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1. Additional Experimental Details

1.1. Implement Details and Experimental Settings

We first give details about the Random Exploration and

Aimed Probing. For easy reference, the random exploration

is reformulated in Eq. 1:

x̃ = x
′ +W∆,

where ∆∗ = R∗ − (RT

∗
d∗)d∗, d∗ =

x∗ − x
′

∗

‖x∗ − x′

∗
‖
,

R∗ = λ
r

‖r‖
‖x∗ − x

′

∗
‖, r ∈ N(0, I), (1)

where x̃ is the new perturbed sample, x and x
′ are the at-

tacked motion and current adversarial sample. We use joint

positions and the subscript ∗ indicates either the x, y, or z
joint coordinate. The update on x

′ is ∆ weighted by W -

a diagonal matrix with joint weights. ∆* controls the di-

rection and magnitude of the update, and depends on two

variables R∗ and d∗. d∗ is the directional vector from x
′

to x. R∗ is a random directional vector sampled from a

Normal distribution N(0, I) where I is an identity matrix,

I ∈ Rz×z , z = mn/3, m is the number of Dofs in one

frame and n is the total frame number. This directional vec-

tor is scaled by ‖x∗ − x
′

∗
‖ and λ.

The aimed probing is reformulated by Eq. 2:

x̃ = x
′ + β(x− x

′), (2)

where β is a forward step size that can also be dynamically

adjusted. β is decreased by half to conduct the aimed prob-

ing again if x̃ is not adversarial; otherwise, β is doubled,

then we enter the next sub-routine.

In random exploration, we aim to find an adversarial

sample that is closer to x. However, as the shape of the

local space is unknown and highly nonlinear, we do sam-

pling to exploit it. Therefore, we execute multiple random

∗The research was conducted during the visit to the University of Leeds.
†Corresponding author
‡https://youtu.be/PjWgwnAkV8g

explorations instead of only one to get q intermediate results

in a sub-routine call, and compute the attack success rate. If

the rate is less than 40%, λ is reduced by 10% as it means

that we are very close to the classification boundary ∂C and

λ is too big; if it is higher than 60%, λ is increased by 10%;

otherwise we do not update λ.

For targeted attack, we randomly select one adversarial

sample from the q intermediate samples to do aimed prob-

ing. This is mainly to ensure that the direction of the aimed

probing is random. Although multiple samples can be se-

lected, it would incur more computational costs with little

gain shown by our preliminary experiments. For untargeted

attack, the q results are normally in different classes which

we call adversarial classes. The attack difficulty varies de-

pending on the choice of samples. Usually the closer the

adversarial sample is to the original sample, the easier the

attack. Therefore, we randomly select one sample in each

adversarial class to conduct aimed probing, then only keep

the one that has the smallest distance to the original motion

x after the aimed probing. In the end, when the adversar-

ial sample is near to the original motion, we set a threshold

value τ to ensure that λ is not higher than τ . This is to

ensure that the attack can eventually converge.

In all experiments, we set q = 5. The initial β is set

to 0.95. The initial λ is set to 0.2 when attacking SGN

model and 0.1 on both STGCN and MSG3D. τ is set to

1.5 on SGN and 0.4 on both STGCN and MSG3D. We set

the spinal joint weights to 0 in W, and other joint weights

to 1. For untargeted attack, we set ǫ = 0.1 on both HDM05

and NTU, 0.05 on Kinetics. For targeted attack, ǫ is set to

0.5 on HDM05 and both 0.2 on NTU and Kinetics. Consid-

ering the optimization speed, it is unrealistic to execute the

manifold projection in every iteration. We therefore execute

it every 100 iterations on HDM05 and every 250 iterations

on NTU and Kinetics.

The adversarial samples are computed using PyTorch on

a PC with a NVIDIA GTX 2080Ti GPU and a Xeon Silver

4216 CPU. We also show how different metrics vary based

on the number of actual queries BASAR makes to the at-
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tacked model. The evaluation versus number of queries are

shown from Fig 1 to Fig 3. Being consistent with our analy-

sis in the paper, compared with STGCN and MSG3D, SGN

usually converges faster but it is difficult for BASAR to fur-

ther improve the adversarial sample as it does on STGCN

and MSG3D. We speculate that this is due to the seman-

tic information that SGN uses prevents small perturbations

from altering the class labels.

Models
HDM05 NTU Kinetics

Queries Time Queries Time Queries Time

STGCN
UA 3636 4 7337 12 7167 28

TA 8862 15 15724 16 15234 41

MSG3D
UA 3722 6 14640 18 7190 29

TA 9111 16 23227 30 15416 56

SGN
UA 974 4 623 5 228 10

TA 277 3 260 4 180 8
Table 1. The averaged number of queries and consuming

time(min) for generating an adversarial sample on different mod-

els and datasets.

