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1. Introduction 

Ordinal data fits somewhere between nominal and quantitative data. Both nominal and ordinal data 

come in the form of multinomial distributions; but only in the latter the categories are ordered. 

That is, in some meaningful sense one can talk about better and worse categories. However, unlike 

continuous data (discrete or continuous variables), the distances between the ordered categories 

are not inherently commensurable. That is, if there are self-reported health with three categories: 

“bad”, medium”, and “good”; without further information it is impossible to tell whether the 
difference between “medium” and “bad” is greater, smaller or equal to the difference between 

“good” and “medium”.  

Yet despite these measurement limitations, ordinal data has become more prominent in the social 

sciences during the last few decades, partly owing to the popularity of self-reported data in the 

health, subjective-wellbeing and life satisfaction literature (including job satisfaction), which adds 

to a long list of much older attempts to describe human phenomena with ordered categories (e.g. 

Cantril ladders; social stratification models, sanitation ladders, etc.). 

Notwithstanding the appeal, distributional assessments of poverty, welfare and inequality with 

ordered categorical variables (henceforth “ordinal variables”) face a fundamental challenge due to 
the aforementioned lack of commensurability in the distances between categories. This leaves 

mainly two ways of handling ordinal data: (1) assigning scales or numerical value judgments to 

the categories, respecting and reflecting their order, then applying statistical tools for quantitative 

data; or (2) just using the (absolute or relative) frequencies of the ordered multinomial distribution. 

The first approach is controversial because it amounts to rendering the distances between 

categories commensurable with scales whose choice is ultimately arbitrary. Therefore, a minimum 

consistency property is that distributional comparisons with ordinal data should be robust to any 

admissible choice of scales; where admissibility in this context means that the scales respect the 

order of the categories. This is quite a demanding requirement since the set of admissible scales 

can be quite large. Indeed, as shown by Stevens (1946) and Mendelson (1987), it encompasses any 

subset of strictly ordered numbers as well as all its possible increasing monotonic functions bound 

to preserve the categories’ ranks. For instance, even basic mean comparisons fail this test (Allison 
and Foster, 2004). Consider, for example, three ordered categories and the following two relative 

frequency distributions: 𝐴 = (0.4,0.2,0.4) and 𝐵 = (0.2,0.6,0.2). With linear scaling 𝐿 = (1,2,3) 

one gets 𝜇𝐴 = 2 = 𝜇𝐵 , where 𝜇𝑋  is the mean. However, if the scaling  𝐿 = (1,4,9) is used, the 

result is that 𝜇𝐴 = 4.8 > 4.4 = 𝜇𝐵 . Similar problems arise with any summary statistic or index 

originally devised for quantitative data.  

 

In fact, all the “permissible statistics (invariantive [sic])” for ordinal data identified by Stevens 
(1946, p. 678) can be computed without resorting scales, e.g. percentiles and quantiles like the 

median, frequencies, the mode, and some correlation measures based on contingency tables. Yet 

this chapter will cover some recent proposals for more complex ethical comparisons of 

distributions relying on accepting a limited degree of commensurability.  
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In its applications to welfare, poverty and inequality comparisons, the second measurement 

approach, based on dismissing scales altogether, is a natural response to the 

arbitrariness/commensurability problem. Its key ingredient is almost invariably the cumulative 

distribution function (henceforth CDF). Due attention will be paid to these contributions as well.  

More specifically, this chapter introduces the reader to the most recent proposals for performing 

ethically meaningful comparisons of welfare, poverty and inequality with ordinal data. The surge 

in novel contributions over the last couple of decades warrants focusing on one single variable.  

However, there is a growing literature on distributional comparisons with multiple ordinal and 

binary variables, including the popular multidimensional poverty assessments. These would 

warrant at least another chapter and there already exist excellent review chapters on these methods 

(see, the surveys of the literature in Kakwani and Silber (2008), Chakravarty (2009, 2015), 

Atkinson and Bourguignon, (2014), Alkire, et al. (2015), D’Ambrosio (2018), among others). 
Likewise, this chapter does not dwell on techniques designed for combinations of quantitative and 

non-qualitative data (For a recent contribution see Bosmans et al. (2017).  

 

Neither does it engage with polarization analysis based on exogenous groups (i.e. groups not 

defined by the ordinal variable itself). The topic is fascinating, but the axioms involved are far 

more complex than those considered in this paper, as they involve judgments on group 

identification, cohesive versus diffuse opposition between groups and so forth. The interested 

reader is advised to read Permanyer and D’Ambrosio (2015), the key work on this strand of the 

literature, as well as a recent elegant contribution by Mussini (2018).  Finally, this chapter will not 

discuss the related literature on distributional assessments with nominal data, the so-called 

diversity measurement. The statistical tools for nominal data are also suitable for ordinal data 

because no scales are ever involved. On the other hand, they do not exploit all the embedded 

information in ordinal variables since, by necessity and construction, they neglect the order of the 

categories. The reader is invited to read Patil and Taillie (1982), the seminal contribution in the 

literature on distributional analysis with nominal data.  

 

Though interesting and obviously relevant topics, neither does the present study discuss statistical 

inference (including hypothesis testing and cardinalisation of ordinal variables in parametric 

models) nor dwell significantly on empirical applications of the methods discussed in this chapter. 

The content involved in the most recent theoretical contributions is rich enough to warrant its own 

review chapter.  

The chapter’s notation will be introduced as and when it is needed. The rest of the chapter proceeds 
as follows. Section 2 discusses the measurement of poverty with ordinal variables. The chapter 

draws significantly on the comprehensive framework proposed by Seth and Yalonetzky (2020a). 

A subsection provides detail of the poverty partial orderings derived by Seth and Yalonetzky 

(2020a). Then section 3 presents and compares the proposals of Apouey et al. (2019), Gravel et al. 

(2020) and Seth and Yalonetzky (2020b) for measuring dispersion-sensitive welfare with ordinal 

variables. A subsection provides some key partial orderings for welfare measures, including those 

of Mendelson (1987), Gravel et al. (2020), and Seth and Yalonetzky (2020b). Section 4 discusses 
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old and recent contributions to the measurement of inequality and bipolarisation with ordinal 

variables. After discussing the situations of equality and maximum inequality in most of the 

literature as well as some key inequality-altering transformations, the section presents inequality 

measures based on the attribution of natural numbers to the categories’ ranks (mainly the work of 
Lv et al., 2015). Then the prominent measurement approach based on quantile-preserving spreads, 

chiefly median-preserving spreads, is described in detail, crucially distinguishing between explicit 

and implicit quantiles, as well as between inequality and bipolarisation concepts (works reviewed 

include Mendelson, 1987; Apouey, 2007; Abul Naga and Yalcin, 2008; Lazar and Silber, 2013; 

Kobus, 2015; Chakravarty and Maharaj, 2015). Drawing from Sarkar and Santra (2020), a special 

subsection explains proposals to measure inequality and bipolarisation when distributions do not 

share quantiles of interest (e.g. the median). This is followed by a subsection on a recent alternative 

approach based on the ordinal notion of status (Cowell and Flachaire, 2017; Jenkins, 2020). The 

section continues with a subsection on partial orderings reflecting the different measurement 

paradigms discussed in the preceding subsections. The chapter ends on section 5 with some 

concluding remarks.  

 

2. Poverty measurement with ordinal variables 

Most poverty assessments draw on continuous data (e.g. monetary indicators) or, more recently, 

multiple binary indicators in the burgeoning literature on multidimensional poverty measurement 

(e.g. see Alkire, et al. 2015 for an introduction). However, some data relevant to poverty 

assessments, like access to services and quality of dwelling materials, is ordinal. For instance, Seth 

and Yalonetzky (2020a) offer the example of the service ladder approach whereby access to 

sanitation is classified into five ordered categories: “open defecation”, “unimproved”, “limited”, 
“basic unsafe”, “improved”. As long as one can make a case that some, but not all, of these 
categories represent different degrees of deprivation, then a poverty assessment (e.g. for tracking 

progress in access to safe sanitation) is more appropriate than a welfare assessment, precisely 

because only the former establishes a sharp conceptual distinction between deprivation and non-

deprivation categories.  

Bennett and Hatzimasoura (2011) were perhaps the first to propose a class of poverty measures 

for ordinal variables, together with some partial orderings. However, Yalonetzky (2012) noted that 

their proposal was unduly restrictive and generalised it. Yet neither of these contributions offered 

measurement tools that could explicitly and usefully prioritise the needs of the poorest among the 

poor, answering the call not to leave anybody behind (UN, 2018). Of course, this faced the 

challenge of how to measure the depth of deprivation, and prioritise those in the lowest categories, 

in the absence of categorical commensurability.  

Seth and Yalonetzky (2020a) tackled this problem by first considering the poverty headcount ratio, 

which in the ordinal-variable context is simply the proportion of people in any of the deprivation 
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categories (e.g. the proportion of people who do not have “improved” sanitation facilities). This 
measure provides potentially perverse incentives because if a policy-maker is to be judged by 

reductions in the headcount ratio, then marginal improvements benefitting the poorest among the 

poor may not be detected by the ratio, whereas efforts may be focused on the least poor (especially 

if the cost of poverty-alleviation programs does not decrease with the depth of deprivation). 

Alternatively, one could monitor headcount ratios, for each possible poverty line (e.g. the four 

deprivation categories in the sanitation example), or relative frequencies for each deprivation 

category. But this may only work efficiently if the combined number of categories and 

distributional comparisons is small. Or, if one would like to focus on the poorest among the poor, 

setting the poverty line at the lowest category would do the trick. But then one would lose 

information on changes among people in the other deprivation categories. Therefore, a single 

measure that summarises societal poverty by providing differential evaluations depending on the 

categories may be warranted.  

The only compromise one will need to make is accepting ethical evaluations of the categories in 

order to arrive at a synthetic measure of poverty effectively involves taking up implicit scaling. 

On the plus side, Seth and Yalonetzky (2020a) proceeded with an axiomatic characterisation, so 

at least the classes of admissible scales (reflecting ethical judgments) are supposed to respect a set 

of desirable properties.  

In order to proceed further, there is a need to introduce some notation. Let 𝐶>1 be a natural number 

representing the number of categories in an ordered multinomial distribution. Each category is 

denoted by a natural number 𝑖 such that 𝑖 ∈ 𝒞𝐶  where 𝒞𝐶 = {1, … , 𝐶} is the set of all categories 

and higher numbers sensibly reflect higher desirability among them. The population frequency of 𝑖 is 𝑝𝑖 ≥ 0; therefore ∑ 𝑝𝑖𝐶𝑖=1 = 1. 𝒑 = (𝑝1, … , 𝑝𝐶 ) is the discrete probability distribution in the 

population and 𝒑 ∈ ℙ𝐶  , where ℙ𝐶  is the set of all possible discrete probability distributions of size 𝐶.  

Now, for poverty measures a deprivation category, 𝑘, has to be chosen that will serve as the poverty 

line: all categories below (or at) the poverty line represent deprivation, whereas all categories 

above do not reflect deprivation. It will be assumed that at least one category is free from 

deprivation, therefore 𝑘 = 1, … , 𝐶 − 1. Then a poverty measure 𝑃(𝒑, 𝑘) is defined as a mapping 

from ℙ × 𝒞𝐶−1 onto the non-negative real line. Seth and Yalonetzky (2020) then propose four 

desirable properties for 𝑃 which are jointly necessary and sufficient to characterise a class of 

poverty measures taking the form of weighted averages of the elements in 𝒑.  

The first desirable property is ordinal monotonicity (OM) stating that if a proportion of poor people 

is moved to a better category then poverty should decrease: 

Ordinal Monotonicity (OM): For any 𝒑, 𝒒 ∈ ℙ𝐶 and for any 𝑘 ∈ 𝒞𝐶−1, if 𝑞𝑖 < 𝑝𝑖 for some 𝑖 ≤ 𝑘 

and 𝑖 < 𝑗 but 𝑝𝑠 = 𝑞𝑠 for all 𝑠 ≠ {𝑖, 𝑗}, then 𝑃(𝒒, 𝑘) < 𝑃(𝒑, 𝑘). 
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The second desirable property, single-category deprivation (SCD), reasonably requires that the 

poverty measure should boil down to the poverty headcount when the poverty line is set at the 

most deprived category: 

Single-category deprivation (SCD): For any 𝒑 ∈ ℙ𝐶  and 𝑘 = 1, 𝑃(𝒑, 1) = 𝑝1. 

The third desirable property, focus (FOC), is quite standard in the poverty measurement literature 

and demands that changes in the non-poor’s situation should not alter societal poverty, as long as 
the non-poor remain in that status: 

Focus (FOC): For any 𝒑, 𝒒 ∈ ℙ𝐶  and for any 𝑘 ∈ 𝒞𝐶−1, if 𝑝𝑠 = 𝑞𝑠 for all 𝑠 ≤ 𝑘 , then 𝑃(𝒒, 𝑘) =𝑃(𝒑, 𝑘). 

Finally, the fourth desirable property, subgroup decomposability (SUD), states that the poverty 

measure should be expressible as the population-weighted sum of poverty measures in non-

overlapping and fully exhaustive subgroups of the population. Let 𝜋𝑚 ≥ 0 for all 𝑚 = 1,2, … , 𝑀 

be the proportion of the population in group (e.g. region) 𝑚, such that ∑ 𝜋𝑚𝑀𝑚=1 = 1. Also let 𝒑𝒎 = (𝑝1𝑚 , 𝑝2𝑚 , … , 𝑝𝐶𝑚) be the probability distribution in 𝑚, so that ∑ 𝜋𝑚𝒑𝒎𝑀𝑚=1 = 𝒑. Then the 

axiom can be stated the following way: 

Subgroup decomposability (SUD): For any natural number 𝑀 > 1 and 𝑘 ∈ 𝒞𝐶−1, for any 𝒑 ∈ ℙ 

such that ∑ 𝜋𝑚𝒑𝒎𝑀𝑚=1 = 𝒑, where (i) 𝒑𝒎 ∈ ℙ𝐶  for all 𝑚 = 1,2, … , 𝑀, (ii) 𝜋𝑚 ≥ 0 for all 𝑚 =1,2, … , 𝑀, and (iii) ∑ 𝜋𝑚𝑀𝑚=1 = 1: 𝑃(𝒑, 𝑘) = ∑ 𝜋𝑚𝑃(𝒑𝒎, 𝑘)𝑀𝑚=1 . 

