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Abstract. We present results of a new time-dependent kinetic model of the H atom penetration through the solar wind –

interstellar medium interaction region. A kinetic 6D (time, two dimensions in space, and three dimensions in velocity-space)

equation for interstellar H atoms was solved self-consistently with time-dependent Euler equations for the solar wind and

interstellar charged components. We study the response of the interaction region to 11-year solar cycle variations of the solar

wind dynamic pressure. It is shown that the termination shock location varies within ±7 AU, the heliopause variation is ∼4 AU,

and the bow shock variation is negligible. At large heliocentric distances, the solar cycle induces 10–12% fluctuations in the

number density of both primary and secondary interstellar H atoms and atoms created in the inner heliosheath. We underline the

kinetic behavior of the fluctuations of the H atom populations. Closer to the Sun the fluctuations increase up to 30–35% at 5 AU

due to solar cycle variation of the charge exchange rate. Solar cycle variations of interstellar H atoms in the heliospheric interface

and within the heliosphere may have major importance for the interpretation of H atom observations inside the heliosphere.

Key words. Sun: solar wind – interplanetary medium – ISM : atoms – Sun: activity – hydrodynamics

1. Introduction

More than 30 years (three solar cycles) of solar wind observa-

tions show that its momentum flux varies by factor of ∼2 from

solar maximum to solar minimum (Gazis 1996; Richardson

1997). It was shown theoretically that such variations of the so-

lar wind momentum flux strongly influence the structure of the

heliospheric interface – the region of the solar wind interaction

with the local interstellar medium (e.g., Karmesin et al. 1995;

Wang & Belcher 1998, 1999; Baranov & Zaitsev 1998; Zank

1999; Zaitsev & Izmodenov 2001; Scherer & Fahr 2003a,b;

Zank & Mueller 2003; Izmodenov & Malama 2004a,b).

Most global models studying the solar cycle effects ignore

the interstellar H atom component or took this component into

account by using simplified fluid (Scherer & Fahr 2003a,b) or

multi-fluid (Zank & Mueller 2003) approximations. These sim-

plifications were done because it is difficult to solve 6D (time,

two dimensions in space, and three dimensions in velocity-

space) kinetic equation for the interstellar H atom component.

A kinetic description of interstellar atoms is necessary due to

their large mean free path comparable with the size of the he-

liospheric interface. Recently, it has been shown explicitly by

Izmodenov (2001), Izmodenov et al. (2001) that the velocity

⋆ Appendix is only available in electronic form at

http://www.edpsciences.org

distribution function of interstellar atoms is not Maxwellian.

Fluid or multi-fluid approaches assume the velocity distribution

of H atoms to be Maxwellian or the sum of several Maxwellian

distributions. This assumption introduces additional uncertain-

ties in the model. (To estimate these uncertainties one needs to

compare a multi-fluid model with a kinetic model for each spe-

cific set of model parameters.) Consequently, the multi-fluid

approaches adopted for H atoms in the heliospheric interface

may result in misleading interpretations of observational data.

At the same time, the momentum flux variations of the solar

wind may have a significant effect on the distribution of inter-

stellar H atoms in the heliosphere due to coupling of the atom

and plasma components by charge exchange. Therefore, it is

necessary to study solar cycle effects by solving 6D kinetic

equation self-consistently with fluid plasma equations. In this

paper we present the results of such a model.

The qualitative pattern of the heliospheric interface is

shown in Fig. 1. The solar wind plasma decelerates and turns

to the tail at the termination shock (TS), while the interstellar

plasma decelerates and turns outward of the axis of symmetry

at the bow shock (BS). The heliopause (HP), which is a con-

tact discontinuity, separates these two plasma flows. Hydrogen

atoms newly created by charge exchange have the velocities of

their ion partners in the charge exchange collisions. Therefore,

the parameters of these new atoms depend on the local plasma
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Fig. 1. Structure of the heliospheric interface, the region of the inter-

action of the solar wind and the Local Interstellar Cloud.

properties. It is convenient to distinguish four different popu-

lations of H atoms: 1) atoms created in the supersonic solar

wind; 2) atoms originating in the heliosheath and known as he-

liospheric ENAs (Gruntman et al. 2001); 3) atoms created in

the disturbed interstellar wind; 4) original (or primary) inter-

stellar atoms.

2. Model

In this work we advance the heliospheric interface model

developed by the Moscow group (e.g. Baranov & Malama

1993; Izmodenov et al. 1999; Alexashov et al. 2000, 2004a,b;

Myasnikov et al. 2000; Zaitsev & Izmodenov 2001; Izmodenov

& Alexashov 2003; Izmodenov et al. 2003a,b; Izmodenov et al.

2004; for reviews see Izmodenov 2003, 2004) by introducing

11 year sinusoidal variations of the solar wind in the model.

The goal of this paper is to explore theoretical aspects of non-

stationary interaction of the solar wind and the local interstellar

cloud. The results presented here cannot be directly applied to

interpretation of observational data.

We consider all the plasma components (electrons, protons,

pickup ions, solar wind alpha particles and interstellar He ions)

as one fluid with total density ρ and bulk velocity u. It is as-

sumed that all ionized components have the same tempera-

ture T . Although this assumption cannot be made in the case

of the solar wind, the one-fluid model is based on mass, mo-

mentum and energy conservation laws and predicts the plasma

bulk velocity and locations of the shocks very well.

The plasma is quasi-neutral; i.e., ne = np + nHe+ for inter-

stellar plasma, and ne = np + 2nHe++ for the solar wind. The

interstellar and interplanetary magnetic fields are ignored in

the paper. Protons interact with H atoms by charge exchange.

While the interaction of interstellar H atoms with protons by

charge exchange is important, for helium ions the process of

charge exchange is negligible because of small cross sections

for the charge exchange of helium atoms. Hydrodynamic equa-

tions for the charged component are solved self-consistently

with the kinetic equation for the H atom component.

The governing equations for the charged component are the

following:

∂ρ

∂t
+ ∇ · (ρu) = q1,

∂(ρu)

∂t
+ ∇ · (ρuu + pI) = q2, (1)

∂E

∂t
+ ∇ · [(E + p)u] = q3.

Here ρ is the total density of the ionized component, p is the

total pressure of the ionized component, E = ρ(ε + u2/2) is

the total energy per unit volume, ε = p[(γ − 1)ρ]−1 is the

specific internal energy, and I is the unit tensor. The temper-

ature of the plasma is determined from the equation of state

p = 2(np + nHe+)kT for the interstellar plasma and p = (2np +

3nHe++)kT for the solar wind, where k is Boltzman’s constant;

np, nHe+ and nHe++ are the proton, interstellar He ion and solar

wind alpha particle number densities. In addition to Eqs. (1) we

solve the continuity equation for He+ in the interstellar medium

and for α-particles in the solar wind. Then the proton number

density is calculated as np = (ρ − mHenHe)/mp, where nHe de-

notes the He+ number density in the interstellar medium, and

the He++ number density in the solar wind.

