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Abstract 38 

Leaf chlorophyll is central to the exchange of carbon, water and energy between the biosphere and the 39 

atmosphere, and to the functioning of terrestrial ecosystems. This paper presents the first spatially 40 

continuous view of terrestrial leaf chlorophyll content (ChlLeaf) across a global scale. Weekly maps of 41 

ChlLeaf were produced from ENIVSAT MERIS full resolution (300 m) satellite data with a two-stage 42 

physically-based radiative transfer modelling approach. Firstly, leaf-level reflectance was derived from 43 

top-of-canopy satellite reflectance observations using 4-Scale and SAIL canopy radiative transfer models 44 
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for woody and non-woody vegetation, respectively. Secondly, the modelled leaf-level reflectance was 45 

used in the PROSPECT leaf-level radiative transfer model to derive ChlLeaf. The ChlLeaf retrieval algorithm 46 

was validated with measured ChlLeaf data from 248 sample measurements at 28 field locations, and 47 

covering six plant functional types (PFTs). Modelled results show strong relationships with field 48 

measurements, particularly for deciduous broadleaf forests (R2 = 0.67; RMSE = 9.25 µg cm-2; p<0.001), 49 

croplands (R2 = 0.41; RMSE = 13.18 µg cm-2; p<0.001) and evergreen needleleaf forests (R2 = 0.47; RMSE 50 

= 10.63 µg cm-2; p<0.001). When the modelled results from all PFTs were considered together, the 51 

overall relationship with measured ChlLeaf remained good (R2 = 0.47, RMSE = 10.79 µg cm-2; p<0.001). 52 

This result was an improvement on the relationship between measured ChlLeaf and a commonly used 53 

chlorophyll-sensitive spectral vegetation index; the MERIS Terrestrial Chlorophyll Index (MTCI; R2 = 0.27, 54 

p<0.001). The global maps show large temporal and spatial variability in ChlLeaf, with evergreen broadleaf 55 

forests presenting the highest leaf chlorophyll values with global annual median of 54.4 µg cm-2. Distinct 56 

seasonal ChlLeaf phenologies are also visible, particularly in deciduous plant forms, associated with 57 

budburst and crop growth, and leaf senescence. It is anticipated that this global ChlLeaf product will make 58 

an important step towards the explicit consideration of leaf-level biochemistry in terrestrial water, 59 

energy and carbon cycle modelling. 60 

 61 

Key words: Radiative transfer, 4-Scale, SAIL, PROSPECT, leaf biochemistry, MERIS, satellite, remote 62 

sensing, leaf physiology, carbon cycle, ecosystem modelling, phenology 63 

 64 

 65 

 66 

 67 

 68 
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1.0 Introduction 69 

Chlorophyll molecules facilitate the conversion of absorbed solar radiation into stored chemical energy, 70 

and the exchange of matter and energy fluxes between the biosphere and the atmosphere. Our ability 71 

to accurately model these fluxes is important to forecasting carbon dynamics, within the context of a 72 

changing climate. However, within conventional carbon modelling approaches, the parameterisation of 73 

vegetation structure and physiological function over both spatial and temporal domains, with an 74 

acceptable level of accuracy remains challenging (Groenendijk et al. 2011, Houborg et al. 2015). Within 75 

such modelling approaches, leaf area index (LAI) is a core biophysical parameter used to represent 76 

vegetation density, seasonal phenology and the fraction of absorbed PAR by vegetation that is 77 

converted to biomass (Bonan et al. 2011). The ecological importance of LAI has led to well-validated 78 

datasets of LAI maps at global scales and fine spatial resolution (~1 km) (Baret et al. 2013, Deng et al. 79 

2006).  However, recent studies have found that a temporal decoupling between vegetation structure 80 

and function can occur (Croft, Chen, and Zhang 2014b, Croft, Chen, Froelich, et al. 2015, Walther et al. 81 

2016), particularly in deciduous vegetation with a strong seasonal phenology. Chlorophyll molecules 82 

comprise an important part of a plant's “photosynthetic apparatus” (Peng et al. 2011), through the 83 

harvesting of light and the production of biochemical energy for use within the Calvin-Benson cycle 84 

(Porcar-Castell et al. 2014). Leaf chlorophyll content (ChlLeaf) therefore represents a plant's physiological 85 

status, and is closely related to plant photosynthetic function; demonstrating a strong relationship to 86 

plant photosynthetic capacity (Vcmax) (Croft et al. 2017). Neglecting to consider chlorophyll phenology 87 

within carbon models can lead to an overestimation of the amount of plant carbon uptake at the start 88 

and end of a growing season in deciduous vegetation (Croft, Chen, Froelich, et al. 2015, Luo et al. 2018). 89 

The incorporation of inter- and intra- annual variations of chlorophyll within ecosystem models has been 90 

shown to improve the simulations of carbon and water fluxes (Luo et al. 2018, He et al. 2017).  91 

 92 
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Global efforts to map ChlLeaf have been hampered by the complexity in the relationship between 93 

satellite-derived canopy reflectance and plant biophysical and biochemical variables. Thus far, satellite 94 

remote sensing applications to map ChlLeaf have largely been limited to empirical methods, via the 95 

derivation of statistical relationships between spectral vegetation indices (VIs) and leaf or canopy 96 

chlorophyll content (Le Maire, François, and Dufrêne 2004, Sims and Gamon 2002). Indices that include 97 

’red-edge’ wavelengths (690–740 nm) are the most strongly related to ChlLeaf (Croft, Chen, and Zhang 98 

2014a, Malenovský et al. 2013), due to the ready saturation of chlorophyll absorption bands when ChlLeaf 99 

exceeds ~30 µg cm-2 (Croft and Chen 2018). Some studies have shown promising results using empirical 100 

methods (Datt 1998, Haboudane et al. 2002). However, this is usually achieved at local scales, within 101 

closely related species (Blackburn 1998) or for uniform, closed canopies, where the vegetation stand 102 

essentially behaves as a 'big leaf' (Gamon et al. 2010), and where contributions from other variables, 103 

such as background vegetation and non-photosynthetic elements are low. At the leaf level, variations in 104 

internal leaf structure, leaf thickness and water content, differentially affect leaf reflectance (Serrano 105 

2008, Croft, Chen, and Zhang 2014a). At the canopy scale, vegetation architecture including LAI, foliage 106 

clumping, stand density, non photosynthetic elements and understory vegetation, in addition to the 107 

sun-view geometry, affect measured reflectance factors (Demarez and Gastellu-Etchegorry 2000, 108 

Verrelst et al. 2010, Malenovský et al. 2008).  109 

 110 

An alternative satellite-based approach for deriving ChlLeaf from top-of-canopy reflectance data is 111 

through the use of physically-based radiative transfer models. Radiative transfer models provide a direct 112 

physical relationship between canopy reflectance and ChlLeaf because they are underpinned by physical 113 

laws that determine the interaction between solar radiation and the vegetation canopy. Leaf-level 114 

estimation of foliar chlorophyll is achieved by coupling a canopy model and leaf optical model, in a two-115 

step process (Croft and Chen 2018): firstly to derive leaf level reflectance from canopy reflectance and 116 
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then to derive leaf pigment content from the modeled leaf reflectance (Zhang et al. 2008, Croft et al. 117 

2013, Zarco-Tejada et al. 2004). A number of canopy models have been used for this purpose, ranging 118 

from turbid medium models (e.g. SAIL) (Verhoef 1984), hybrid geometric optical and radiative transfer 119 

models (e.g. 4-SCALE (Chen and Leblanc 1997), GeoSAIL (Huemmrich 2001), DART (Gastellu-Etchegorry, 120 

Martin, and Gascon 2004)) in which the turbid media are constrained into a geometric form (i.e. a leaf, 121 

shoot, branch and/or crown), and ray-tracing techniques (FLIGHT) (North 1996). At the leaf level, the 122 

most widely used leaf optical model is PROSPECT (Jacquemoud and Baret 1990), which has been 123 

extensively applied and validated across a wide range of plant species (Malenovský et al. 2006), due to 124 

the small number of input parameters required and its ease of inversion. Previous research has 125 

demonstrated the strength of this physically-based method for a number of different ecosystems (Zarco-126 

Tejada et al. 2004, Zhang et al. 2008, Croft et al. 2013, Demarez and Gastellu-Etchegorry 2000, Houborg 127 

and Boegh 2008). However, this approach has yet to be applied at the global scale. 128 

