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Discovering IoT Implications in Business and Management: A Computational Thematic 

Analysis 

Abstract  

IoT as a disruptive technology is contributing toward ground-breaking experiences in contemporary 
enterprises and in our daily life. Rapidly changing business environment and phenomenally evolving 
technology enhancement necessitate a robust understanding of IoT implications from business and 
management perspective. The current study benefits from an explanatory sequential mixed-method approach 
to represent and interpret the inductive topical framework of IoT literature in business and management with 
emphasis on business model. Bayesian statistical topic model called latent Dirichlet allocation is employed 
to conduct a comprehensive analysis of 347 related scholarly articles to reveal the topical composition of 
related research. Further, we followed a thematic analysis for interpreting the extracted topics and gaining 
in-depth qualitative insights. Theoretical implications with emphasizing on research agenda for future study 
avenues and managerial implications based on influential themes are provided. 
 
Keywords: Internet of Things; Topic modelling; Business model; Thematic analysis; Business and 
management; Future research 
 
1. Introduction 

Internet of Things (IoT) has flourished over the last decade as a new wave of digital 
transformation, which enables real-time sensing, collecting and sharing data. The unique 
features of IoT like ubiquity have enabled the possibility of developing advanced applications 
across many domains. The momentum IoT has generated makes it an ideal frontier for driving 
technological innovation (Siow et al., 2018), garnering significant attention from both 
practitioners and scholars. IoT is perceived as a disruptive innovation given its potentiality to 
truly reshape our world (Manyika et al., 2013). Pervasive applications of IoT are dramatically 
transforming many aspects of societies and economies such as healthcare (Pang et al., 2015; 
Tuan et al., 2019), transportation (Davidsson et al., 2016), logistic (Hopkins & Hawking, 2018), 
manufacturing (Birkel et al., 2019; Hasselblatt et al., 2018), and tourism (Byun et al., 2017; 
Gretzel et al., 2015). It is estimated that the IoT market size will reach $1.2 Trillion worldwide 
by 2022 (IDC, 2018). However, IoT’s extensive publicity and promising future do not 
guarantee its widespread success, since many concerns and potential issues of gaining actual 
value of IoT are not yet fully known (Nicolescu et al. 2018). IoT mass adoption and actualizing 
its values depend not only on technological advances but more on understanding its business 
and managerial needs and challenges. Porter and Heppelmann (2014) maintain that we need to 
identify the dynamics of IoT technologies from business and management perspective to 
survive and gain competitive advantage during the technological transformations.  
 
The diffusion trend of IoT leads to a call for studies to advance our understanding of research 
on managerial and entrepreneurial opportunities of this disruptive innovation (Clarysse et al., 
2019). Despite exponentially expanding opportunities arising from IoT and ever-growing 
attention it attracts among scholars, practitioners, and the general public, a critical literature 
review indicates the lack of systematic and rigorous study on the business and management 
perspective of this technology. Mostly, the extant literature has taken a narrow view to discuss 
specific aspects of IoT business and management such as generating value from IoT data 
(Hajiheydari et al., 2019), concentrating on IoT applications in servitization (Rymaszewska et 
al., 2017), or providing a descriptive business model for IoT (Dijkman et al., 2015). This gap 
highlights the need for an integrative study that considers the current body of knowledge to 
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connect the disciplinary perspective and insight around IoT studies with business and 
management identity. 
 
There are several grounds that signify examining IoT from the business and management lens 
is both timely and essential. First, the ever-increasing growth of investment, the predicted 
market size (IDC, 2018), and the continuous introduction of pervasive applications (Forbes, 
2019) necessitate understanding of IoT business implications. Further, calls continue for the 
‘Managerial and Entrepreneurial Opportunities and Challenges of IoT’, principally based on 
the role of this disruptive technology in generating new venture opportunities, shifting the 
nature of competition, and eroding the traditional business models (Clarysse et al., 2019). 
Finally, due to growing expansion of IoT applications and related publications, researchers 
suggest quantitatively examining the related literature (Lu et al., 2018), to explore the hidden 
thematic structure of IoT research (Yoon et al., 2018), and IoT issues associated with 
managerial and organizational areas and theories (Mishra et al., 2016). 
 
Previous studies have mainly focused on ‘general IoT research domain’. By applying either 
quantitative or qualitative methods, researchers attempted to examine the generic IoT 
knowledge field and objectively or subjectively analyse the literature. Co-word analysis (Kim 
& Kang, 2018; Yan et al., 2015), co-citation analysis (Ng et al., 2018), bibliometrics (Mishra 
et al., 2016), and scientometrics approaches (Erfanmanesh & Abrizah, 2018) are some of 
quantitative methods have been used to explore IoT research domain. On the other stream, 
qualitative and mainly literature review approaches have been followed to examine the IoT 
study domain (e.g., Atzori et al., 2010; Li et al., 2015; Siow et al., 2018; Lu et al., 2018). It 
thus appears that scholarly attempt with direct focus on uncovering the intellectual structure of 
IoT literature from the business and management perspective is largely disregarded. This study 
contributes to advancing the current discourse on IoT in particular considering business and 
management issues more holistically, by integrating, representing and synthesizing current 
knowledge through an innovative methodological approach. 
 
The main goal of this systematic and rigorous research is to map and link the knowledge 
landscape of IoT in business and management domains. To this aim, the present study seeks 
to: (i) extract the inductive topical framework to portray the IoT research field in business and 
management, and more specifically for the highly focal domain of ‘business model’; (ii) 
analyse and explain the main business and management latent themes and sub-themes in the 
research field of IoT; and (iii) highlight the trend of business and management studies in the 
IoT field to detect novelty and emergence. To address these objectives, we analysed the corpus 
of IoT research in the business and management disciplines applying an explanatory sequential 
mixed-method approach. This study thereby provides three key contributions. First, it drives 
and presents phenomenon-based constructs and grounded conceptual relationships in the IoT 
literature on business and management. Second, we explore and discuss the related latent 
subjects of these constructs and their relationships, with special attention to the business model 
theme. Finally, we provide theoretical contribution by proposing research agenda for future 
study avenues in this context, based on the identified thematic map. 
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2. Research Method 

As quantitative and qualitative methodological approaches both have certain weaknesses 
(Gioia et al., 2013), researchers have called for new methods to examine organizational 
phenomena (Taras et al., 2009). Some propose combining them to take the advantages of both 
methods, addressing their limitations, and overcoming the trade-off between performing large-
scale quantitative analytics and gaining in-depth qualitative insights (Creswell & Clark, 2011, 
p. 17; Schmiedel et al., 2018). Thereby, we use a novel algorithm-assisted inductive approach 
as a mixed-method study wherein: (a) topic modelling as a computational method uncovers the 
topical composition of IoT research in the business and management fields and (b) thematic 
analysis as a qualitative method enables us to thoroughly analyse and interpret the extracted 
topics. Recently, the interest for synergistically joining the strengths of computational 
modelling and the capabilities of qualitative methods for obtaining robust and interpretable 
results has increased among researchers (e.g. Eickhoff & Wieneke, 2018; He et al., 2020; Rai, 
2016; Tidhar & Eisenhardt, 2020). In our novel mixed-methods design, we followed 
“explanatory sequential mixed-method” procedure proposed by Creswell and Clark (2011), 
because of the need for further understanding of quantitative results in detail through a follow 
up qualitative thematic analysis. As shown in Figure 1, we conducted this study in four stages, 
the details of which are discussed in the following sections. 
 

 
Figure 1. Main phases and their respective key steps in the research process 
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2.1. Corpus Building 

We began our study by searching within Thomson Reuters’ Web of Science (WoS) core 
collection to identify the corpus of IoT research in the business and management fields. On 5 
May 2019, we retrieved all English papers containing either “Internet of Things” or “IoT” term 
in the title, abstract, or keywords and also were indexed in the business or management WoS 
subject categories. To include only validated and verified knowledge, we removed document 
types other than journal papers. The search process resulted in 412 research papers as the initial 
dataset. However, a closer look at these results revealed that there were some papers without 
desired relevance to the research issue, due to the logic of WoS in assigning a journal’s 
documents to predefined subject categories (WoS, 2019). To eliminate irrelevant documents, 
first, each of the authors independently scrutinized the title, abstract, and keywords of the 
resulted records. Then, they reviewed the full text in cases of doubt and discussed together in 
cases of disagreement to reach a consensus and ensure the validity of the research corpus. 
Eventually, 347 journal articles dated from 2010 to 2019 were retained as the ultimate dataset. 
Since the abstract of a research article is the best possible distillation of its main points, we 
used this textual attribute of the final papers to build the intended corpus. 
 