The right hand parts, q1, q2 and q3, are sources of mass,

momentum and energy due to charge exchange of H atoms

and protons, photoionization and electron impact ionization

(Baranov & Malama 1993):

q1 = mHnH(νph + νimp),

q2 = mH

∫ ∫

uσHP
ex (u)(wH − wp) fH(wH)

× fp(wp) dwH dwp

+mH

∫

(νph + νimp)wH fH(wH) dwH, (2)

q3 = mH

∫

(

νph + νimp

) w
2
H

2
fH(wH) dwH

+mH

∫ ∫

uσHP
ex (u)

w
2
H
− w2

p

2

× fH(wH) fp(wp) dwp dwH.

Here, u = |wp − wH| is the relative atom-proton velocity,

σHP
ex (u) is the charge exchange cross section of an H atom
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with a proton; νph is the photoionization rate; mH is the atomic

mass; νimp is the electron impact ionization rate. Numerical

values for σHP
ex , νph and νimp are given in Izmodenov et al.

(1999) and Izmodenov et al. (2004). The function fp(wp) =

np(
√
πcp)−3 exp(−(wp − u)2/c2

p) is the local Maxwellian veloc-

ity distribution function of protons, with the parameters (np,

u, cp = (2kT/mH)1/2) determined by the solution of the Euler

Eqs. (1). The function fH(wH) is the velocity distribution func-

tion of H atoms.

The velocity distribution of H atoms fH(r,wH, t) is calcu-

lated from the linear kinetic equation:

∂ fH

∂t
+ wH ·

∂ fH

∂r
+

F

mH

· ∂ fH

∂wH

= − fH

∫

|wH − wp|σHP
ex fp(r,wp) dwp (3)

+ fp(r,wH)

∫

|w∗H − wH|σHP
ex fH(r,w∗H) dw∗H

− (νph + νimp) fH(r,wH).

Here wp and wH are the individual proton and H atom ve-

locities, respectively, and F is the sum of the solar gravita-

tional force and the solar radiation pressure force. The plasma

and neutral components interact mainly by charge exchange.

Photoionization, solar gravity and radiation pressure taken into

account in Eq. (3) are only important at small heliocentric dis-

tances. Electron impact ionization may be important in the

inner heliosheath, which is the region between the termina-

tion shock and the heliopause. Note that photoionization rate

and solar radiation pressure may vary with the solar cycle. At

present we do not include solar cycle variations of these param-

eters in our model, but we plan to do so in the future.

The boundary conditions for Euler equations are the fol-

lowing. We assume that the solar wind is spherically symmetric

at the Earth orbit. It makes our model axissymmetric. We also

assume that, at the Earth orbit, the solar wind number density

oscillates harmonically, while the bulk velocity and tempera-

ture remain constant:

npE = npE,0(1 + δn sinωt),

vE = vpE,0, (4)

TE = TE0 = const.

For the solar wind disturbances determined by Eq. (4), the ratio

of the maximum to minimum momentum flux is equal to ∆ =

(1+δn)/(1−δn). Following Baranov & Zaitsev (1998) we made

calculations for δn = 1/3, so that ∆ = 2. As it was pointed

out by Zank & Mueller (2003), the solar cycle effects in the

heliospheric interface remain the same when the variation of

the solar wind dynamic pressure is caused by the solar wind

velocity variation. In this paper we consider variations of the

solar wind density which is sufficient for the purposes of this

paper. The effects of the realistic solar cycle on the TS variation

were studied by Izmodenov et al. (2003a).

The following solar wind parameters averaged over a few

solar cycles were used: npE,0 = 8 cm−3, VpE,0 = 445 km s−1.

We also used the following parameters of the interstellar gas

in the unperturbed interstellar medium at the outer boundary:

VLIC = 26.4 km s−1, TLIC = 6500 K, nH,LIC = 0.18 cm−3,

np,LIC = 0.06 cm−3. These particular values of the interstellar

velocity and temperature were chosen on the basis of the re-

cent observations of the interstellar He atoms by GAS/Ulysses

(Witte et al. 1996; Witte 2004; Gloeckler et al. 2004). The

choice of nH,LIC and np,LIC is based on our analysis of the

Ulysses pickup ion measurements (see, e.g., Izmodenov et al.

2003a,b, 2004).

Now we explain why we assumed “idealized” harmonic

perturbations at the Earth orbit rather than the realistic pertur-

bations of the solar wind parameters obtained from observa-

tions. The statistical Monte-Carlo method used to obtain pe-

riodic solutions of the kinetic equation requires us to fix the

time-period. The non-linear nature of the system may lead to

the interaction of the external 11-year fluctuations with the in-

ternal oscillations of the heliospheric interface. As a result, os-

cillations with periods different from 11 years may appear in

the self-consistent solution of the governing Eqs. (1)−(3) with

the boundary conditions (4). One of the main objectives of our

study was to verify if such oscillations do appear. To do this

we increased the time-period of our Monte-Carlo calculations

by 6 times. If oscillations with periods different from 11 years

are present in our solution we would be able to determine these

periods. If we use the realistic perturbations of the solar wind

parameters that are, in general, not periodic, as the boundary

conditions, it would be rather difficult to detect the presence of

oscillations with periods different from 11 years.

To solve the Euler equations self-consistently with the ki-

netic equation we used as iterative procedure as suggested by

Baranov et al. (1991) for the stationary model. In the first step

of this iterative procedure the Euler equations with the con-

stant source terms q1, q2 and q3 were solved with the use of the

boundary conditions (4). The source terms were taken from the

stationary solution with the average solar wind parameters. We

performed calculations over 300 solar cycles. As a result, we

got the distribution of the plasma parameters. We analyzed this

distribution and found that there is the 11 year periodicity only.

In the second step we solved the kinetic equation by a

Monte Carlo method with splitting of trajectories (Malama

1991). To increase the statistical efficiency of the method, we

assumed periodicity with the time period tperiod = 66 years. To

minimize statistical errors we averaged the statistical results

over tmc = 1 year. When doing so we used a distribution of

the plasma parameters for the last 66 years obtained in the

first step. As a result, we obtained the periodic (66 year) q1,

q2 and q3 source terms. In the third step we solved the Euler

equations with the boundary conditions (4) and the periodic

source terms obtained in the second step. Again, we performed

gas dynamic calculations over 300 solar cycles. Analysis of the

plasma distributions shows the 11 year periodicity only. Then

we solved the kinetic equation by the Monte Carlo method with

the distribution of the plasma parameters for the last 66 years

obtained in the third step. We continued this process of iteration

until the results of two subsequent iterations were practically

the same.