 129 

This paper presents the first global ChlLeaf map from satellite data using physically-based radiative 130 

transfer models. ChlLeaf is defined on a leaf-area basis, as chlorophyll content per half the total surface 131 

leaf area. Expressing ChlLeaf by leaf area (as opposed to by dry mass) is the closer representation of what 132 

is directly measured by a satellite instrument, and is most appropriate for linking ChlLeaf to ecosystem 133 

processes, such as carbon and water fluxes in relation to surfaces (Wright et al. 2004). ChlLeaf is modelled 134 

from ENVISAT MEdium Resolution Imaging Spectrometer (MERIS) 300 m reflectance data in a two-step 135 

modelling approach, using coupled canopy and leaf radiative transfer models. Modelled ChlLeaf results 136 

were subsequently validated using measured ground data at a range of different field sites over six 137 

different plant functional types (PFTs). ChlLeaf maps are produced at the global scale every seven days for 138 

an entire calendar year 2011 in order to provide spatially- and temporally-distributed leaf chlorophyll 139 

content, and consequent physiological information for ecosystem modelling and ecological applications.  140 
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 141 

2.0 Methods 142 

2.1 Ground data and validation sites 143 

We used measured leaf chlorophyll data from 248 sampling measurements within 28 field locations 144 

covering six PFTs (Figure 1 and Table 1) to validate the ChlLeaf retrieval algorithm. These data included 49 145 

measurements in deciduous broadleaf forests (DBF), 9 measurements in evergreen broadleaf forests 146 

(EBF), 100 measurements in needleleaf forests (ENF), 55 measurements in croplands (CRP), 28 147 

measurements in grassland (GRS) and 7 measurements in shrublands (SHR).  148 

 149 

Figure 1: Locations of the twenty-eight field locations used for leaf chlorophyll content validation. 150 

 151 

For each field location, the number of discrete sites or dates over which individual ground 152 

measurements were taken are reported in Table 1. The number of replicates and spatial sampling varied 153 

between the field sites, due to the nature of data collection in individual projects and between 154 

researchers, and represents the large number of sources that have come together to produce this work.  155 
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 156 

Table 1: Details of the ground measurements of leaf chlorophyll content used for validation used in this 157 

study, including the sampling location (Lat = latitude, Long = longitude) and sampling year, dominant 158 

species, plant functional type (PFT), mean site leaf area index (LAI) value and chlorophyll determination 159 

method (Chl. method). 160 

Site name Country 
Sampling 

years 

Lat/ 

Long* 
PFT 

Dominant 

species 

Mean 

LAI 

Mean 

Chl. (µg 

cm-2) 

No. of 

sites/ 

dates 

Chl. 

method† 
Reference 

Haliburton Canada 2004 
45.24 

-78.54 
DBF Sugar maple 5.5 38.3 8 Lab Zhang et al. (2007) 

Borden Forest Canada 2013-15 
44.32 

-79.93 
DBF Red maple 4.2 37.8 13 Lab Croft et al. (2015) 

Bioindicators DBF Canada 2002 
46.84, 

-81.41 
DBF 

White birch, 

poplar 
- 34.3 26 Lab   - 

Sudbury DBF Canada 2007 
47.16, 

-81.71 
DBF 

Trembling 

aspen 
4.3 48.8 2 Lab Simic et al. (2011) 

Amazon FG  
French 

Guyana 
2007-08 

5.28, 

-52.92 
EBF - 6.7 62.1 3 

Chl.  

meter 

Rowland et al. 

(2014) 

Amazon Ecuador Ecuador 2012 
-0.18, 

-76.36 
EBF - - 53.6 6 

Field 

spec. 

Arellano et al. 

(2017) 

Sudbury ENF Canada 2007 
47.18, 

-81.74 
ENF Black spruce  29.0 10 Lab Simic et al. (2011) 

Chapleau Canada 2012 
47.58, 

-83.01 
ENF Jack pine 3.3 49.3 8 Lab Croft et al. (2014) 

Bioindicators ENF Canada 2001-02 
47.11, 

-81.82 
ENF 

Black spruce, 

Jack pine 
- 32.8 60 Lab   - 

Sudbury Zhang Canada 2003-04 
47.16, 

-81.74 
ENF Black spruce 3.2 30.4 18 Lab Zhang et al. (2008) 

Le Casset France 2008 
44.98, 

6.48 
ENF 

European 

larch 
- 60.8 2 Lab 

Homolová et al., 

(2013) 

Bily Kriz 
Czech 

Republic 

2004, 

2006 

49.50, 

18.54 
ENF 

Norway 

spruce 
8.2 39.8 2 Lab 

Homolová et al. 

(2013); Malenovský 

et al. (2013) 

Col du Lautaret 

Terrasses 
France 2008 

45.04, 

6.35 
GRS 

Mixed alpine 

sp. 
- 38.5 3 Lab 

Homolová et al. 

(2014) 

Roche Noir France 2008 
45.06, 

6.38 
GRS 

Mixed alpine 

sp. 
- 39.3 5 Lab Pottier et al. (2014) 

GRS National Park Canada 2012-14 
49.16, 

-107.56 
GRS 

Mixed-grass 

prairie 
1.0 35.4 20 Lab Tong and He (2017) 

Stratford Wheat Canada 2013 
43.45, 

-80.86 
CRP Wheat 2.2 38.7 5 Lab Dong et al. (2017) 
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Stratford Corn Canada 2013 
43.46, 

-80.81 
CRP Maize 2.7 42.4 10 Lab Dong et al. (2017) 

Mosuowanzhen China 2011 
44.19, 

85.49 
CRP Cotton 1.87 64.3 15 Lab Yi et al., (2014) 

Sele River Plain Italy 2009 
40.52, 

15.00 
CRP 

Maize, 

fruit trees 
2.3 42.6 29 

Chl. 

Meter • 
Vuolo et al. (2012) 

Demmin Germany 2006 
53.99, 

13.27 
CRP 

Maize, 

wheat, 

Sugarbeet 

- 35.4 4 
Chl 

meter 

Hajnsek et al. 

(2006) 

Trapani Sicily 2010 
37.64, 

12.85 
CRP Olive trees 1.5 39.6 3 

Chl. 

meter 
  - 

Howard Springs Australia 2009 
-12.49, 

131.15 
SHR Eucalyptus 1.3 57.7 1 Lab Amiri (2013) 

Daly Uncleared Australia 2009 
-14.16, 

131.39 
SHR Eucalyptus 0.8 50.1 1 Lab Amiri (2013) 

Daly Regrowth Australia 2009 
-14.13, 

131.38 
SHR Eucalyptus 0.9 45.1 1 Lab Amiri (2013) 

Adelaide River Australia 2009 
-13.08, 

131.12 
SHR Eucalyptus 0.7 61.5 1 Lab Amiri (2013) 

Dry Creek Australia 2009 
-15.26, 

132.37 
SHR Eucalyptus 0.8 45.9 1 Lab Amiri (2013) 

Sturt Plains 

Shrubland 
Australia 2009 

-17.15, 

133.35 
SHR Eucalyptus 0.0 58.2 1 Lab Amiri (2013) 

Sturt Plains 

Woodland 
Australia 2009 

-17.18, 

133.35 
SHR Acacia 0.7 45.1 1 Lab Amiri (2013) 

* where multiple sampling sites are present at a given field location, approximate central co-ordinates are given. 161 

DBF = Deciduous broadleaf, ENF = Evergreen needleleaf, EBF = Evergreen broadleaf, GRS = Grassland, CRP = 162 

Cropland, SHR = Shrubland. †Lab = laboratory extraction; Chl meter = handheld optical meter; Field spec = field 163 

spectrometer. • indicates species specific chl. meter calibration equations. 164 

 165 

Methods of chlorophyll measurement presented in Table 1 were either through laboratory analysis 166 

techniques (Lab) or via optical methods (Croft and Chen 2018), i.e. a handheld chlorophyll meter (Chl. 167 

meter) or a field spectroradiometer (Field spec.). Where species specific calibration equations were 168 

used, further details of the calibration equations can be found in the corresponding referenced paper. 169 