With these four axioms, Seth and Yalonetzky (2020; theorem 1) axiomatically characterise the 

following broad class of poverty measures for ordinal variables, denoted by 𝒫: 𝑃(𝒑, 𝑘) = ∑ 𝑝𝑖𝜔𝑖𝐶𝑖=1 ,     (1) 

where 𝜔1 = 1, 𝜔𝑖−1 > 𝜔𝑖 > 0 for all 2 ≤ 𝑖 ≤ 𝑘 when 𝑘 ≥ 2 and   𝜔𝑖 = 0 for all 𝑘 < 𝑖 ≤ 𝐶. Thus, 

class 𝒫 is sensitive to the depth of deprivations (as required by ordinal monotonicity) through a 

weighting schedule, 𝝎 = (𝜔1, 𝜔2, … , 𝜔𝐶), which is strictly decreasing in the domain of 

deprivation categories. In a sense the weighting schedule acts like an implicit scale. But at least 

only a set of ordering weights is being admitted by the axioms imposed. Additionally, as a 

consequence of the four desirable properties, 𝑃(𝒑, 𝑘) = 0 if and only if nobody is poor and 𝑃(𝒑, 𝑘) = 1 if and only if everybody is in the worst deprivation category. Hence, the indices in 𝒫 

feature convenient normalisation properties in terms of comparability and capturing meaningful 

limiting situations.  

Some interesting examples of measures in 𝒫, include the class based on ordering weights 

representing relative deprivation ranks (Bennett and Hatzimasoura, 2011), namely using the 

function: 
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𝜔𝑖𝐵𝐻 = [𝑘−𝑖+1𝑘 ]𝛾
, 𝛾 > 0 for 𝑖 ≤ 𝑘   (2) 

While every measure in 𝒫 is sensitive to the depth of deprivation, not all of them prioritise 

improvements among the poorest. In order to do so, Seth and Yalonetzky (2020a) adopt the ethical 

notion of prioritarianism (Parfitt, 1997), which commands granting higher importance to the 

wellbeing improvements of the poorest, and operationalise different degrees of it in the context of 

poverty measures. 

  

On one extreme, a minimum degree of precedence to poorer people would demand that a person 

moving from the worst category to the second-worst should elicit a greater reduction in societal 

poverty than a single-category improvement benefitting someone starting on the second-worst 

category (which, in turn, should elicit even further reduction than single-category improvements 

enjoyed by people departing from better categories). Seth and Yalonetzky (2020a) call it minimum 

degree of precedence (PRE-M). On the other extreme, the greatest degree of precedence  (PRE-

G) stipulates that a person moving from the worst category to the second-worst should elicit a 

greater reduction in societal poverty than the maximum possible improvement benefitting someone 

starting on the second-worst category.  

 

More generally, Seth and Yalonetzky (2020a) consider a whole range of degrees of precedence to 

the poorest among the poor, with PRE-M and PRE-G as the two limiting cases and potentially 

several intermediate cases in between, depending on the number of deprivation categories and the 

location of the poverty line. Formally (Seth and Yalonetzky, 2020a, pp. 10-11): 

 

Precedence of poorer people of order 𝛼 (PRE-𝛼): for any 𝒑, 𝒑′, 𝒒′ ∈ ℙ𝐶, any 𝑘 = 2,3, … , 𝐶 − 1 

and some 𝛼 ∈  ℕ such that 1 ≤ 𝛼 ≤ 𝑘 − 1, some 𝑠 < 𝑡 ≤ 𝑘 < 𝐶, and some 𝜖 ∈ (0,1);  if (1) 𝒑′ 
is obtained from 𝒑 such that 𝑝𝑠′ = 𝑝𝑠 − 𝜖, 𝑝𝑠+1′ = 𝑝𝑠+1 + 𝜖 , while 𝑝𝑢′ = 𝑝𝑢 for all 𝑢 ≠ {𝑠, 𝑠 + 1} 

and (ii) 𝒒′ is obtained from 𝒑 such that 𝑞𝑡′ = 𝑝𝑡 − 𝜖, 𝑞𝑚𝑖𝑛{(𝑡+),𝐶}′ = 𝑝𝑚𝑖𝑛{(𝑡+),𝐶}′ + 𝜖, while 𝑞𝑢′ =𝑝𝑢 for all 𝑢 ≠ {𝑡, min{𝑡 + 𝛼, 𝐶}}, then 𝑃(𝒑′; 𝑘) < 𝑃(𝒒′; 𝑘). 

 

Note that 𝛼 measures the social planner’s degree of poverty aversion, which rises from a minimum 

of PRE-1, which is essentially PRE-M, to a maximum of PRE-(𝑘 − 1) which is identical to PRE-
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G. Here one should highlight that PRE-G bears resemblance to the Hammond transfer introduced 

by Gravel et al. (2020). In both cases the minimum improvement of a poorer person is granted 

more importance than any sort of improvement experienced by a better-off person. However, there 

are some conceptual differences worth highlighting. PRE-G is the operationalisation in the context 

of ordinal variables of the maximalist version of the prioritarian principle put forward by Parfit 

(1997). By contrast, the Hammond transfer is an inequality principle stating that any rank-

preserving increase in the categorical proximity between two people (starting in different 

categories) ought to reduce inequality. By definition, the Hammond transfer implies that the poorer 

person becomes less poor while a less poor person becomes worse-off. Thus an inequality index 

decreasing in the event of a Hammond transfer is implicitly placing more weight on the minimal 

improvement of a poor person than any wellbeing deterioration of a less poor person, as long as 

their ranks are preserved.  

   

Back to PRE-𝛼. Different classes of indices within 𝒫 satisfy different degrees of precedence, i.e. 

they fulfil PRE-𝛼 for different values of 𝛼. Seth and Yalonetzky (2020a, theorem 2) identify all 

such classes. Essentially, the members of class 𝒫𝛼 ⊂ 𝒫 satisfying a specific PRE-𝛼 are 

characterised by combinations of the following two additional restrictions on the weighting 

vectors: (i) 𝜔𝑠−1 − 𝜔𝑠 > 𝜔𝑠 − 𝜔𝑠+𝛼 for all 𝑠 = 2, … 𝑘 − 𝛼 and (ii) 𝜔𝑠−1 > 2𝜔𝑠 for all 𝑠 = 𝑘 −𝛼 + 1, … , 𝑘 when 𝛼 ≤ 𝑘 − 2. When 𝛼 = 𝑘 − 1, namely the PRE-G case, the weighting vector 

takes on just one additional restriction: 𝜔𝑠−1 > 2𝜔𝑠  for all 𝑠 = 2, … , 𝑘. By way of corollary, Seth 

and Yalonetzky (2020a) show that the class satisfying PRE-M is characterised by the following 

restriction: (i) 𝜔𝑠−1 − 𝜔𝑠 > 𝜔𝑠 − 𝜔𝑠+1 for all 𝑠 = 2, … 𝑘 − 1 and (ii) 𝜔𝑘−1 > 2𝜔𝑘. 

 

An interesting feature of these subclasses of indices granting different degrees of precedence to 

the experience of the poorest, is that they are nested. To be more precise: 𝒫𝑘−1 ⊂ 𝒫𝑘−2 ⊂⋯ ⊂ 𝒫1 ⊂ 𝒫 . That is, as expected, all indices satisfying PRE-G are also sensitive to lesser degrees 

of precedence, but the reverse is not true. Combining examples from Seth and Yalonetzky (2020a) 

consider this point with vectors 𝝎′ = (1,0.8,0.5,0.4,0), 𝝎′′ = (1,0.6,0.3,0.1,0) , 𝝎′′′ =(1,0.48,0.23,0.1,0) and let 𝑘 = 4. Clearly, all three weights are members of 𝒫. However, 𝝎′ does 

not really prioritise improvements among the poorest. In fact, the largest improvement occurs 

when leaving poverty from the least deprived category. Meanwhile both 𝝎′′ and 𝝎′′′ do attach 
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greater improvements to single-category movements if they start at worst deprivation categories. 

Hence both weighting vectors are members of 𝒫1 .  However, 𝝎′′ does not provide the greatest 

precedence possible, whereas 𝝎′′′ does, since: 1>2*0.48>4*0.23>8*0.1>0. Therefore, of the latter 

two weighting vectors only 𝝎′′′ belongs in 𝒫𝑘−1 . If the weights are plotted on the vertical axis 

against the categories on the horizontal axis, one can clearly note how greater precedence to the 

poorest among the poor entails a more “convex” curvature of the weighting schedule.  

 

Readers are invited to assess how different choices of the 𝛾 parameter affect the membership of 

rank-based weights such as 𝜔𝑖𝐵𝐻  (equation 2) in each of the 𝒫𝛼 subclasses. 

   

Partial orderings 

 

Clearly, each subclass of poverty measures mentioned above contains many equally valid 

alternative weighting vectors. Hence the understandable interest in identifying comparisons which 

are robust to alternative poverty measures within a specific class. Seth and Yalonetzky (2020a) 

developed, for each class, stochastic dominance conditions whose fulfilment guarantees the robust 

poverty comparisons. As is well known, a crucial advantage of resorting to stochastic dominance 

conditions is that they involve testing over a finite domain, as opposed to probing the infinite 

possibilities within each class of poverty measures.   

For the most general class 𝒫, Seth and Yalonetzky (2020a, theorem 3) find the ordinal-variable 

equivalent of first-order stochastic dominance. For a given poverty line the condition reads as 

follows: 

First-order stochastic dominance with fixed poverty line (Seth and Yalonetzky, 2020a; theorem 

3): For any 𝒑, 𝒒 ∈ ℙ𝐶  and a given 𝑘 ∈ {1,2, … , , 𝐶 − 1}, 𝑃(𝒑, 𝑘) < 𝑃(𝒒, 𝑘) for all 𝑃 ∈ 𝒫 if and 

only if ∑ [𝑝𝑙 − 𝑞𝑙] ≤ 0𝑠𝑙=1  for all 𝑠 ≤ 𝑘 with at least one strict inequality. 

Note how the first part of the theorem states the robustness condition, namely unambiguously less 

poverty in 𝒑 than in q considering all poverty measures satisfying the four basic axioms 

characterising class 𝒫 (namely OM, FOC, SUD and SCD); while the second part presents the 

testable condition based on cumulative frequencies. In fact, the testable condition can be restated 

in terms of poverty headcounts. That is, poverty in 𝒑 is robustly lower than in q if and only if the 

headcounts in the former population are never higher (and at least once lower) than those in the 

latter for all possible poverty lines up to 𝑘. Thus, the test requires performing 𝑘 comparisons. 
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For any conceivable poverty line, Seth and Yalonetzky, 2020a; corollary 2) provide the more 

stringent condition whereby 𝑃(𝒑, 𝑘) < 𝑃(𝒒, 𝑘) for all 𝑃 ∈ 𝒫 and any 𝑘 ∈ {1,2, … , , 𝐶 − 1}, if and 

only if ∑ [𝑝𝑙 − 𝑞𝑙] ≤ 0𝑠𝑙=1  for all 𝑠 ≤ 𝐶 − 1 and 𝑝1 < 𝑞1. Hence the condition requires comparing 

every possible poverty headcount, i.e. 𝐶 − 1 comparisons, and verifying a strict inequality in the 

headcount with the lowest possible poverty line (𝑘 = 1). Seth and Yalonetzky (2020a) note that 

both theorem 3 and its corollary (2) are the ordinal-variable versions of the headcount-ratio 

orderings for continuous variables derived by Foster and Shorrocks (1988) 

For the classes 𝒫𝛼  , Seth and Yalonetzky (2020a, theorem 4) provide the general condition, 

following a novel proof strategy for stochastic dominance conditions based on convex hulls.  

Seth and Yalonetzky (2020a) present the dominance results for classes satisfying PRE-M and PRE-

G respectively and for a fixed poverty line: 

PRE-𝑀 stochastic dominance with fixed poverty line (Seth and Yalonetzky, 2020a; corollary 3): 

For any 𝒑, 𝒒 ∈ ℙ𝐶  and a given 𝑘 ∈ {2, … , 𝐶 − 1}, 𝑃(𝒑, 𝑘) < 𝑃(𝒒, 𝑘) for all 𝑃 ∈ 𝒫1 if and only if ∑ ∑ [𝑝𝑖 − 𝑞𝑖] ≤ 0𝑙𝑖=1𝑠𝑙=1  for all 𝑠 ≤ 𝑘, with at least one strict inequality. 

PRE-𝐺 stochastic dominance with fixed poverty line (Seth and Yalonetzky, 2020a; corollary 4): 

For any 𝒑, 𝒒 ∈ ℙ𝐶  and a given 𝑘 ∈ {2, … , 𝐶 − 1}, 𝑃(𝒑, 𝑘) < 𝑃(𝒒, 𝑘) for all 𝑃 ∈ 𝒫𝑘−1 if and only 

if ∑ 21−𝑙[𝑝𝑙 − 𝑞𝑙] ≤ 0𝑠𝑙=1  for all 𝑠 ≤ 𝑘, with at least one strict inequality. 

Seth and Yalonetzky (2020a) note that their corollary 3 is the ordinal-variable versions of the “𝑃2” 
poverty orderings for continuous variables derived by Foster and Shorrocks (1988). Meanwhile 

the distributional condition of their corollary 4 is remarkably similar to the stochastic dominance 

condition of Gravel et al. (2020) for welfare functions.  

Finally, Seth and Yalonetzky (2020a) generalise their partial ordering for any class 𝒫𝛼 and any 

feasible poverty line: 

PRE-𝛼 stochastic dominance with any poverty line (Seth and Yalonetzky, 2020a; corollary 5): For 

any 𝒑, 𝒒 ∈ ℙ𝐶 , some 𝛼 ∈ {1, … , 𝑘 − 1} and all 𝑘 ∈ {2, … , 𝐶 − 1}, 𝑃(𝒑, 𝑘) < 𝑃(𝒒, 𝑘) for all 𝑃 ∈𝒫𝛼 if and only if (a) 𝑝1 ≤ 𝑞1 and 2𝑝1 + 𝑝2 ≤ 2𝑞1 + 𝑞2  with at least one strict inequality, and (b) ∑ 𝜔𝑠𝑟[𝑝𝑠 − 𝑞𝑠] ≤ 0𝐶𝑠=1  for all 𝑟 = 3, … , 𝐶 − 1 where 𝝎𝒓 is defined in Seth and Yalonetzky 

(2020a). 

 

3. Welfare measurement 

Welfare measurement with ordinal data has gained interest alongside the increased popularity of 

subjective and self-reported wellbeing indicators (including life satisfaction and happiness whether 

as global life assessment or focused on areas of life such as occupation, relationships, health, etc.).  

The measurement proposals bear important similarities with the toolkit put forward for poverty 



11 

 

assessments in the sense that both seek to gauge individual improvements, i.e. people moving to 

better categories, while passing ethical judgments on the dispersion in the multinomial 

distributions. However, welfare assessments typically set themselves apart for the difficulty (or 

irrelevance) in setting a poverty line separating deprivation from non-deprivation categories. 

Hence the focus axioms is no longer needed in welfare assessments. 

Gravel et al. (2011) axiomatically characterised mean attainments as social welfare functions for 

distributional comparisons. The literature on welfare measurement for ordinal variables has 

followed this route. Specifically, both Apouey et al. (2019) and Gravel et al. (2020) independently 

characterised social welfare indices which are weighted averages of the relative frequencies in 

each category and where the weights essentially acts as implicit scales attributed to each category 

based on a set of desirable axioms. This is basically the same strategy followed by Seth and 

Yalonetzky (2020a), but without poverty lines and the concomitant focus axiom.   