Our method allows us to obtain the self-consistent solution

of the system of Euler Eqs. (1) and the 6D kinetic Eq. (3) with

the boundary conditions (4). Since the uniqueness of the solu-

tion for this system is not proven, we cannot exclude that other
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solutions of this system of equations may exist. These solu-

tions may have periods different from 11 years. The numerical

method used to solve Euler equations does not need any re-

stricting assumptions. Remarkably, as it is reported in the next

section, our numerical solution does not contain oscillations

with periods different from 11 years.

In addition to the “ideal” solar cycle calculations we carried

out some complimentary calculations. We increased the solar

wind ram pressure by a factor of 1.5 during the first 11 years

of our 66-year period (Fig. 2, bottom plot). This study was in-

spired by the fact that observations of the solar wind are re-

stricted to the recent ∼30 years. We wanted to understand how

the solar wind conditions in the past, when they were not ob-

served, influence the heliospheric interface and observational

quantities at present and in the future.

3. Results

3.1. Plasma component

The variations of the heliocentric distances to the termination

shock, heliopause and the bow shock are shown in Fig. 2. The

discontinuities vary with a 11-year time-period under the ac-

tion of 11-year fluctuations of the solar wind dynamic pressure

at the inner boundary of our computational grid. The termi-

nation shock oscillates from its minimal distance of ∼93 AU,

which is reached in the last (11th) year of the “ideal” solar cy-

cle, to its maximum distance of ∼107 AU, which is reached

during the fourth year of the cycle. Fluctuations of the TS are

bigger in the downwind direction than in the upwind direction.

By the upwind direction we mean the direction that is opposite

to the direction of the Sun-LIC relative motion. The downwind

direction coincides with the Sun-LIC velocity vector. The vari-

ation of the TS in the downwind direction is ∼25 AU from its

minimum value of ∼163 AU during the third year of the cy-

cle to its maximum value of ∼188 AU in the 9th year of the

cycle. In the upwind direction the most distant position of the

termination shock is reached ∼1.5-year after the maximum of

the solar wind dynamic pressure at 1 AU. The variations of

the solar wind dynamic pressure are shown at the bottom

of Fig. 2 for convenience. The phase of downwind fluctuations

of the TS is shifted by ∼3.5 years compared the phase of the up-

wind fluctuations. It is interesting to compare our results with

the results obtained by Zank & Mueller (2003) and Scherer &

Fahr (2003a,b) on the basis of (multi-) fluid descriptions of the

interstellar H atoms (Table 1).

The strength of the TS has important consequences for

spectra of anomalous cosmic rays (ACRs) because the velocity

jump at the TS is related to the spectral index of ACRs β that

determines the variation of intensity of the cosmic rays j with

energy E: j ∼ Eβ. We have computed the variation of the ve-

locity jump at the TS. In the upwind direction the jump of the

plasma velocity at the TS, or, in other words, the strength of

the TS, varies from its minimum value of 2.92 to its maximum

value of 3.09. This corresponds to the variation of β from 1.28

to 1.22. The strength of the TS varies from 2.92 to 3.17 in the

downwind region. This strength variation is translated into the

variation of β from 1.28 to 1.19.
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Fig. 2. Time variations of the heliocentric distances to the termination

shock, bow shock and the heliopause in the upwind direction, and to

the termination shock in the downwind direction. Bottom plot shows

variations of the solar wind momentum flux, ρEV2
E , with time. Dashed

curves correspond to the solution of the problem with the “broken”

first of six solar cycles, when we increased the solar wind ram pres-

sure by factor of 1.5 during the first 11 years of our 66-year periodic

calculations.
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Table 1. Results of calculations.

Model ∆SWa ∆ TS (upwind)b ∆ TS (downwind) ∆ HP (upwind) R(BS )time − R(BS )c
stationary

This paper 2 14 AU 25 AU 4 AU 3 AU

Zank & Muller (2003) 2 7 AU 50 AU 6 AU n/a

Scherer & Fahr (2003) 2.67d ∼16 AU n/ae n/a >15 AU

a ∆SW notes the ratio of maximum to minimum the solar wind dynamic pressure.
b ∆ = Rmax − Rmin is the difference between maximum and minimum distances of the TS, HP and BS during the solar cycle.
c R(BS )time−R(BS )stationary is the difference between mean location of the BS during the time-dependent calculations and the stationary solution.
d Model “Sin 800” in Fig. 4a in Scherer & Fahr (2003b).
e n/a means that we were unable to find the corresponding value from the results presented in the cited paper.

The heliopause fluctuates with smaller amplitude as com-

pared to the termination shock. It varies from 169 AU, which is

reached during 4th year of the solar cycle, to 173 AU reached

in the 9th year of the solar cycle. The distance to the heliopause

averaged over the solar cycle is ∼171 AU. This coincides with

the stationary solution. The solar-cycle induced fluctuations of

the BS is less than 0.1 AU in the upwind direction. The fluctu-

ations are not visible in Fig. 2. The distance to the BS averaged

over the solar cycle is ∼308 AU, while this distance is ∼311 AU

in the case of the stationary solution.

Dashed curves in Fig. 2 correspond to solution of the prob-

lem with the “broken” first of six solar cycles, when we in-

creased the solar wind ram pressure by a factor of 1.5 during

the first 11 years of our 66-year periodic calculations (bottom

plot in Fig. 2). The termination shock in the upwind direction

“feels” the increase of the solar wind dynamic pressure dur-

ing approximately 4−5 years after the increase ended. In the

downwind direction the “feeling” is somewhat longer and lasts

another solar cycle. The second maximum of the TS both in the

upwind direction (dashed curve on the top plot in Fig. 2) and

in the downwind direction is closer to the Sun compared to the

subsequent maxima.

The post-reaction of the heliopause to the 50% increase of

the solar wind dynamic pressure is much longer compared to

the reaction of the termination shock. The heliopause does not

return to its periodic fluctuations even at the end of the 66-year

time-period. One can see from the figures that the heliocentric

distances to the termination shock, heliopause and bow shock

are always larger in the case of a “broken” solar cycle compared

to our “regular” solar cycles. This is related to the fact that the

solar wind ram pressure averaged over 66 years is 8% greater

compared to the “regular” cycle calculations. The effect is the

most pronounced for the bow shock. It appears that 66 years are

not enough for the BS to relax to its “regular”-cycle position.

As a result, the BS is ∼10 AU away for the “broken”-cycle

calculations compared to the “regular” cycle.