The field spectrometer-based retrieval (Arrellano et al., 2017) used the PROSPECT radiative transfer 170 

model (Jacquemoud et al., 1990) to estimate chlorophyll content. It is recognised that the different 171 
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methods of chlorophyll determination may lead to a certain degree of variability between validation 172 

measurements. The algorithm was validated according to the closest available ENVISAT MERIS satellite 173 

date and location to the field sampling date. Due to the relative scarcity of available in situ ChlLeaf data, 174 

the existing validation data were maximised by using data collected in years shortly preceding or 175 

following the MERIS operational time frame (i.e. earlier than 2002 or later than 2011; Table 1). In this 176 

case, the correct day of year (DOY) from the closest calendar year within the 2002-2011 time period, 177 

was used. The validation results (Section 3) are partitioned to indicate whether the results are from the 178 

current year or closest matched year. 179 

 180 

2.2 Satellite data 181 

2.2.1 MEdium Resolution Imaging Spectrometer (MERIS) satellite data 182 

ENIVSAT MERIS satellite-derived reflectance data was selected as the input remote sensing product for 183 

this study, due to the sampling of chlorophyll-sensitive red-edge bands, a short temporal revisit time 184 

(every 2-3 days) for global application, medium spatial resolution (300 m) and its high radiometric 185 

accuracy (Curran and Steele 2005). We used the full resolution (FR) surface reflectance (SR) product, 186 

which is produced as a 7-day temporal synthesis from data collected at the original 2-3 day revisit 187 

frequency. The global SR time series are produced by a series of pre-processing steps within the MERIS 188 

pre-processing chain, including radiometric, geometric, bidirectional reflectance distribution function 189 

(BRDF), pixel identification, and atmospheric correction with aerosol retrieval. The 7-day product 190 

normalises reflectance to nadir view, and the solar zenith angle is that of 10h00 local time for the 191 

median day of the compositing period. MERIS reflectance data is provided in 13 bands (spectral 192 

resolution = ~10 nm) in the visible, red-edge and near infra-red bands, with the atmospheric bands 193 

(bands 11 and 15) removed. The MERIS FR surface reflectance global time-series covers the 2003-2012 194 

time period.  195 
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 196 

2.2.2 Landcover map 197 

A global land cover map produced from 300 m spatial resolution MERIS data, as part of the European 198 

Space Agency Climate Change Initiative (CCI-LC) project, from the 5-year period (2008-2012) was used to 199 

define PFTs. The legend is based on the UN Land Cover Classification System (LCCS) with the view to be 200 

compatible with the Global Landcover 2000 (GLC2000), GlobCover 2005 and 2009 products.  201 

 202 

2.2.3 Leaf area index (LAI) 203 

Copernicus Global Land Service GEOV1 LAI product derived from SPOT-VGT satellite (Baret et al., 2013) 204 

was used in the algorithm, with a global LAI coverage from 1999 to the present at 10-day temporal 205 

intervals and a spatial resolution of 1 km. The GEOV1 LAI product is derived from the CYCLOPES v3.1 and 206 

MODIS c5 biophysical products, through a neural-network machine-learning algorithm (Baret et al. 207 

2013). The selection of CYCLOPES v3.1 and MODIS c5 products takes advantage of previous 208 

development efforts and capitalises on the performances of each product (Camacho et al. 2013). As part 209 

of the processing chain, the LAI product is reprojected onto the Plate-Carrée 1/112° grid, temporally 210 

smoothed, interpolated at the 10-day frequency, and re-scaled to fit the expected range of variation 211 

(Verger et al. 2015). GEOV1 LAI products consider clumping as a weighted contribution of CYCLOPES and 212 

MODIS products, where MODIS LAI accounts for clumping at plant and canopy scales (Knyazikhin et al. 213 

1998), with the exception of needleleaf forests, for which shoot clumping is not accounted for. In the 214 

CYCLOPES algorithm, landscape clumping is represented by considering fractions of mixed pixels (Baret 215 

et al. 2013). Recent validation studies indicated that GEOV1 outperformed most existing products in 216 

both accuracy and precision (Camacho et al. 2013). Validation results showed good spatial and temporal 217 

consistency and accuracy, smooth and stable temporal profiles, good dynamic range with reliable 218 

magnitudes for bare areas and dense forests (Camacho et al. 2013). The GEOV1 LAI product was 219 
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selected for this project, because it met the following criteria: a high temporal frequency (every 10 220 

days), acceptable spatial resolution (1 km), a long archive of data covering the complete MERIS mission 221 

(2002-2012), and strong product validation. 222 

 223 

2.3 Algorithm development 224 

To derive leaf chlorophyll content from remote sensing data at the global scale, a two-step modelling 225 

approach was selected.  The first step in the algorithm is the modelling of leaf-level reflectance spectra 226 

from satellite-derived canopy reflectance data, using physically-based radiative transfer models to 227 

account for the influence of canopy architecture, image acquisition conditions and background 228 

vegetation on canopy reflectance. The second step was to retrieve leaf chlorophyll content from the 229 

modelled leaf reflectance derived in Step 1, using a leaf optical model. A two-step inversion method is 230 

favoured over a coupled one-step inversion because the output of each stage can be assessed 231 

individually, and may be validated against measured leaf-level reflectance data at field sites (Croft et al. 232 

2013, Zhang et al. 2008). This physically-based canopy inversion method has been previously 233 

successfully demonstrated using different combinations of canopy and leaf models (Croft et al. 2013, 234 

Moorthy, Miller, and Noland 2008, Zarco-Tejada et al. 2004, Kempeneers et al. 2008). 235 

 236 

For the first step, two canopy reflectance models were selected, according to the structural 237 

characteristics of the vegetation present. For spatially heterogeneous 'clumped' vegetation types (i.e. 238 

deciduous and coniferous trees, shrubs), the 4-Scale geometrical–optical model (Chen and Leblanc 239 

1997) was used (see Section 2.3.1). For homogenous canopies that can be treated as one-dimensional 240 

(1D) turbid media, such as agricultural crops, we used the SAIL model (Verhoef 1984) (Section 2.3.2). To 241 

invert the canopy radiative transfer models, individual LUTs for different PFTs were created, based on 242 

variable and fixed input parameters (Table 2 and Table 3). The LUT approach was selected to optimise 243 
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computational resources and reduce problems associated with appearances of local minima, given 244 

sufficient sampling of the variable space (Jacquemoud et al. 2009). Whilst these structural 245 

parameterisations are important, their influence on canopy reflectance is mediated by LAI, which is the 246 

dominant driver of modelled canopy reflectance (Zhang et al. 2008 and Section 2.4). The availability of 247 

accurate and well validated global-scale LAI products facilitated the treatment of LAI as a variable 248 

parameter, which was derived from the GEOV1 LAI product (Section 2.2.3) at 10 day intervals and 1 km 249 

spatial resolution. In the second step, leaf chlorophyll content was retrieved using a leaf optical model 250 

(PROSPECT; Jacquemoud and Baret 1990) (Section 2.3.3) from the modelled leaf reflectance that was 251 

derived in step 1.  252 

 253 

2.3.1 Step 1: Leaf reflectance inversion - 4-Scale model 254 

The 4-Scale model (Chen and Leblanc 1997) was selected for the inversion of leaf level reflectance from 255 

satellite-derived images in forested and spatially clumped ecosystems. 4-Scale considers the three-256 

dimensional (3D) spatial distribution of vegetation groups and vegetation crown geometry, in addition 257 

to the structural effects of branches and scattering elements. In closed canopies, structural variables 258 

such as crown shape and clumping of foliage elements are dominant, whereas in open canopies the 259 

effects of background reflectance and shadows prevail. The 4-Scale model simulates the Bidirectional 260 

Reflectance Distribution Function (BRDF) based on canopy architecture described at four scales: 1) 261 

vegetation grouping, 2) crown geometry, 3) branches, and 4) foliage elements (Chen and Leblanc 2001). 262 

A crown is, therefore, represented as a complex medium, where mutual scattering occurs between 263 

shoots or leaves. Consequently, sunlit foliage can be viewed on the shaded side and shadowed foliage 264 

on the sunlit side. Reflected radiance from different scene components is calculated by first separating 265 

sunlit and shaded components through first-order scattering, and then adding multiple scattering from 266 

subsequent interactions with vegetation elements or background material (Chen and Leblanc 2001). To 267 
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model canopy reflectance, the 4-Scale model was run in the forward mode, with variable (LAI, solar 268 

zenith angle and view zenith angle) and fixed structural parameters and background reflectance spectra 269 

(Table 2), set according to ground measurements and values reported in the literature (Chen and 270 