All the proposals in the literature either define from the outset or end up with a welfare measure 𝑊(𝒑) as a mapping from ℙ𝐶  onto the real line. Hence, they satisfy traditional properties of 

anonymity and the population principle (whereby cloning each person by the same natural number 

should render the welfare index unaltered). In addition, Apouey et al. (2019) proposed an 

independence axiom which in our notation reads as follows: 

Independence (Apouey et al., 2019):  For some 𝑖 ∈ 𝒞𝐶, let 𝒑−𝒊 denote the vector of relative 

frequencies excluding category 𝑖. Then independence means: 𝑊(𝑝𝑖; 𝒑−𝒊) − 𝑊(𝑞𝑖; 𝒑−𝒊) =𝑊(𝑝𝑖; 𝒒−𝒊) − 𝑊(𝑞𝑖; 𝒒−𝒊).  

Now consider ordinal monotonicity (OM) for welfare indices: For any 𝒑, 𝒒 ∈ ℙ, if 𝑞𝑖 < 𝑝𝑖 and 𝑖 <𝑗, but 𝑝𝑠 = 𝑞𝑠 for all 𝑠 ≠ {𝑖, 𝑗}, then 𝑊(𝒒) > 𝑊(𝒑). Satisfaction of ordinal monotonoicity is 

crucial if one wants 𝑊 to increase in the aftermath of a so-called increment (Gravel et al. 2020), 

whereby a person moves to a better category.  

Then independence coupled with ordinal monotonicity imply a class of linear welfare indices: 𝑊(𝒑) = ∑ 𝑝𝑖𝑤𝑖𝐶𝑖=1  ,     (3) 

where 𝑤𝑖 < 𝑤𝑗 for any 1 ≤ 𝑖 < 𝑗 ≤ 𝐶 and 𝒲 denotes the corresponding class of welfare measures. 

Note that independence plays a similar role to subgroup decomposability in poverty measurement. 

The former property is more elegant (as it implies subgroup decomposability), though the latter 

may be more intuitive.  

Now, in the case of poverty measurement, the properties of single-category deprivation (whereby 

the poverty measure should equate the headcount ratio whenever the poverty line is set at the 

lowest possible level) and focus naturally impose a normalisation on 𝑃(𝒑; 𝑘) such that 𝑃(𝑝1 = 1; 𝑘) = 1 for any 𝑘 ≤ 𝐶 − 1 and 𝑃(𝑝𝑖 = 0; 𝑘) = 0 for all 𝑖 ≤ 𝑘 and 𝑘 ≤ 𝐶 − 1. This 

implied normalisation is not a logical consequence of the axioms used to characterise 𝑊(𝒑) in (8). 
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Therefore, if one wants to increase comparability with welfare indices applied to ordinal variables 

one needs to impose a normalisation axiom. This is precisely what Apouey et al. (2019) do: 

Normalisation (Apouey et al. 2019): (1) 𝑊(𝒑) = 0 if and only if 𝑝1 = 1; and (2) 𝑊(𝒑) = 1 if and 

only if 𝑝𝐶 = 1. 

That is, the welfare index achieves its maximum normalised value of 1 if and only if everyone in 

society enjoys the highest category. On the other extreme, the index achieves its lowest normalised 

value of 0 if and only if everyone in societies endures the worst category. Naturally, satisfaction 

of the normalisation axiom restricts the set of admissible value weights 𝒘 = (𝑤1, … , 𝑤𝐶), such 

that: 0 = 𝑤1 < ⋯ < 𝑤𝐶 = 1. 

However, just as in the case of poverty measurement, the aforementioned restriction on 𝒘 is 

agnostic to any concerns over the dispersion of the categorical attainments. Incorporating value 

judgments favouring a more egalitarian distribution into 𝑊(𝒑), which already satisfies ordinal 

monotonicity (i.e. being sensitive to movements from worse to better categories), effectively 

means adopting the ordinal-variable equivalent of welfare functions consistent with the generalised 

Lorenz ordering (Shorrocks, 1983). Three main proposals exist in the literature.  

Firstly, Seth and Yalonetzky (2020b) suggested applying their prioritarian approach for poverty 

measures (Seth and Yalonetzky, 2020a) in the realm of welfare measures. The idea behind it is, 

again, to render the welfare index more sensitive to a single-category improvement by a worse-off 

person than to an 𝛼-category improvement by a better-off person, where 𝛼 = 1, … , 𝐶 − 2 is a 

natural number, with higher values of  𝛼 signalling higher degrees of prioritisation. The formal 

definition is: 

Priority of order 𝛼 to the worse-off (PRI-𝛼) (Seth and Yalonetzky, 2020b): For any 𝒑, 𝒑′, 𝒒′ ∈ ℙ, 

for some 𝛼 ∈ ℕ  such that 1 ≤ 𝛼 ≤ 𝐶 − 2, for some 𝑠 < 𝑡 < 𝐶, if (i) 𝑝𝑠′ = 𝑝𝑠 − 𝜖, 𝑝𝑠+1′ = 𝑝𝑠+1 + 𝜖 

while 𝑝𝑢′ = 𝑝𝑢 ∀𝑢 ≠ {𝑠, 𝑠 + 1}, and (ii) 𝑞𝑡′ = 𝑝𝑡 − 𝜖 , 𝑞𝑚𝑖𝑛{(𝑡+),𝐶}′ = 𝑝𝑚𝑖𝑛{(𝑡+),𝐶}′ + 𝜖  while 𝑞𝑢′ =𝑝𝑢∀𝑢 ≠ {𝑡, min{𝑡 + 𝛼, 𝐶}}, then 𝑊(𝒑′) > 𝑊(𝒒′) for all 𝑊 ∈ 𝒲. 

Likewise, for any admissible value of 𝛼 it is possible to identify subclasses of welfare measures 

satisfying a specific priority, i.e. PRI-𝛼. In fact, Seth and Yalonetzky (2020b; theorem 2.1) 

stipulates that for any 𝐶 ≥ 3 and for some 𝛼 ∈ ℕ  such that 1 ≤ 𝛼 ≤ 𝐶 − 2, 𝑊 ∈ 𝒲 satisfies PRI-𝛼 if and only if 2𝑤𝑠 > 𝑤𝑠−1 + 𝑤𝑠+𝛼 ∀𝑠 = 2, … , 𝐶 − 𝛼 and 2𝑤𝑠 > 𝑤𝑠−1 + 𝑤𝐶  ∀𝑠 = 𝐶 − 𝛼 +1, … , 𝐶 − 1 whenever 𝛼 ≤ 𝐶 − 3; and 2𝑤𝑠 > 𝑤𝑠−1 + 𝑤𝐶  ∀𝑠 = 2, … , 𝐶 − 1 whenever  𝛼 = 𝐶 − 2. 

All welfare measures satisfying PRI-𝛼 are said to belong in subclass 𝒲𝛼. 

By analogy to the poverty case, PRI-1, also known as PRI-MIN, provides the minimum degree of 

priority to the worse-off and members of 𝒲1 are characterised by 2𝑤𝑠 > 𝑤𝑠−1 + 𝑤𝑠+1 ∀𝑠 =2, … , 𝐶 − 1. On the other extreme, PRI-C-2, also known as PRI-MAX, provides the maximum 

degree of priority to the worse-off and members of 𝒲𝐶−2 are characterised by 2𝑤𝑠 > 𝑤𝑠−1 +
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𝑤𝐶  ∀𝑠 = 2, … , 𝐶 − 1. The different subclasses of indices are clearly nested, since those satisfying 

PRI-MAX also satisfy PRI-MIN, but the reverse is not true. Hence, generally: 𝒲𝐶−2  ⊂ 𝒲𝐶−1 ⊂⋯ ⊂ 𝒲1 ⊂ 𝒲.  

Secondly, Gravel et al (2020) proposed an alternative way of incorporating inequality concerns 

into welfare assessments with ordinal variables, pioneering the so-called Hammond transfer. 

Operationalising the ideas of Hammond (1976), Gravel et al. (2020) posit that given the problem 

of incommensurability of distances between categories, the only uncontroversial inequality-

decreasing transformation involves two people who move to nearer categories without switching 

ranks. Such a transformation, named a Hammond transfer by them, ought to decrease inequality, 

irrespective of the difference in the number of categories transited by each person in the pair, given 

that those distances are inherently arbitrary. Only the increased proximity among the pair should 

matter. Formally, it can be stated that 𝒒 is obtained from  𝒑 through a Hammond transfer if there 

exist natural numbers 𝑖, 𝑗, 𝑘, 𝑙 such that 1 ≤ 𝑖 < 𝑗 ≤ 𝑘 < 𝑙 ≤ 𝐶 and 𝛿 ∈ (0,1) such that 𝑞𝑖 = 𝑝𝑖 −𝛿; 𝑞𝑗 = 𝑝𝑗 + 𝛿, 𝑞𝑘 = 𝑝𝑘 + 𝛿, 𝑞𝑙 = 𝑝𝑙 − 𝛿, and 𝑞𝑢 = 𝑝𝑢 ∀𝑢 ≠ {𝑖, 𝑗, 𝑘, 𝑙}. That is, at least one pair 

of people are closer to each other in 𝒒 vis-à-vis 𝒑.  

Then Gravel et al (2020) identify the class of linear welfare measures of the form (7) satisfying 

both ordinal monotonicity and sensitivity to Hammond transfers (whereby welfare measures 

increase in the event of such inequality-reducing transfers). Combining their theorem 3 with 

proposition 6 and using our notation, the first two parts of a three-statement equivalence result is 

the following: 

Gravel et al (2020) (first two parts of Theorem 3 and proposition 6): For any 𝒑, 𝒒 ∈ ℙ𝐶 , 𝑊(𝒑) >𝑊(𝒒) for all 𝑊 ∈ 𝒲𝐶−2 if and only if 𝒑 can be obtained from 𝒒 through a finite sequence of 

Hammond transfers and/or increments.  

Note the above statement “for all 𝑊 ∈ 𝒲𝐶−2”. Essentially, the class of linear welfare functions 
satisfying ordinal monotonicity and PRI-MAX (Seth and Yalonetzky 2020b) and the class which 

is sensitive to Hammond transfers and increments are one and the same. The maximum priority 

that can be given to the worst-off is sensitivity to a Hammond transfer.  The third part/statement 

is a dominance condition that is discussed in the next subsection on partial orderings.  

Thirdly, Apouey et al. (2019) introduce the property of proportional equality, with which one can 

characterise a spectrum of classes of welfare measures varying in their implicit degree of 

prioritisation of the worst-off. In other words, it can be shown that their measures belong into 

different 𝒲𝛼 classes with 𝛼 = 1, … , 𝐶 − 2.  Using the notation of the present chapter, Apouey et 

al. (2019) define proportional equality as a constant ratio of decrease in the marginal welfare 

improvement due to moving from one category to the adjacent next: 0 < 𝛽 ≡ 𝑤𝑠+1−𝑤𝑠𝑤𝑠−𝑤𝑠−1 < 1 for all 𝑠 = 2, … , 𝐶 − 1.   (4) 
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Then, Apouey et al (2019, proposition 3) show that, for any particular 𝛽 the following welfare 

measure based on the frequency distribution and satisfying ordinal monotonicity, normalisation, 

independence and proportional equality, ensues, using our notation: 𝑊𝛽(𝒑) = ∑ 𝑝𝑠 1−𝛽𝑠−11−𝛽𝐶−1𝐶𝑠=1   (5) 

As stated by Apouey et al. (2019) lower values of 𝛽 reflect increased inequality aversion, which 

means that, for a given 𝐶, the lower the 𝛽 the higher the degree of priority to the less advantaged. 

That is, welfare measures with lower values of 𝛽 belong to subclasses 𝒲𝛼 indexed by higher values 

of 𝛼.  

 

3.1.Partial orderings 

Just as in the case of poverty measurement, each subclass of welfare measures mentioned above 

contains many equally valid alternative weighting vectors (𝒘). Therefore, it is also possible to 

search for welfare comparisons which are robust to alternative welfare measures within a specific 

class.  

The first-order dominance result for ordinal variables is quite well known (Gravel et al., 2020, 

provide the key references). Using the previous notations and considering strict inequalities in the 

welfare comparison (i.e. 𝑊(𝒑) > 𝑊(𝒒) instead of 𝑊(𝒑) ≥ 𝑊(𝒒)), the useful three-statement 

version proposed by Gravel et al. (2020) is now stated: 

First-order stochastic dominance (Gravel et al. 2020; theorem 1): The following statements are 

equivalent: (1) 𝒑 is obtained from 𝒒 through a finite sequence of increments; (2) 𝑊(𝒑) > 𝑊(𝒒) 

for all 𝑊 ∈ 𝒲; and (3) ∑ [𝑝𝑙 − 𝑞𝑙] ≤ 0𝑠𝑙=1  for all 𝑠 = 1, … , 𝐶 with at least one strict inequality. 

The above result is quite demanding as it expects robustness across all 𝑊 ∈ 𝒲, whether they are 

sensitive to different inequality-decreasing transformations or not at all. Following Seth and 

Yalonetzky (2020a), Seth and Yalonetzky (2020b) proposed higher-order dominance conditions 

for different degrees of prioritisation of the worst-off; specifically, for each subclass 𝒲𝛼:  

PRI-𝛼 stochastic dominance (Seth and Yalonetzky, 2020b; theorem 3.1): For any 𝒑, 𝒒 ∈ ℙ𝐶, some 𝐶 > 2 and some 𝛼 ∈ {1, … , 𝐶 − 2}, 𝑊(𝒑) > 𝑊(𝒒) for all 𝑊 ∈ 𝒲𝛼 if and only if, with at least 

one strict inequality, ∑ 𝜔𝑠𝑟[𝑝𝑠 − 𝑞𝑠] ≤ 0𝐶𝑠=1  for all 𝑟 = 1,2, … , 𝐶 − 1, where 𝜔𝑠𝑟 is defined in Seth 

and Yalonetzky (2020b). 