2.2. Corpus Cleaning 

To perform the pre-processing, first, we removed the phrases of copyright notices, such as ‘(C) 
2019 Elsevier B.V. All rights reserved.’ which normally appears at the end of abstracts. We 
also dropped the core keywords (i.e., “Internet of Things” and IoT) and stopwords by using 
NLTK (Loper & Bird, 2002) to avoid jeopardizing the cohesion of results. All characters were 
transformed into the lower-case; the corpus was stripped from the punctuations, digits, 
whitespaces, and terms with less than three characters. Finally, we used the Term Frequency-
Inverse Document Frequency (TF-IDF) measure, as one of the best term weighting approaches 
(Salton & Buckley, 1988), to value the stemmed words in the corpus and identify relatively 
insignificant ones to be removed (Weiss et al., 2015, p. 25). As suggested by Jiang et al. (2016), 
we calculated the TF-IDF score for each word over all documents in the corpus (Equation 1) 
and then, following the recommendations of best practices for text pre-processing (e.g., Antons 
& Breidbach, 2018), we removed the terms with scores less than the median of all TF-IDF 
values. The corpus, thus, was stripped from the less relevant words without enough 
discriminatory power to characterize the text. In Equation 1, fij is the frequency of the ith term 
in the jth document, Fj is the number of terms in the jth document, N is the total number of 
documents, and ni is the number of documents that contain the ith term. Except the first two 
steps, we used Python 3.6.0 to clean the corpus. 

TF-IDF i = ∑ �𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖� ∗ (𝐼𝐼𝐼𝐼𝑇𝑇𝑖𝑖)𝑁𝑁𝑖𝑖=1 = ∑ �𝑓𝑓𝑖𝑖𝑖𝑖𝐹𝐹𝑖𝑖� ∗ �𝑙𝑙𝑙𝑙𝑙𝑙 𝑁𝑁𝑛𝑛𝑖𝑖�𝑁𝑁𝑖𝑖=1                                                           Equation 1 

2.2. Topic Modelling 

Lately, computerized text analyses have introduced as a viable quantitative techniques (Pandey 
& Pandey, 2019), which can provide new insights to the management and organizational 
research. Topic modelling, with some remarkable algorithmic and practical benefits, is one of 
such analyses that is well-used to divulge phenomenon-based constructs and grounded 
conceptual relationships in corpora. Topic models are a set of statistical algorithms that analyse 
the words of a textual collection to generate a representation of the latent topics discussed 
therein and thus organize and summarize the collection (Blei, 2012). Through the topic 
modelling, researchers seek to render the corpus (i.e., ‘juxtaposing data and concept’ and 
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‘categorizing data’) to inductively extract theoretical artefacts as multidimensional constructs 
(Charmaz, 2014; Hannigan et al., 2019) and inductively study the phenomenon based on large 
empirical samples (Tonidandel et al., 2018).  
In this study for topic modelling, we used Latent Dirichlet Allocation (LDA) developed by Blei 
et al. (2003), and now is the most common topic modelling method (Jelodar et al., 2019). The 
LDA is a generative probabilistic model conceptualizes corpus as made up of a limited number 
of salient topics, each of which is a probability distribution over a fixed vocabulary of words 
(Blei et al., 2003). It technically assumes each document has a distribution over the topics and 
for each word in the document, a topic is chosen from the topics distribution (Blei, 2012). By 
building a joint probability distribution over both the observed data and hidden variables 
(Equation 2), the LDA model computes the conditional probability distribution of the latent 
topic structure variables (Equation 3) (Blei, 2012). We estimated the model using Gibbs 
sampling (Griffiths & Steyvers, 2004) as a common Markov chain Monte Carlo algorithm. In 
Equations 2,3; βk represents a topic that is a distribution over the vocabulary (the per-topic 
word distribution), θd represent the topic proportions for the dth document, in which θd,k is the 
topic proportion for the kth topic in document d (the per-document topic proportion), zd 
represent the topic assignments for the dth document, in which zd,n is the topic assignment for 
the nth word in document d (the per-word topic assignment), wd represent the observed words 
for the dth document, in which wd,n is the nth observed word in document d, K represents the 
number of topics, D represents the number of documents in the corpus, and N is the number of 
words in the vocabulary (Blei, 2012). 
 𝑝𝑝�𝛽𝛽1:𝐾𝐾 , 𝜃𝜃1:𝐷𝐷, 𝑧𝑧1:𝐷𝐷,1:𝑁𝑁, 𝑤𝑤1:𝐷𝐷,1:𝑁𝑁� = ∏ 𝑝𝑝(𝛽𝛽𝑘𝑘)∏ 𝑝𝑝(𝜃𝜃𝑑𝑑)𝐷𝐷𝑑𝑑=1𝐾𝐾𝑘𝑘=1 �∏ 𝑝𝑝(𝑧𝑧𝑑𝑑,𝑛𝑛|𝜃𝜃𝑑𝑑)𝑝𝑝(𝑤𝑤𝑑𝑑,𝑛𝑛�𝛽𝛽1:𝐾𝐾 , 𝑧𝑧𝑑𝑑,𝑛𝑛)𝑁𝑁𝑛𝑛=1 �     Equation 2 𝑝𝑝�𝛽𝛽1:𝐾𝐾 , 𝜃𝜃1:𝐷𝐷, 𝑧𝑧1:𝐷𝐷,1:𝑁𝑁�𝑤𝑤1:𝐷𝐷,1:𝑁𝑁� =  𝑝𝑝(𝛽𝛽1:𝐾𝐾, 𝜃𝜃1:𝐷𝐷, 𝑧𝑧1:𝐷𝐷,1:𝑁𝑁, 𝑤𝑤1:𝐷𝐷,1:𝑁𝑁) 𝑝𝑝(𝑤𝑤1:𝐷𝐷,1:𝑁𝑁)⁄                                    Equation 3 

To run LDA, first, we used the CountVectorizer class provided by the highly popular scikit-
learn library (Pedregosa et al., 2011) to convert the corpus into a Document-Term Matrix 
(DTM) as the model’s input. An element in the DTM represent a term frequency in the 
corresponding document. Then, we used lda package1, developed based on the collapsed Gibbs 
sampling, to implement the LDA model. The results show per-topic word distributions and per-
document topic proportions, which represents the topic structure of the corpus. In addition, we 
used pyLDAvis package (Karpovich et al., 2017), to visualize the topic map and find the inter-
topic distances based on the Multi-Dimensional Scaling (MDS) (Cox & Cox, 2000). In order 
to tune the LDA model parameters, as there is no widely accepted method, we used four 
different data-driven approach suggested by Griffiths and Steyvers (2004); Cao et al. (2009); 
Arun et al. (2010); and Deveaud et al. (2014) (please see Appendix A for details of the 
analysis). The results of this analysis showed that 10 topics best illustrate the latent structure 
of IoT business and management related research. Furthermore, we applied cross-validation 
method with 10-fold to check the sensitivity of parameters. The analysis indicated that results 
of LDA with 10 topics were acceptable in terms of perplexity and log-likelihood (please see 
Appendix A).  
 