Leblanc 1997, Leblanc et al. 1999). The element clumping index (ΩE) represents vegetation clumping at 271 

scales larger than the shoot, and is associated with canopy architecture and structural variables, such as 272 

crown size and vegetation density. ΩE is an important parameter for estimating radiation interception 273 

and distribution in plant canopies (Chen, Menges, and Leblanc 2005). The non-random spatial 274 

distribution of trees is simulated using the Neyman type A distribution to permit clumping and 275 

patchiness within a forest stand (Chen and Leblanc 1997).  276 

 277 

 278 

 279 

 280 

 281 

 282 

 283 

 284 

 285 

 286 

 287 

 288 

 289 

 290 

 291 
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Table 2: Fixed and variable parameters used in the 4-Scale model for LUT generation. 292 

Broadleaf/needleleaf classes include respective deciduous and evergreen plant functional types.  293 

 

 

Broadleaf 

trees 

Needleleaf 

trees 
Shrubland References 

LAI (m2 m− 2) 0.1-8 0.1-8 0.1-8 Baret et al., (2013) 

Solar zenith angle (°) 20-70 20-70 20-70 MERIS metadata 

View zenith angle (°) 0 0 0 MERIS metadata 

Relative azimuth angle (°) 0 0 0 MERIS metadata 

Stick height (m) 10 10 3 Los et al. (2012) 

Crown height (m) 8 10 7 Los et al. (2012) 

Crown shape Spheroid 
Cone & 

cylinder 
Spheroid Chen and Leblanc (1997) 

Tree density (trees/ha) 1400 3000 1000 
Chen et al. (1997) & Leblanc 

et al.  (1999) 

Crown radius (m) 1.25 1.0 1.25 
Chopping et al. (2008), 

Evans et al. (2015) & Thorpe 

et al. (2010) 

Neyman grouping 3 4 3 Leblanc et al. (1999) 

Clumping index (ΩE) 0.90 0.80 0.80 Pisek et al. (2011) 

Needle to shoot ratio (γE) 1 1.4 1 Pisek et al. (2011) 

Foliage element width (m) 0.15 0.1 0.15 
Chen and Cihlar (1995) & 

Leblanc et al. (1999) 

Background composition 

Green 

vegetation and 

soil 

Green 

vegetation 

and soil 

Dry 

grasses 

and soil 

Observations/ 

measurements 

 294 

According to the specified input parameters, the 4-Scale model calculates canopy reflectance (ρ) as a 295 

linear summation of four components:  296 

 297 𝜌 = 𝜌𝑃𝑇λ𝐹𝑃𝑇 + 𝜌𝑍𝑇λ𝐹𝑍𝑇 + 𝜌𝑃𝐺λ𝐹𝑃𝐺 + 𝜌𝑍𝐺λ𝐹𝑍𝐺    [Eq. 1] 298 

             299 

where the reflectance factors from each scene component are: sunlit vegetation (ρPTλ), shaded 300 

vegetation (ρZTλ), sunlit ground (ρPGλ) and shaded ground (ρZGλ), and FPT, FPG, FPG and FZT represent the 301 

probability of viewing each component, respectively (Chen and Leblanc 2001).  The 4-Scale model 302 
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includes a multiple scattering scheme, for 2nd order scattering and above, through computing the 303 

interactions among the four scene components based on view factors from one component to the other 304 

(Chen and LeBlanc, 2001). In this unique way, the geometrical effects propagate to all orders of multiple 305 

scattering. In order to derive leaf reflectance (ρLλ) from sunlit crown reflectance (ρPT), the enhancement 306 

of both sunlit and shaded reflectance due to multiple scattering is accounted for using a multiple 307 

scattering factor (Zhang et al. 2008, M factor; Croft et al. 2013, Simic, Chen, and Noland 2011). The M 308 

factor can be calculated using the output sunlit and shaded scene components from 4-Scale: 309 

          310 𝑀𝜆 = 𝜌𝜆−𝜌𝑃𝐺𝜆𝐹𝑃𝐺𝜌𝐿𝜆𝐹𝑃𝑇      [Eq. 2] 311 

 312 

Finally, the M factor (Eq. 2) is used to derive leaf reflectance from canopy-level satellite reflectance 313 

(ρsatellite), by converting sunlit crown reflectance into sunlit leaf reflectance, and allowing the inclusion of 314 

the less variable shaded components (Eq. 3). 315 

 316 𝜌𝐿𝜆 = 𝜌𝑠𝑎𝑡𝑒𝑙𝑙𝑖𝑡𝑒𝜆−𝜌𝑃𝐺𝜆𝐹𝑃𝐺𝑀𝜆𝐹𝑃𝑇      [Eq. 3] 317 

            318 

 319 

2.3.2 Step 1: Leaf reflectance inversion - SAIL model 320 

The SAIL radiative transfer model (Verhoef 1984) was used to derive leaf reflectance from satellite-321 

derived images in cropland and grassland ecosystems, where the distribution of foliage approaches 322 

randomness, and information on canopy structural variables such as crown shape and the clumping of 323 

foliage elements is not applicable. Turbid medium models such as SAIL (Verhoef, 1984) assume that the 324 

canopy is composed of homogeneous, horizontal layers of Lambertian scatterers randomly distributed in 325 
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space. The SAIL model is one of the most popular and well validated models used in agricultural systems 326 

(Jacquemoud et al. 2009, Darvishzadeh et al. 2008, Clevers and Kooistra 2012). SAIL is based on Suit’s 327 

model (Suits 1971), which is founded on a set of four differential equations: (1) diffuse incoming flux, (2) 328 

diffuse outgoing flux, (3) direct solar flux, and (4) flux with radiance in the direction of remote sensing 329 

observation. Table 3 details the fixed and variable parameters used within the SAIL model, based on 330 

field observations and literature (Privette et al. 1996, Darvishzadeh et al. 2008) that were used to model 331 

canopy reflectance for the LUT-based inversion. 332 

 333 

Table 3: Fixed and variable parameters used in the SAIL model for LUT generation. 334 

 Cropland Grassland References 

Leaf area index 0.1 - 8 0.1 - 8 Baret et al., (2013) 

Solar zenith angle (°) 20-70 20-70 MERIS metadata 

View zenith angle (°) 0 0 MERIS metadata 

Relative azimuth angle (°) 0 0 MERIS metadata 

Leaf inclination distribution 

function 
Ellipsoidal Erectophile 

Clevers and Kooistra (2012) 

& Zou and Mõttus (2015) 

Hot spot parameter (m m− 1) 0.1 0.1 
Darvishzadeh et al. (2008) & 

Vohland and Jarmer (2008) 

Soil factor (dimensionless) 1 0.4 
Observations/ 

measurements 

 335 

 336 

The leaf inclination distribution function (LIDF) describes the frequency distribution of leaf inclination 337 

angles in different directions. For agricultural crops, LIDF is ellipsoidal (Campbell, 1986), with the mean 338 

leaf inclination angle set at 40°, in line with values measured within previous studies (Zou and Mõttus 339 

2015, Liu, Pattey, and Jégo 2012). For grasslands the LIDF is erectophile (LiDFa = -1, LiDFb = 0) (Clevers 340 

and Kooistra 2012, Sandmeier et al. 1999, He, Guo, and Wilmshurst 2007, Verma et al. 2017, Migliavacca 341 

et al. 2017).  The hot spot (Hs) parameter is defined as the ratio between the average leaf size and the 342 

height of the canopy (Darvishzadeh et al. 2008, Verhoef 1985). The soil factor (Sf) accounts for 343 
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variations in the brightness of the soil background, where a value of 0 denotes a wet soil and 1 a dry soil. 344 

A LUT was generated from the fixed and variable parameters shown in Table 3, which contains the ratio 345 

of the modelled canopy reflectance from the SAIL model to the SAIL input leaf reflectance as a scaling 346 

factor (S Factorλ). Modelled leaf reflectance (ρLλ) is retrieved from satellite canopy reflectance (ρSatelliteλ) 347 

according to Equation 4.  348 

 349 

     𝜌𝐿𝜆 = 𝜌𝑆𝑎𝑡𝑒𝑙𝑙𝑖𝑡𝑒𝜆 ∗ 𝑆 𝐹𝑎𝑐𝑡𝑜𝑟𝜆   [Eq. 4] 350 

 351 

2.3.3  Step 2: Deriving leaf chlorophyll content – PROSPECT model 352 

The leaf radiative transfer model PROSPECT (Jacquemoud and Baret 1990, Feret et al. 2008) is used to 353 

derive ChlLeaf from the modelled leaf reflectance spectra generated in step one (Section 2.3.1 and 2.3.2). 354 