Plasma parameters undergo 11-year fluctuations in the

entire computation region. However, the wave-length of the

plasma fluctuations in the solar wind is apparently larger com-

pared to the distances to the TS and HP. This means that

time snap-shots of the distributions of plasma parameters (den-

sity, velocity and temperature) are not qualitatively different

from stationary solutions. The situation is different in the outer

heliosheath, which is the region between the HP and BS.

11-year periodic motion of the heliopause produces a number

of additional weak shocks and rarefaction waves (Baranov &

Zaitsev 1995). The amplitudes of these shocks and rarefaction

waves decrease while they propagate away from the Sun due

to the increase of their surface areas, interaction between the

shocks and rarefaction waves, and the dissipative attenuation of

the shocks. To resolve the wave structure we increased the res-

olution of our computational grid by three times in the region.

We have checked also that an additional increase of the res-

olution of our computational grid does not change the results.

Figure 3 presents distributions of plasma density, velocity, pres-

sure and temperature as functions of the heliocentric distance

in the upwind direction at two different moments (t1 = 1 year

(curves 1) and t2 = 6 year (curves 2). It is seen that the charac-

teristic wavelength in the region is ∼40 AU. Long-scale waves

are also seen in plasma distributions in the post-shocked plasma

of the downwind region (Fig. 3, left column). Amplitudes of

the waves are much less than in the upwind direction and the

wavelength is ∼200 AU.

Figure 3 shows a comparison of the 11 year average dis-

tributions of interstellar plasma parameters (dots) with those

obtained from stationary solution. The stationary calculations

were performed with exactly the same inner and outer bound-

ary conditions as used in the time-dependent calculations. At

the Earth’s orbit we assume 11 year average values of the so-

lar wind density. It is seen that the two distributions practically

coincide. The congruence with the stationary solution is ad-

ditional evidence of sufficient resolution of our computational

grid and the lack of significant numerical dissipation in our

numerical calculations. Our results contradict the conclusion

made by Zank & Müller (2003) that “the shocks provide addi-

tional heating in the heliotail and outer heliosheath”. According

to our results the heating is very small and it is not notice-

able in our calculations. However to draw conclusion on the

plasma heating in the heliosheath, Zank & Müller (2003) had

compared their time-dependent results with a stationary model

that assumed smaller solar wind dynamic pressure compared

with the 11-year averaged value. Therefore, the observed heat-

ing could be 1) due to the shock heating; 2) due to different

boundary conditions. Additional multi-fluid study is needed to

distinguish between these two mechanisms.

To better understand why the variation of the solar wind

parameters almost does not disturb the bow shock, we studied

the propagation of perturbations in the outer heliosheath ana-

lytically. We studied the propagation of perturbations only near

the symmetry axis, and assumed that the wavelength is small in
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Fig. 3. Interstellar plasma number density, velocity, pressure and temperature as functions of the heliocentric distance for two different moments

of time: t1 = 1 year (curves 1), t2 = 6 year (curves 2). Stationary solution (curves 3) and averaged over 11 years time-dependent solution (dots)

are shown.

comparison to the characteristic scale of inhomogeneity. The

latter assumption enabled us to use the WKB approximation.

In addition, we neglected the interaction of the plasma pertur-

bations with the H atoms. Then, using the reductive perturba-

tion method, we derived the governing equation for the plasma

perturbations. This equation is a generalization of the nonlin-

ear equation used in nonlinear acoustics for the description of

sound waves. We solved this equation assuming the boundary

conditions at the heliopause corresponding to the harmonic os-

cillation of the heliopause with period of 11 years and ampli-

tude of 2 AU. Our main result is that, due to the nonlinear steep-

ening, the shock forms in the wave profile at about the middle

of the distance between the heliopause and the bow shock. The

wave energy dissipation in this shock causes strong attenua-

tion of the perturbations in their way from the heliopause to the

bow shock. As a result, the wave amplitude at the bow shock

is about 3 times smaller than that predicted by the linear the-

ory. Since the wave energy flux is proportional to the amplitude

squared, this implies that almost 90% of the wave energy is dis-

sipated in the shocks. On the basis of this result we conclude

that the main reason why the solar cycle variation almost does

not disturb the bow shock is that the perturbations propagating

from the heliopause to the bow shock are strongly attenuated

due to dissipation in the shocks.

Comparison with numerical results reveals that the attenua-

tion of the perturbations obtained in the numerical simulation is

even stronger than that predicted by the analytical solution. The

most probable cause of this difference is that the interaction be-

tween the plasma perturbations and the H atoms provides an

additional wave dissipation.

Using the analytical solution describing the wave propa-

gation in the outer heliosheath, we estimated the rate of the
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functions of the heliocentric distance. Dots, which represent the stationary solution, are practically coincident with solid curves, which represent

the 11 year averaged time-dependent solution.
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plasma heating due to wave dissipation. We found that the

mean temperature of the plasma in the outer heliosheath can be

increased by about 280 K during one solar cycle. The plasma

heating due to the wave dissipation is compensated by the en-

ergy loss due to convective plasma motion and due to the in-

teraction between the plasma and the H atoms as seen from the

results of our numerical calculations.

3.2. H atoms

The main advantage of our model compared to previously

published multi-fluid models (Scherer & Fahr 2003; Zank &

Mueller 2003) is a rigorous kinetic description of the interstel-

lar H atoms. Charge exchange significantly disturbs the inter-

stellar atom flow penetrating the heliospheric interface. The

atoms newly created by charge exchange have velocities of

their ion partners in the charge exchange collisions. Therefore,

the velocity distribution of these new atoms depends on the lo-

cal plasma properties at the place of their origin. As it was dis-

cussed in the introduction, it is convenient to distinguish four

different populations of H atoms depending on the region in

the heliospheric interface where the atoms originate. Figure 4

compares the distributions of the populations of H atoms ob-

tained by the stationary model (dots) with the time-dependent

solution averaged over 11 years. For the plasma component

there is no noticeable difference between these two distribu-

tions. Although we present only distributions in the upwind di-

rection, our conclusion remains valid for all the computational

domain. The stationary distributions of the H atom parameters

for directions different from upwind could be found in our ear-

lier papers (see, e.g., Izmodenov 2000; Izmodenov et al. 2001).

To evaluate time-dependent features in the distribution of

H atoms in the heliospheric interface we plot the number den-

sities of the four populations of H atoms normalized to the den-

sities obtained in the stationary solution. By doing this we sup-

pressed spatial gradients of the densities, which are apparently

larger than the time-variations of the densities. Figure 5 shows

the normalized densities for two different years of the solar cy-

cle. Solid curves correspond to t1 = 1 year and dashed curves

to t2 = 6 year. It is seen that the variation of the density is

within ±5% of its mean value for the primary and secondary

interstellar populations, and for the atoms created in the inner

heliosheath. Closer to the Sun, for distances less than 10 AU,

the amplitude of the fluctuations increases up to 15%. The vari-

ation of the number density of H atoms created in the super-

sonic solar wind is ±30% about its mean value.

