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1. Visual Evaluation of White-box attack

For white-box, we show one motion in NTU attacked

using three strategies in Figure 1. ‘Wear a shoe’ is attacked

to ‘Sneeze/Cough’, ‘Writing’ and ‘punching/Slapping other

person’ respectively in three attacking strategies. Although

the semantics of the action labels are distinctive, the pertur-

bation is hardly noticeable. More examples can be seen in

the supplementary video.

2. Perceptual Studies

The 41 subjects are graduate school students and staff,

aging between 18 and 37, including 34 males and 7 females.

They are trained science and engineering graduate students

and researchers, some of whom focus on the research of hu-

man motions. During the perceptual study, each subject is

given a briefing about the purpose of the study, what experi-

ments should be expected and a few runs to ensure they can

comfortably participate the study.

In Deceitfulness, the subject was asked ‘Please choose

the right label that best describes the motion’. In each user

study, we randomly choose 100 motions with the ground-

truth and after-attack label for 100 trials. In each trial, the

video is played for 6 seconds and then the subject is asked

to choose which label (between the original and the after-

attack one) best describes the motion with no time limit.

This is to test whether SMART visually changes the seman-

tics of the motion. In addition, this is also to test whether

people can distinguish actions by only observing skeletal

motions, because if the subjects could not, their choices

would tend to be random and the perceptual study results

would not be valid. However, the results conclusively show

that the subjects’ choices are not random at all and they are

able to identify actions. The high success rate of Deceitful-

ness is, therefore, valid.

In Naturalness, the subject is asked ‘Which motion

∗https://youtu.be/DeMkN3efp9s
†Corresponding author

Model/Method SMART IAA CIASA

HRNN 100% 98.12% 98.75%

STGCN 99.57% 99.57% 99.56%

2S-AGCN 99.18% 98.77% 98.98%

HRNN 42.22% 36.67% 32.22%

STGCN 90.00% 87.5% 90.00%

2S-AGCN 80.83% 35.33% 49.33%
Table 1. Success rate in attack (Upper) and Indistinguishability

(Lower). The attack success rate is the best results for SMART,

IAA and CIASA.

looks more natural?’. We designed four settings: l2, l2-acc,

l2-bone, SMART. l2 is where only the perturbation magni-

tude of joint locations is used, l2-acc is l2 plus the accelera-

tion profile loss, l2-bone is l2 plus the bone-length loss and

SMART is our proposed perceptual loss. In each of the 100

trials, two motions are played together for 6 seconds twice,

and then the subject are asked to choose the motion that is

more natural, with no time limit.

In Indistinguishability, the user is asked ‘The left mo-

tion is the reference, the right motion might be different

from the left. Does the right motion look different?’. Each

video is played for 6 seconds then the user is asked to

choose if the right motion is a changed version of the left,

with no time limit.

3. Comparison

We compare SMART with IAA [1] and CIASA [2]. IAA

is designed to attack generic time-series data, not skeletal

motions. Since there is no paper published in attacking

skeletal motions as far as we know, we include it as a base-

line. CIASA is designed for attacking skeletal motions but

is only shared on arXiv without code or data. We therefore

implemented it ourselves.

In the comparison with other methods, there are two

competing factors (attack success and imperceptibility).

One can sacrifice one for the other. We need to fix one and

compare the other. Given that the success rate of IAA and
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Figure 1. AS-GCN on NTU. Top: Original and AB. Bottom: AB5 and SA. ‘Wear a shoe’ is the ground-truth label.

CIASA mainly depends on the clipping threshold of the per-

turbation magnitude, we tune them to achieve similar suc-

cess rates as SMART. Further, to favor IAA and CIASA, we

tune them to achieve slightly lower success rates as this al-

lows us to use smaller clipping threshold values which give

better visual quality on IAA and CIASA. Note that this is

harsh on SMART.

The results can be found in Table 1. First, we notice that

SMART provides the highest imperceptibility rates across

different target models. CIASA achieves similar results in

STGCN but worse in others. IAA is worst among the three.

It is understandable because it does not consider dynamics

and generates jittering motions most of the time.