In PROSPECT-5, leaf reflectance and transmittance (400-2500 nm) are defined as a function of six 355 

parameters: structure parameter (N), chlorophyll (a+b) concentration (Cab), carotenoid content (Car), 356 

brown pigment (Cb), dry matter (Cm) and equivalent water thickness (Cw). Absorption is calculated as the 357 

linear summation of the specific absorption coefficients of the biochemical constituents and their 358 

respective concentrations. PROSPECT has had widespread validation across a large number of 359 

vegetation species and plant functional types (Croft, Chen, Zhang, et al. 2015, Demarez and Gastellu-360 

Etchegorry 2000, Darvishzadeh et al. 2008, Malenovský et al. 2006). Whilst previous studies inverted 361 

PROSPECT by iteratively minimising a merit function (Croft et al., 2013), the large volume of data used in 362 

this study precluded this option. In order to optimise computational resources, using a vegetation index 363 

(VI) based inversion approach. PROSPECT was run in the forward mode to derive chlorophyll-sensitive 364 

spectral vegetation indices, according to incrementing chlorophyll content values. The leaf biophysical 365 

parameters were varied for each PFT (Table 4), based on measured values and within reported ranges in 366 

the literature. 367 
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 368 

 369 

Table 4: Leaf parameters used in the PROSPECT model, along with the vegetation index (VI) derived from 370 

forward-modelled reflectance spectra for each plant functional type.  Cab = chlorophyll content; N = 371 

structural parameter; Car = carotenoid content; Cb = brown matter; Cm = dry matter content; Cw = 372 

equivalent water thickness. 373 

 374 

  
Cab  

(µg cm-2) 

N 

(unitless) 

Car  

(µg cm-2) 
Cb 

Cm  

(g cm-2) 

Cw  

(g cm-2) 

Vegetation 

index 
Reference 

DBF 0-100 1.2 Chl/7 0 0.005 0.01 MERISSR Féret et al. (2011) 

EBF 0-100 1.8 Chl/7 0 0.005 0.01 MERISSR Arellano et al. (2017) 

DNF 0-100 2.8 Chl/7 0 0.05 0.01 MERISND 
De Santis et al. (2009) & 

Kötz et al. (2004) 

ENF 0-100 2.8 Chl/7 0 0.05 0.01 MERISND 
De Santis et al. (2009) & 

Kötz et al. (2004) 

SHR 0-100 1.8 Chl/7 0 0.005 0.01 MERISND 
Enrique et al. (2016) & Sow 

et al. (2013) 

CRP 0-100 1.4 Chl/7 0 0.015 0.01 MERISND Jacquemoud et al. (2000) 

GRS 0-100 1.2 Chl/7 0 0.005 0.01 MERISND Darvishzadeh et al. (2008) 

 375 

The VIs used in the VI-based PROSPECT inversion are focussed on the red-edge reflectance bands that 376 

are resistant to saturation at high chlorophyll values. Croft et al., (2014a) found strong relationships 377 

between normalised difference (ND) and simple ratio (SR) vegetation indices with chlorophyll content 378 

(Zarco-Tejada et al. 2001, Mutanga and Skidmore 2004), which were modified to MERIS red-edge 379 

spectral bands as follows: 380 

 381 𝑀𝐸𝑅𝐼𝑆𝑁𝐷 =  𝑅754−𝑅709𝑅754+𝑅709     [Eq. 5] 382 

 383 
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    𝑀𝐸𝑅𝐼𝑆𝑆𝑅 =  𝑅754𝑅709     [Eq. 6] 384 

 385 

where R is reflectance at given wavelength  in nm (R). Regression equations were then generated 386 

between incrementing chlorophyll content and the modelled VI from PROSPECT (Figure 2), which are 387 

then applied to the modelled leaf level reflectance derived from canopy model inversion in Step 1 388 

(Sections 2.2.1 and 2.2.2) to derive the final ChlLeaf values.  389 

 390 

 391 

 392 

Figure 2: Regression equations for the PROSPECT-based leaf chlorophyll inversion. The shaded grey area 393 

represents the potential uncertainty of the forward modelled vegetation index values, according to a 394 

range of measured PROSPECT parameter values from published data. For all plant functional types apart 395 

from needleleaf forests, the range in input values is two standard deviations either side of the mean from 396 

the LOPEX dataset. For needleleaf forests uncertainty values from Kötz et al. (2004) were used. 397 
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 398 

The shaded grey area in Figure 2 indicates the degree of uncertainty arising from the VI-inversion step, 399 

according to the fixed biophysical parameters that are used to parameterise the PROSPECT model. 400 

Measured N, Cm and Cw values from the LOPEX published dataset of leaf reflectance and biophysical 401 

parameters (Hosgood et al. 1995) were used for DBF, SHR, GRS, CRP species. For the needleleaf and EBF 402 

species, for which large measured datasets are not so widely available, we used parameter uncertainty 403 

values from Kötz et al. (2004) and standard deviations from Ferreira et al. (2013) for needleleaf and EBF 404 

species, respectively. For DBF, SHR, GRS, CRP and EBF species, the PROSPECT model was run in the 405 

forward mode for input parameter values that represented two standard deviations of the mean N, Cm 406 

and Cw values within the published datasets (represented by grey shading), for each PFT individually. The 407 

orange line represents the relationship between the VI and ChlLeaf using the structural parameters in 408 

Table 4. The regression equation shown is the empirical model that is used to convert modelled leaf 409 

level reflectance derived in Step 1 (Sections 2.3.1 and 2.3.2) to ChlLeaf.  410 

 411 

The VI-based PROSPECT inversion method was assessed against the conventional PROSPECT inversion 412 

method of iteratively minimising a merit function (Feret et al., 2008), for the ground validation sites 413 

detailed in Table 1. The relationship between the modelled ChlLeaf from the VI-inversion and modelled 414 

ChlLeaf from the merit function inversion was R2 = 0.74 (percentage bias = 20% and RMSE = 11.01 µg cm-415 

2). Moreover, the VI-inversion increased the relationship between modelled and measured ChlLeaf by 20% 416 

(p<0.001), when compared to the merit function ChlLeaf inversion.  Using VIs centred on the chlorophyll-417 

sensitive red-edge rather than inverting the model across the full leaf spectra reduces the confounding 418 

influence of other biophysical variables, such as leaf structure and carotenoid content. Several studies 419 

have found a high redundancy of wavelength channels in vegetation studies (Jacquemoud et al., 1995; 420 

Simic and Chen, 2008, Croft et al. 2015). Thenkabail et al. (2004) reported that the data volume can be 421 
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reduced by 97% when hyperspectral wavebands are reduced to the first five principal components, and 422 

still explain close to 95% of data variability. A reduction in spectral data may therefore permit a better 423 

model fit over the more sensitive and relevant wavelength ranges.  424 

 425 

2.4 Canopy model inversion sensitivity analysis 426 

A sensitivity analysis was undertaken to assess the impact of canopy structural parameters values 427 

differing from the fixed value used in the inversion algorithm on the modelled ChlLeaf value. Four of the 428 

major PFTs with different structural parameterisations and that employed radiative transfer models 429 

(DBF, ENF, CRP, GRS) were tested. All values were held constant according to the values used in the 430 

chlorophyll inversion algorithm (Tables 2 and 3), with one parameter incrementally perturbed. The value 431 

zero represents the condition under which the structural parameters are consistent with the values used 432 

in the main chlorophyll inversion algorithm, as outlined in Tables 1 and 2 (i.e. the reference case). In the 433 

case of LAI, which is a variable parameter in the algorithm we used a representative value (LAI = 2.5 434 

(GRS), 4.0 (CRP), 5.0 (ENF), 4.0 (DBF)) as found in a global analysis by Asner et al., (2003), for each PFT to 435 

avoid bias from an extreme case. Solar and view zenith angles were held constant at 40° and 0°, 436 

respectively. To achieve comparability between structural parameters, results are scaled to a 437 

percentage difference from the reference case. The chlorophyll values are shown as an absolute 438 

difference from the reference case, in order to provide an estimate of the impact that deviations in the 439 

actual structural parameter values from the one used in the modelling algorithm has on modelled leaf 440 

chlorophyll content values. The structural parameters vary slightly between the PFTs and two models 441 

(PROSAIL and 4-Scale), according to the structural parameters present in the model. 442 

 443 
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 444 

 445 

 446 

Figure 3: Sensitivity of modelled chlorophyll values to variations in structural parameters within the 4-447 