Figure 6 shows the time-variation of the number densities,

bulk velocities and kinetic temperatures of three populations

of H atoms at different heliocentric distances in the upwind

direction. All parameters are normalized to their initial val-

ues at t = 0. Clear 11-year periodicity is seen for the number

densities of the atoms. Deviation from the exact 11-year pe-

riodicity is related to the errors of our statistical calculations,

which are ∼2−3%. Less than 10% variation (from maximum

to minimum) is seen for number densities of all populations

at distances greater than 10 AU. At 5 AU the variations are of

the order of 30%. Variations of the bulk velocity and kinetic
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Fig. 5. Time-variation of the number densities of primary and sec-

ondary interstellar atoms (top panels), H atoms created in the inner

heliosheath and H atoms created in the supersonic solar wind (bottom

panels) as functions of heliocentric distance for two different moments

in the solar cycle.

temperature are negligibly small for both primary and sec-

ondary interstellar populations. However, the bulk velocity and

kinetic temperature of atoms created in the inner heliosheath

vary with the solar cycle by 10−12%. This is related to the

fact that most of the H atoms of the latter population are cre-

ated in the vicinity of the heliopause (Fig. 4) and they reflect

long wavelength plasma variations in this region. The corre-

lation of parameters of the H atom population created in the

inner heliosheath with the plasma parameters in the vicinity of

the heliopause is illustrated in Fig. 7.
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It is important to note that number densities of all three

components of H atoms fluctuate in the same phase. Such co-

herent behavior of fluctuations remains in the entire super-

sonic solar wind region (R < 90 AU) for the three popula-

tions of H atoms and in the inner heliosheath for the primary

and secondary atoms. The reason for such coherent behavior

of the variations of H atom densities becomes evident when

we compare them with the plasma density variations (Fig. 6,

left column). The two quantities vary almost in anti-phase.

Apparently, such a correlation is only possible when temporal

variations of the H atom densities are caused by variation of the

local loss of the neutrals due to charge exchange and ionization

processes. The local fluctuations are not transported over large

distances because the velocities of individual atoms are chaotic

and their mean free path is large.

However, coherent fluctuations of different populations of

H atoms disappear in the regions where the populations origi-

nate, and the process of creation dominates the losses. Indeed,

in the inner heliosheath (for example, at 160 AU in the upwind

direction as shown in Fig. 6) fluctuations of number density of

H atoms created in this region are shifted with respect to the

coherent fluctuations of the primary and secondary interstellar

atom populations, and are in phase with the variation of the

proton number density near the heliopause. Variations of the
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secondary interstellar atom populations are in anti-phase with

variations of primaries in the outer heliosheath (see, R =

190 AU in Fig. 6) and almost in phase with plasma fluctua-

tions in the region. Again, the creation processes are dominant

in the outer heliosheath for the population of the secondary in-

terstellar atoms.

Finally, it is important to note that the behavior of the

H atom populations in the heliospheric interface has kinetic

nature. Variations of the atom parameters are determined by

the loss and creation processes rather than by the convection

and pressure gradient terms as it would be in the fluid de-

scription. The fluid description is valid if the Knudsen num-

ber Kn = l/L ≪ 1, where l and L are the mean free path of

the particles and the characteristic spatial scale of the problem,

respectively. For the stationary problem the distance between

the HP and BS, which is approximately 100 AU, can be chosen

as L. The mean free path of H atoms in the region is ∼50 AU.

Therefore, Knstationary ≈ 0.5. The results obtained on the ba-

sis of the kinetic and fluid descriptions where compared by

Baranov et al. (1998) and Izmodenov et al. (2001). This com-

parison has shown explicitly that the velocity distribution func-

tion of H atoms is non-Maxwellian everywhere in the interface.

For the time-dependent problem considered in this paper the

characteristic size, L, is determined as a half of the wavelength

of plasma fluctuations. In the region between the HP and BS

L ≈ 20 AU as follows from Fig. 3. Therefore, Kntime ≈ 2 and a

fluid description is even less appropriate than for the stationary

model. The fact that the fluid description is inappropriate for

the atom motion is the most probable cause of the big discrep-

ancy between our results and the results obtained by Zank &

Mueller (2003) and Scherer & Fahr (2003) who used the multi-

fluid and fluid approaches, respectively. It is interesting to note

the qualitative difference between the Zank & Mueller (2003)

and Scherer & Fahr (2003) results. The reason for this discrep-

ancy could be once again the different description of H atoms

used in these two papers. Scherer & Fahr (2003) used a one-

fluid description for H atoms, while Zank & Mueller (2003)

used a three-fluid description for H atoms in the interface.

4. Summary

We developed a non-stationary self-consistent model of the he-

liospheric interface and used it to explore the solar cycle varia-

tions of the interface. We obtained the periodic solution of the

system of Euler Eqs. (1) for plasma, and the kinetic Eq. (2) for

interstellar H atoms with the periodic boundary conditions (4)

for the solar wind at the Earth’s orbit. The period of the solution

is 11 years.
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Our basic results for the plasma component confirm the re-

sults obtained previously:

1. The solar cycle variation of the TS location is ±7 AU about

its mean value.

2. The heliopause varies by ±2 AU about its mean value.

3. The variation of the bow shock location is negligible.

4. There is a sequence of additional weak shocks and rarefac-

tion waves in the region between the heliopause and the

bow shock. The additional heat of the plasma in the outer

heliosheath induced by the shock waves is small and it is

not observable in our calculations.

5. Our numerical results in the region between the HP and BS

are confirmed by an analytical solution based on the

WKB approximation.

For the interstellar H atom component we obtain the following

new results:

1. Variation of the number density of the H atoms in the outer

heliosphere is within 10%. The variation increases at 5 AU

up to 30% due to strong ionization processes in the vicinity

of the Sun.

2. The variations of the number densities of three populations

of H atoms – primary and secondary interstellar atoms, and

atoms created in the inner heliosheath – are coherent in the

entire supersonic solar wind region and determined by loss

due to charge exchange. The coherent behavior of fluctua-

tions disappear in the regions where the production process

is dominant.

3. There is no significant variation of the temperature and bulk

velocity of the primary and secondary interstellar H atoms

with the solar cycle. However, the bulk velocity and kinetic

temperature of atoms created in the inner heliosheath vary

with the solar cycle by 10–12%. It is shown that this varia-

tion reflects the plasma properties at the heliopause.