Note the resemblance between the PRI-𝛼 dominance conditions for welfare measures and the PRE-𝛼 dominance conditions for poverty measures when 𝑘 = 𝐶 − 1 (i.e. when the poverty line is set at 

its highest possible categorical value). As Seth and Yalonetzky (2020b) explain in the proof of 

their theorem 3.1, the two sets of dominance conditions match because 𝑃(𝒑, 𝐶 − 1) = (𝑤𝐶 −
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𝑊(𝒑))/(𝑤𝐶 − 𝑤1). Therefore 𝑊(𝒑) − 𝑊(𝒒) = −(𝑤𝐶 − 𝑤1)[𝑃(𝒑, 𝐶 − 1) − 𝑃(𝒒, 𝐶 − 1)]. So 

the conditions applying to the poverty comparison (𝑃(𝒑, 𝐶 − 1) − 𝑃(𝒒, 𝐶 − 1)) must be the same 

as those relevant for the welfare comparison (𝑊(𝒑) − 𝑊(𝒒)). 
Note also that the dominance condition for PRI-MAX (i.e. for 𝛼 = 𝐶 − 2) coincides with the third 

part of theorem 3 in Gravel et al (2020); that is, their dominance condition for welfare measures 

sensitive to both increments and Hammond transfers. Indeed, Gravel et al (2020) (last two parts of 

Theorem 3 and proposition 6) state that, for any 𝒑, 𝒒 ∈ ℙ, 𝑊(𝒑) > 𝑊(𝒒) for all 𝑊 ∈ 𝒲𝐶−2 if and 

only if ∑ 2𝑟−𝑠[𝑝𝑠 − 𝑞𝑠] ≤ 0𝑟𝑠=1  for all 𝑟 = 1, … , 𝐶 − 1 (Gravel et al. (2020) always consider weak 

inequalities). Now let 𝐶 = 4. Then this condition involves the comparisons   𝑝1 − 𝑞1 ≤ 0, ∑ 22−𝑠[𝑝𝑠 − 𝑞𝑠] = 2[𝑝1 − 𝑞1] + [𝑝2 − 𝑞2] ≤ 02𝑠=1 , and ∑ 23−𝑠[𝑝𝑠 − 𝑞𝑠] =3𝑠=14[𝑝1 − 𝑞1] + 2[𝑝2 − 𝑞2] + [𝑝3 − 𝑞3] ≤ 0. Meanwhile, for 𝐶 = 4 and 𝛼 = 𝐶 − 1 = 3, one gets 

from (11) : ∑ 𝜔𝑠1[𝑝𝑠 − 𝑞𝑠] = [𝑝1 − 𝑞1] ≤ 0𝐶𝑠=1 ; ∑ 𝜔𝑠2[𝑝𝑠 − 𝑞𝑠] = [𝑝1 − 𝑞1] + 2−1[𝑝2 − 𝑞2] ≤𝐶𝑠=10, and ∑ 𝜔𝑠3[𝑝𝑠 − 𝑞𝑠] = [𝑝1 − 𝑞1] + 2−1[𝑝2 − 𝑞2] + 2−2[𝑝3 − 𝑞3] ≤ 0𝐶𝑠=1 . Essentially the same 

conditions.  

Mendelson (1987) took a different approach to welfare partial orderings with ordinal variables. 

Instead of looking into classes of implicit scales satisfying certain desirable properties and into 

conditions guaranteeing robust welfare comparisons across any choices within each such 

subclasses (as the aforementioned authors in this section did), he proposed that any welfare 

comparison (whether based on indices or partial orderings) should be consistent to any alternative 

choice of scales respecting the order of the categories. Now, first-order stochastic dominance for 

quantitative data is known to imply second-order dominance. Hence it stands to reason that if a 

first-order dominance ordering based on attributing scales to ordered categories is robust to any 

choice of order-respecting scales, then the pair of distributions will also be ordered according to 

the second-order dominance criterion for all admissible scales. 

But Mendelson (1987, theorem 2.2) found that the reverse is also true. This is quite remarkable 

because with quantitative data, where there is no issue of choosing arbitrary scales, first-order 

dominance implies second-order dominance, but the reverse is not true.  The gist of the proof is as 

follows. For any given scale, second-order dominance of distribution 𝐴 over 𝐵 implies that the 

mean of 𝐴 is not lower than the mean of 𝐵 (one is switching to weak inequalities as Mendelson, 

1987, did). This is a standard result in literature. However, if second-order dominance of 𝐴 over 𝐵 

held for every possible scale respecting the ordering of the categories then the mean of 𝐴 should 

not be lower than the mean of 𝐵 for every possible scale respecting the ordering of the categories. 

But the latter is simply stating that 𝑊(𝒑𝑨) ≥ 𝑊(𝒑𝑩) for all 𝑊 ∈ 𝒲. And it is already known that 

the latter is true if and only if ∑ [𝑝𝑙 − 𝑞𝑙] ≤ 0𝑠𝑙=1  for all 𝑠 = 1, … , 𝐶; that is, if there is first-order 

stochastic dominance (in its weak-inequality form).  
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4. Inequality measurement 

 

4.1. Equality and maximum inequality in ordinal data.  

As demonstrated by Mendelson (1987) and Allison and Foster (2004), inequality rankings 

generated by measures originally tailored for quantitative data (e.g. the coefficient of variation, the 

Gini index, etc.) are not robust to alternative choices of scales for the categories. On top of that, as 

mentioned in the cases of poverty and welfare measurement, such choices are essentially arbitrary. 

Hence the challenge of finding suitable measures for inequality measurement with ordinal 

variables.  

This section discusses several groups of measurement proposals. First, it reviews those that use 

natural cardinalisations of categorical ranks. Then it discusses proposals for comparisons of 

distributions sharing a particular quantile (usually the median), but not requiring any information 

above and beyond the elements of the ordered multinomial distribution. Among these, a distinction 

is made between inequality and bipolarisation concepts; as well as between explicit and implicit 

common quantiles in the formulas.  Since these proposals are not immediately suitable for 

comparisons involving distributions not sharing a quantile of interest (e.g. the median), this section 

first reviews a recent refinement which expands the reach of admissible comparisons based on 

ingenuous quantile-homogenising transformation. Then it discusses an alternative approach based 

on the notion of inequality of status (measured by cumulative frequencies). A similar order is 

followed when discussing proposals for partial orderings and dominance conditions in a separate 

subsection.  

But first, it is worth discussing suitable benchmarks of equality and maximum inequality for 

ordinal variables, and the intuition behind them. Equality carries broad consensus in the literature 

and occurs whenever the whole population reports the same category (whichever that might be). 

Formally: 

Equality: 𝒑 ∈ ℙ𝐶  is an egalitarian distribution if and only if there is a category 𝑖 ∈ {1, … , 𝐶} such 

that 𝑝𝑖 = 1. 

Let the set of the only 𝐶 possible egalitarian distributions be denoted as 𝔼𝐶 ⊂ ℙ𝐶 . On the other 

extreme, identifying maximum inequality requires additional reasoning. The literature measuring 

inequality for nominal data identifies maximum so-called diversity whenever 𝑝𝑖 = 1𝐶 for all 𝑖 =1, … , 𝐶; this is reasonable given that the categories are unordered. However, whenever the 

categories are ordered, maximum diversity does not concur with the intuition regarding how far 

inequality could go. For instance, let 𝐶 = 4. Intuitively, starting from a situation of maximum 

diversity, one could take all the population in the second category and move it to the first category. 

Then take the population in the third category and move it to the fourth category. Most people 

would reckon an increase in inequality has occurred since now more members of the population 



17 

 

are further apart than before. Indeed, inequality with ordinal variables seems to carry a meaning 

of bipolarization. As more people get concentrated in the two extreme categories, inequality ought 

to increase, according to this view. Moreover, if a comparison is made between distributions where 

only the extreme categories are populated, the intuition tells one that maximum inequality is found 

in those where exactly half the population is in each extreme. That is, maximum inequality 

coincides with maximum diversity among the two extreme distributions when the latter contain 

the whole population between themselves. This is by and large the consensus in the literature. 

Formally: 

Maximum inequality: 𝒑 ∈ ℙ𝐶  is distribution representing maximum inequality if and only if 𝑝1 =𝑝𝐶 = 0.5. 

Clearly, for each 𝐶 there is only one maximum unequal distribution which is denoted as 𝒊𝑪 ∈ ℙ𝐶 . 

 

4.2.Inequality-altering transformations 

One of the reasons why inequality indices for quantitative data provide inconsistent rankings 

across alternative scales when applied to ordinal data is that many inequality indices compare 

distances from a measure of central tendency, usually the mean, which is also sensitive to 

alternative scales. This led Mendelson (1987) and others thereafter to consider alternative 

reference points. Mendelson (1987; theorem 2.3) showed that the only location parameters 

invariant to alternative scales were quantiles. Hence if two distributions shared a quantile, e.g. the 

median, with a particular scale; then they would always share the same quantile with any 

alternative scale. That is, the value of the quantile itself could change, but it would be identical 

across both distributions. By contrast, two distributions may have the same mean with one 

particular scale, but then have different means as soon as the scale is suitably altered.  

Next, Mendelson (1987) adopted the measure of risk as dispersion around the mean pioneered by 

Rotschild and Stiglitz (1970), the famous mean-preserving spread, and proposed instead a 

quantile-preserving spread. That is, he proposed comparing distributions with the same summary 

measure of central tendency in terms of dispersion about it. The key ingredient is choosing a 

measure which is invariant to alternative scales, hence the recourse to quantiles. Then lower 

clustering around the quantile should signal higher inequality. 

Before continuing one needs to add notation and more precise definitions. Though one could define 

quantiles in terms of a particular scale or just mention the corresponding percentile, the literature 

has reasonably preferred to express the quantile in the equally invariant form of the respective 

category. Let 𝑃𝑖 ≡ ∑ 𝑝𝑖𝑖𝑠=1  stand for the cumulative frequency and 𝑷 be the 𝐶-sized cumulative 

distribution function (CDF).  The quantile category 𝑚𝛼 corresponding to percentile 𝛼 is then 

defined as follows: 
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𝛼-quantile: For any 𝛼 ∈ [0,1], the 𝛼-quantile, 𝑚𝛼 ∈ {1, … , 𝐶} is a category such that: 𝑃𝑚𝛼−1 < 𝛼 

and 𝑃𝑚𝛼 ≥ 𝛼.  

Since most of the literature has focused on the median, i.e. 𝛼 = 0.5, the shortcut notation 𝑚 =𝑚0.5 will be used to refer to it. Now, the quantile preserving spread itself is a displacement of 

probability mass away from the common quantile, thereby generating higher spread around it. 

Formally, the quantile-preserving spread transformation is defined as follows: 𝛼-quantile-preserving spread: For any 𝛼 ∈ [0,1], an  𝛼-preserving spread is a transfer of 

population involving categories 𝑖 and 𝑗 such that: (i) either 𝑖 is the recipient category and 𝑗 is the 

donor category if 1 ≤ 𝑖 < 𝑗 ≤ 𝑚𝛼 or 𝑖 is the donor category and 𝑗 is the recipient category if 𝑚𝛼 ≤𝑖 < 𝑗 ≤ 1 ; and (ii) the value of 𝑚𝛼 is preserved after the transfer (i.e. the 𝛼 quantile remains in 

the same category). 

If the median is considered, then reference will be made to median-preserving spreads. Now denote 

the set of ordered multinomial distributions of size 𝐶 sharing a common quantile 𝑚𝛼  by ℙ𝐶,𝛼 ⊂ℙ𝐶 . Also define an inequality index as a non-negative real-valued function of the ordered 

multinomial distribution 𝐼: [0,1]𝐶 → ℝ+. Then, with this definition the measure already satisfies 

traditional properties of anonymity (whereby category swaps between population pairs should not 

alter the value of the index) and the population principle (whereby equal replications of each 

person in the population should not alter the index’ value, thereby enabling comparisons of 
distribution with different population sizes). Additionally, and crucially, one wants 𝐼 not to 

decrease in the event of quantile-preserving spreads. Formally: 

Aversion to quantile-preserving spreads: for every 𝒑, 𝒒 ∈ ℙ𝐶,𝛼, 𝐼(𝒑) ≥ 𝐼(𝒒) if 𝒑 is obtained from 𝒒 through a sequence of 𝛼-quantile-preserving spreads.   

Another very popular property in the literature (not only that based on quantile-preserving spreads) 

is normalisation, requiring the inequality index to attain a normalised minimum value of 0 only 

when the distribution is egalitarian and a normalised maximum of 1 only when the distribution 

features maximum inequality. Formally:  

Normalisation:  𝐼(𝒑) = 0 if and only if 𝒑 ∈ 𝔼𝐶  and:  𝐼(𝒑) = 1 if and only if 𝒑 = 𝒊𝑪. 

Mendelson (1987) proposed the first class of inequality indices for comparison of distributions 

within the same set ℙ𝛼. Using the notation of the present chapter, the Mendelson class is the 

following: 

 𝑊𝑚𝛼(𝒑) = ∑ 𝑝𝑖𝐶𝑖=1 𝑤𝑖,   (6) 
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where 𝑤1 ≥ ⋯ ≥ 𝑤𝑚𝛼−1 and 𝑤𝑚𝛼 ≤ ⋯ ≤ 𝑤𝐶 . When 𝑤𝑖 = −𝑖 for all 𝑖 < 𝑚𝛼, 𝑤𝑖 = 𝑖 for all 𝑖 ≥𝑚𝛼 and 𝛼 = 0.5, it is easy to show that one obtains the 𝑠 index proposed by Allison and Foster 

(2004), which measures the difference between the average number of categories that the upper 

half is above the median and the average number of categories that the lower half of the distribution 

falls below the median. 

 

Clearly, inequality rankings based on these indices are sensitive to changes in the chosen scale. 

Hence, they have mainly been considered to study partial orderings, i.e. situations where such 

measures robustly rank distributions regardless of the scale chosen. They will be revisited in the 

subsection on partial orderings.  

 

4.3.Categorical rank-based measures 

 

Start with categorical rank-based measures. The shared trait of these indices is their foundation on 

ranks allocated to the categories (hence “categorical rank-based”). In a sense, this is a departure 
from the principle of ditching scales when measuring inequality with ordinal variables. But at least 

one can make the case that it is harder to justify any ranking system different from that based on a 

set of equally distanced natural numbers. Then, categorical rank-based measures become 

variations on the theme of measuring inequality as some aggregation of rank distances. Very often, 

this aggregation bears resemblance to one of the formulas of the Gini coefficient for quantitative 

variables (the one in which a mean-normalised average of the distances between all “income” 
values is taken). Therefore, if most people are in fewer categories and closer by, inequality should 

decrease. In fact, in the limit, an egalitarian distribution is characterised by no rank distance 

whatsoever. On the other extreme, rank distances are maximised as the two halves of the 

population move further apart. In the limit, the aforementioned situation of maximum inequality 

ought to maximise any aggregation of categorical rank distances.   

  

The pioneering contribution in this type of indices comes from Berry and Mielke (1992) who 

define an Index of Ordinal Variation (𝐼𝑂𝑉) as: 

 𝐼𝐵𝑀(𝒑) = 𝑇𝑇𝑀𝑎𝑥                                                       (7) 
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where 𝑇 = ∑ ∑ 𝑝𝑖𝑝𝑗(𝑗 − 𝑖)𝐶𝑗≠𝑖𝐶𝑖=1  and 𝑇𝑀𝑎𝑥 = (𝐶−1)4   if the population size is an even                        

number. Let 𝑛 be the population size and 𝑛𝑖 = 𝑛𝑝𝑖 be the absolute frequency of people in category 𝑖. Then, if 𝑛 is odd one gets  𝑇𝑀𝑎𝑥 = (𝑛2−1)(𝐶−1)4𝑛2 . Interestingly, Berry and Mielke (1992) 

demonstrate that maximum inequality can be attained in at least two situations when 𝑛 is odd. In 

terms of relative frequencies: first, when one extreme category has a proportion (𝑛 + 1)/2𝑛 and 

the other has (𝑛 − 1)/2𝑛; second, when 𝑝1 = 𝑝𝐶 = (𝑛 − 1)/2𝑛 and 𝑝𝑖 = 1/𝑛 for any 𝑖 ∈{2, … , 𝐶 − 1}. 