Scale and SAIL models, for a) deciduous broadleaf forests, b) evergreen needleleaf forests, c) Croplands, 448 

d) Grasslands. Zero percentage change (x axis) represents the reference case, where all structural 449 

parameters are those used in the algorithm inversion in Table 2 and 3. For grassland results, the different 450 

LiDFs are imposed on the x axis scale with LIDF names indicated, where Un = Uniform, Ex = Extremophile, 451 

Plg = Plagiophile, Pln = Planophile, Sph = Spherical, Er= Erectophile. 452 

 453 
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Figure 3 reveals different sensitivities of modelled ChlLeaf values in response to changing a specific 454 

structural parameter. In all cases variations in LAI presented a dominant effect on the modelled 455 

chlorophyll content. For crops a 25% difference in LAI from the reference case (i.e. LAI = 3.0 and 5.0), 456 

resulted in a change in modelled chlorophyll by -7.8 µg cm-2 and +3.76 µg cm-2. The asymmetric 457 

response of the modelled ChlLeaf values to LAI deviations represents the non-linear response of canopy 458 

reflectance to increasing LAI, which saturates at higher LAI values. In the GRS results, this saturation 459 

does not occur because of the erectophile leaf inclination angle distribution, and because the LAI 460 

reference case is lower (LAI = 2.5), resulting in smaller maximum values (GRS +Δ100% LAI = 5.0, CRP 461 

+Δ100% LAI = 8.0). For ENF trees, using the 4-Scale model, variations in canopy density also presented a 462 

high degree of sensitivity in modelled ChlLeaf values at extreme low canopy density values. A 33% 463 

difference in density from the reference case (i.e. 2000 stems/ha and 4000 stems/ha), resulted in a 464 

change in modelled chlorophyll by -6.4 µg cm-2 and +4.4 µg cm-2, while a 66% difference resulted in a -465 

19.4 µg cm-2 and +7.17 µg cm-2 change. For ENF and DBF, deviations in other structural parameters (ΩE, 466 

crown height and γE for ENF species) presented a smaller impact on the modelled ChlLeaf. A 20% 467 

difference in crown height, for example, only affected ChlLeaf values by +1.5 µg cm-2 and -1.18 µg cm-2. 468 

For the SAIL model parameters in CRP plants, in addition to LAI, the leaf angle distribution (fixed value = 469 

40°) also strongly affected modelled ChlLeaf at larger leaf inclination angles, approaching more 470 

erectophile leaf inclination angles (>60°). From leaf angle distribution = 10° to 50° the imposed 471 

variations in modelled chlorophyll were -2.7 µg cm-2 to -4.9 µg cm-2.  This result was also consistent for 472 

the GRS results, where the different LIDFs are noted in Figure 3d. The LIDFs exhibited little change until 473 

the leaf inclination angle approached those associated with erectophile canopies, with the plagiophile 474 

LIDFs exhibiting the largest difference in chlorophyll values from the modelled erectophile reference 475 

case (+12.3 µg cm-2). Changes in the soil factor and the hotspot parameter induced very little differences 476 

in modelled ChlLeaf. For example, in CRP plants a +100% change in the hotspot value (Hs = 0.2) only 477 
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resulted in a -1.2 µg cm-2 in ChlLeaf, confirming the findings of Vohland and Jarmer (2008). Deviations in 478 

ChlLeaf values that are close to zero, with increasing percentage change in the structural parameter 479 

indicates a greater tolerance of the model algorithm to differences in the actual structural parameter 480 

value at a given site, to the value that is fixed in the model. The inclusion of LAI as a variable parameter 481 

mitigates against much of the uncertainty generated in incorrect structural parameters, provided the 482 

satellite-derived LAI value is reasonable. Underestimations of the actual ground LAI value by the satellite 483 

product may therefore cause substantial uncertainty in modelled ChlLeaf results.  484 

 485 

2.5 Data smoothing and gap-filling  486 

The Locally Adjusted by Cubic-Spline Capping (LACC) method (Chen, Deng, and Chen 2006) was 487 

developed to produce continuous seasonal trajectories of satellite-derived surface parameters 488 

contaminated by clouds and other atmospheric effects.  The LACC method previously has been used 489 

successfully to smooth time series of clumping index and NDVI (He et al. 2016). Contaminated points can 490 

be identified in the time series and replaced with expected values through temporal interpolation 491 

between adjacent valid points. For identifying atmospherically contaminated points in a time series, a 492 

cubic-spline curve fitting technique with a curvature constraint was developed. Without this curvature 493 

constraint, the fitted polynomial curve would also fit the contaminated points, defeating the study 494 

purpose. In the LACC algorithm, a maximum global curvature of 0.5 is prescribed in the first step to 495 

identify contaminated points. In the second step, the curvature is adjusted locally (i.e. at different dates 496 

of the year) according to the local shape of the curve fitted with the global curvature constraint. This 497 

adjustment is to enhance the large curvatures generally found at the beginning and the end of a growing 498 

season, or double cropping seasons, and to reduce the curvature during a non-growing season and/or 499 

around the peak of growing seasons. In this way, smooth trajectories that also follow the rapid growing 500 

season variation patterns can be produced. In this study, the LACC algorithm is used to identify 501 
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contaminated data points and to gap-fill missing data points. However, in tropical areas there are often 502 

fewer than the required six data points needed to run the LACC algorithm. In this case, in order to derive 503 

temporally continuous data across the year, we removed the highest and lowest data point and linearly 504 

interpolated across the year. In northern latitude evergreen needleleaf forests where snow cover 505 

prevented acquisition of surface reflectance data from the vegetation canopy, we took the mean 506 

seasonal value and extended it across the year. Whilst such temporal gap-filling is likely to introduce 507 

some uncertainty in the modelled chlorophyll results, the temporal variations in chlorophyll content for 508 

these PFTs is small relative to deciduous forests or croplands. The annual global distribution of leaf 509 

chlorophyll content maps that are presented in this paper are for the last full year that MERIS was 510 

operational (2011). Missing data due to cloud or MERIS image acquisition limitations (Tum et al. 2016) 511 

are gap-filled with corresponding 2010 data from the same DOY within the LACC smoothing algorithm 512 

for spatial completeness and visual assessment. The original 2003-2011 global maps are also available 513 

for use within the academic community.  514 

 515 

3.0 Results and Discussion 516 

The annual global distribution of leaf chlorophyll content is presented in Figure 4a, with the geographic 517 

trends varying both within and between biomes. Figure 4b depicts the annual range in chlorophyll 518 

values for the major PFTs, as an integration of the temporal and spatial variability in chlorophyll content 519 

over a year and across the globe. 520 
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 521 

 522 

Figure 4: a) The spatial distribution of median annual global distribution of leaf chlorophyll content (at 9 523 

km resolution), and b) the median and interquartile range of leaf chlorophyll content, along with 524 

extreme values given for 9% and 91% (whiskers) and 2% and 98% (circles) of the data range. 525 

 526 

On an annual basis, the highest median ChlLeaf values are present in evergreen broadleaf forests (54.4 µg 527 

cm-2; Figure 4b), which is in part due to the high chlorophyll content of the vegetation present, and also 528 

due to the lack of seasonal leaf loss. The lower median annual chlorophyll values (Figure 4b) are 529 

consequently found in deciduous biomes (broadleaf and needleleaf forests, 28.8 µg cm-2 and 11.4 µg 530 

cm2, respectively). Ground measurements have previously demonstrated that nitrogen-poor needleleaf 531 

species typically exhibit lower chlorophyll contents by unit area than broadleaf species (Middleton et al. 532 

1997), which is also evident in the median annual results shown in Figure 4 (ENF, 18.9 µg cm-2). 533 