2.4. Topic Explaining 

After uncovering the topical structure hidden in a corpus, scholars propose various quantitative 
and qualitative methods for finding semantic meaning and interpretations in inferred topics 
(e.g., Marchetti and Puranam, 2020; Schmiedel et al., 2018). For instance, Chang et al. (2009) 
                                                           
1 http://pythonhosted.org/lda/ 
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suggest two quantitative measures to evaluate the latent space of topic models, that is word 

intrusion to assess whether a topic has human-identifiable semantic coherence, and topic 

intrusion to assess whether the association between a document and a topic makes sense. In 
another study, Sievert and Shirley (2014) introduced the relevance metric that enables flexibly 
ranking terms according to their usefulness for interpreting topics. Reviewing the extant 
literature for qualitatively analysing and interpreting topic modelling results indicates that the 
most common approach is building a list of words with the deepest linkage to each topic and 
using these words for labelling and interpreting the topics. However, the recent work in this 
area suggests more intuitive methods. For instance, Marchetti and Puranam (2020) proposed 
‘prototypical-text based interpretation (PTBI)’ methodology for enhancing replicability and 
interpretability of topic modelling results. The central tenet of this approach is to show some 
selected prototypical texts associated with each topic to the readers, thereby they can interpret 
the topics by themselves. While this approach improves the transparency and replicability of 
topic modelling results, Marchetti and Puranam (2020) stress that PTBI is viable when 
documents do not refer to multiple topics simultaneously and the average length of them in the 
corpus is relatively low for avoid fatigue in the readers.  
 
As the documents in the corpus of this study are comparatively long (around 208 words) and 
mainly related to multiple themes, to firmly analyse and interpret the extracted topics in rich 
detail, we applied the thematic analysis (TA) to systematically identify, organize and describe 
patterns in our dataset (Braun & Clarke, 2006). In this method, a theme refers to some important 
concepts concerning the research questions that reflects some level of a patterned meaning 
within the set of data (Braun & Clarke, 2006). The main reasons for using the TA are its 
accessibility and flexibility that may overcome the methodological challenges (e.g., vagueness, 
mystique, and complexity) of other methods in recognizing what a topic has been exactly 
written about (Braun & Clarke, 2012). We used TA method for detailed textual analysis to 
identify, describe, and report topics found through topic modelling. Following the TA steps 
suggested by Braun and Clarke (2006) , we first skimmed the most correlated terms and 
documents for familiarizing ourselves with the data in each identified topic2. Second, we took 
into account each term in a topic as an initial generated code. Therefore, we examined the full 
text of the documents to evaluate the significance level of the codes in the topic’s context. We, 
thus, identified the most meaningful and relevant terms in each topic, and ignored the irrelevant 
ones. Third, we searched the main theme and potential sub-themes among the retained terms 
in each topic. Forth, we reviewed the full and coded data as well as themes to revise the findings 
of the previous step. In the fifth step, the resulted theme and sub-themes were finalized for each 
topic. We then assigned names to the themes and defined them as labels of the corresponding 
topic based on the words and documents that were highly associated with each topic 
(Schmiedel et al., 2018). Finally, we precisely explained each topic based on the core theme 
and sub-themes regarding the documents to produce the topic modelling report. Table 1 
summarizes the activates, sample of inputs and outputs in each phase of our TA process. To 
ensure the validity of the TA results, the steps 1 to 5 were conducted by each author 
independently, and the findings were cross-checked to solve conflicts and reach consensus. In 
addition, the applying TA as a systematic method and closely following its steps assist us to 
improve the reliability of our findings. 
                                                           
2 In this step, the most correlated terms and documents were identified based on a cutoff number of terms in the per-topic word distributions 
and a threshold weight of topics in the per-document topic proportions. 
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Furthermore, in order to robustly discover the latent structure of IoT business model, we 
repeated topic modelling for it as our dominant theme. In doing so, we reran LDA procedure 
to the most relevant, correlated documents to this topic, and quantitatively extracted the sub-
topics to reveal the intellectual structure of IoT enabled business model as a topic with high 
attraction.  

Table 1. Highlights of our TA process 
Phases of Thematic 

Analysis 

Summary of activities Example of inputs  Example of outputs 

Phase 1: Familiarizing 
yourself with your data 

Identifying valid sources  
Collecting and skimming documents 
Building the corpus 
Cleaning the corpus 

WoS core collection 
Dataset containing 347 

journal papers 

Prepared corpus 

Phase 2: Generating initial 
codes 

Debriefing peers 
Sensitivity analysis and selecting number of 

topics 
Running the LDA 
Extracting the codes (terms) distributions for 

each topic 
Selecting the most relevant and meaningful 

codes based on documents 

Document term matrix 
Results of sensitivity of 

analysis (Appendix A) 
Term distributions 
Topic distributions 
 
 

Finalized list of most 
probable terms in 
each topic (Table 3) 

Phase 3: Searching for 
themes 

Coding and collating the data in the corpus 
Reviewing coded data to identify themes 
Diagramming to make sense of themes in the 

corpus 
Inductively (data driven) identifying potential 

themes and subthemes 
Exploring relationships between themes 
Triangulating researchers to cross-check 

Initial coded data 
Potential themes and 

subthemes 
Global view of topics 

List of candidate themes 
and subthemes 

Collated data relevant to 
each theme 

Phase 4: Reviewing themes Reviewing entire corpus and coded data 
Testing for referential adequacy by returning 

to collated data 
Triangulating researchers to cross-check 

Set of themes and 
subthemes 

 

Refined list of themes 
and subthemes 

Phase 5: Defining and 
naming themes 

Clearly defining and specifying themes and 
subthemes 

Documenting the focus, scope, and purpose 
of themes and subthemes 

Identifying the story that each theme tells 
Triangulating researchers to cross-check 

Global and collated data  
Reviewed and discussed 

data related to the 
themes and subthemes  

Named and defined 
themes and subthemes 

Deep analytics of each 
theme and subthemes 
(T1-T10) 

Phase 6: Producing the 
report 

Describing process of topic modeling and 
analysis of topics 

Thick descriptions of context 
Report on reasons for theoretical, 

methodological, and analytical choices 
throughout the entire study 

Provide a compelling story about data based 
on the analysis. 

Fully established themes 
and subthemes 

Detailed analysis of 
themes 

Final analysis  
Topic distribution over 

time (Figure 3, 4) 
Report about interesting 

data within and across 
themes (Figure 5,6) 

 

 
3. Results 

Figure 2 presents the global view of the topic model on IoT business and management research 
area. This view visualizes the output of topic modelling, wherein circles represent topics in a 
two-dimensional plane. Areas of the circles are proportional to the relative prevalence of the 
topics in the corpus. The centres of circles are estimated by calculating the distance between 
topics and further projected onto a two dimensions space by using multidimensional scaling to 
reflect the inter-topic distances (Chuang et al., 2012; Sievert & Shirley, 2014). This 
visualization seeks to depict answers to two questions: (a) ‘How prevalent is each topic?’, and 
(b) ‘How do topics relate to each other?’ (Sievert & Shirley, 2014, p. 63). As shown in Figure 
2, topics 10, 8, 2 are the most extensive research areas in 10-topic model fitted with 20, 15, 14 
percent of the corpus, respectively. Further, it is clear from the global view that T10 has high 
overlap of research topics with T8 and T3. In contrast, T2, T4 and T5 are complete exclusive 
topics that have distinct term distributions. 
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Figure 2. Global view of the IoT business and management research domain 

 

 

Table 2. Number of articles and citations in each topic 

ID 
No. 

of articles 

% 

of articles 

No. 

of citations 

% 

of citations 
Dominant research theme 

T1 18 5 70 2 Customer Experience 

T2 50 14 665 21 IoT as an Emerging Technology 

T3 22 6 447 14 IoT in Supply Chain 

T4 25 7 213 7 Smart Living 

T5 20 6 83 3 IoT and Servitization 

T6 28 8 129 4 IoT in Product Management 

T7 29 8 257 8 IoT Optimization 

T8 53 15 594 19 Smart Manufacturing 

T9 30 9 169 5 IoT and Big Data 

T10 72 21 525 17 IoT-enabled Business Model 

Total 347 100 3152 100  

The articles in the corpus were classified according to the subsequent probability of their 
belonging to each topic. Table 2 shows that the topic with the most articles is T10: IoT-enabled 

Business Model (72 articles), the second topic is T8: Smart Manufacturing (53 articles), and 
the third most prevalent topic discusses T2: IoT as an Emerging Technology (50 articles). In 
total, these three topics comprise 50% of the articles in the corpus. As shown in Table 2 from 
the total of 3152 references, T2: IoT as an Emerging Technology, T8: Smart Manufacturing, 
and T10: IoT-enabled Business Model together contain 57% of citations, indicating that these 
topics are in the focal point of researchers’ attention. 

Table 3 presents the 10 identified topics after labelling based on the dominant research theme 
within each topic. In addition, we introduced the three important journals with high impact 
factors and a list of the top three papers correlated with each topic. 