 

While intuitive, a problem with contributions like 𝐼𝐵𝑀 is that the respective authors do not discuss 

the indices’ sensitivity to any specific inequality-altering transformation (e.g. a quantile-preserving 

spread).  However, it should not be difficult to show that 𝐼𝐵𝑀 is averse to median-preserving 

spreads when comparing distributions with a common quantile of interest (e.g. the median). 

 

 

Kalmijn and Arends (2010) follow a similar path, making a distinction between the case where the 

various possible ratings of ordered responses are assumed to be equidistant, and that where such 

an assumption is not made. In the case of equidistance between ranks, they end up proposing a 

measure which aggregates rank distances (not unlike Berry an Mielke, 1992). In particular they 

consider (with the previous notations and a generalisation): 

 𝐼𝐾𝐴(𝒑, 𝜃) = 𝑆(𝜃)𝑆𝑀𝑎𝑥(𝜃),  (8) 

 

where 𝑆(𝜃) = ∑ ∑ 𝑝𝑖𝑝𝑗|𝑖 − 𝑗|𝜃𝐶𝑗=1𝐶𝑖=1  and 𝑆𝑀𝑎𝑥(𝜃) = sup 𝑆(𝜃). Kalmijn and Arends (2010) 

consider the cases 𝜃 = 1,2 , but one can readily verify that, generally, 𝑆𝑀𝑎𝑥(𝜃) = (𝐶−1)𝜃2  when 

the population is of even size. The case of a population of odd size is left for the reader to work 

out. Besides the usual discussion of situations of equality and maximum inequality, the authors 

(like many others) do not discuss their indices’ sensitivity to any specific inequality-altering 

transformation. However, again, it should not be difficult to show that 𝐼𝐾𝐴 is also averse to 

median-preserving spreads when comparing distributions with a common quantile of interest 

(e.g. the median). 

 

Finally, Kalmijn and Arends (2010) extend their analysis to the case where equidistance is not 

assumed, borrowing ideas from Veenhoven (2009). However, once equidistance is dropped, one 

is back in the world of all possible scales respecting the order of the categories, hence concerns for 

robustness to alternative arbitrary scales re-emerge, but without any attempt at attenuating them 
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through restrictions on the admissible set of scales, as done in the poverty and welfare analysis 

(presented in the previous sections).  

 

Giudici and Raffinetti (2011) suggested drawing a rank-related Lorenz curve where the 

coordinates of the horizontal axis are given by the ordered elements of 𝑷. Meanwhile for the 

vertical axis they propose a rank 𝑟𝑖 for each category 𝑖 as follows: 𝑟1 = 1, 𝑟𝑖 = (𝑟𝑖−1 + 𝑛𝑖−1) ∀𝑖 =2 , … , C. Then they propose computing the share of the bottom 𝑘 categories in the total “rank sum”, 

that is: 𝑠𝑘 = ∑ 𝑟𝑖𝑛𝑖𝑘𝑖=1∑ 𝑟𝑖𝑛𝑖𝐶𝑖=1 . Therefore, the coordinates of the rank-based Lorenz curve are (𝑃𝑖 , 𝑠𝑖) for all 𝑖 = 1, … , 𝐶. Finally, they propose computing a Gini-style index equal to twice the area between 

the rank-based Lorenz curve and the 45-degree diagonal line (with coordinates (𝑃𝑖 , 𝑃𝑖)). No major 

discussion of properties satisfied by this Gini index is provided, though the Gini is expected to be 

0 when the distribution is egalitarian.  

 

Lv et al. (2015) provide the first attempt at connecting a measure of inequality based on an 

aggregation of rank distances with some property reflecting sensitivity to a particular inequality-

altering transformation. Moreover, they accomplished an axiomatic characterisation, perhaps the 

only one for inequality measures based on rank distances. Their class of categorical rank-based 

indices encompasses those proposed by Berry and Mielke (1992) as well as Kalmjin and Arends 

(2010) as specific cases.  

 

Lv et al. (2015) consider, firstly, a weak normalisation axiom whereby 𝐼(𝒑 ∈ 𝔼𝐶) = 0. Secondly, 

they also take into account the aversion to median-preserving spreads. Thirdly, they consider a 

technical axiom of additivity that renders the index a sum of all possible individual pairwise rank 

inequalities (e.g. one person within category “1” against another one in category “3”, etc.). 

Fourthly, they add independence, which is another technical axiom aimed at rendering the 

inequality index a linear function of the relative frequencies. Specifically, independence states that 

a change in a pairwise rank inequality element due to a change in the relative frequency of one of 

the two categories involved in the comparison should be independent from the level of that 

frequency. Finally, they use “invariance to parallel shifts” which works a bit like the translation 

invariance axiom in inequality measurement for quantitative data and states that adding constants 
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to the ranks should not alter the inequality assessment. This latter axiom is interesting in the sense 

that it identifies a set of permissible ranks. Any choice of ranking system among them does not 

alter the inequality assessment.      

 

Armed with the aforementioned axioms, Lv et al. (2015) characterise the following class: 

 𝐼𝐿𝑊𝑋(𝒑) = ∑ ∑ 𝑔(|𝑖 − 𝑗|)𝑝𝑖𝑝𝑗𝐶𝑗≠𝑖𝐶𝑖=1 ,   (9) 

 

where 𝑔(. ) is an increasing function. Note that these indices can be applied to distributions without 

common quantiles. Though as in previous contributions, it is not clear which inequality-altering 

transformations affect the index when distributions do not share quantiles. Otherwise, Lv et al. 

(2015) do show, as part of their axiomatic characterisation, that 𝐼𝐿𝑊𝑋  satisfies aversion to median-

preserving spreads.  

 

Two particular examples of 𝐼𝐿𝑊𝑋  proposed by the authors include 𝐼𝐾𝐴(. ,1), namely the Gini-style 

aggregator of absolute rank distances; and one based on the exponential function 𝑔(|𝑖 − 𝑗|) =2𝜓𝐶−1−|𝑖−𝑗|, where 0 < 𝜓 < 1.   

 

4.4. Quantile and median-preserving spreads: explicit quantiles  

 

Abul Naga and Yalcin (2008) were the first to propose alternative indices of inequality for ordinal 

variables which, in addition to their aversion to quantile-preserving spreads, were invariant to 

alternative scales. The key, they found, was to make the index dependent on the elements of the 

ordered multinomial distribution. In other words, scales need to be ditched altogether. In our 

notation and generalised presentation for any 𝛼 quantile, the class axiomatically characterised by 

Abul Naga and Yalcin (2008) looks like this: 

 𝐼𝐴𝑌(𝑷) = 𝜙(𝑷)−𝜙(𝑷|𝒑∈𝔼𝐶)𝜙(𝑷|𝒑=𝒊𝑪)−𝜙(𝑷|𝒑∈𝔼𝐶)  , (10) 

 



23 

 

where 𝜙 is increasing in all 𝑃𝑖 such that 𝑖 < 𝑚𝛼 and decreasing in all 𝑃𝑖 such that 𝑖 ≥ 𝑚𝛼. Such 

curvature guarantees the satisfaction of the aversion/transfers axiom. Meanwhile the subtracted 

element in the numerator alongside the denominator ensure fulfilment of the normalisation axiom. 

The class 𝐼𝐴𝑌 also satisfies the standard property of continuity and, chiefly, is completely 

independent from any scale. Abul Naga and Yalcin (2008) provided a subclass example of (10) 

which proved quite popular in the literature based on two parameters, which is presented here in a 

generalised form for all possible 𝛼 quantiles: 

 𝐼𝐴𝑌(𝑷; 𝛼, 𝛽, 𝛾) = ∑ (𝑃𝑖)𝛾𝑖<𝑚𝛼 −∑ (𝑃𝑖)𝑖≥𝑚𝛼 +(𝐶+1−𝑚𝛼)𝑘𝛾,+(𝐶+1−𝑚𝛼)    ,                                 (11) 

where: 𝑘𝛾, =(𝑚𝛼 − 1) (12)𝛾 − [1 + (𝐶 − 𝑚𝛼) (12)]                                               (12) 

 

Notably, when 𝛼 = 0.5 and 𝛾 =  = 1 in (14) and (15) one obtains a symmetric index, meaning 

that equal deviations from 0.5 below and above the median render the value of the inequality index 

unaltered: 

 𝐼𝐴𝑌(𝑷; 0.5,1,1) = 1 − 1𝐶−1 [2 ∑ |𝑃𝑖 − 0.5|𝐶𝑖=1 − 1]  (13) 

 

Otherwise, when 𝛼 = 0.5 but 𝛾 ≠   the subclass in (15) is convenient to introduce asymmetry in 

order to get different results when deviations from 0.5 take place below or above the median. For 

example, assume that 𝛾 ≥ 1 and  ≥ 1. Then for a given value of , the index 𝐼𝐴𝑌(. ; 0.5, 𝛽, 𝛾) 

becomes more sensitive to the cumulative probability mass at the bottom of the distribution as 𝛾 →1. On the contrary, as 𝛾 → ∞ the index will ignore the dispersion below the median, Similar 

considerations hold evidently when varying 𝛽 for a given value of 𝛾. 

 

Kobus and Milos (2012) contributed an interesting refinement by examining the class of inequality 

indices that would ensue if, on top of scale independence, normalisation, and aversion to quantile-

preserving spreads, they also satisfied a property of subgroup decomposability. Fulfilment of this 

property means that the value of the inequality index in the whole population can be expressed as 

a function of inequality values in respective non-overlapping exhaustive group partitions. This is 
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particularly useful when one considers the specific case of the linear decomposition rendering the 

index a population-weighted average of the index values in group partitions. In fact, the functional 

form eventually found by Kobus and Milos (2012) in their axiomatic characterisation is any 

monotonic transformation of such linear decomposition (which obviously includes the linear 

decomposition itself as a subclass).  

Now, in its most stringent form, i.e. being independent of scales, the decomposition axiom reads 

as follows using our notation: 

Subgroup decomposability (Kobus and Milos, 2012): 𝐼(𝑡𝒑 + (𝟏 − 𝒕)𝒒) = 𝑓(𝐼(𝒑), 𝐼(𝒒), 𝑡), for 

any 𝑡 ∈ (0,1), any 𝒑, 𝒒 ∈ ℙ𝐶 and any function 𝑓: ℝ+2 × (0,1) → ℝ+ continuous and strictly 

increasing on the first two arguments.    

 

Then Kobus and Milos (2012, theorem 3 which is here generalised for all quantiles) prove that an 

inequality index for ordinal variables fulfils the axioms of continuity, normalisation, scale 

independence, aversion to quantile-preserving spreads and subgroup decomposability if and only 

if it is of the form: 

 𝐼𝐾𝑀 = 𝐺(∑ 𝑤𝑖𝑝𝑖𝐶𝑖=1 ) ,                                          (14) 

 

where 𝐺 is a strictly increasing function and 𝑤𝑖 ≥ 𝑤𝑖+1 when 𝑖 < 𝑚𝛼 and 𝑤𝑖 ≤ 𝑤𝑖+1 when 𝑖 ≥𝑚𝛼. That is, in concordance with the principle of aversion to quantile-preserving spreads, the 

inequality indices in (17) give higher weight to a category, the further away it is from the median. 

 

By way of providing useful examples in the form of linear decompositions, Kobus and Milos 

(2012) propose the following generalization of 𝐼𝐴𝑌(. ; 𝛼, 1,1) (see (10), but here it is generalised 

for all quantiles): 

 𝐼𝐾𝑀(𝑷; 𝛼, 𝑎, 𝑏) = 𝑎 ∑ 𝑃𝑖−𝑏 ∑ 𝑃𝑖+𝑏(𝐶+1−𝑚𝛼)𝑖≥𝑚𝛼𝑖<𝑚𝛼(𝑎(𝑚𝛼−1)+𝑏(𝐶−𝑚𝛼))/2  with 𝑎 ≥ 0; 𝑏 ≥ 0.                                  (15) 

 

Clearly 𝐼𝐾𝑀(𝑷; 𝛼, 1,1) =  𝐼𝐴𝑌(𝑷; 𝛼, 1,1). Finally, Kobus and Milos (2012, section 4) provide a 

useful identification of linearly decomposable indices in the literature.  
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Finally, Chakravarty and Marahaj (2015) show that one can also construct inequality indices for 

ordinal variables satisfying the median-preserving spreads axioms (when 𝛼 = 0.5) with a general 

formula like the following (which is generalised for any quantile 𝛼): 𝐼𝐶𝑀(𝑷; 𝛼) = ∑ 𝑤𝑖𝐹𝑖𝑚𝛼−1𝑖=1 + ∑ 𝑤𝑖(1 − 𝐹𝑖)𝐶−1𝑖=𝑚𝛼 ,   (16) 

where, crucially, 𝑤𝑖 > 0 for all 𝑖 = 1, … , 𝐶 − 1.  

There are many other inequality indices suitable for comparisons of distributions with common 

quantiles, i.e. satisfying the aversion-to-spreads axiom, but one will discuss them in the next sub-

sections because, conveniently, they do not require computing the quantile of interest (e.g. the 

median), therefore their formulas tend to be simpler.  

 

4.5. Quantile and median-preserving spreads: implicit quantiles 

 

The family of inequality indices discussed in this subsection can be best described by the 

commonality of what they are not. They do not rely on ranks, whether categorical or personal (see 

subsection below). They do not depend on scales. And they do not include a quantile in their 

formulas. When applied to distributions sharing quantiles these measures also satisfy the axiom of 

aversion to quantile-preserving spreads.  

Almost every single proposal in the literature of inequality indices for ordinal variables 

satisfying aversion to quantile-preserving spreads without the quantile of interest in their 

formulas can be deemed a member of just two classes.  Note that one is not considering here the 

status inequality indices proposed by Cowell and Flachaire (2017) in this typology, because they 

map from a different domain.  

 

One class was proposed by Lazar and Silber (2013), who noted that functional forms proposed by 

Reardon (2009) for the measurement of socioeconomic segregation were suitable for inequality 

measurement for ordinal variables respecting the median-preserving spreads partial ordering. The 

general functional form is the following: 𝐼𝐿𝑆(𝒑) = ( 1𝐶−1) ∑ 𝑓(𝑃𝑖)𝐶−1𝑖=1   (17) 

where 𝑓: [0,1] → [0,1] is a continuous function, such that 𝑓(0) = 𝑓(1) = 0, 𝑓(𝑃𝑖) is increasing 

for 𝑃𝑖 ∈ [0,0.5] and then decreasing for 𝑃𝑖 ∈ [0.5,1]. Hence 𝑓(0.5) = 1 is the maximum value 

attainable. Then clearly 0 = 𝐼𝐿𝑆(𝒑 ∈ 𝔼𝐶) ≤ 𝐼𝐿𝑆(𝒑) ≤ 𝐼𝐿𝑆(𝒑 = 𝒊𝑪) = 1. That is, normalisation is 

satisfied. Moreover, the class also satisfies aversion to median-preserving spreads. Some useful 

functional examples provided by Lazar and Silber (2013) include: 𝑓2(𝑃𝑖) = 4𝑃𝑖(1 − 𝑃𝑖), 𝑓3(𝑃𝑖) =
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2√𝑃𝑖(1 − 𝑃𝑖) and 𝑓4(𝑃𝑖) = 1 − |2𝑃𝑖 − 1|. Lazar and Silber (2013) also note that 𝑓4 in equation 

(20) yields an index mentioned by Apouey (2007) and Abul Naga and Yalcin (2008). 