Environmental constraints may also impact ChlLeaf values, through temperature extremes or water 534 

availability in evergreen PFTs. Temperate grasslands, for example, are often located in regions that 535 

experience extreme annual temperature variability (McGinn 2010), which affects chlorophyll 536 

biosynthesis (Ashraf and Harris 2013). From the global map of median annual ChlLeaf, the footprints of 537 
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some agricultural regions are also clearly detectable, for example the ‘Corn Belt’ in Midwestern USA, 538 

throughout India, the Loess belt in central Europe and in northeastern China, due to their higher annual 539 

peak values, which may be related to fertilization application. 540 

 541 

3.1 Validation of modelled leaf chlorophyll estimates for individual PFTs 542 

The leaf chlorophyll algorithm was validated using 248 samples, across a number of different sampling 543 

dates and years. The modelled chlorophyll results are plotted against ground-measured values for all 544 

available PFTs (Figure 5).   545 

 546 

 547 
 548 

Figure 5: Validation of modelled leaf chlorophyll with measured ground data for individual plant 549 

functional types. Data are distinguished between temporally matched sampling and satellite overpass 550 

dates, and for ground data collected outside the MERIS lifespan (2002-2012), the closest satellite date 551 

was selected. 552 
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 553 

The strongest performances are seen for DBF (R2 = 0.67; RMSE = 9.25 µg cm-2, relative RMSE = 25.4%) 554 

followed by ENF (R2 = 0.47; RMSE = 10.63 µg cm-2, relative RMSE = 32.62%) and CRP (R2 = 0.41; RMSE = 555 

13.18 µg cm-2, relative RMSE = 30.8%). Nonetheless the other three PFTS also showed similar levels of 556 

uncertainty, where relative RMSE values were 26.5%, 15.7% and 20.8% for EBF, GRS and SHR, 557 

respectively. The statistics reported in Figure 5 are for combined temporally matched sampling and 558 

satellite overpass dates, and for ground data collected outside the MERIS lifespan (2002-2012), where 559 

the closest satellite date was selected (See Section 2.1). For comparison, the regression results using 560 

only the matched dates inside the MERIS operational window are: DBF: R2 = 0.63, p<0.001; ENF: R2 = 561 

0.63, p<0.001; EBF: insufficient data; and CRP: R2 = 0.43, p<0.001. The shrub data used in Figure 5 only 562 

contained matched dates. The regression results for all dates combined and only matched dates are 563 

comparable, with the largest difference arising for EBF, which has fewer data and a smaller dynamic 564 

range.  565 

 566 

3.2 Overall validation and comparison with vegetation indices 567 

The transferability of an algorithm across spatial and temporal scales is essential for modelling ChlLeaf, or 568 

any ecological variable, at the global scale. In comparison to empirical approaches (Gitelson, Gritz, and 569 

Merzlyak 2003, Roberts, Roth, and Perroy 2016, Peng et al. 2017), the nature of physically-based 570 

retrieval methods can account for relationships between canopy reflectance and ChlLeaf across different 571 

species and measurement acquisition conditions. Regressions between measured and modelled ChlLeaf 572 

for all PFTs combined are shown in Figure 6, alongside results for two popular vegetation indices with 573 

the same measured ChlLeaf data (the chlorophyll-sensitive MERIS Terrestrial Chlorophyll Index (MTCI = 574 

754 nm-709 nm/709 nm-681 nm) and the Normalised Difference Vegetation Index (NDVI = 865 nm-664 575 

nm/865 nm+664nm)). 576 
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 577 

 578 

 579 

Figure 6: Relationships between measured leaf chlorophyll content and a) physically-based modelled 580 

chlorophyll content; b) MERIS Terrestrial Chlorophyll Index (MTCI) values and c) Normalised Difference 581 

Vegetation Index (NDVI) values. 582 

 583 

Figure 6a demonstrates the suitability of the ChlLeaf algorithm for application across multiple PFTs, with a 584 

strong, linear relationship for all PFTs combined (R2 = 0.47; p<0.001). By contrast, the MTCI regression is 585 

weaker (R2 = 0.27; p<0.001), with some separation in MTCI values according to PFT. Cropland and DBF, 586 

for example, exhibit higher values than grassland and shrubland, for the same ChlLeaf. This stratification is 587 

likely to due to the strong influence of LAI on MTCI values. Nonetheless, MTCI does present a relative 588 

improvement over NDVI results (R2 = 0.02; n/s), due to the inclusion of chlorophyll-sensitive red-edge 589 

bands within the VI. The biomass-sensitive NDVI values also exhibit a separation according to PFT, due 590 

to differences in canopy structure and background, with cropland and grasslands also presenting 591 

particular variability in values within the same PFT. This result points to the importance of accounting for 592 

variations in canopy structure when deriving leaf-level chlorophyll results, and has implications for 593 
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applying VIs over large spatial extents to infer information on physiological processes or plant 594 

productivity. 595 

 596 

3.4 Leaf chlorophyll phenology and temporal trends 597 

The annual variability in leaf chlorophyll content was evaluated through the standard deviation of mean 598 

annual ChlLeaf, (Figure 7a). The seasonal phenology of mean ChlLeaf and mean LAI across the northern 599 

hemisphere are shown for different biomes in Figure 7b.  600 

a) b) 601 

 602 

Figure 7: Global 2011 maps of a) seasonal variability in leaf chlorophyll (one standard deviation of one 603 

year time series), and b) mean seasonal phenologies of modelled chlorophyll content and LAI across the 604 

northern hemisphere for six different plant functional types during 2011. Shaded area indicates one 605 

standard deviation. 606 

 607 

Global regions that contain large areas of deciduous forests and croplands, which are dominated by a 608 

strong seasonal phenology, present the largest temporal variation and dynamic range in ChlLeaf values 609 

(Figure 7a). In Figure 7b, DBF displays an expected phenology associated with budburst and chlorophyll 610 

biosynthesis in spring (from circa DOY 120) and chlorophyll breakdown during leaf senescence. 611 
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Temporal variations in cropland ChlLeaf show a high variability globally, which is associated with different 612 

species of crops planted, planting regimes (i.e. single or double), fertiliser application and the level of 613 

irrigation. ENF temporal ChlLeaf trajectories are relatively consistent across the year, although increasing 614 

ChlLeaf within new needles in spring is detectible, along with some chlorophyll breakdown within winter 615 

months. Missing local data (predominately in the Amazon) within Figure 7a is due to too few original 616 

data points to generate standard deviation values. Importantly, Figure 7b demonstrates the temporal 617 

divergence of LAI and ChlLeaf across the growing season, and a clear decoupling of vegetation structure 618 

and physiological function (Croft, Chen, and Zhang 2014b, Walther et al. 2016). 619 

 620 

3.3 Spatial and biome-dependent trends  621 

Annual maximum chlorophyll maps offer an opportunity to examine spatial differences in ChlLeaf without 622 

the integration of a temporal bias from seasonal change. The geographic variability in the abundance of 623 

leaf chlorophyll depends in part on local environmental drivers, and partly on plant resource allocation.  624 

 625 

 626 

 627 
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 628 

 629 

Figure 8: a) Maximum annual leaf chlorophyll content (at 9 km resolution) and b) mean values of the 630 

maximum along latitudinal bands. 631 

 632 

Higher annual maximum chlorophyll values (> 55 µg cm-2) are associated with tropical forests and 633 

croplands (Figure 8a). Mid-range values (25-55 µg cm-2) are typical of grasslands, temperate broadleaf 634 

forests and arctic tundra vegetation, and lower values (<25 µg cm-2) are typical of boreal forests. 635 

Considerable intra-biome chlorophyll variability also exists, for example within croplands higher annual 636 

values are present in India, Eastern China, Western Europe and the great Lakes in USA/Canada, in 637 

contrast to lower values found in Central Europe and the North American mid-west. Reasons for 638 

chlorophyll variability over space are in part due to the abundance of elements needed for chlorophyll 639 

synthesis (nitrogen (N), phosphorous (P), Magnesium (Mg)) (Li et al. 2018), which may vary due to the 640 

nutrient availability status of the soil, the addition of fertilisers in managed landscapes and as a result of 641 

atmospheric N deposition. At the biome-scale, the temperature-dependency of chlorophyll synthesis 642 

reactions, where the optimum temperature of [3,8-DV]-Pchlide a 8-vinyl reductase (DVR) enzyme 643 

activity in chlorophyll synthesis is 30°C (Nagata, Tanaka, and Tanaka 2007), may exert a biotic control on 644 
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the accumulation of chlorophyll in temperature-limiting ecosystems, such as the arctic. Additionally, 645 

plant water availability and drought stress affect the synthesis of chlorophyll, and may also prompt its 646 

accelerated breakdown (Ashraf and Harris 2013).  As plants allocate resources to optimise physiological 647 

processes, it may be expected that solar irradiance conditions, and the leaf economics spectrum (Wright 648 

et al. 2004) affect the partitioning of nitrogen, both between and within structural and photosynthetic 649 

leaf fractions (Croft et al. 2017, Niinemets and Tenhunen 1997).  650 

 651 

4.0 Sources of uncertainty in modelled leaf chlorophyll content 652 

The validation results (Figure 5 and 6a) indicate a good algorithm performance and levels of uncertainty 653 

comparable to more local scale studies, with reported RMSE values in the literature ranging from around 654 