4. There is a qualitative difference between our results and the

results obtained by using the fluid or multi-fluid description

for the interstellar H atoms. It was shown that the multi-

fluid description is less appropriate for the time-dependent

case than for the stationary case because the Knudsen num-

ber is larger for the time-dependent problem.

In addition, we have performed specific calculation of the time-

dependent Euler equation with the source terms (3) taken from

the corresponding stationary solution. The difference in plasma

distribution with the self-consistent model is a few percent

(Fig. 8). Therefore, we suggest that time-dependent multi-fluid

models may produce results that are closer to the kinetic time-

dependent model in the case when the source terms are taken

from the stationary solution.
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Fig. A.1. The sketch of spherical coordinate system. The heliopause

and bow shock are shown by the solid lines. The spherical surface

approximating the heliopause in the vicinity of the symmetry axis is

shown by the dashed line.

Appendix A:

In this appendix we study the propagation of perturbations

caused by the solar cycle variation in the outer heliosheath.

We restrict our analysis to the vicinity of the symmetry axis.

In this vicinity the heliopause can be approximated by a spher-

ical surface with the radius R0 equal to the curvature radius of

the heliopause at the symmetry axis, and with center on the

symmetry axis at a distance R0 from the heliopause in the solar

direction. We introduce spherical coordinates with center at the

center of spherical surface and the radial coordinate R = R0 + x

(see Fig. A.1). In what follows we neglect the dependence of

the background quantities on the angle coordinates and assume

that they are functions of x only. In addition, we neglect the

velocity components in the angular directions. Hence, in the

unperturbed state, ρ = ρ0(x), u = u0(x) and p = p0(x), where u

is the velocity in the radial direction, and the two other compo-

nents of the velocity are zero.

We also assume that the wave motion is in the radial di-

rection and depends on x only. Then the wave motion is gov-

erned by the system of gasdynamic equations with the right-

hand sides describing the interaction between the plasma and

the neutral gas.

We consider the heliopause oscillation as an external driv-

ing force and put the boundary condition

u = ǫû sin (ωt) (A.1)

at the heliopause (x = 0). Here û is a characteristic speed near

the heliopause and ǫ is a dimensionless parameter, ǫ ≪ 1.

An important quantity for our analysis is the sound speed

cS = (γp0/ρ0)1/2. In what follows we take û = cS (0).

Let us now derive an approximate equation governing the

propagation of nonlinear waves driven by the heliopause os-

cillation in the outer heliosheath. The typical sound speed

in the outer heliosheath is 20 km s−1. The wave period is

11 years ≈ 3.5 × 108 s. This gives the typical wavelength of

about 7 × 109 km ≈ 50 AU. Since the outer heliosheath size

along the symmetry axis is about 150 AU, we conclude that

the characteristic wavelength is smaller that the characteristic

scale of inhomogeneity. This observation enables us to use the

WKB approximation.

The propagation of nonlinear sound waves in homogeneous

as well as in inhomogeneous media has been extensively stud-

ied in nonlinear acoustics (e.g. Rudenko & Soluyan 1977)

and in applications to the solar atmosphere (see, e.g., Narain

& Ulmschneider 1990, and references therein). In particular,

the equation governing the wave propagation has been de-

rived under various assumptions about background quantities.

However, for the reader’s convenience, we will briefly outline

the derivation of the governing equation in what follows.

Our aim is to derive an equation that describes the com-

bined effect of the nonlinearity and inhomogeneity. In accor-

dance with this we assume that the small parameter charac-

terizing the effect of inhomogeneity is of the same order as

the small parameter characterizing the effect of nonlinearity,

which is ǫ. In other words, we assume that the ratio of the

characteristic scales of perturbation and inhomogeneity is ǫ.

To show this explicitly we introduce the stretching variable

σ = ǫx and assume that ρ0, u0 and p0 are functions of σ. In

line with the WKB method we also introduce the running vari-

able τ = t − ǫ−1ϕ(σ), where ϕ(σ) is the eiconal. In the new

variables we rewrite the system of governing equations as

∂ρ

∂τ
− dϕ

dσ

∂(uρ)

∂τ
+
ǫ

ζ2

∂(uρζ2)

∂σ
= q1, (A.2)

∂u

∂τ
− u

dϕ

dσ

∂u

∂τ
+ ǫu

∂u

∂σ
−

1

ρ

dϕ

dσ

∂p

∂τ
+
ǫ

ρ

∂p

∂σ
= q4, (A.3)

∂

∂τ

(

p

ργ

)

− u
dϕ

dσ

∂

∂τ

(

p

ργ

)

+ ǫu
∂

∂σ

(

p

ργ

)

= q5, (A.4)

where ζ = ǫR = ǫR0 + σ, and q4 and q5 can be expressed in

terms of q1, q2 and q3. Recall that the right-hand sides of these

equations describe the interaction between the plasma and the

neutral gas. In what follows we neglect the effect of the neutral

gas on the perturbations and assume that q1, q4 and q5 do not

change when the perturbations are introduced. We are looking

for the solution to the system of Eqs. (A.2)–(A.4) in the form

of expansions in power series with respect to ǫ,

f = f0 + ǫ f1 + ǫ
2 f2 + . . . , (A.5)

where f represents any of the quantities ρ, u and p.

In the zero order approximation we collect terms of order

unity in Eqs. (A.2)–(A.4). As a result we obtain the equations

for the background quantities ρ0, u0 and p0. The solution of

these equations is shown in Fig. A.2, where the background

density, ρ0, velocity, u0, and temperature, T0, are shown as

functions of x. The background pressure p0 is calculated us-

ing the relation p0 = (2kB/mp)ρ0T0, where kB is the Boltzmann

constant and mp the proton mass.

In the first order approximation we collect terms of order ǫ

in Eqs. (A.2)–(A.4). Since we have assumed that perturbations

do not affect q1, q4 and q5, these quantities do not contribute

in the equations of any order approximation starting from the

first one. As a result, we obtain that the equations of the first

order approximation constitute a system of homogeneous alge-

braic equations with respect to ∂ρ1/∂τ, ∂u1/∂τ and ∂p1/∂τ. It
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Fig. A.2. The dependences of background quantities in the outer he-

liosheath on the distance x from the heliopause at the symmetry axis.