 

The other general class was proposed by Apouey (2007) and its general functional form can be 

represented as follows: 𝐼𝐴𝑃(𝒑, 𝛼) = 1 − 2𝐶−1 ∑ |𝑃𝑖 − 0.5|𝐶−1𝑖=1 , 𝛼 > 0,  (18) 

 

One can easily confirm that 0 = 𝐼𝐴𝑃(𝒑 ∈ 𝔼𝐶) ≤ 𝐼𝐴𝑃(𝒑) ≤ 𝐼𝐴𝑃(𝒑 = 𝒊𝑪) = 1; thereby satisfying 

normalisation. Aversion to median-preserving spreads is also satisfied. Moreover, pioneeringly, 

Apouey (2007) notes that the proposal class satisfies an axiom of increased bipolarity. In order to 

understand this property, there is a need to briefly mention the key distinction between inequality 

and bipolarisation with continuous data (Wolfson, 1994; Foster and Wolfson 2010; Wang and 

Tsui, 2002; Bossert and Schworm, 2008). In the tradition of inequality measurement based on 

majorization relationships, any rank-preserving progressive transfer (henceforth Pigou-Dalton 

transfer) should decrease inequality. Therefore, equality occurs when everyone in the population 

enjoys the same income. On the other extreme, maximum inequality requires only one person 

enjoying positive income (though the actual maximum will vary between relative, absolute and 

intermediate approaches to inequality; see Kolm, 1976).  

By contrast, the bipolarisation paradigm is interested in departures from equality that lead toward 

bimodal clustering at the expense of the “middle class”. Therefore bipolarisation approaches 
distinguish between Pigou-Dalton transfers across the median (i.e. involving a richer person above 

the median transferring income to a  poorer person below the median) and Pigou-Dalton transfers 

on one side of the median (i.e. either involving two people below the median or two people above 

the median). The former transfers are deemed to decrease bipolarisation (since mean attainments 

of both halves get closer to each other) while also decreasing inequality; whereas the latter are 

deemed to increase bipolarisation since they produce clustering within each half, even though they 

also decrease inequality. Hence even though equality reasonably coincides with the complete 

absence of bipolarisation, maximum bipolarisation with quantitative data must differ from 

maximum inequality. In fact, maximum bipolarisation requires that the bottom half has zero 

income while the latter half has the same positive income (then the actual maximum will also vary 

between relative, absolute and intermediate approaches to bipolarisation).  

Apouey (2007) was the first to implement these concepts of bipolarisation in the context of ordinal 

data. For the transformations affecting the spread between the two halves of the distributions she 

reasonably chose the median-preserving spread promoted by Allison and Foster (2004) and 

incorporated into scale-free inequality measures by Abul Naga and Yalcin (2008). Hence 



27 

 

bipolarisation measures for ordinal data ought to fulfil the axiom of aversion to median-preserving 

spreads. In order to account for increased clustering within each half she adapted the version of 

the respective axiom from Wang and Tsui (2002). Effectively, it is possible to restate this axiom 

in the form of sensitivity to rank-preserving transfers on either side of the median that resemble 

Pigou-Dalton transfers and are defined the following way: 

Simple progressive transfer on either side of the median (Apouey, 2007; Chakravarty and Maharaj, 

2015): 𝒑 is obtained from 𝒒 through a sequence of simple progressive transfers on either side of 

the median if there is a pair {𝑖, 𝑗} and probability mass 𝛿 such that 𝑖 + 1 ≤ 𝑗 − 1 < 𝑚 or 𝑚 < 𝑖 +1 ≤ 𝑗 − 1 and 𝑞𝑖+1 = 𝑝𝑖+1 + 𝛿, 𝑞𝑖 = 𝑝𝑖 − 𝛿, 𝑞𝑗−1 = 𝑝𝑗−1 + 𝛿, 𝑞𝑗 = 𝑝𝑗 − 𝛿.   

Then the following axiom can be stated:  

Increased clustering (or increased bipolarity, e.g. Apouey, 2007; Chakravarty and Maharaj, 2015; 

Sarkar and Santra, 2020): for every 𝒑, 𝒒 ∈ ℙ𝐶,𝛼, 𝐼(𝒑) ≥ 𝐼(𝒒) if 𝒑 is obtained from 𝒒 through a 

sequence of simple progressive transfers on either side of the median (but not across).   

Apouey (2007) then showed that her proposal class (21) satisfies both transfers axioms (aversion 

to median-preserving spreads and increased clustering) and other standard desirable properties. 

She also offered useful advice for the choice of 𝛼. Specifically, she suggested that if one wanted 

to locate the uniform distribution in the middle of the complete ordering, then one should solve 

the following equation for 𝛼∗ (when 𝐶 > 2): 

𝐼𝐴𝑃(𝒖𝑪, 𝛼∗) = 1 − 2∗𝐶−1 ∑ |1𝐶 − 0.5|∗𝐶−1𝑖=1 = 0.5 → 𝛼∗(𝐶) = ln 0.5  ln(1−2𝐶),  (19) 

where 𝒖𝑪 is the uniform ordered multinomial distribution, whereby: 𝑝1 = ⋯ = 𝑝𝐶 = 1𝐶. Other 

authors have proposed similar indices. For instance, Blair and Lacy (1996, 2000) implicitly 

overturned the normalisation axiom (as they were implicitly equating less inequality with high 

concentration around one single category) and suggested both 1 − 𝐼𝐴𝑃(. ,2) and its square root. 

Note that, despite satisfying bipolarisation properties, 𝐼𝐴𝑃 satisfies the same normalisation axiom 

as purported inequality indices, which suggests that the distinction between inequality and 

bipolarisation is not that crucial in the world of ordinal data. Indeed, in addition to the identity 

between equality and complete absence of bipolarisation, the situations of maximum inequality 

and maximum bipolarisation are also bound to coincide with ordinal variables, since 𝒊𝑪 also 

represents a situation of complete clustering compounded by the farthest spread possible between 

the two halves. 

This subsection concludes by noting that a subclass from the class 𝐼𝐶𝑀(. ; 0.5) of indices (equation 

16) proposed by Chakravarty and Maharaj (2015) fulfils the median-preserving spreads and 

increased-clustering axioms if and only if 𝑤𝑖+1 > 𝑤𝑖 > 0 for all 𝑖 ≤ 𝑚 − 2 and 0 < 𝑤𝑖+1 < 𝑤𝑖 
for all 𝑚 ≤ 𝑖 ≤ 𝐶 − 1 (Chakravarty and Maharaj, 2015; theorem 3). 
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4.6.Distributional comparisons without common quantiles of interest 

Though a major breakthrough, the aforementioned inequality indices based on the concept of 

quantile-preserving spreads (subsections 4.4 and 4.5) have a potential problem: it is now known a 

priori whether they are suitable for comparisons involving distributions without common 

quantiles. With quantitative data, it is always possible to implement transformations, such as 

rescaling or translations, to equalise the means of two distributions. Since certain sets of inequality 

indices and partial-ordering curves (e.g. the Lorenz curve) are insensitive to such transformations, 

one can then use them to perform inequality comparisons. Unfortunately, those transformations 

will not be able to homogenise quantiles between two distributions, because they are rank-

dependent and the ranks are not altered by alternative scales (as shown by Mendelson, 1987).  

Thankfully, Sarkar and Santra (2020) made another breakthrough in the form of proposing 

categorical transformations which homogenise the quantile of interest across distributions. Then it 

is possible to resort to the aversion to quantile-preserving spreads axiom. That is, these 

transformations play the same role as rescaling, translations, and the like in the world of 

quantitative data, and without the need to rely on arbitrary scales for categories, which is most 

remarkable. However, not all inequality measures satisfying aversion to quantile-preserving 

spreads are insensitive to the transformations proposed by Sarkar and Santra (2020) to homogenise 

the quantile of interest. Only those inequality indices which are (1) averse to quantile-preserving 

spreads and (2) insensitive to quantile-homogenising transformations are suitable for inequality 

comparisons with distributions without common quantiles based on the notion of quantile-

preserving spreads.  

This subsection first explains the two quantile-homogenising transformations proposed by Sarkar 

and Santra (2020) followed by a typology of indices in terms of their suitability for comparisons 

without common quantiles based on Sarkar and Santra (2020, Table 1).  

The first quantile-homogenising transformation is called a slide and it is used to displace a subset 

of adjacent frequencies toward an extreme if and when there are empty categories “available”. For 
instance, consider 𝒑𝟏 = (0.1,0.3,0.5,0.1,0,0). One could obtain 𝒑𝟐 = (0,0.1,0.3,0.5,0.1,0)  from 𝒑𝟏through one “slide to the right”, but also one could obtain 𝒑𝟑 = (0,0,0.1,0.3,0.5,0.1)  from 𝒑𝟏through two “slides to the right”. Formally: 

Slides (Sarkar and Santra, 2020; definition 7): Let 𝒑, 𝒒 ∈ ℙ𝐶. Then 𝒒 is obtained from 𝒑 through 𝑘 < 𝐶 slides to the right (or alternatively 𝒑 is obtained from 𝒒 through 𝑘 < 𝐶 slides to the left) if 

and only if 𝑝𝑖 = 0 for all = 𝐶 − 𝑘 + 1, … , 𝐶, 𝑞𝑖 = 0 for all 𝑖 = 1, … , 𝑘 and 𝑞𝑖 = 𝑝𝑖−𝑘  for all 𝑖 =𝑘 + 1, … , 𝐶. 

The second quantile-homogenising transformation is called “addition of unpopulated categories at 
extremities” (henceforth “additions”) and, as the name says, simply involves obtaining one 
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distribution from another one by adding any number of empty categories at either extreme of the 

categorical ordering. Formally: 

Additions (Sarkar and Santra, 2020; definition 7): One says that 𝒒 ∈ ℙ𝐶+𝑘 is obtained from 𝒑 ∈ℙ𝐶  by adding 𝑘 empty categories to the right (left) if and only if 𝒒 = (𝒑, 0𝑘) ((0𝑘, 𝒑)). 

Then, Sarkar and Santra (2020) show that different combinations of slides and additions can 

homogenise medians (and potentially other quantiles). In some cases, only slides may be needed, 

in others only additions, and in a third kind a specific combination thereof will be required. For 

example (Sarkar and Santra, 2020, p. 10), consider 𝒑 = (0,0.1,0.2,0.1,0.2,0.2,0.2) with 𝑚𝑝 = 5 

and 𝒒 = (0.2,0.4,0.3,0.1,0,0,0) with 𝑚𝑞 = 2. If we slide 𝒑 once toward the left and q twice toward 

the right then we end up with 𝒑′ = (0.1,0.2,0.1,0.2,0.2,0.2,0)  and 𝒒′ = (0,0,0.2,0.4,0.3,0.1,0), 

both with 𝑚′ = 4.  
Often there will not be empty categories to start with. In those cases one needs to perform additions 

before resorting to slides. For instance, consider 𝒑 = (0.4,0.05,0.25,0.2,0.1) with 𝑚𝑝 = 3 and 𝒒 = (0.1,0.2,0.15,0.25,0.3) with 𝑚𝑞 = 4 (p. 11). Then if one adds to both distributions one empty 

category to the left and then slides just 𝒒 one category to the right, one will end up with: 𝒑′ =(0,0.4,0.05,0.25,0.2,0.1) and 𝒒′ = (0.1,0.2,0.15,0.25,0.3,0), both with 𝑚𝑝 = 4. 

Hence, once one obtained the median-homogenised distributions, one should be able to make 

comparisons with any indices which, in addition to fulfilling the spread axioms (and any other 

bipolarisation-related axiom if making bipolarisation comparisons), are insensitive to both slides 

and additions. Sarkar and Santra (2020, table 1) show that 𝐼𝐴𝑃(. , 𝛼) and  𝐼𝐶𝑀(. ; 𝛼) for all 𝛼, as 

well as 𝐼𝐿𝑆(. ) for all the functional forms proposed by Reardon (2009), and an extension by Lazar 

and Silber (2013) of a class of indices proposed by Abul Naga and Yalcin (2008), all satisfy the 

required insensitivities and are, therefore, suitable for comparisons of distributions without 

common medians, after the appropriate slide and/or addition transformations. Meanwhile, 𝐼𝐴𝑌(. ; 𝛼, 𝛽 = 𝛾) and 𝐼𝐾𝑀(. ; 𝛼, 𝑎 = 𝑏) are also suitable (note the parametric restrictions involved).  

Sarkar and Santra (2020, table 1) also provided a helpful taxonomy differentiating between pure 

inequality indices (i.e. those satisfying only the spreads axiom) and bipolarisation axioms (i.e. 

those satisfying both the aversion to spreads and increased-clustering axioms). For instance, 

among the indices reviewed above, only 𝐼𝐴𝑃(. , 0.5) and 𝐼𝐴𝑌(. ; 0.5, 𝛾 > 1, 𝛽 > 1), and 𝐼𝐶𝑀(. ; 0.5) 

when 𝑤𝑖+1 > 𝑤𝑖 > 0 for all 𝑖 ≤ 𝑚 − 2 and 0 < 𝑤𝑖+1 < 𝑤𝑖 for all 𝑚 ≤ 𝑖 ≤ 𝐶 − 1, are proper 

bipolarisation indices. The extensions (not reviewed here) by Lazar and Silber (2013) of a class of 

indices proposed by Abul Naga and Yalcin (2008) also need a parametric restriction in order to 

operate as a bipolarisation index.  

 

4.7.Individual rank-based measures. 
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Cowell and Flachaire (2017) provide an ingenious alternative solution to the problem of 

performing inequality comparisons without common quantiles, which also serves as an appealing 

alternative to the controversial cardinalisation involved in assigning natural numbers to the 

categories’ ranks. Their key ingredient is a notion of personal status which they operationalise, 

after a careful discussion, in four possible ways: (1) peer-inclusive downward-looking status which 

takes the form of the proportion of people in the same category or worse, i.e. associated to the 

cumulative relative frequency of the person’s category ; (2) peer-exclusive downward-looking 

status which is the proportion of people in any worse category; (3) peer-inclusive upward-looking 

status which is measured by the proportion of people in the same category or better, i.e. associated 

to the survival frequency of the person’s category; (4) peer-exclusive upward-looking status which 

is the proportion of people in any better category.  

 

Then they propose measuring inequality in ordinal data as the level of dispersion in personal status. 

