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A thiol-mediated three-step ring expansion cascade for the conver-

sion of indoles into functionalised quinolines 

Nantachai Inprung, Michael J. James*, Richard J. K. Taylor*, William P. Unsworth* 

Department of Chemistry, University of York, Heslington, York, U.K., YO10 5DD 

ABSTRACT: An operationally simple, high yielding three-step cascade process is described for the direct conversion of indole-
tethered ynones into functionalised quinolines. A single ‘multi-tasking’ thiol reagent is used to promote a three-step dearoma-
tising spirocyclisation, nucleophilic substitution and one-atom ring expansion reaction cascade under remarkably mild con-

ditions. In addition, a novel route to thio-oxindoles is described, which was discovered by serendipity.

Cascade reactions (chemical processes by which two or 

more consecutive reactions take place in a single pot-pro-
cess, also known as ‘tandem’ or ‘domino’ reactions) have 
wide utility in synthetic chemistry.1,2 Incorporating cascade 
reaction sequences into synthetic routes can significantly 
improve the speed and ease with which complex target mol-

ecules can be prepared, and often means that the direct han-
dling of reactive, unstable and/or toxic species can be 

avoided by forming these intermediates in situ. 

This manuscript concerns a three-step cascade reaction 

sequence, starting from indole-tethered ynones 1 (Scheme 
1). In recent years, ynones of this type have emerged as val-

uable precursors for the preparation of a diverse array of 
molecular scaffolds.3-6 For example, our groups and others 

have shown that the activation of the alkyne moiety of 1 
promotes efficient dearomatising spirocyclisation7,8 to form 
medicinally important spirocyclic indolenines 2;9,10 this is 

most commonly done using π-acidic catalysts (especially 
Ag(I) species), although Brønsted acids, palladium(II) com-

plexes and electrophilic halogenation reagents can also be 
used (1 → 2, Scheme 1a, Step 1).3,11,12 Our groups have also 
shown that dearomatisation works well on 2-halogenated 

indoles (i.e. 1 where X = Cl, Br or I) and that the resulting 
indoleninyl halide products (i.e. 2 where X = Cl, Br or I) can 

be transformed further via reaction with nucleophiles, or 
via Pd-catalysed cross-coupling, to substitute the halide for 
various other groups (2 → 3, Scheme 1a, Step 2).5 Finally, 

our groups and others have demonstrated that spirocyclic 
indolenines of the form 3 will rearrange via a one-atom ring 

expansion reaction13 to form annulated quinolines, with 
both acidic and basic reagents able to promote this trans-

formation (3 → 4, Scheme 1a, Step 3).6 

Efficient protocols for each of the individual steps repre-

sented in Scheme 1a are therefore established, but three-
steps are still required to generate functionalised quino-

lines 4 from ynones 1. Quinolines are found in many mar-
keted drugs, as well as in various other applications.14 Based 
on a growing understanding of each of the three individual 

processes discussed above,3,5,6 we recognised that certain 
reagents may be able to promote all three steps and enable 

the transformation of 1 into 4 via a single-cascade process 
(Scheme 1b); such a reagent would need to act as an acid to 
promote step 1, a nucleophile in step 2, and a Brønsted acid 

to promote step 3. The successful realisation of this strategy 
is reported herein, with thiols emerging as the optimum ‘multi-tasking’ reagent class capable of promoting the en-
visaged cascade, under remarkably mild and operationally 

simple conditions. 

Scheme 1. Transformations of indole-tethered ynones. 

 

We started by exploring reactivity of model 2-bromo 

ynone 1aBr with various reagents (NuH) that we thought 
might have the required acidity and nucleophilicity to pro-
mote its conversion into a quinoline of the form 4. Phenol 

was tested first, and added to a solution of 1aBr in DCE,15 but 
no reaction was observed after stirring at RT or 60 °C (en-

tries 1 and 2, Table 1). Next, TFA was included as an additive 
in the reaction, which led to the consumption of the starting 
material, but the only tractable products observed were ox-

indole 7a (presumably formed via acid-mediated  dearoma-
tising spirocyclisation and hydrolysis of the resulting spiro-

cycle 5a),5 and bromoquinoline 8, which likely formed via a 
Bronsted acid-mediated rearrangement of 5a (c.f. step 3).6b 
A more acidic NuH reagent, 4-nitrophenol, was tested but 

no reaction was observed at RT (entry 4), while at 60 °C the 
same side products 7a and 8 were formed (entry 5). We 

then decided to move on to species of similarly acidity to 
phenol, but also more nucleophilic, and pleasingly, thiols16 
were found to possess this attractive combination of prop-

erties; using n-propyl thiol, no conversion was observed at 
RT (entry 6), but excellent conversion into the desired quin-

oline 4a was observed upon heating to 60 °C (entry 7). Fur-
thermore, the more acidic thiophenol was able to promote 

the conversion of 1aBr into quinoline 4b smoothly at RT (en-

try 8).  