Table 3. Identified topics in the IoT business and management research domain 
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Label Most probable terms Top journals Most correlated articles 

T1. Customer 
Experience 

consum, use, technolog, 
smart, perceiv, experi, object, 
model, risk, adopt 

Journal of the Academy of Marketing Science 
Technological Forecasting and Social Change 
Journal of Product Innovation Management 

Novak and Hoffman (2019) 
Shin et al. (2018) 
Mani and Chouk (2018) 

T2. IoT as an 
Emerging 
Technology 

technolog, industri, new, 
emerg, manufactur, futur, 
digit, challeng, potenti, chang 

MIS Quarterly 
Annals of Operations Research 
Production and Operations Management 

Monteiro and Parmiggiani (2019) 
de Sousa Jabbour et al. (2018) 
Kumar et al. (2018) 

T3. IoT in Supply 
Chain 

chain, suppli, rfid, retail, data, 
custom, adopt, manag, logist, 
inventori 

International Journal of Physical Distribution & 
Logistics Management 
International Journal of Production Economics 
Decision Support Systems 

Papert et al. (2016) 
Fan et al. (2015) 
Geerts and O'Leary (2014) 

T4. Smart Living smart, system, use, citi, 
healthcar, context, devic, 
intellig, user, commun 

Technological Forecasting and Social Change 
Expert Systems with Applications 
IEEE Systems Journal 

Escolar et al. (2019) 
Lee et al. (2017) 
Santos et al. (2016) 

T5. IoT and 
Servitization 

servic, model, busi, user, 
custom, develop, product, 
web, social, connect 

International Journal of Production Research 
IEEE Systems Journal 
Research-Technology Management 

Moghaddam and Nof (2018) 
Temglit et al. (2017) 
Heinis et al. (2018) 

T6. IoT in 
Product 
Management 

product, decis, logist, system, 
time, cost, order, strategi, life, 
mainten 

International Journal of Production Economics 
European Journal of Operational Research 
Reliability Engineering & System Safety 

Joshi and Gupta (2019) 
Yang et al. (2019) 
Li et al. (2019) 

T7. IoT 
Optimization 

network, secur, devic, sensor, 
algorithm, wireless, machin, 
node, optim, power 

IEEE Systems Journal 
Reliability Engineering & System Safety 
Computers & Operations Research 

Hu et al. (2014) 
Park (2017) 
Fadda et al. (2018) 

T8. Smart 
Manufacturing 

system, manufactur, product, 
industri, process, time, applic, 
manag, smart, integr 

International Journal of Production Economics 
Journal of Manufacturing Systems 
International Journal of Production Research 

Reaidy et al. (2015) 
Mourtzis and Vlachou (2018) 
Kusiak (2018) 

T9. IoT and Big 
Data 

data, method, collect, process, 
energi, big, predict, model, 
analyt, applic 

International Journal of Computer Integrated 
Manufacturing 
Decision Support Systems 
Information & Management 

W. Wang et al. (2018) 
Baecke and Bocca (2017) 
Townsend et al. (2018) 

T10. IoT-enabled 
Business Model 

busi, valu, innov, model, 
compani, industri, design, 
firm, strategi, resourc 

Technological Forecasting and Social Change 
Technovation 
Research Policy 

Metallo et al. (2018) 
Kiel et al. (2017a) 
Kim et al. (2017) 

3.1. Topics Distribution over Time 

After exploring the hidden topics in the corpus, we examined their distribution over time. In 

so doing, we followed Sun and Yin (2017) and used Equation 4 to find the temporal trend of 
topic structure: 

 𝜃𝜃𝑘𝑘[𝑡𝑡]
=  

∑ 𝜃𝜃𝑑𝑑𝑑𝑑×𝕀𝕀 (𝑡𝑡𝑑𝑑= 𝑡𝑡) 𝑀𝑀𝑑𝑑=1∑ 𝕀𝕀 (𝑡𝑡𝑑𝑑= 𝑡𝑡)𝑀𝑀𝑑𝑑=1         Equation 4 

 

where 𝜃𝜃[𝑡𝑡] represent the topic distribution at time t for all documents, 𝜃𝜃𝑘𝑘[𝑡𝑡] is the proportion of 
topic k at time t, and 𝕀𝕀 (𝑡𝑡𝑑𝑑 =  𝑡𝑡) is an indicator function where return 1 if predicate (𝑡𝑡𝑑𝑑 =  𝑡𝑡) is 
true and 0 otherwise. 

Figure 3 shows the proportion of all the 10 topics from 2010 to 2019, in order (i.e., T1 to T10) 
from the bottom to the top. As the areas dedicated to each topic in Figure 3 demonstrate, the 
most popular five topics are T10: IoT-enabled Business Model, T8: Smart Manufacturing, T3: 
IoT in Supply Chain, T2: IoT as an Emerging Technology, and T5: IoT and Servitization. 
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Figure 3. Topic distribution over time 

 

Furthermore, we used the structural topic model (STM3) package in R to examine topics 
prevalence over time. Topic prevalence refers to how much of a document is associated with a 
topic (Roberts et al. 2019), thereby we can analyse the frequencies with which different topics 
appear across documents and how topics’ prevalence has changed during the time. STM 
provides a more robust approach for analysing temporal distributions of topics since it uses 
regression models to predict topic prevalence by covariates (here year), rather than applying a 
global mean. Figure 4 presents a closer look at the temporal trends of topics. In this figure it is 
visible that some topics have been declining over last years, such as T2: IoT as an Emerging 

Technology, T3: IoT in Supply Chain, T5: IoT and Servitization, and T10: IoT-enabled 

Business Model (cold topics), and some of them have an upward trend, like T1: Customer 

Experience, T6: IoT in Product Management, T7: IoT optimization, T8: Smart Manufacturing, 
and T9: IoT and Big Data, (hot topics). Also, T4: Smart Living has a steady movement over 
time and cannot be deemed as a cold/hot topic. 

  

 

                                                           
3  http://structuraltopicmodel.com/ 
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Figure 4. Prevalence of 10 topics over time 

 

3.2. Topic Discussion 

T1. Customer Experience 

This theme aggregates studies that investigate different customer behaviours in relation with 
various IoT technologies. IoT technologies are extensively used in several areas, and inquiries 
about how these technologies can be adopted, used, or interacted by customers have attracted 
many researchers. Generally, these studies have contributed to understanding the rationale 
behind customer decisions that shape the lifecycle of IoT technologies, including adoption, 
usage, and termination. Moreover, given the unique features of IoT, particularly its smart 
interactivity capability, recent IoT literature have shifted their attention from objects to 
interactions, from technical characteristics to relational ones (Pauget & Dammak, 2019). 

IoT Adoption 

To investigate customers adoption of IoT, some researchers have used a specific theory or an 
extension of it, such as the Technology Acceptance Model (TAM) (Shin et al., 2018) or the 
Unified Theory of Acceptance and Use of Technology (UTAUT) (Chong et al., 2015). Others 
combined different theories, such as the Theory of Reasoned Action (TRA) and the Theory of 
Planned Behaviour (TPB) (Shin, 2017), TAM with Task-Technology Fit (TTF) (Chen, 2019), 
TAM with TRA and TPB (Mital et al., 2018), TAM and Innovation Diffusion Theory (IDT) 
(Jayashankar et al., 2018), or TAM with technology readiness perspective and organizational 
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theory (Roy et al., 2018). In contrast, Mani and Chouk (2017) have deployed their self-
developed model comprising various influential constructs. 
 
Typically, IoT adoption studies have featured both descriptive and exploratory investigations 
and examined the impact of various determinants using different adoption theories and models. 
Three main constructs, ‘attitude’, ‘intention’, and ‘behaviour’ towards IoT are considered as 
the dependent variables. Majority of these studies have considered ‘perceived ease of use’ as 
the most influential antecedent, and the other TAM variable ‘perceived usefulness’ is 
mentioned as the other important predictor (Chen, 2019; Mital et al., 2018; Roy et al., 2018). 
Compatibility (Shin et al., 2018), superior functionality (Roy et al., 2018), subjective norm 
(Mital et al., 2018), big-5 personality traits (Chong et al., 2015), and trust (Harwood & Garry, 
2017) are other reported influential factors. 
Mani and Chouk (2018) studied resistance behaviour and attempted to explain why consumers 
are unwilling to accept new IoT services. They provided an integrative framework that 
combined functional, psychological, and individual barriers to explain consumers’ resistance 
to smart services as an innovation. In a similar study, researchers found functional barriers 
caused by product characteristics (price, usefulness, novelty, and intrusiveness) and 
psychological inhibitors raised by consumer characteristics (dependence, self-efficacy, and 
privacy) are the main antecedents of consumer resistance to smart products (Mani & Chouk, 
2017). 

