′qqq
�
:′qqq: +
?,<qqq:

)� }
= 0. (66)

This shows that the inputs of quantizers when we separately

quantize the estimated channel and the received signal are

uncorrelated. Moreover, using the analysis in [44, Section 2.2],

when we quantize two uncorrelated signals G1 and G2 using the

uniform quantizer (i.e., Q(G1) = G1 + =1, and Q(G2) = G2 + =2),

we have E {Q(G1)=2} = E {Q(G2)=1} = 0. Exploiting this fact

and (59), we have

E
{
e
H
<

ˇ̌g�<:
}
= 0. (67)

Finally, substituting (60) into (58), we get E
{
e
H
< | ˇ̌v<:

}
≈ 0,

which completes the proof. �

APPENDIX F: PROOF OF LEMMA 8

Firstly, note that E
{
B∗
:
(�2 + �4 + �5) |℧

}
= 0, as none

of the terms �4, and �5 include B: , which has zero mean
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and is independent of ℧. In the following, we prove that

E
{
B∗
:
(�3) |℧

}
= 0. Next we have:

E
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B∗:�3 | ˇ̌g<:

}
≈ f−2
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E
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B∗:�3

ˇ̌g�<:
}
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˜̃g<:

)
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}
ˇ̌g<:

( 52)
= 0, (68)

where in step ( 51) we used the fact that B:s are independent

variables. The elements of ˜̃g<: are uncorrelated and indepen-

dent of the input of the quantizer and E{ ˆ̂g<: ˜̃g�
<:

} = 0. The

step ( 52) comes from the fact that the channel estimate ˇ̌g<:
and the channel estimation error ˜̃g<: are uncorrelated and in-

dependent. This completes the proof. �

APPENDIX G: PROOF OF LEMMA 9

It can be easily shown that E
{
�∗

1
B∗
:
(�2 + �4 + �5) |℧

}
=

0, as none of the terms �2, �4 and �5 include B: , which

has zero mean and is independent of ℧. In the following, we

show that E
{
�∗

1
B∗
:
(�3) |℧

}
= 0. First, we aim to show that

E
{
�∗

1
B∗
:
�3 | ˇ̌g<:

}
≈ 0, as follows. Approximating the Bayesian

estimator with a linear estimator, we have:
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}
≈ f−2
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E
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(61)
= f−2
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E

{(
"∑
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)∗( "∑
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√
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)
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}
ˇ̌g<:

(62)
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√
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)
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}
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ˇ̌v�<:

˜̃g<:
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}
ˇ̌g<:

(63)≈ 0, (69)

where in step (61) we used the fact that B:s are independent

variables. Moreover, step (62) is due to the fact that B: has

zero mean and independent of Ω and E{|B: |2} = 1. The step

(63) comes from the fact that the channel estimate ˇ̌g<: and

the channel estimation error ˜̃g<: are uncorrelated and indepen-

dent. This completes the proof. �
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