The upper, middle and lower panels correspond to the density, veloc-

ity and temperature. The density is given in ρp,∞, the velocity in vp,∞,

and the temperature in 104 K. The distance x from the heliopause is

given in AU.

has a non-trivial solution only if its determinant is zero. This

condition results in the equation determining the eiconal

(

1 − u0

dϕ

dσ

)2

= c2
S

(

dϕ

dσ

)2

· (A.6)

In what follows we only consider waves propagating in the pos-

itive x-direction. Then it follows from Eq. (A.6) that the eiconal

is given by

dϕ

dσ
=

1

cS + u0

· (A.7)

In addition, it follows that ρ1 and p1 can be expressed in terms

of u1 as

ρ1 =
ρ0

cS

u1, p1 = ρ0cS u1. (A.8)

In the second order approximation we collect terms of order ǫ2

in Eqs. (A.2)–(A.4). This results in the system of equations that,

with the aid of Eqs. (A.7) and (A.8), can be written as

cS

∂ρ2

∂τ
− ρ0

∂u2

∂τ
=

2ρ0

cS

u1

∂u1

∂τ

− cS + u0

ζ2

∂

∂σ

[

ρ0ζ
2(cS + u0)

cS

u1

]

, (A.9)

cS

∂u2

∂τ
− 1

ρ0

∂p2

∂τ
= −(cS + u0)2 ∂u1

∂σ

+ (cS + u0)

[

1

ρ0cS

∂p0

∂σ
− 1

ρ0

∂(ρ0cS )

∂σ
− ∂u0

∂σ

]

u1, (A.10)

∂p2

∂τ
− c2

S

∂ρ2

∂τ
= (γ − 1)ρ0u1

∂u1

∂τ

− u1(cS + u0)
ρ
γ

0

cS

∂

∂σ













p0

ρ
γ

0













· (A.11)

This is a linear system of inhomogeneous algebraic equations

with respect to ∂ρ2/∂τ, ∂u2/∂τ and ∂p2/∂τ. The determinant of

this system is zero. This means that it has a non-trivial solution

only if its right-hand side satisfies the compatibility condition.

To obtain this condition we eliminate all the variables of the

second order approximation from Eqs. (A.9)–(A.11). As a re-

sult we arrive at

∂u1

∂σ
− λu1

∂u1

∂τ
+ µu1 = 0, (A.12)

where the coefficient functions λ(σ) and µ(σ) are given by

λ =
γ + 1

2(cS + u0)2
, (A.13)

µ =
cS

2ρ0ζ2(cS + u0)2

∂

∂σ

[

ρ0ζ
2(cS + u0)2

cS

]

· (A.14)

When the nonlinear term in Eq. (A.12) is neglected, it reduces

to the equation of conservation of the wave action flux in a ra-

dially expanding tube with the cross-section proportional to ζ2,

which is ρ0ζ
2(cS + u0)2u2

1
/cS = const.

Let us return to the original independent variables, use the

approximation u′ ≡ u− u0 ≈ ǫu1, and make the variable substi-

tution

u′ = Us(0)/s(x), (A.15)

where

u′ = Us(0)/s(x), s = Rρ
1/2

0
c
−1/2

S
(cS + u0). (A.16)

Then Eq. (A.12) transforms to

∂U

∂x
+

1

cS + u0

∂U

∂t
− ΛU

∂U

∂t
= 0, (A.17)

whereΛ = λs(0)/s(x). In order to solve Eq. (A.17) we consider

x and U as independent variables, and t as a dependent variable,

i.e. t = t(x,U). Then Eq. (A.17) transforms to

∂t

∂x
=

1

cS + u0

− ΛU. (A.18)
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Integrating this equation we obtain

t = ϕ(x) − Uψ(x) + F(U), (A.19)

where

ϕ(x) =

∫ x

0

dx̃

cS (x̃) + u0(x̃)
, ψ(x) =

∫ x

0

Λ(x̃) dx̃, (A.20)

and the function F(U) is determined by the boundary condi-

tion (A.1). The right-hand side of Eq. (A.1) is a non-monotonic

function of t. This implies that F(U) is a multi-valued func-

tion. The periodic driving described by Eq. (A.1) causes peri-

odic motion in the region x > 0. This observation enables us to

consider only one wave period corresponding to −π ≤ ωt ≤ π
at x = 0. Then F(U) is given by

F(U) =























































1

ω

(

−π − arcsin
U

ǫû

)

, −π ≤ ωt ≤ −π
2
,

1

ω
arcsin

U

ǫû
, −π

2
≤ ωt ≤ π

2
,

1

ω

(

π − arcsin
U

ǫû

)

,
π

2
≤ ωt ≤ π.

(A.21)

The inequalities for ωt have to be satisfied at x = 0.

Equation (A.19) determines U as an implicit function of t

and x. In Fig. A.3 the evolution of the wave shape with the

distance x from the heliopause is shown. The quantity U is dis-

played as a function of τ = t − ϕ(x) for three different values

of x. The upper panel corresponds to x = 0, and U is a sinu-

soidal function of τ = t. When x increases, the profile starts

to steepen due to the action of nonlinearity. Eventually, this

steepening results in a gradient catastrophe, which is the ap-

pearance of infinite gradient at one particular point of the wave

profile as shown in the middle panel of Fig. A.3. In order to

determine the spatial position xc and the point of the wave pro-

file where the gradient catastrophe occurs, we note that at this

point ∂τ/∂U = ∂2τ/∂U2 = 0. Using Eqs. (A.19) and (A.21) we

rewrite these conditions as

ωûψ(xc) =
(

ǫ2 − U2
)−1/2

, ωU
(

ǫ2 − U2
)−3/2

= 0. (A.22)

It follows from these equations that the gradient catastrophe

occurs at the point of the wave profile where U = 0, and at the

spatial position xc determined by the equation

ψ(xc) =
1

ǫωû
· (A.23)

If we formally use Eq. (A.19) for x > xc, then we obtain U

as a multi-valued function of τ as shown in the lower panel of

Fig. A.3. Such a multi-valued solution does not make physical

sense. To obtain a physically meaningful solution we have to

allow a discontinuity at a particular position of the wave pro-

file. This discontinuity corresponds to a shock. It follows from

the Rankine-Hugoniot relations at shocks that the velocity per-

turbation at the two sides of the shock have the same magnitude

and opposite signs (see, e.g., Rudenko & Soluyan 1977). It im-

mediately follows from this condition and Eq. (A.19) that the

shock position in the wave profile is τ = 0, and the shock in-

tensity Us is determined by the equation and inequality

Us = ǫû sin (ωUsψ), 0 < ωUsψ ≤ π/2. (A.24)

Fig. A.3. Evolution of the shape of the wave profile with the distance

from the heliopause. U/ǫû is shown as a function of ωτ = ω[t−ϕ(x)].

The upper, middle and lower panes correspond to x = 0, x = xc ≈
44.5 AU, and x = 70 AU. In the lower panel the dashed line shows

the unphysical branch of the multivalues function U(τ) determined by

Eq. (A.19). The vertical solid line is the shock.

We have used Eqs. (A.23) and (A.24) to calculate xc and the de-

pendence of the velocity jump at the shock, ∆u = 2Uss(0)/s(x).