 



 

Table 1. Initial optimisation[a] 

 

en-
try 

Nucleophile (NuH) Temp Outcome[b] 

1 Phenol (Nu = PhO) RT No reaction 

2 Phenol (Nu = PhO) 60 °C No reaction 

3 
Phenol (Nu = PhO) with 

1 equiv. TFA 
RT 

7a (62%) 

8 (21%) 

4 
4-Nitrophenol 

(Nu = 4-NO2C6H4O) 
RT No reaction 

5 
4-Nitrophenol 

(Nu = 4-NO2C6H4O) 
60 °C 

7a (35%) 

8 (45%) 

6 
n-Propyl thiol 

(Nu = n-PrS) 
RT No reaction 

7 
n-Propyl thiol 

(Nu = n-PrS) 
60 °C 4a (95%) 

8 
Thiophenol  

(Nu = PhS) 
RT 4b (93%) 

[a] 1aBr (1 equiv) and NuH (1.6 equiv) were stirred in DCE 
(0.1 M, degassed) for 20 h at the specified temperature. [b] 
Yields are isolated material after column chromatography. 

With conditions for the cascade established, attention 

turned to examining the reaction scope. A range of aromatic 
thiols were tested (Scheme 2A), and all reacted well with 

ynone 1aBrv; quinolines 4b–k were all prepared in this man-
ner, generally in high yield, under the standard RT condi-
tions using a range of electronically diverse substituted thi-

ophenols. Other aliphatic thiols were also explored, with 
quinolines 4a, and 4l–n prepared, although in this series 

heating to 60 °C was required. The yield for quinoline 4n 

was comparatively low (53%), with thio-oxindole 9a also 

formed in 27% yield; this unexpected side reaction is dis-

cussed later in the manuscript (see Scheme 3).17 

Next, the 2-halide substituent was varied (Scheme 2B). 
Thus, 2-chloro (1aCl) and 2-iodo (1aI) analogues of ynone 

1aBr were prepared,5 and both reacted smoothly with 4-
methylbenzenethiol to form quinoline 4d in high yield, al-
beit at a higher reaction temperature (60 °C). Finally, we ex-

plored variation of the indole-tethered ynone component 1. 
Four different additional 2-bromo-indole-tethered ynones 

were successfully tested, with variations to the ynone and 
the indole motifs explored. For each ynone, a representative 
aliphatic (n-propylthiol) and aromatic thiol (4-methylben-

zenethiol) were tested, with the expected quinoline prod-
ucts 4o–v to be isolated successfully in all cases.18 The only 

substrate tested that did not deliver the expected quinoline 

was 4-NMe2-substituted ynone 1fBr; in this case, spirocyclic 
indoleninyl bromide 5b was isolated in 89% yield.19 Despite 

not delivering the expected quinoline, the isolation of spiro-
cycle 5b does provide indirect mechanistic evidence for the 

intermediacy of indoleninyl halides in the reaction cascade 
(see later for discussion). Finally, by replacing the thiol with 
benzeneselenol, the analogous selenide product 4bSe was 

obtained in 62% yield. 

The unexpected isolation of thio-oxindole 9a during the 
synthesis of 4n prompted additional studies, in part to bet-

ter understand this side reaction, but also to try and harness 
it productively, as a new way to make thio-oxindoles.20 Our 
theory for how thio-oxindole 9a formed is summarised in 

Scheme 3a. The reaction is likely to have started as ex-
pected, and thus proceeded through the normal dearoma-

tising spirocyclisation and nucleophilic substitution steps 
(i.e. steps 1 and 2). This would generate spirocycle 10, and 
at this point, it appears that the route diverges, with some 

of the material going on to form quinoline 4n in the usual 
way, and the rest undergoing debenzylation, either via an 

SN1-type pathway as drawn, or the analogous SN2-type 
cleavage (not shown). To test this idea and improve the 
yield of thio-oxindole 9a, the reaction was repeated using 

the silylated thiol Ph3SiSH 11; the idea was that the weak 
Si–S would cleave more easily than the S–Bn bond in 10, and 

facilitate thio-oxindole formation via a desilylative mecha-
nism. This idea worked well; the reaction of ynone 1aBr with 
Ph3SiSH 11 using the standard 60 °C procedure led to the 

formation of thio-oxindole 9a in 82% isolated yield 
(Scheme 3b). The same procedure was applied to other 2-

halo-indole-tethered ynones, with thio-oxindoles 9b–9d 

(47–85%) prepared in the same way. 