One interesting phenomenon is that the Imperceptibility

rates vary across models. STGCN seems to be the most

gullible model as all three methods achieve good attack

successes while maintaining relatively high imperceptibil-

ity. HRNN seems to be the most difficult one in terms of

imperceptibility. The reason behind the varying impercep-

tibility is beyond the scope of this paper. One possible rea-

son could be the structures of the classification boundaries

learned by different models and their robustness, which has

been studied in image data [3], but not in time series and

its correlation with visual indistinguishability. We leave the

theoretical analysis for future work.

4. Confusion Matrices and Correlations

Finally, we give detailed confusion matrices and joint

correlations for every model on every dataset, to fur-

ther support our analysis in the vulnerability analysis

and the effectiveness of SMART. The joint displacement,

displacement-speed and displacement-acceleration correla-

tions in HDM05 are shown in Fig.2-6 for five models. The

patterns are very obvious. The higher the speed and accel-

eration is, the more the joint is attacked. Joint groups with

high intra-group correlations are attacked together. We also

give detailed confusion matrices of HDM05 in Fig.7-11,

where we can see high confusion between motions with sig-

nificantly different semantics. Similar results can be found

in MHAD (Fig.12-21) and NTU (Fig.22-31).

Figure 2. Joint displacement-displacement, displacement-speed

and displacement-acceleration correlations. HRNN on HDM05.

Figure 3. Joint displacement-displacement, displacement-speed

and displacement-acceleration correlations. STGCN on HDM05.

Figure 4. Joint displacement-displacement, displacement-speed

and displacement-acceleration correlations. ASGCN on HDM05.

Figure 5. Joint displacement-displacement, displacement-speed

and displacement-acceleration correlations. DGNN on HDM05.
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Figure 6. Joint displacement-displacement, displacement-speed

and displacement-acceleration correlations. 2SAGCN on HDM05.
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Figure 7. Confusion Matrix. HRNN on HDM05.
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Figure 8. Confusion Matrix. STGCN on HDM05.
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Figure 9. Confusion Matrix. ASGCN on HDM05.
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Figure 10. Confusion Matrix. DGNN on HDM05.
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Figure 11. Confusion Matrix. 2SAGCN on HDM05.
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Figure 12. Joint displacement-displacement, displacement-speed

and displacement-acceleration correlations. HRNN on MHAD.

Figure 13. Joint displacement-displacement, displacement-speed

and displacement-acceleration correlations. STGCN on MHAD.

Figure 14. Joint displacement-displacement, displacement-speed

and displacement-acceleration correlations. ASGCN on MHAD.

Figure 15. Joint displacement-displacement, displacement-speed

and displacement-acceleration correlations. DGNN on MHAD.

Figure 16. Joint displacement-displacement, displacement-speed

and displacement-acceleration correlations. 2SAGCN on MHAD.
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Figure 17. Confusion Matrix. HRNN on MHAD.
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Figure 18. Confusion Matrix. STGCN on MHAD.

11



Figure 19. Confusion Matrix. ASGCN on MHAD.
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Figure 20. Confusion Matrix. DGNN on MHAD.
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Figure 21. Confusion Matrix. 2SAGCN on MHAD.
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Figure 22. Joint displacement-displacement, displacement-speed

and displacement-acceleration correlations. HRNN on NTU.

Figure 23. Joint displacement-displacement, displacement-speed

and displacement-acceleration correlations. STGCN on NTU.

Figure 24. Joint displacement-displacement, displacement-speed

and displacement-acceleration correlations. ASGCN on NTU.

Figure 25. Joint displacement-displacement, displacement-speed

and displacement-acceleration correlations. DGNN on NTU.

Figure 26. Joint displacement-displacement, displacement-speed

and displacement-acceleration correlations. 2SAGCN on NTU.
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Figure 27. Confusion Matrix. HRNN on NTU.
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Figure 28. Confusion Matrix. STGCN on NTU.
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Figure 29. Confusion Matrix. ASGCN on NTU.
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Figure 30. Confusion Matrix. DGNN on NTU.
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Figure 31. Confusion Matrix. 2SAGCN on NTU.
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