8 to 15 μg cm−2 (Houborg et al. 2015). The uncertainties values from all of the PFTs used in this study 655 

were within this range; from GRS: 5.71 μg cm−2 through to EBF: 14.94 μg cm−2, and the overall 656 

uncertainty of all PFTs considered together was 10.81 μg cm−2. The overall uncertainty of the global 657 

ChlLeaf product is therefore considered within reasonable limits of current state of the art approaches to 658 

chlorophyll modelling. The sources of uncertainty and future ways to minimise this uncertainty are 659 

discussed further below. 660 

 661 

We highlight the main sources of uncertainty that can affect the accuracy of the modelled leaf 662 

chlorophyll values within the global maps as: 1) the data quality of the MERIS surface reflectance, 2) the 663 

accuracy of input LAI data, 3) the use of fixed structural parameters in canopy models, 4) the spectral 664 

contributions of understory or background reflectance to satellite-derived canopy reflectance, and 5) 665 

the validation sites used within the study.  666 

 667 
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1) Uncertainty in the MERIS surface reflectance product can arise from sources such as sensor 668 

calibration issues, cloud contamination, atmospheric correction errors (Garrigues et al. 2008). Due to 669 

the nature of the inversion process and the 'ill-posed problem' (Combal, Baret, and Weiss 2002), even 670 

small changes in satellite-derived reflectance can lead to large variations in modelled chlorophyll values 671 

(Garrigues et al. 2008). 672 

 673 

2) The chlorophyll retrieval algorithm is strongly reliant on the LAI as an input parameter, where small 674 

errors in LAI values, particularly at low LAI values can lead to large errors in modelled chlorophyll. This 675 

introduces a greater uncertainty into the chlorophyll estimates in areas with little vegetation cover, for 676 

example in shrubland and deciduous plant forms at the start and end of the growing season. Errors in 677 

LAI at high LAI values, for example due to problems concerning reflectance saturation are less of a 678 

concern because the algorithm is less responsive to LAI > 4, or when the canopy behaves as a ‘big leaf’ 679 

and background and branch contributions are minimal.  Clumping is considered in the GEOV1 LAI 680 

product that we selected (Baret et al., 2013), at both the landscape scale and the canopy scale through 681 

the integration of CYCLOPES v3.1 and MODIS c5 biophysical products. Errors in LAI values that arise from 682 

a lack of proper consideration of clumping effects mainly affect needleleaf canopies, which can be 683 

largely underestimated (Chen, Menges, and Leblanc 2005). The most significant problem, however, for 684 

the modelling of ChlLeaf is a lack of accurate LAI during winter months in the northern hemisphere. The 685 

presence of snow on the understory and on the actual needleleaf shoots prevents the retrieval of LAI 686 

during large periods of time in the winter months.  Any satellite-derived LAI data that is retrieved during 687 

snow-dominated winter months is highly uncertain, leading to potential problems with the smoothing 688 

algorithm. Further uncertainty arises from the LAI data product’s coarser spatial resolution (1000 m), 689 

compared to the input MERIS surface reflectance product (300 m). The greatest uncertainty arising from 690 

this source will be in patchy or spatially variable landscapes, such as croplands or where the LAI values 691 
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are low (i.e. LAI = <3). This uncertainty will have less of a bearing on more spatially homogenous 692 

landscapes (i.e. broadleaf forests) and in vegetation with higher LAI values.  693 

 694 

3) The chlorophyll retrieval algorithm considers the major PFTs separately, through the application of 695 

individual LUTs based on measured and reported ground data. However, the structural values used to 696 

create the LUTs represent a generalised approximation of the structural parameters, and it is recognised 697 

that considerable variation can exist within a given biome. An improved spatial representation of the 698 

intra-PFT variability of structural parameters, such as canopy height, stem density and leaf angle 699 

distribution, would be beneficial, particularly in needleleaf forests, for example, where spatial variability 700 

is driven by the dominant species composition. However, a lack of available spatially-continuous data at 701 

fine spatial resolutions currently prevents the explicit parameterisation of these structural variables in 702 

the canopy models. Whilst these structural parameterisations are important, their variation over the 703 

variable range that may be found within a PFT is likely to be small relative to variations between PFTs, 704 

and relative to LAI. The sensitivity analysis presented in Section 2.4 indicates that LAI is the dominant 705 

driver of modelled ChlLeaf uncertainty, with other parameters such as crown height, ΩE, γE, Hs parameter  706 

the background soil factor having negligible influence. This finding also confirms the work of Zhang et al. 707 

(2008), who examined the sensitivity of the 4-Scale model input parameters to the model output, 708 

finding that LAI is the dominant driver of modelled canopy reflectance.  709 

 710 

4) The temporal and spatial variability of background contributions are a source of uncertainty in the 711 

modelled ChlLeaf values, to a greater or lesser degree depending on the overall canopy coverage. Areas 712 

with lower LAI values are more susceptible to errors concerning the erroneous parameterisation of 713 

background material in the model. Although substantial progress has been made in retrieving 714 

understory reflectance from multi-angular reflectance images (Canisius and Chen 2007, Pisek and Chen 715 
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2009), the often coarse spatial resolution and lack of global coverage for all vegetation types of these 716 

products (Jiao et al. 2014, Liu et al. 2017) precludes their use. 717 

 718 

5)  An additional source of uncertainty could come from the validation ground data itself. The relatively 719 

small number of measured chlorophyll values sampled in situ makes widespread validation challenging, 720 

particularly for EBF, SHR and DNF PFTs. The validation data used in this study is through the generous 721 

and collaborative efforts of independent researchers, and without an established network collecting 722 

regular ChlLeaf data or automated measurement systems, direct product validation is time and resource 723 

intensive (Garrigues et al. 2008). Consequently, no existing validation data sets are completely 724 

representative of all of the global and seasonal variability of vegetation [Baret et al., 2006]. This study 725 

used 28 distinct sites to validate the ChlLeaf product, which is within the same range of other global 726 

biophysical product validations. In the calibration and product development of MODIS LAI products, 727 

Yang et al. (2006) selected 25 validation sites, and He et al (2012) used 38 validation sites for their 500 m 728 

global clumping index map. Initial Soil Moisture Active Passive (SMAP) soil moisture products were 729 

validated using 34 validation sites (Colliander et al. 2017). To an extent, the reported uncertainties on 730 

the modelled leaf chlorophyll content values will also be a function of the coverage of geographic and 731 

vegetation species contained within the validation sites, and the inherent variability that exists within 732 

plant functional types.  Future work can focus on evaluating the accuracy of the chlorophyll product in 733 

species and management regimes that are underrepresented in the model development and validation.  734 

It is likely that sites where the structural properties deviate largest form the values used in the model 735 

parameterisation (Table 2) may suffer the largest degree of uncertainty.   736 

 737 

 738 

 739 
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5.0  Conclusion 740 

This research represents the first global view of terrestrial ChlLeaf distribution. Weekly maps of ChlLeaf are 741 

produced at the global scale following a two-step physically-based modelling approach. The accuracy of 742 

the ChlLeaf product is ultimately dependent on the representation of radiative transfer processes within 743 

the canopy and leaf optical models, the structural parameterisation of the radiative transfer models and 744 

the accuracy of land cover and leaf area index data. Modelled results show good relationships with 745 

measured ground data, in particular for deciduous broadleaf forests (R2 = 0.67; RMSE = 9.25 µg cm-2; 746 

p<0.001), croplands (R2 = 0.41; RMSE = 13.18 µg cm-2; p<0.001) and evergreen needleleaf forests (R2 = 747 

0.47; RMSE = 10.63 µg cm-2; p<0.001). On an annual basis, evergreen broadleaf forests presented the 748 

highest median leaf chlorophyll values (54.4 µg cm-2). The global values show large temporal and spatial 749 

variability expected in ChlLeaf. It is expected that ESA Sentinel-2 series will be used to continue the ChlLeaf 750 

time series, due to the presence of red-edge sampling bands and widespread spatial coverage and fine 751 

temporal resolution. It is anticipated that this global leaf chlorophyll product will make a significant step 752 

towards improving global and regional ecosystem models associated with carbon cycle modelling, 753 

through the explicit consideration of foliage biochemistry, and reduce the uncertainty associated with 754 

leaf physiology. 755 
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