IoT Satisfaction and Usage 

In addition to the adoption studies, the unsuccessful Google Glass case persuaded research on 
quality of experience, satisfaction, IoT technologies continuance and discontinuous (Canhoto 
& Arp, 2017; Shin, 2017; Touzani et al., 2018). Previous studies suggest various salient factors 
for IoT satisfaction and usage such as utilitarian, hedonic, and social values (Touzani et al., 
2018), observability of activities in social media or online communities, technical 
infrastructure, user attitudes and goals in using IoT objects (Canhoto & Arp, 2017), coolness 
and affordance (Shin, 2017).  

IoT Interaction 

As the smart connected IoT objects are increasingly used in various contexts around us such as 
households, cars, offices, cities, etc, researchers have inclined toward studying their special 
emergent relationships with consumers. Prior work has examined three different kinds of IoT 
interactions including ‘interaction between humans through IoT’, ‘human and object 
interaction’, and ‘interaction of smart objects’. As Sundar and Nass (2001) suggest, IoT 
distinctive capacities have provided unprecedented opportunities to improve our knowledge of 
relationships either between humans and objects or even between objects. Whereas, in the past, 
scholars merely perceived objects as passive entities that humans invest meaning in them, 
currently they take into account objects’ active roles. In this novel view, smart objects endows 
with various degrees of agency, autonomy, and authority (Novak & Hoffman, 2019), and their 
unique capabilities in interaction with humans and with each other. IoT profoundly transforms 
human-machine interactions or interaction between humans and the literature is now more keen 
to embrace these new emergent relationships. In this manner, researchers have investigated 
human-object interactions in different domains, such as consumer IoT interactions (Novak & 
Hoffman, 2019; Roy et al., 2017; Verhoef et al., 2017), e-learning (Farhan et al., 2018), social 
interactions in mobile services (Qi et al., 2014), agriculture (Kitouni et al., 2018), monitoring 
road conditions (Laubis et al., 2019), and healthcare (Laplante et al., 2017). Given smart 
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objects’ capacities to affect and be affected, Hoffman and Novak (2017) believe traditional 
human-centric conceptualization is not sufficient. Thus, they raised a very important and 
foundational question: ‘Is it time to consider expanding the boundaries of consumer behaviour 
from usual human-centric perspective to nonhuman-centric one?’. Similarly, Verhoef et al. 
(2017) introduced the POP-framework, discussing three types of connectivity: ‘People-wise’, 
‘Object-wise’, and ‘Physical-wise’, which is not purely human-centric. 
 

T2. IoT as an Emerging Technology 

Many studies has introduced IoT as a disruptive technology with great potentiality for changing 
the existing industries and markets, and capability in unlocking new economic and market 
values (e.g. Kumar et al., 2018; Xu et al., 2018). IoT is bridging the physical and digital areas, 
assisting us in digitizing the physical world and turning physical attributes into digital data. IoT 
by providing a novel infrastructure for synthetic knowing to capture rich biographies of 
everything, digital materiality to add new functionalities to objects and expand capabilities of 
products to become smart and connected underpins a huge power for disruptive breaks in 
current industries and societies. Also, the new expanded automation, utilization, optimization, 
and personalization capabilities deriving from IoT are increasingly putting businesses under 
pressure to redefine how they operate (Fleishman, 2020). 

Digital Knowing 

Sensors expand the scope and reach of digital knowing by providing real-time rendering 
through seeing, hearing, tasting, smelling, and touching, they can thus increasingly mimic 
embodied perception. Monteiro and Parmiggiani (2019) proposed the notion of synthetic 
knowing to break up the dichotomy of physical versus digital and provide an integrated 
knowledge of both worlds. They argue that what we know as digital representations and how 
we know it are constituted by digitalisation. In this context, IoT has a transformational role, 
since sensors are currently vehicles for liquefaction (i.e., e decoupling of information from its 
related physical object) (Michel et al., 2008). IoT allows us to create rich repositories of current 
and historical data about the physical object properties, such as origin, ownership, physical 
specifications, and sensory context (Ng & Wakenshaw, 2017). IoT enables digital materiality 
of physical objects (Yoo et al., 2012) and can add new functionalities to them, like sensibility, 

addressability, traceability, associability, communicability, programmability, and 
memorability (Yoo et al., 2010).  

Digitalized Industry 

Industries are experiencing a revolution enabled by the employing innovative technological 
advancements in miniaturisation of equipment and network connectivity (Feng & 
Shanthikumar, 2018). Xu et al. (2018) suggest that we are at the edge of the fourth industrial 
revolution, wherein IoT plays a key role in this industrial revolution. IoT combines the global 
reach of the Internet with industrial capabilities to coordinate,  manage, and control the physical 
world of goods, machines, infrastructures, and factories, such that can transform existing 
industries (Ng & Wakenshaw, 2017). Industrial companies by using IoT besides cyber-physical 
systems (CPS) and cloud computing would be able to employ novel solutions to develop, 
integrate, reconfigure, or even completely reengineer both their internal and external operations 
(Kim et al., 2012; Kumar et al., 2018).  In addition to operations, IoT has transformed the notion 
of product. Integrating IoT with physical products could add two new features which radically 
change them: smartness and connectedness (Porter & Heppelmann, 2014). Such 
interconnected, intelligent, products create and collect huge amounts of data about their usage, 
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context, recovery, and reuse (Kortuem et al., 2009). As a result, IoT opens up the opportunity 
of generating connected rich biographies of products and even expanding to its components 
and parts, which in turn enable achieving circular economy objectives (Spring & Araujo, 2017; 
de Sousa Jabbour et al. 2018).  
 
Digitalized Involvement 

As societies move towards the era of IoT, altering static, fragmented and immobile data into 
dynamic, integrated, and transferrable resource generate disruption. Ng and Wakenshaw 
(2017) assert that IoT boost liquefaction of digitalized data which eventually improves 
engagement with products and also with their states, interactions, and description. Firms 
acquire various important benefits from IoT, particularly by engaging their customers in value 
co-creation processes, not only marketing but all of their internal and external operations 
(Agrifoglio et al., 2017). IoT facilitates a higher degree of customization and automation of on-
board operations, thus can nurture customer’s involvement and participation (Agrifoglio et al., 
2017).  

T3. IoT in Supply Chain 

Supply chain is one of the most visible areas that has profoundly benefited from IoT (Atzori et 
al., 2010; Lu et al., 2018). Enhancing operational efficiency and effectiveness of warehousing, 
transportation, and logistics through the sharing of information and physical assets, besides 
providing revenue opportunities are the main reasons for deploying IoT in supply chains (Lee 
et al., 2018; Qian et al., 2017). In the recent years, supply chain managers have recognized the 
importance of IoT in bringing visibility to their operations. Consequently, this promoted 
visibility streamlines processes, reduces uncertainties, and enables data-driven decision 
making based on insights produced by IoT real-time collected data. 

Supply Chain Visibility 

The IoT automatic identification and tracking capabilities improve the visibility and 
traceability of individual packages to entire containers throughout the entire supply chain 
(Geerts & O'Leary, 2014). IoT, as an enabler of end-to-end supply chain visibility, provides 
access to live data of every transaction and process within the supply chain. This greater 
visibility contributes to managing uncertainties, product quality, security, and process control, 
as well as optimization in many areas, such as manufacturing, transportation, distribution, 
retailing, and healthcare (Fan et al., 2015; Jie et al., 2015; Papert et al., 2016; Qian et al., 2017). 
Papert et al. (2016) argue that IoT can provide real-time data about identity, availability, 
position, and status quo as the different dimensions of visibility in supply chains. In fact, IoT 
with identifying, locating, sensing, communicating, and data storing functionalities overpasses 
current technologies, such as barcodes, data loggers, and data matrix codes for visibility 
purpose. Today, customers also expect visible and flexible delivery services, and supply chains 
can use IoT to provide real-time tracking and monitoring capabilities for them (Jie et al., 2015).  