Figure 1. Numerical evaluation versus number of queries on

HDM05 with STGCN, MSG3D and SGN. UA/TA refers to Un-

targeted Attack/Targeted Attack.

Figure 2. Numerical evaluation versus number of queries on NTU

with STGCN, MSG3D and SGN.

Figure 3. Numerical evaluation versus number of queries on Ki-

netics with STGCN, MSG3D and SGN.

1.2. Detailed Perceptual Studies

In all 50 subjects (age between 18 and 54), 86% of users

are aged under 30 and 88% are male. The users have vari-

ous background. Around 25% users have research expertise

in human activity recognition or adversarial attack; another

20% have general deep learning or computer vision back-

ground; 45% people study in engineering (e.g. mechan-

ical, electrical and control). The other users have different

arts background. By comparing their performance we found

that the age, gender and work/research background actually

do not have obvious influence to the results. The results are

mainly dependent on the quality of the adversarial samples.

Deceitfulness. This study is to test: whether BASAR vi-

sually changes the meaning of the motion and whether the

meaning of the original motion is clear to the subjects. In

each user study, we randomly choose 45 motions (15 from

STGCN, MSG3D and SGN respectively) with the ground

truth label and after-attack label for 45 trials. In each trial,

the video is played for 6 seconds then the user is asked

the question,‘which label best describes the motion? and

choose Left or Right’, with no time limits.

Naturalness. This ablation study is to test whether on-

manifold adversarial samples look more natural than off-

manifold samples. In this user study, we perform abla-

tion studies to test whether on-manifold adversarial samples

look more natural than off-manifold samples. We design

two settings: MP and No MP. MP refers to BASAR, with

manifold projection. No MP is where the proposed method

without manifold projection. In each study, 60 (20 from

STGCN, MSG3D and SGN respectively) pairs of motions

are randomly selected for 60 trials. Each trial includes one

from MP and one from No MP. The two motions are played

together for 6 seconds twice, then the user is asked, ‘which

motion looks more natural? and choose Left, Right or Can’t

tell’, with no time limits.

Indistinguishability. Indistinguishability is the strictest

test to see whether adversarial samples by BASAR can sur-

vive a side-by-side scrutiny. In each user study, 40 pairs of

motion are randomly selected, half from STGCN and half

from MSG3D. For each trial, two motions are displayed

side by side. The left motion is always the original and the

user is told so. The right one can be original (sensitivity)

or attacked (perceivability). The two motions are played

together for 6 seconds twice, then the user is asked, ‘Do
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they look same? and choose Yes or No’, with no time lim-

its. This user study serves two purposes. Perceivability is

a direct test on indistinguishability while sensitivity aims

to screen out users who tend to choose randomly. We dis-

card any user data which falls below 80% accuracy on the

sensitivity test.

2. Visual Results and Confusion Matrices

The visual results on various datasets and models are

shown from Fig. 4 to Fig. 9. As we can see, the adversarial

samples on STGCN and MSG3D in general are very hard

to be distinguished from the attacked motion. The results

on SGN have the same semantic meanings and are almost

equally hard to be distinguished from the original motion

in untargeted attack. However, when it is targeted attack

and the target label is very different from the original la-

bel, BASAR sometimes generate adversarial samples with

visible differences. We show some failures here (Fig. 6 Bot-

tom and Fig. 9 Bottom.). These adversarial samples might

survive a visual examination if shown alone but might not

be able to survive a side-by-side comparison with the origi-

nal motions in our rigorous perceptual studies. This is also

consistent with our numerical evaluation.

In NTU, there are actions containing a single person or

two persons. We, therefore, attack them separately. In tar-

geted attack, if the attacked motion is a single-person ac-

tion, the target class is also a single-person action where we

randomly select a motion to initiate the attack. Similarly,

if the attacked motion is a two-person action, we select a

two-person motion. In untargeted attack, we do not need to

initiate the attack separately and can rely on BASAR to find

the adversarial sample that is closest to the original motion.

The confusion matrices across various datasets and models

are shown from Fig. 10 to Fig. 15.