A proposed mechanism for the three-step cascade is out-
lined in Scheme 4a. The cascade likely initiates with 

dearomatising spirocyclisation, promoted by the relatively 
acidic thiol (A → B, step 1, Scheme 4a); protic acids have 

been shown to promote spirocyclisation of related 
ynones,3b,6b and the isolation of spirocyclic indoleninyl bro-
mide 5b discussed earlier lends further support to this no-

tion. The resulting iminium-thiolate ion pair 2 may then un-
dergo facile nucleophilic substitution to afford substituted 

spirocycle 12 (step 2).5 The rearrangement of 12 into 17 is 
then thought to proceed via a previously studied acid-cata-

lysed one-atom ring-expansion.6c 

Several control experiments were conducted to investi-

gate this mechanism and the ordering of the steps. First, to 
probe whether the nucleophilic substitution step may pro-

ceed before spirocyclisation, 2-bromo-indole substrates 
lacking an ynone substituent (18 and 21) were each reacted 
under the standard conditions with 4-methylbenzenethiol 

(Scheme 4b, eq 1). In the case of indole 18, some bromide 
substitution was indeed observed, with sulfide 19 formed 

in 31% yield. This confirms that nucleophilic substitution 
directly on the indole is possible, although the yield was 
low, and the major product was in fact the reduced product 

20. Treating the analogous 3-methyl indole 21 in the same 
way resulted trace formation of 22 only. In view of these re-

sults, and given that no reduction products were observed 
in any of the synthetic reactions, it seems unlikely that nu-
cleophilic substitution precedes dearomatising spirocy-

clisation.



 

Scheme 2. Scope of the three-step thiol-mediated cascade for the conversion of ynones 1 into quinolines 4.[a] 

 

[a] 1 (1 equiv) and RSH (1.6 equiv) were stirred in DCE (0.1 M) for 20 h at RT unless specified.  [b] reaction performed at 60 °C. 
HS-Tol =   4-methylbenzenethiol

We then questioned whether the iminium-thiolate ion 
pair B might first undergo ring expansion to form a quino-

line and that nucleophilic substitution follows this step. To 
probe this idea, both indoleninyl bromide 5a and 2-bromo-
quinoline 8 were reacted with 4-methylbenzenethiol under 

the standard reaction conditions. Interestingly, both reac-
tions afforded the expected quinoline product 4a in high 

yields (Scheme 4b, eqs 2 & 3), suggesting that the order of 

steps 2 and 3 could be interchanged. 

To investigate this idea further, a discrete sample of the 
substituted spirocyclic sulfide 6a was reacted with 4-

methylbenzenethiol under the standard reaction conditions 
(eq 4). No conversion into quinoline 4a was observed and 

only 6a was recovered after stirring for 24 h at both RT and 

60 °C. However, the quinoline product 4a could be formed 
in high yield at RT upon the addition of 1.1 equivalents of 

48% aq. HBr to spirocyclic sulfide 6a. This result suggests 
that a strong Brønsted acid is required to promote the ring 
expansion, and such an acid would only be present in the 

reaction following the nucleophilic substitution step (which 
generates HX), thus supporting the originally proposed or-

der of steps. Furthermore, the success of the series of thio-
oxindole forming reactions described in Scheme 3 also sup-
ports the same pathway, because in these reactions the suc-

cessful formation of spirocyclic products 9a–d means that 
nucleophilic substitution must have out-competed ring ex-

pansion in these cases. 



 

Scheme 3. The conversion of ynones 1 into thio-oxin-

doles 9 via a desilylative cascade process.[a]  

 
[a] 1 (1 equiv) and thiol 11 (1.6 equiv) were stirred in DCE 

(0.1 M) for 20 h at 60 °C. 

 

Considering all these observations, we can be confident 

that the first step of the cascade is a thiol-promoted 
dearomatising spirocyclisation (step 1). The next step is 

most likely to be nucleophilic substitution (step 2) of the re-
sultant iminium-thiolate ion pair, which generates a strong 
Brønsted acid (HBr) in situ. This acid then promotes a one-

atom ring expansion (step 3) to form a stable aromatic quin-
oline product 4. Some interchange in the ordering of steps 

2 and 3 cannot be ruled out once a reasonable concentration 

of HBr has built up in the reaction, however. 

In summary, a three-step cascade process has been devel-
oped that allows for the direct conversion of 2-halo-indole-

tethered ynones into substituted quinolines. The key to the 
process is the use of thiols as ‘multi-tasking’ reagents able 

to promote dearomatising spirocyclisation and nucleophilic 
substitution directly, as well promoting a one atom ring ex-
pansion indirectly, via the formation of a strong Brønsted 

acid (HBr) in situ. The reactions are very simple to per-
form21 and are typically high yielding, enabling the facile 

synthesis of a diverse array of functionalised quinolines. 
They are also easily scalable; for example, quinoline 4d was 
formed in 97% yield on 1 mmol scale (see ESI). In addition, 

a related route to thio-oxindoles was also developed follow-
ing a serendipitous discovery of an unexpected side reac-

tion. 
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