IoT Adoption in Supply Chain 

Digital supply chain is the result of adopting IoT in supply chains and can be defined as the 
exchange of strategic and operative information among members of the supply chain to 
enhance collaboration and coordination. Higher flexibility in the production system, effective 
information sharing within supply chain members, focusing on core strengths, demand 
forecasting on point-of-sale, development of reliable suppliers, and logistics synchronization 
are the main success factors for IoT adoption in digital supply chains (Korpela et al., 2017). 
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However, three challenges are associated with IoT adoption: ‘technological’, ‘organizational’, 
and ‘resource availability’ (Haddud et al., 2017). Tu (2018) identified that perceived cost, 
perceived benefits, and external pressure have substantial influence on IoT adoption in supply 
chains, while concerns about the IoT reliability, its trustworthiness, and integration with other 
systems might undermine IoT adoption. Additionally, Hsu and Yeh (2017) suggest that 
environment, organization, and security dimensions are critical aspects need to be considered 
for IoT adoption in the logistics industry. 
 

T4. Smart Living 

‘Smartness’ is the result of combining and integrating various IoT technologies to sense, 
collect, interpret, and communicate data which allow monitoring, analysing, and reacting to 
real-world situations. IoT is transforming humans living by the means of ubiquitous hyper-
connected objects that are present at any place, any time, and can communicate with anyone 
and any other thing (Escolar et al., 2019). In the recent past, scholars and practitioners have 
introduced various applications of smart living such as smart cities (Escolar et al., 2019; 
Marsal-Llacuna, 2018), smart homes (Lee et al., 2017), smart grids (Whitmore et al., 2015), 
smart transportation (Laubis et al., 2019), smart tourism (Almobaideen et al., 2017), and smart 
healthcare (Da Xu et al., 2014; Dimitrov, 2016; Vesselkov et al., 2018). 

Smart Environment 

Smart environment refers to a “physical world that is richly and invisibly interwoven with 
sensors, actuators, displays, and computational elements, embedded seamlessly in the everyday 
objects of our lives, and connected through a continuous network” (Weiser et al., 1999, p. 694). 
The main purpose of a smart environment which is extensively equipped with IoT is to 
automatically provide various services based on users’ activities and requirements (Lee et al., 
2017). To become smart, an environment, like a city uses various computing technologies to 
make its critical infrastructure, services, and resources more interconnected and intelligent. Put 
simply, a smart environment attempts to offer its inhibitors the highest possible quality 
services. Achieving such objective requires an intensive usage of IoT, which can sense the 
world by themselves and implicitly work for citizens (Escolar et al., 2019). Atzori et al. (2010) 
suggest that IoT brings several benefits in optimizing traditional public services, such as 
surveillance and maintenance of public areas, transport and parking, preservation of cultural 
heritage, lighting, garbage collection, and education.  
 
IoT in Daily Life 

Various IoT devices equipped with different capabilities are weaved deeply into the fabric of 
everyday life with the potentiality to change people experiences. For instance, IoT technologies 
can connect and integrate to daily life objects, such as smartphones, sport devices, personal 
computers, and home appliances for the applications in home entertainment, security, 
healthcare, and fitness (Li et al., 2015). Combination of Intelligent Personal Assistants (IPAs) 
with IoT can provide a perfect personal assistant with the capabilities to act, manage, and 
interact continuously and autonomously with the environment. It may even suggest suitable 
solutions to problems that arise in humans’ daily life. IoT increases IPAs knowledge by 
learning the behaviour of their users through direct interactions with them, and other smart 
objects in the users’ environment (Santos et al., 2016). 
 
IoT in Healthcare 
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The main issues in the healthcare industry are collecting and transmitting patient data, tracking 
medical equipment, and developing hospital and laboratory information systems (Rahmani et 
al., 2018). IoT has capabilities to resolve these problems and enable healthcare practitioners to 
provide smart services, such as patient addressing, monitoring of vital signs, position and 
posture monitoring, and optimization of patient flow in hospitals (Da Xu et al., 2014). Dimitrov 
(2016) suggests that IoT is be able to transform the healthcare industry by making it 
personalized, participatory, predictive, and preventive, which is referred to as ‘P4 medicine’. 
Due to the ‘ageing boom’, elderly management is a critical concern from both social and 
economic perspectives. Senior care is one of the fastest-growing applications of the IoT, 
because of its various functionalities and capabilities, such as body sensors and connected 
wearables (Pauget & Dammak, 2019). The effect of wearables on the healthcare industry is 
remarkably different from the other digital technologies. Most of the healthcare digital 
innovations have taken place on supply-side like hospitals, while emerging wearable devices 
enable the receivers of health services to manage their wellness and diseases by themselves 
(Vesselkov et al., 2018). 

T5. IoT and Servitization 

A growing body of IoT literature argue that the emergence of IoT technologies is blurring the 
conventional boundaries between manufacturing firms and service providers (e.g. Velamuri et 
al., 2013; Raddats et al., 2019). By employing IoT technologies, businesses can shift the type 
of value exchanges from selling products to providing services and establish completely new 
relationships with their customers and partners. The creation and delivery of IoT based 
integrated product-service solutions (PSS) offer novel business opportunities for firms to fulfil 
a broader range of customers’ demands. Integrating IoT into operations and products enable 
firms to achieve closer and better proximity to their customers and reshape their value chains 
by expanding the scope of their product–service offerings (Rymaszewska et al., 2017). Turning 
these new opportunities aroused from IoT integrated PSS into real-world business applications 
and their economic benefits is an important research theme (Moghaddam & Nof, 2018). 

Benefits 

Servitization is the process of shifting focus from selling products to providing integrated 
customers solutions thorough bundling services to the core physical products in search of 
higher returns and additional growth opportunities (Baines et al., 2009). Opresnik and Taisch, 
(2015) contend that servitization can be an extremely successful differentiation strategy and 
sustainable competitive advantage, particularly to avoid the commodity trap and price 
competition and to secure market share. Connectivity, agility, and decentralization are the main 
requirements of modern industrial systems and ‘servitization’ is one of the approaches for 
addressing these challenges (Moghaddam & Nof, 2018). Motivations for servitization can be 
classified into three general categories of ‘competitive’, ‘economic’, and ‘demand-based’ 
motivations (Raddats et al., 2019). Servitization through IoT contributes in establishing new 
relationships with customers, increasing their loyalty and product differentiation for meeting 
competitive motivations (Dachs et al., 2014), increasing revenue and makes stability and 
profitability as economic motivations (Raddats et al., 2019), and addressing more complex 
customers’ requirements for demand-based reasons (Gebauer et al., 2011). 
 
Challenges 

In the servitization approach, the true potential capability of services in an IoT environment is 
realised when bundling services into products leads to more powerful solutions with more 
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sophisticated functionalities. Therefore, selecting the most appropriate combination of IoT-
based services to optimize the entire quality of a PPS is a complex task. The response time, 
price, availability,  reliability , trustworthy, and also the energy level of IoT devices are 
important properties of service quality (Temglit et al., 2017). Furthermore, the development of 
smart services for PPS raises the challenge of selecting the right configuration of technology, 
people,  organization, and information (Maglio & Spohrer, 2013). 
Developing innovative models for capturing value is another crucial challenge of moving to 
servitization. Servitization in an advanced level offers solutions as outcome-based contracts 
that charges the customer for the actual performance of a product (Visnjic et al., 2017). Thus, 
capturing value needs new pricing models that reflect the actual delivered value by the PSS. 
For this purpose, pay-per-use models are among the most commonly used pricing model 
(Baines & Shi, 2015), but they require establishing meaningful metrics for usage, like operating 
time, activity type, and material processed (Heinis et al., 2018). 