This means that their inequality indices map from a set of dimension 𝑛; i.e.  𝐼: [0,1]𝑛 → ℝ. For 

that purpose, the second key ingredient is the reference point determining the equality situation 

and around which dispersion manifests. For peer-inclusive statuses (whether upward-looking or 

downward-looking) Cowell and Flachaire (2017) convincingly propose using the value 1 as the 

reference point, since only when everyone is in the same category, personal status is equal to 1; 

that is, everyone is in the same category or worse (in the case of downward-looking status), or 

everyone is in the same category of better (in the case of upward-looking status), from everyone’s 

“point of view” at the same time. Likewise, for peer-exclusive status, the authors sensibly propose 

using 0 as the reference point; since only when everyone is in the same category it is the case that 

nobody is in a worse category (in the case of downward-looking status) or in a better category (in 

the case of upward-looking status). Hence everyone’s peer-exclusive status must be 0 in that 

situation.  

 

The class of status-inequality measures proposed by Cowell and Flachaire (2017) is axiomatically 

characterised using five axioms: (1) a traditional continuity axiom (so that small changes in 

personal status do not generate major changes in the inequality measure); (2) a traditional 

anonymity axiom (whereby only the status information matters, so the inequality assessment is not 
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altered if two individuals swap categories); (3) a typical technical property of independence (to 

render the inequality index a function of a sum of functions of status); (4) scale invariance (which 

is meant to render inequality comparisons unaltered when all statuses are rescaled by the same 

scalar); and (5) monotonicity in distance (whereby changes in status that increase the distance 

between the status and the reference point should increase inequality). 

 

Note that the inequality-increasing transformation is provided by the latter axiom of monotonicity 

in distance. This is one of the few alternatives to quantile-preserving spreads in the literature, as 

far as inequality-altering properties go. Among its merits, it can be meaningfully applied to 

distributional comparisons without common quantiles. Also, interestingly, the five axioms imply 

weak normalisation, meaning that the indices in the class are bound to be equal to 0 if and only if 

all statuses are equal to the reference point. The characterised class bears striking similarities to 

the generalised-entropy class of inequality measures for quantitative data, which in turn can be 

represented as Atkinson inequality indices. For the case of downward-looking peer-inclusive status 

the axiomatically characterised class is the following: 

 𝐼𝐶𝐹(𝒑; 𝛼) = 1𝛼(1−𝛼) [∑ 𝑝𝑖(𝑃𝑖)𝛼𝐶𝑖=1 − 1] , for 𝛼 ∈ (−∞, 1)/{0},  (20) 𝐼𝐶𝐹(𝒑; 0) = − ∑ 𝑝𝑖 log 𝑃𝑖𝐶𝑖=1  ,  (21) 

 

where one should note that for every category 𝑖 there are bound to be 𝑝𝑖 people all sharing the 

same status 𝑃𝑖 (hence expressions like ∑ 𝑝𝑖(𝑃𝑖)𝛼𝐶𝑖=1  or ∑ 𝑝𝑖 log 𝑃𝑖𝐶𝑖=1  in the formulas). The 

parameter 𝛼 is reasonably restricted to be strictly lower than 1 in order to rule out negative values 

for 𝐼𝐶𝐹. For upward-looking peer-inclusive status, 𝑃𝑖 needs to be replaced by 𝑆𝑖 ≡ ∑ 𝑝𝑗𝐶𝑗=𝑖  in 

equations (20) and (21). For downward-looking peer-exclusive status 𝑃𝑖 needs to be replaced by 𝑃𝑖 − 𝑝𝑖 in equations (20) and (21) and “−1” needs to be deleted in equation (20). Finally, for 

upward-looking peer-exclusive status 𝑃𝑖 needs to be replaced by 𝑆𝑖 − 𝑝𝑖  in equations (20) and (21) 

and, again, “−1” needs to be deleted in equation (20).  

 

On the significantly plus side, inequality measurement for ordinal variables based on personal 

status is intuitively appealing and enables comparisons of distributions without common quantiles. 
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On the other hand, the rankings generated by status-inequality measures may not be robust to 

alternative choices among the four possible ways of representing status with cumulative 

frequencies.    

 

4.8. Partial orderings  

As in the cases of poverty and welfare comparisons, one is entitled to ask whether certain 

inequality comparisons are robust to alternative choices of indices among those capturing the same 

notion of inequality and satisfying the same set of desirable properties. Our review of the main 

inequality partial orderings for ordinal variables in this subsection roughly follows the typology of 

inequality indices discussed in the previous subsections. 

 

4.8.1. Lorenz curves in the face of arbitrary scales 

As mentioned previously, Mendelson (1987) showed that, if one is going to compare ordered 

multinomial distributions using scales respecting the order of the categories, then first-order 

stochastic dominance of 𝒑 over 𝒒 for all admissible scales holds if and only if second-order 

dominance (i.e. generalised-Lorenz dominance) holds for all possible scales. Zheng (2008) 

extended this analysis to the assessment of Lorenz and absolute-Lorenz dominance, and concluded 

that neither ever holds across all admissible scales. The message is stark but intuitive: when one 

considers inequality partial orderings which ought to be robust to all admissible alternative scales, 

Lorenz and absolute Lorenz (and surely also intermediate Lorenz) curves have “no applicability 
in ranking inequality” (Zheng, 2008, p. 177).    

 

4.8.2. Categorical rank-based measures 

The vast majority of categorical rank-based measures are some specific case or subclass of the 

class 𝐼𝐿𝑊𝑋(𝒑) = ∑ ∑ 𝑔(|𝑖 − 𝑗|)𝑝𝑖𝑝𝑗𝐶𝑗≠𝑖𝐶𝑖=1  in (21) axiomatically characterised by Lv et al. (2015). 

Since many functional forms for 𝑔(. ) satisfying desirable properties are possible, Yalonetzky 

(2016) set out to derive a stochastic-dominance condition whose fulfilment would guarantee the 

robustness of an inequality comparison to all those possible choices pertaining to 𝑔(. ). Yalonetzky 

(2016), from the intuitive notion of the probability of finding two people in the population 

exhibiting an absolute gap in the ranks of their categories of exactly 𝛿 = |𝑖 − 𝑗|, where 𝛿 ∈{0, … , 𝐶 − 1}, showed that this probability is given by: 𝜋(𝒑, 𝛿) = ∑ 𝑝(𝑖)𝑝(𝑖 + 𝛿)𝐶−1𝑖=1 , 𝛿 = 0,1, … , 𝐶 − 1 (22) 
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Now consider the following accumulation of 𝜋: Π(𝒑, 𝛿) = 𝜋(0) + 2 ∑ 𝜋(𝑖)𝛿𝑖=1 , 𝛿 = 0, … , 𝐶 − 1. 
Then the dominance condition reads as follows: 

First-order stochastic dominance for measures of categorical-rank inequality (Yalonetzky, 2016, 

proposition 1): For any 𝒑, 𝒒 ∈ ℙ𝐶, 𝐼(𝒑) > 𝐼(𝒒) for all 𝐼 ∈ 𝐼𝐿𝑊𝑋  if and only if Π(𝒑, 𝛿) ≤ Π(𝒒, 𝛿) 

for all 𝛿 = 0,1, … , 𝐶 − 1, with at least one strict inequality.   

Intuitively, the population with a lower proportion of pairs of people with more similar categories 

will be robustly ranked more unequal than a population with a higher proportion of pairs of people 

with less dissimilar categories. 

 

4.8.3. Individual rank-based measures. 

Jenkins (2020) derived a partial ordering which is respected by all measures of inequality based 

on peer-inclusive downward-looking status proposed by Cowell and Flachaire (2017). The partial-

ordering is based on generalised Lorenz curves (Shorrocks, 1983) mapping percentiles of the 

ordered multinomial distribution onto cumulative sums of individual statuses measured by peer-

inclusive cumulative frequencies and ordered from lowest to highest. Formally and in our notation: 𝐺𝐿(𝒑; 𝑘) = ∑ 𝑝𝑖𝐹𝑖𝑐−1𝑖=1 + (𝑘 − 𝐹𝑐−1)𝐹𝑐 , 𝑘 ∈ [0,1], 𝑐 = arg max 𝐹𝑐−1  𝑠. 𝑡.  𝐹𝑐−1 < 𝑘 ≤ 𝐹𝑐   (23) 

Clearly, 𝐺𝐿(𝒑; 𝑘) ≤ 𝐺𝐿(𝒑 ∈ 𝔼𝐶; 𝑘) = 𝑘 for all 𝑘 ∈ [0,1]. That is, the generalised Lorenz curve 

maximises its height for any point in its domain only when evaluated at any equality distribution. 

Then Jenkins (2020) crucially proves (in our notation): 

Stochastic dominance for status inequality comparisons (Jenkins 2020, Result 2):  𝐼(𝒑) ≤ 𝐼(𝒒) for 

any inequality index 𝐼 that is a decreasing convex function of individual status (as measured by 

cumulative relative frequency of the individual’s category) if and only if  𝐺𝐿(𝒑; 𝑘) ≥ 𝐺𝐿(𝒒; 𝑘) for 

all 𝑘 ∈ [0,1].  
That is, if the generalised Lorenz curve of 𝒑 is never below that of 𝒒, then 𝒑 is unambiguously less 

unequal than 𝒒 for any measure of inequality in peer-inclusive downward-looking status 

operationalised by cumulative relative frequencies (including, of course, the class axiomatically 

characterised by Cowell and Flachaire 2017).  

As Jenkins (2020) points out, readers should be forgiven for being surprised at seeing the 

generalised-Lorenz curve involved in robust inequality comparisons, since these curves are more 

appropriate for dispersion-sensitive welfare assessments when dealing with quantitative data (as 

opposed to pure inequality assessments when the means differ). One explanation (slightly different 

from the author’s) for this seemingly odd result is that with status variables one does not really 

have a mean that may or may not vary across compared distributions. Instead one has a constant 



34 

 

reference point across distributions (either 1 or 0). This is akin to comparing distributions with the 

same mean, in which case the generalised-Lorenz curve suffices.   

Jenkins (2020) also attains two interesting corollaries. First, he shows that  𝐺𝐿(𝒖𝒄; 𝑘) ≤ 𝐺𝐿(𝒊; 𝑘) 

for all 𝑘 ∈ [0,1]. That is, in status inequality comparisons, the maximum-bipolarisation 

distribution (where half of the population is in the bottom category and the other half is in the top) 

does not represent the situation of maximum inequality, since the uniform distribution attains an 

even lower generalised Lorenz curve. Secondly, he shows that the uniform distribution does not 

represent maximum inequality either, because any distribution obtained from the uniform 

distribution with a single transfer of people between two categories will have a generalised Lorenz 

curve which crosses that of the uniform distribution.  

 

3.8.4 Quantile-preserving spreads and bipolarisation with common quantiles.  

The first partial ordering for comparisons sensitive to quantile-preserving spreads was proposed 

by Mendelson (1987), who, as was previously mentioned, was interested in the robustness of 

partial orderings to alternative scales respecting the order of the categories. In our notation and 

interpretation, Mendelson’s partial ordering works as follows: 

Quantile-preserving spreads partial ordering (Mendelson, 1987, theorem 3.1): Let 𝑆𝐶  be any 

collection of 𝐶 numbers such that  𝑠1 < 𝑠2 < ⋯ < 𝑠𝐶 , and define the expected value 𝜇(𝒑, 𝑔(𝑆𝑐)) = ∑ 𝑝𝑖𝑔(𝑠𝑖)𝐶𝑖=1 . Let 𝒑, 𝒒 ∈ ℙ𝐶,𝑚𝛼 , for some 𝛼 ∈ (0,1). Then the following statements 

are equivalent: 

(1) 𝑃𝑖 ≤ 𝑄𝑖 for all 𝑖 < 𝑚𝛼 and 𝑃𝑖 ≥ 𝑄𝑖 for all 𝑖 ≥ 𝑚𝛼. 

(2) 𝜇(𝒑, 𝑔(𝑆𝑐)) ≤ 𝜇(𝒒, 𝑔(𝑆𝑐)) for all 𝑔(. ) non-increasing in 𝑠𝑖 ≤ 𝑠𝑚𝛼  and non-decreasing in 𝑠𝑖 ≥ 𝑠𝑚𝛼 . 
There is a third equivalent statement related to a data-generating-process argument, but it is 

omitted here as it does not add much to the discussion. 

Clearly, 𝜇(. , 𝑔(. )) acts as an inequality index when 𝑔(. ) is asked to behave as in the second 

statement, placing more weight on the values away from the common quantile. The first statement 

is the classic distributional condition for quantile-preserving spreads. A more useful restatement 

of the quantile-preserving spread partial ordering was provide by Kobus (2015) who, focusing on 

median-preserving spreads partial orderings, concocted a three-statement theorem linking the 

above statement (1) from Mendelson’s theorem 3.1 with median-preserving spreads and with 

inequality indices evaluated at the elements of the ordered multinomial distribution without need 

to rely on arbitrary scales. Here a generalised version of Kobus’ theorem 1 for 𝛼-quantiles is 

presented: 
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Quantile-preserving spreads partial ordering (Kobus, 2015, definitions 1,2,3 and theorem 1, 

generalised): Let 𝒑, 𝒒 ∈ ℙ𝐶,𝑚𝛼 , for some 𝛼 ∈ (0,1). Then the following statements are equivalent: 

(1) 𝑃𝑖 ≤ 𝑄𝑖 for all 𝑖 < 𝑚𝛼 and 𝑃𝑖 ≥ 𝑄𝑖 for all 𝑖 ≥ 𝑚𝛼. 

(2) 𝐼(𝒑) ≤ 𝐼(𝒒) for any inequality index 𝐼 satisfying aversion to 𝛼-quantile-preserving 

spreads. 

(3) 𝒒 can be obtained from 𝒑 through a sequence of 𝛼-quantile-preserving spreads (see 

definition above).  

This is a very useful results because statement (1) is a relatively easy testable condition and its 

implications are fleshed out in statement (2): fulfilment of condition (1) is necessary and sufficient 

to guarantee the robustness of an inequality comparisons between any two distributions sharing a 

particular 𝛼-quantile to all possible inequality indices satisfying the key property of aversion to 𝛼-

quantile-preserving spreads.  

When the median is chosen, i.e. 𝑚 = 𝑚0.5, one can also identify the bipolarisation partial ordering 

for distributions with common median:   

Bipolarisation partial ordering (Sarkar and Santra 2020, theorem 1): Let 𝒑, 𝒒 ∈ ℙ𝐶,𝑚. Then the 

following statements are equivalent: 

(1) ∑ 𝑃𝑘𝑖=1 𝑚−𝑖 ≤ ∑ 𝑄𝑘𝑖=1 𝑚−𝑖 for every 𝑘 = 1, … , 𝑚 − 1 and ∑ 𝑃𝑘𝑖=𝑚 𝑖 ≥ ∑ 𝑄𝑘𝑖=𝑚 𝑖 for every 𝑘 =𝑚, … , 𝐶 − 1.  