In untargeted attack, we find that random attacks easily

converge to a few action classes in a dataset. We call them

high-connectivity classes. For example, actions on STGCN

tend to be attacked into ‘Jump Jack’(number 20) and ‘Kick

left front’(21) on HDM05, and into ‘Use a fan’(48) on

NTU, regardless how they are initialized; Similarly, ac-

tions on MSG3D tend to be attacked into ‘Cartwheel’(0)

and ‘Kick right front’(23) on HDM05, and into ‘Use a

fan’(48) on NTU; actions on SGN tend to be attacked into

‘Cartwheel’(0) and ‘Jump Jack’(20) on HDM05, and into

‘Hopping’(25) on NTU. The theoretical reason is hard to

identify but we have the following speculations. Since un-

targeted attack starts from random motions, it is more likely

to find the adversarial sample that is very close to the orig-

inal motion on the classification boundary. Usually this

adversarial sample is in a class that shares the boundary

with the class of the original motion. It is possible that

these high-connectivity classes share boundaries with many

classes so that random attacks are more likely to land in

these classes. In addition, the connectivity of classes heav-

ily depends on the classifier itself and that is why different

classifiers have different high-connectivity classes. In tar-

geted attack, since our target labels are randomly selected,

the confusion is more uniformly distributed, covering all

classes.

Figure 4. STGCN on HDM05. The ground truth label ‘Rotate right

arms backward’ is misclassified as ‘Clap above hand’ on untar-

geted attack, and ‘Kick left side’ on targeted attack.

Figure 5. MSG3D on HDM05. The ground truth label ‘Elbow

to knee’ is misclassified as ‘Sit down’ on untargeted attack, and

‘Cartwheel’ on targeted attack.

Figure 6. SGN on HDM05. The ground truth label ‘Punch right

front’ is misclassified as ‘Punch right side’ on untargeted attack,

and ‘Standing and throw down’ on targeted attack.
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Figure 7. STGCN on NTU. The ground truth label ‘Taking a selfie’

is misclassified as ‘Stand up’ on untargeted attack, and ‘Hand wav-

ing’ on targeted attack.

Figure 8. MSG3D on NTU. The ground truth label ‘Rub two hands

together’ is misclassified as ‘Clapping’ on untargeted attack’, and

‘Pick up’ on targeted attack

Figure 9. SGN on NTU. The ground truth label ‘Take off glasses’

is misclassified as ‘Wear on glasses’ on untargeted attack, and

‘Wipe face’ on targeted attack.

Figure 10. Confusion matrix of STGCN on HDM05. Left is un-

targeted attack and right is targeted attack. The darker the cell, the

higher the value.

Figure 11. Confusion matrix of MSG3D on HDM05. The left one

is untargeted attack and right is targeted attack. The darker the

cell, the higher the value.

Figure 12. Confusion matrix of SGN on HDM05. The left one is

untargeted attack and right is targeted attack. The darker the cell,

the higher the value.
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Figure 13. Confusion matrix of STGCN on NTU. The left one is

untargeted attack and right is targeted attack. The darker the cell,

the higher the value.

Figure 14. Confusion matrix of MSG3D on NTU. The left one is

untargeted attack and right is targeted attack. The darker the cell,

the higher the value.

Figure 15. Confusion matrix of SGN on NTU. The left one is un-

targeted attack and right is targeted attack. The darker the cell, the

higher the value.

3. Additional Details of Manifold Projection

The original problem is as follows:

minimize L(θ, θ′) + wL(θ̈, θ̈′)

subject to θmin

i ≤ θ′
i
≤ θmax

i ,

Cx′ = c (targeted) or Cx′ 6= Cx (untargeted). (3)

where θ and θ′ are the joint angles of x and x
′. θ′

i
is the i-th

joint in every frame of x′ and subject to joint limits bounded

by θmin

i
and θmax

i
. θ̈ and θ̈′ are the 2nd-order derivatives of

θ and θ′, w is a weight. L is the Euclidean distance. Such

a nonlinear optimization problem can be transformed to a

barrier problem [1]:

min
θ′

L(θ, θ′) + w1L(θ̈, θ̈
′) +

O∑

i

µi ln (θ
′

i
− θmin

i
)

+
O∑

i

µi ln (θ
max

i
− θ′

i
) (4)

where µi is a barrier parameter. O is the total number of

joints in a skeleton. For notational simplicity, we notate

f(θ′) = L(θ, θ′) + wL(θ̈, θ̈′). The Karush-Kuhn-Tucker

conditions [2] for the barrier problem Eq.5 can be written

as:

∇f(θ′) +

O∑

i

µi

θ′
i
− θmin

i

−

O∑

i

µi

θmax

i
− θ′

i

= 0

µi >= 0, for i = 1, ..., O

O∑

i

µi ln (θ
′

i
− θmin

i
) = 0

O∑

i

µi ln (θ
max

i
− θ′

i
) = 0 (5)

We apply a damped Newton’s method[4] to compute an ap-
proximate solution to Eq. 5. More implementation details
about the primal-dual interior-point method can be found in
[3].
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