T6. IoT in Product Management 

As noted above, IoT technologies are changing many aspects of industries and societies; 
product management is no exception. Traditional product life cycles are linear chains of 
processes, manufacturers design, build and sell products and provide after-sale services. 
Nowadays, by using IoT technologies, the product life cycles have accelerated and even 
reversed themselves. Before the era of IoT, firms had to rely on customer feedback to learn 
what features were working and not working about their products, but with IoT, they can obtain 
an unprecedented level of feedback, in real-time. Modern product management depends on 
smart digital infrastructures that facilitate a smooth flow of data and establishing an integrated 
view of the product's data throughout its lifecycle. Overall, this theme joins the studies 
examining how IoT improves and transforms product management. 

Product Life Management 

Collecting real-time data in the product life cycle is essential for realizing green and sustainable 
manufacturing, yet it is very challenging (Zuo et al., 2018; Yang et al., 2019). IoT technologies 
are used for collecting real-time and dynamic data in the product entire life cycle. Studies in 
cold supply chain show that IoT provides information about the location, identity,  ambient, 
quality of cargo, and other tracking information of perishable items and their environment 
(Bogataj et al., 2017; Yang et al., 2019). IoT technologies give the chance of adaptive 
controlling of ambient conditions like temperature, lighting, and humidity, even optimizing the 
routes and enhance fleet efficiency to reduce the wastes and save on fuel costs (Bogataj et al., 
2017). Further, embedded IoT technologies allows firms to sense, monitor, and authorize 
transferring products among customers, therefore, they would even be able to economically 
participate in collaborative consumption and sharing markets (Weber, 2017). 

Product End-Of-Life Management 

During the last two decades, End-Of-Life (EOL) product management and reverse logistics 
have been hot research areas mainly due to the sustainability issues and governmental 
regulations (Alqahtani et al., 2019; Joshi & Gupta, 2019). The EOL product management is a 
difficult process and IoT plays a significant role in reducing the uncertainties and ambiguities 
related to the quantity, conditions, types, and remaining lives of the returned EOL products 
(Joshi & Gupta, 2019). Collected data from sensors embedded in products and RFID tags 
enables the determination of characteristics of products such as model number, warranty, 
customer information, sales date, critical failures, bill of materials, remaining life of the 
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components, etc. (Joshi & Gupta, 2019; Li et al., 2019). Additionally, using embedded sensors 
and RFID tags in advanced manufacturing-to-order systems allows customers to define 
minimum quality demands and guarantees for their orders. 

T7. IoT Optimization 

Optimization is an important concern in developing IoT technologies and researchers point out 
several challenges affecting the quality and quantity of data collected, transmitted, and 
processed by IoT (Mukhopadhyay & Suryadevara, 2014). An important challenge in using IoT 
is the significant amount of resources required for flawlessly sensing, connecting, and 
computing data. Ensuring sensing coverage (Chen et al., 2014; Fadda et al., 2018; Gong et al., 
2018), balancing the workload of sensors (Hu et al., 2014), high robustness and reliability of 
the sensor networks (Park, 2017), and sensor selection (Jones et al., 2018) are among the most 
important issues in IoT optimization. 

IoT Coverage and Flexibility 

Wireless technologies have some advantages, such as flexibility, mobility, and coverage over 
hard-to-reach locations with lower cost of installation and maintenance fitting them for harsh 
environments. Typically, sensing coverage is considered as a significant measure for data 
service quality in IoT since it indicates how well the sensors cover a specific region of interest 
(Chen et al., 2014). Some scholars proposed efficient and autonomous ways for determining 
the number and location of wireless nodes to fully cover an environment (Gong et al., 2018). 
Intelligently sensing and monitoring moving targets is another important application of IoT. 
The quality of target detection principally involves balancing between the probability of 
missing a target, the delay for detection, and the network lifetime. The failure or loss of 
connection between sensors and actuators may result in money or life loss (Hu et al., 2014). 
Opportunistic IoT based on social engagement model is a new suggestion for solving the 
problem of gathering data when the coverage of hubs and hotspots is insufficient. In this 
sharing model, by exchanging a reward, selected users permit access to their devices as mobile 
hotspots to gather data in large-scale areas, like cities, which otherwise need a huge expensive 
network (Fadda et al., 2018). 
 
IoT Energy Efficiency 

As IoT nodes are normally powered by batteries with limited energy, reliable and energy-
efficient data transmission is a big challenge for IoT based systems (Kaur & Sood, 2015a). 
There is a trade-off between the amount of data collected and analysed by IoT devices and their 
energy consumption (Song et al., 2017). Thus, the more IoT nodes collect or process data, the 
more energy they consume. Further, the energy consumed in a node can be classified into the 
computation energy and communication energy consumption (Tian et al., 2015). Different 
cooperative communications are introduced to improve energy-efficient communications, 
reliability, overall throughput, power control, and resource allocations in IoT systems. 
Recently, business and technological benefits of Low-Power Wide-Area Networks have been 
introduced as economically enable connecting massive number of IoT objects. Many mobile 
operators, start-up companies, and independent users have adopted this type of network, which 
provides better coverage at significantly lower costs and power consumption than the existing 
cellular networks (Sandell & Raza, 2018). 

IoT Security and Privacy 
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The security goals of integrity, confidentiality, authentication, encryption, detecting attacks, 
and nonrepudiation in a logical single step are critical for the realization of IoT applications 
(Selis & Marshall, 2018; Yeh, 2018; M. Zhang et al., 2015). Typical IoT devices with low 
computing power and limited storage are usually connected to the public networks; therefore, 
securely sending a message from a sensor to a host is a vital issue for successful IoT function. 
For detecting sophisticated attacks, IoT objects need processing a large amount of data in a 
short period and because of their low computational capability, they are not capable to discover 
an attack in real-time (Selis & Marshall, 2018). In this respect, some scholars proposed new 
efficient heterogeneous online/offline encryption schemes, such as signcryption (Ting et al., 
2017), or attribute-based hash proof system (M. Zhang et al., 2015). In addition, IoT objects, 
like wearable consumer devices, have shown significant potentiality for contactless mobile 
payments but the traditional payment security infrastructures are not appropriate for IoT 
networks with limited computing resources and constrained bandwidth (Yeh, 2018). 
 
IoT applications raise serious privacy concerns, as IoT objects not only collect personal 
information, but could also monitor user activities, habits, and interactions with others. Privacy 
is Indeed often considered as a double-edged sword (Zhou & Piramuthu, 2015). From one side, 
users want to dynamically restrict or disclose information to others, depending on their 
preferences and location (Celdrán et al., 2014); on the other hand, companies require 
customers’ information for enhancing their products/services or providing innovations. Since 
complete privacy protection is extremely difficult, Zhou and Piramuthu (2015) argue that 
privacy issue should be seen context-aware and consumer-heterogeneous, with which users are 
able to dynamically restrict or reveal information to others (Celdrán et al., 2014). Privacy issues 
are currently understudied, especially in terms of the scalability and the complex environment 
characterising IoT scenarios (Sicari et al., 2015). 

T8. Smart Manufacturing 

In smart manufacturing as a new paradigm, manufacturing machines are largely integrated with 
IoT technologies to improve system efficiency, product quality, and sustainability while 
decreasing costs (Kusiak, 2018). In this novel paradigm, the relations of humans, objects, and 
systems allow self-organized, dynamic, real-time improved,  and cross-company value creation 
networks (Yin et al., 2018), while more autonomy is rendered to production systems (Mourtzis 
& Vlachou, 2018). Decision-making authorities thus can be transferred and delegated from a 
centralized hierarchical setting to a semi-autonomous collective of equipment,  machines, 
operators, and mobile devices (Yin et al., 2018). In addition, IoT unique capabilities enable 
dynamic intelligent manufacturing processes and provide integrated and self-organized 
operations that can predict and react to unexpected changes throughout the whole 
manufacturing process (Fatorachian & Kazemi, 2018). In this theme, literature considers IoT 
as one of the enablers of the manufacturing revolution, increasingly used to develop innovative 
intelligence in manufacturing and operational processes. 