Using the numerically obtained value for the amplitude of the

heliopause oscillation, 2 AU, and the fact that the oscillation

period is equal to the solar cycle period, we immediately ob-

tain that ǫû ≈ 5.4 km s−1. Since û = cS(0) ≈ 40 km s−1, we

obtain ǫ ≈ 0.135, so that the use of ǫ as a small parameter

is justified. Using ǫû ≈ 5.4 km s−1 and numerically calculated

functions ρ0(x), u0(x) and cS(x), we found that xc ≈ 44.5 AU.

Since the distance between the heliopause and the bow shock

is about 140 AU, we conclude that the gradient catastrophe oc-

curs inside the outer heliosheath.

In Fig. A.4 the dependence of ∆u on x is shown for

xc ≤ x ≤ xm, where xm ≈ 140 AU is the distance between the

heliopause and the bow shock. Figure A.5 displays snapshots

of the wave profile at three different moments of time. We can

see from this figure that the wave amplitude at the bow shock

is approximately equal to ∆u/2 ≈ 2 km s−1. If we neglect non-

linearity and use conservation of the wave action, then we ob-

tain that the wave amplitude at the bow shock would be about

10.6 km s−1, which is almost two times larger than ǫû. Hence,

we conclude that the wave amplitude decreases by more than

five times due to dissipation at the shock. Since the wave en-

ergy flux is proportional to the wave amplitude, it follows that
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Fig. A.4. The dependence of the velocity jump at the shock on the

distance x from the heliopause. The velocity is given in km s−1, and

the distance x in AU.

Fig. A.5. The snapshots of the wave profile atωt = nπ, ωt = (n+1/2)π

and ωt = (n + 1)π, where n is any integer number. The dotted vertical

lines indicate the bow shock position. The velocity is given in km s−1

and the distance in AU.

dissipation at the shock reduces the wave energy flux by one

and a half orders of magnitude in comparison with the value

given by the linear theory.

Let us now consider the plasma heating due to the wave

energy dissipation. The standard approach to solving this prob-

lem is as follows. There are different timescales in the system.

The first one is the wave period. The second is the characteris-

tic time of variation of the background quantities caused by the

additional momentum input due to the wave pressure and the

energy input due to wave dissipation. To take the two different

timescales into account we introduce two different times, “fast”

and “slow”. Then we average governing equations with respect

to the fast time. As a result we obtain the system of equa-

tions describing the slow evolution of the background quan-

tities. This system is very complicated and can be solved only

numerically. So, instead of using this approach, we will give

only an estimate of plasma heating rate.

Let us consider the domain between the heliopause and the

bow shock in the form of the frustum of a cone with the smaller

base of radius ǫR0, larger base of radius ǫ(R0 + x + m), and

height xm, where ǫ ≪ 1. Now we estimate the rate of the energy

increase in this domain due to wave damping. Up to now we

have used the ideal description of the plasma motion. However,

to calculate the rate of wave energy dissipation we need to take

some dissipation mechanism/mechanisms into account. Since

the dissipative coefficients are small, dissipation occurs only in

thin layers that reduce to shocks in the limit of the ideal descrip-

tion. As a result the rate of wave energy dissipation does not

depend on what particular dissipation mechanism/mechanisms

we take into account. Having this in mind we choose viscosity.

The rate of energy dissipation per unit volume due to viscosity

is given by

Hv =
4ρν

3

(

∂u′

∂x

)2

, (A.25)

where ν is the kinematic viscosity. For waves with small am-

plitude we can substitute ρ0 for ρ in this expression. Since vis-

cosity is very weak, it is only important in the region of large

gradients, i.e. in the vicinity of the shock position in the ideal

description. This observation enables us to use the approximate

description of the wave profile (see, e.g., Rudenko & Soluyan

1977). For x < xc we use the ideal description. For x > xc

we use the ideal description for all moments of time except a

small time interval embracing the moment of time when the

shock passes this particular spatial position. This interval is de-

termined by the inequality |ωτ| � δ = νω/û2 ≪ 1 (recall that

τ = t − ϕ(x)). The solution of viscous hydrodynamic equations

inside this interval describes the structure of the shock. It is

given by (e.g., Rudenko & Soluyan 1977)

u′ = u′v ≡
∆u

2
tanh

κ(x)ωτ

δ
, (A.26)

where κ(x) = (γ + 1)cS∆u/4û2. Using the relation ∂u′v/∂x ≈
(1/cS )∂u′v/∂τ and Eq. (A.26), and taking into account that dis-

sipation occurs only in the thin layer |ωτ| � δ, we obtain that

the rate of energy dissipation per unit volume at the position

x > x0 averaged over the wave period is

〈Hv〉 ≈
4ρ0ν

3c2
S

(2π/ω)

∫ δ/ω

−δ/ω

(

∂u′v
∂τ

)2

dτ (A.27)

≈ (γ + 1)ωρ0(∆u)3

24πcS

∫ ∞

−∞

dξ

cosh4 ξ
=

(γ + 1)ωρ0(∆u)3

18πcS

·

When deriving this expression we have used the fact that

1/ cosh ξ decreases very fast when |ξ| → ∞ and substituted

the lower and upper limits of integration by −∞ and∞ respec-

tively. To obtaine the rate of energy dissipation in volume V

averaged over the period, Lv, we have to integrate 〈Hv〉 over V .

Taking into account that 〈Hv〉 = 0 for x < xc and using the

numerical results, we obtain

Lv = πǫ
2

∫ xm

xc

〈Hv〉(R0 + x)2 dx ≈ 2.8 × 1038ǫ2ωρp,∞v
2
p,∞ J/s,

(A.28)
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where ω, ρp,∞ and vp,∞ has to be measured in the SI units, i.e.

in s−1, kg/m3 and m/s respectively. The total mass of the plasma

in the considered domain is M ≈ 1041πǫ2ρp,∞ kg. We take

cvM as an estimate for the thermal capacity of the plasma in

the domain, where cv is specific heat at constant density. Since

cv = 2kB[(γ−1)mp]−1 ≈ 2.5×104 J K−1 kg−1, we obtain cvM ≈
2.5 × 1045πǫ2ρp,∞ J/K. Then, if we neglect all energy losses

from the domain, then its mean temperature will increase by

(2π/ω)Lv/cvM ≈ 2.2 × 10−7v2p,∞ K ≈ 150 K. (A.29)

This quantity gives us only an upper boundary of the temper-

ature increase. In reality there is thermal energy loss due to

interaction with neutral hydrogen. Hence, the real temperature

increase will be smaller than 150 K per one solar cycle. We can

also expect that the temperature growth will saturate after a few

cycles.