(2) 𝐼(𝒑) ≤ 𝐼(𝒒) for any inequality index 𝐼 satisfying aversion to median-preserving spreads 

and increased clustering. 

(3) 𝒒 can be obtained from 𝒑 through a sequence of median-preserving spreads and/or simple 

progressive transfers on either side of the median (see definitions above).  

 

3.8.5 Bipolarisation and median-preserving spreads without common quantiles  

In previous discussion it was shown how Sarkar and Santra (2020) proved that inequality 

comparisons without common quantiles are still possible if the distribution’s quantile of interest is 
homogenised using combinations of slides and “additions”, followed by the application of 

inequality indices which are insensitive to those homogenising transformations. Likewise, Sarkar 

and Santra (2020) showed that comparisons are possible with partial orderings applying specific 

combinations of these homogenising transformations. More specifically, the authors attain two 

“possibility” results and one “impossibility” result. One presents them starting with the good news: 

Bipolarisation partial ordering with exclusive resort to slides (Sarkar and Santra 2020, theorem 3): 

Let 𝒑 ∈ ℙ𝐶,𝑚+𝑘 , 𝒒 ∈ ℙ𝐶,𝑚 and 𝑘 ∈ {1, … , 𝐶 − 𝑚}. If 𝒑′, 𝒒′ ∈ ℙ𝐶,𝑚′ are obtained from 𝒑 and 𝒒  

respectively, in the first case by 𝑘1 slides to the left and in the second case by 𝑘2 slides to the right 

such that 𝑘1 + 𝑘2 = 𝑘. Then the following conditions hold: 
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(1) 𝑃𝑖′ ≤ 𝑄𝑖′ for all 𝑖 < 𝑚′ and 𝑃𝑖′ ≥ 𝑄𝑖′ for all 𝑖 ≥ 𝑚′ if and only if 𝐼(𝒑′) ≤ 𝐼(𝒒′) for any 

inequality index 𝐼 satisfying aversion to median-preserving spreads and insensitivity to 

slides.  

(2) ∑ 𝑃𝑡𝑖=1 𝑚−𝑖 ≤ ∑ 𝑄𝑡𝑖=1 𝑚−𝑖 for every 𝑡 = 1, … , 𝑚 − 1 and ∑ 𝑃𝑡𝑖=𝑚 𝑖 ≥ ∑ 𝑄𝑡𝑖=𝑚 𝑖 for every 𝑡 =𝑚, … , 𝐶 − 1 if and only if 𝐼(𝒑) ≤ 𝐼(𝒒) for any inequality index 𝐼 satisfying aversion to 

median-preserving spreads, increased clustering and insensitivity to slides. 

Theorem 3 essentially states that both inequality and bipolarisation partial orderings are feasible 

after median homogenisations when the latter are based solely on slides. Naturally, these partial 

orderings ensure robustness only among classes of inequality or bipolarisation indices which are 

insensitive to slides.  

Bipolarisation partial ordering with additions to both distributions and slide to one distribution 

(Sarkar and Santra 2020, theorem 4): Let 𝒑 ∈ ℙ𝐶,𝑚+𝑘 , 𝒒 ∈ ℙ𝐶,𝑚 and 𝑘 ∈ {1, … , 𝐶 − 𝑚} such that 

slides without additions cannot homogenise the median. If 𝒑′, 𝒒′ ∈ ℙ𝐶+𝑘,𝑚′ are obtained from 𝒑 

and 𝒒  respectively, in the first case by adding 𝑘 empty categories to the left followed by 𝑘 slides 

to the left and in the second case by only adding 𝑘 empty categories to the left. Then the following 

conditions hold:  

(1) ∑ 𝑃𝑡𝑖=1 𝑚−𝑖 ≤ ∑ 𝑄𝑡𝑖=1 𝑚−𝑖 for every 𝑡 = 1, … , 𝑚 − 1 and ∑ 𝑃𝑡𝑖=𝑚 𝑖 ≥ ∑ 𝑄𝑡𝑖=𝑚 𝑖 for every 𝑡 =𝑚, … , 𝐶 − 1 if and only if 𝐼(𝒑) ≤ 𝐼(𝒒) for any inequality index 𝐼 satisfying aversion to 

median-preserving spreads, increased clustering, insensitivity to slides and insensitivity to 

additions of empty categories. 

Theorem 4 essentially states that only bipolarisation partial orderings are feasible after median 

homogenisations when the latter are based solely on additions in the case of one distribution and 

a combination of slides and equal additions in the other distribution. Naturally, these partial 

orderings ensure robustness only among classes of bipolarisation indices which are insensitive to 

both slides and additions. 

Finally, Sarkar and Santra (2020) also identify an “impossibility result”: 

Impossibility of median-preserving-spread partial ordering with additions to both distributions and 

slide to one distribution (Sarkar and Santra 2020, theorem 2): Let 𝒑 ∈ ℙ𝐶,𝑚+𝑘 , 𝒒 ∈ ℙ𝐶,𝑚 and 𝑘 ∈{1, … , 𝐶 − 𝑚} such that slides without additions cannot homogenise the median. If 𝒑′, 𝒒′ ∈ℙ𝐶+𝑘,𝑚′ are obtained from 𝒑 and 𝒒  respectively, in the first case by adding  𝑘 empty categories to 

the left followed by 𝑘 slides to the left and in the second case by only adding 𝑘 empty categories 

to the left. Then 𝒑′, 𝒒′ ∈ ℙ𝐶+𝑘,𝑚′ cannot be ordered by the median-preserving spread partial 

ordering. 

In a nutshell, combinations of additions and slides may homogenise the median and enable 

bipolarisation partial orderings, but they will never enable median-preserving spread partial 
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orderings. As explained by Sarkar and Santra (2020, figure 1), this happens because one can obtain  𝒒′ from 𝒑′ (in theorem 2) through a combination of median-preserving spreads and median-

preserving clusterings around the median (i.e. the opposite of spreads).  

 

3.8.6 Hammond inequality partial orderings  

 

This review ends with a brief discussion of the approach proposed by Gravel et al. (2020) for 

robust inequality comparisons with ordinal data based on their concept of Hammond transfers. As 

mentioned previously, Hammond transfers in the context of ordered categorical variables are rank-

preserving movements of pairs of people that render them closer to each other. Crucially, the two 

people involved do not need to transit the same number of categories. The only thing that matters 

is that, besides being closer to each other after the movements, they do not swap ranks.   

 

Gravel et al. (2020) consider the class of weighted sum of relative frequencies discussed in 

equation (3) and repurpose it for inequality measurement based on sensitivity to Hammond 

transfers. Let 𝐼𝐺𝑀𝑀(𝒑) = ∑ 𝑤𝑖𝑝𝑖𝐶𝑖=1 . Then Gravel et al. (2020, proposition 5) show that 𝐼𝐺𝑀𝑀 is 

an equality index increasing in the event of Hammond transfers if and only if there exists 𝑡 ∈{1, … , 𝐶} such that 𝑤𝑖+1 − 𝑤𝑖 ≥ 𝑤𝑡 − 𝑤𝑖+1 for all 𝑖 ∈ {1, … , 𝑡 − 1} (if any) and 𝑤𝑗+1 − 𝑤𝑗 ≤ 𝑤𝑗 −𝑤𝑡 for all 𝑗 ∈ {𝑡, … , 𝐶 − 1} (if any). Note the concavity involved.  

 

It is actually possible to transform  𝐼𝐺𝑀𝑀 into a proper inequality index decreasing in the event of 

the Hammond transfers if one states that there exists 𝑡 ∈ {1, … , 𝐶} such that 𝑤𝑖 − 𝑤𝑖+1 ≥ 𝑤𝑖+1 −𝑤𝑡 for all 𝑖 ∈ {1, … , 𝑡 − 1} (if any) and 𝑤𝑗 − 𝑤𝑡 ≤ 𝑤𝑗+1 − 𝑤𝑗 for all 𝑗 ∈ {𝑡, … , 𝐶 − 1} (if any). 

Note the convexity involved and that there is no need to have common quantiles in an inequality 

comparison using this criterion.  

 

Though Grave et al (2020) do not discuss specific choices for  𝐼𝐺𝑀𝑀, they do provide a useful 

three-part theorem stating what one could call the Hammond inequality partial ordering (which 

one has tweaked in order to work with proper inequality indices):  
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Hammond inequality partial ordering (Gravel et al. 2020, theorem 5, tweaked): Let 𝒑, 𝒒 ∈ ℙ𝐶 and 𝐼𝐺𝑀𝑀(𝒑) = ∑ 𝑤𝑖𝑝𝑖𝐶𝑖=1 . Then the following statements are equivalent: 

(1) 𝒑 is obtained from 𝒒 through a sequence of Hammond transfers.  

(2) 𝐼𝐺𝑀𝑀(𝒑) ≤ 𝐼𝐺𝑀𝑀(𝒑) for all 𝐼𝐺𝑀𝑀 characterised by the existence of some 𝑡 ∈ {1, … , 𝐶} 

such that 𝑤𝑖 − 𝑤𝑖+1 ≥ 𝑤𝑖+1 − 𝑤𝑡  for all 𝑖 ∈ {1, … , 𝑡 − 1} (if any) and 𝑤𝑗 − 𝑤𝑡 ≤ 𝑤𝑗+1 −𝑤𝑗 for all 𝑗 ∈ {𝑡, … , 𝐶 − 1} (if any). 

(3) ∑ 2𝑘−𝑖[𝑝𝑖 − 𝑞𝑖] ≤ 0𝑘𝑖=1  and ∑ 2𝑖−𝑘−1[𝑝𝑖 − 𝑞𝑖] ≤ 0𝐶𝑖=𝑘+1  for all 𝑘 = 1, … , 𝐶 − 1. 

 

The third statement provides the stochastic-dominance condition that can be tested statistically 

(also called implementation criteria by Gravel et al., 2020). Its fulfilment guarantees the robustness 

of the inequality comparison to any alternative choice of Hammond-transfer-sensitive inequality 

index satisfying the parametric restrictions laid out in the second statement.    

 

Summary 

 

This chapter provided a brief review of the key recent contributions to the measurement of poverty, 

welfare, and inequality with ordinal variables. A common theme in all these proposals is the way 

they seek to answer the challenge posed by the lack of commensurability in the distances between 

the ordered categories.  

 

It was shown that, when measuring poverty (except when merely using headcounts) and welfare 

one ends up using scales despite the inherent arbitrariness. The same happens with inequality 

measurement based on categorical ranks. At least one tried to restrict and inform the choice of 

scales through the imposition of desirable properties. Also, in the case of inequality measurement 

with categorical ranks, only the most intuitive ranks were admitted (e.g. equally spaced natural 

numbers from one until the total number of categories).  While a difficult compromise, this 

problem is less serious in partial orderings where it is expected that a pairwise comparison is robust 

to all possible admissible scales within a class delimited by the aforementioned axioms. However, 

as is well known, by definition partial orderings are limited in their ability to compare all possible 

pairs of distributions. Moreover, while they will tell us whether some distribution is robustly better 

than another one (in terms of lower poverty, higher welfare or less inequality); partial orderings 
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will not provide any measure of the gap (in poverty, welfare, or inequality) since the latter requires 

a cardinal measure.   

 

Unlike poverty and welfare measurement, the literature does offer proposals for inequality 

measurement with ordinal variables sparing the need to resort to arbitrary scaling. In those cases, 

the recommendation is not to work with scales if they can be dismissed. Generally, if scales are 

unavoidable (e.g. in poverty and welfare assessments), it was strongly recommended to use, by 

way of second-best, either subsets of scales restricted by axiom fulfilment, or natural/intuitive 

ranks, or focusing on partial orderings.  

 

Specifically concerning inequality measurement, it was found that a large part of the literature 

consists of authors proposing classes of indices that are either generalisations or subclasses of other 

contributions. There seems to be plenty of independent simultaneous discovery and “reinvention 

of the wheel”. However, many proposals do not go beyond considering the benchmarks of equality 

and maximum inequality. Implicitly these proposals deem inequality as a distance away from 

reference points of equality (whichever way it is construed) and/or toward the proposed notion of 

maximum inequality.  

 

By contrast, more elaborate proposals devote attention to the underlying inequality-altering 

transformations. By far the most popular transformation is the quantile-preserving spread; 

particularly the median-preserving spread. Second in popularity is, perhaps, the clustering 

transformation which, together with quantile-preserving spreads characterises the popular notion 

of bipolarisation with ordinal variables. The key difference between inequality and bipolarisation 

in this specific literature is that the latter concept explicitly incorporates the two transformations 

and expects its respective indices to be sensitive to both, whereas the inequality proposals only 

focus on the spreads property. Remarkably both notions, inequality and bipolarisation, are 

indistinguishable regarding their situations of equality and maximum inequality. This stands in 

sharp contrast with the quantitative-data literature, where the two notions of dispersion also differ 

in their maxima.   
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Unfortunately, the paradigm of median-preserving spreads is limited by the difficulties inherent in 

comparing distributions with different medians. Without any data transformations, it is impossible 

to make meaningful inequality comparisons with indices complying with an aversion to the 

median-preserving spreads (unless they implicitly satisfy an alternative inequality-altering axiom 

which does not require equal quantiles of interest). Additionally, the medians cannot be 

homogenised with scaling transformations as it is done with the means in the quantitative-data 

literature. Yet the literature has attempted to circumvent this problem.  

 

Crucially, Sarkar and Santra (2020) showed that median homogenisation is feasible in nearly every 

pairwise comparison using combinations of additions of empty categories on the extremes with 

so-called slides of the entire vector of relative frequencies in the direction of the empty categories. 

Then they identified inequality and bipolarisation indices from the literature which are insensitive 

to these median-homogenisation transformations. These are precisely the indices that should be 

used for comparisons with different medians. They should be applied once the distributions’ 

medians are homogenised. Interestingly, the authors showed that partial orderings can also be 

undertaken following these procedures, but some combinations of additions and slides may 

foreclose median-preserving partial orderings.  

 

Cowell and Flachaire (2017) as well as Jenkins (2020) took an entirely different route which also 

enables inequality comparisons without common medians (or any different quantile of interest), 

but it entails a completely different, yet useful and interesting, notion of inequality with ordinal 

variables. Essentially, they propose measuring inequality in a conception of status which relates to 

the proportion of people below or above one’s category, either in a so-called peer-inclusive or 

peer-exclusive way.   

 

As a final reflection, it should be stressed that there is at least one remaining gap in the literature 

worth exploring pertains to distributional comparisons involving distributions with different 

number of categories. One could not find work addressing this issue, and one suspects that the 

status-inequality approach may be the most amenable to these comparisons. Even the 

transformations proposed by Sarkar and Santra (2020) render the ensuing distributions with the 

same number of categories, which is thoroughly sensible. But the question remains whether it is 
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possible to make meaningful poverty, welfare, and inequality comparisons of distributions with 

different numbers of categories when the indices and partial orderings map from a set whose 

dimension is given by the number of categories itself (as opposed to status inequality measures 

and curves which map from a set whose dimension is given by the number of people).    
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