Planning and Decision Making 

Applying IoT enables capturing the real-time status of the distributed manufacturing resources 
that facilitates runtime production exception identification and dynamic decision-making (Y. 
Zhang et al., 2015). Recent advances in IoT technologies, like ambient intelligence and RFID, 
empower data collection from production lines and allow the development of a new approach 
in manufacturing domain so-called ‘bottom-up’ (Reaidy et al., 2015). The conventional 
approach is static-based, while the bottom-up approach is autonomous and uses IoT 
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infrastructure and multi-agent interactions to establish self-organization behaviour and 
connected network between manufacturing entities. IoT based agents, by communicating with 
each other, form self-organized systems to discover the best local solution for the resource 
management problems, such as order fulfilment, replenishment, and path planning issues 
(Reaidy et al., 2015). For two important reasons, the connection between the physical and 
information world changes the ways in which manufacturing processes are conceptualized and 
implemented: (1) enabling the interaction between IoT objects and humans to reach 
organizational goals; and (2) integrating different organizational levels (Neubauer et al., 2017). 
 

Monitoring and Controlling 

Manufacturing companies use different information systems to manage performance through 
pervasive monitoring and control; however, they struggle for capturing real-time data that 
reflect the current situation. IoT interconnected sensors are an effective solution for this 
problem (Hwang et al., 2017). They can detecting events, measuring signals, and collect real-
time data from factory floors and monitor the health conditions of manufacturing equipment 
and operations (Wu et al., 2017). Meyer et al. (2011), in their study, indicated that by using IoT 
technologies, realizing decentralized monitoring and control in the manufacturing context is 
possible. In another study, H. Lee (2017)  showed while continuously monitoring various 
quality aspects are very difficult in multi-sites and multi-products manufacturing, using IoT 
beacons in manufacturing machines and devices to measure manufacturing processes’ quality 
factors is an appropriate solution for self-monitoring and real-time controlling.  

T9. IoT and Big Data 

The adoption of IoT has a worldwide and growing impact (Da Xu et al., 2014), which results 
in generating and collecting massive amount of data, more than ever before (Atzori et al., 2010; 
M. Chen et al., 2014). However, if this huge amount of data cannot be transferred to a central 
repository and analysed in real-time and fast, the results would not be much promising. The 
big data collected by IoT in the form of numbers, text, image, audio, and video, when combines 
with data analytics practices generates innovative opportunities for automating or supporting 
business decision-making. Although IoT and big data analytics evolved independently, over 
the recent period, more and more they have become intertwined, facilitating the emergence of 
edge computing. Edge computing is a new networking philosophy attempting to shift 
computing as close to the source of data as possible instead of relying on the cloud in order to 
provide fast on-demand and real-time information and knowledge. 

Cognitive IoT and Streaming Analytics 

IoT devices gather a vast amount of structured and unstructured data and are increasingly 
capable to perform analytics at the source of data generation and collection. This IoT capability 
leads to ‘streaming analytics’ as a new type of analytics in the edge computing, which 
continuously extracting useful information and insights from the streaming data generated from 
human activities, machines, or sensors. Streaming analytics has great potential for many 
businesses because of its real-time event analysis capability to discover patterns of interest, 
simultaneously with generating and collecting data.  Streaming analytics is used not just for 
monitoring current conditions, but also for predicting future situations (Lee, 2017). 
To make a smart IoT solution, after mining and analysing the collected data, the extracted 
information have to be utilized in cognitive decision-making (Wu et al., 2014). The cognitive 
IoT can be effectively used in various contexts. For instance, the ubiquity of the sensing 
capability of IoT objects enables the continuous monitoring of employees’ actions, which 
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makes regular performance evaluation possible (Kaur & Sood, 2015b). Recently, deep learning 
has received much interest as an advanced artificial intelligence to analyse IoT sensory big 
data. Deep learning techniques by extracting knowledge from collected data, play a critical role 
in predicting analytics, gaining new insights, enhancing operational efficiency, supporting 
making decisions, and reducing errors (J. Wang et al., 2018). Combining real-time events with 
historical data allows the development of predictive and prescriptive analytics, to solve 
problems and propose solutions in real-time. However, a key challenge in IoT big data realm 
is how to manage and process data to prepare it for mining and analysis to gain new insights 
(Cuomo et al., 2017). 

IoT Big Data Applications 

Massive amount of data generated via IoT provides new possibilities for further improvement 
of reliability and efficiency of business operations. Businesses can use IoT big data analytics 
for improving product quality, system productivity, sustainability, and reducing costs (J. Wang 
et al., 2018). For instance, real-time manufacturing data can be collected and by embedding 
and using IoT, bottleneck detection and prediction in shop-floor can be realized (Huang et al., 
2019). Due to increasing energy prices, new environmental legislation and concerns over 
energy scarcity, industries extensively use IoT to access and analyse real-time and multi-source 
energy consumption data (W. Wang et al., 2018). In marketing, an increasing amount of IoT 
objects with pervasive networks supports the collection of detailed data about customers’ 
behaviour. In insurance domain, Baecke and Bocca (2017) proposed combining and analysing 
telematics data with traditional customer-specific, car-specific, and past claims to analyse the 
risk elements. In dynamic operational fields like underground coal mines, Wu et al. (2019) 
suggest that fast analysis of big data collected by IoT would assist in identifying major issues 
that affect equipment and operation. Also, since frequent monitoring to be aware of exact 
operational status is inefficient and costly, new managerial event-driven and periodical 
monitoring empowered by IoT technologies and big data analytics could provide essential 
descriptive and predictive insights for better operation management (Townsend et al., 2018). 
 
T10. IoT-enabled Business Model 

The great ‘anything, anytime, and anywhere’ IoT gold rush has begun, and it is significantly 
influencing industries. A large number of firms are working on how to exploit new revenue 
opportunities arising due to the IoT and actualize its innovative capacities in the creation and 
delivery of new business values. 

Table 4. Identified topics in the IoT-enabled business model research domain 

Label Most probable terms Inter-topic distance map 

t1. IoT Business 
Model Configuration 

valu, industri, servic, new, data, develop, 
process, product, technolog, design 

t2. IoT Business 
Model Typology 

adopt, valu, success, offer, sector, gener, innov, 
specif, use, logic 

t3. Strategic Venture 
Development 

ventur, resourc, opportun, valu, growth, firm, 
oper, entrepreneuri, smart, allianc 

t4. IoT Business 
Model Innovation 

innov, technolog, market, strategi, manag, 
firm, relationship, industri, knowledg, develop 
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t5. IoT Ecosystem 
Business Model 

busi, model, network, ecosystem, differ, chang, 
actor, valu, structur, connect 

 

The fact that many academic and practice research have recognized IoT as a key enabler of 
business models and as it is the most prevalent topic in our IoT corpus, we were encouraged to 
render the latent structure of this topic. Thus, we repeated the LDA process for IoT-enabled 
business model corpus to explore the most important sub-themes in this topic (Table 4). Sub-
themes of the IoT-enabled business model topic was again labelled based on examining the 
associated key terms and documents in each topic.  

t1. IoT Business Model Configuration 

Several scholars have examined the whole, or some important building blocks of IoT business 
models by mapping to the Osterwalder et al.'s (2005) business model ontology (e.g. Arnold et 
al., 2016; Dijkman et al., 2015; Kiel et al., 2017a; Metallo et al., 2018). Abbate et al. (2019), 
in a comparative study of IoT companies, contend that in offering ‘customized products and 
services’ only key resources are core elements and key activities and partners stand as 
complementary factors. In a study about how active companies in the IoT industry configure 
the essential components of their business models, Metallo et al. (2018) found that value 

proposition and key activities are the salient elements, and the main differences in business 
models are rooted in key activities and key resources. By using IoT, companies are seeking to 
change their business model value and trying to offer novel or enhanced products, services, or 
even PSS. Higher efficiency, improved performance, getting the job done, and more 
convenience are among the values companies propose to their customers (Dijkman et al., 
2015).  
 
Offering complex IoT-based products and services requires a close relationship and 
consultation with customers. Co-creation and self-service are the two distinct customer 

relationship styles enabled by IoT (Dijkman et al., 2015). Having a close relationship with 
customers requires robust channels. Complementing direct traditional channels with inherited 
communication in products through IoT helps companies to have continuous and stable 
relationships with their customers (Kiel et al., 2017a; Momeni & Martinsuo, 2018). While IoT 
capabilities support addressing new markets and customer segments, Kiel et al. (2017a) argue 
that some companies prefer or are only proficient to offer IoT-enabled values to their current 
customers. The various combinations of hardware and software components in IoT require 
special value-added activities. Simulating, product and process design, platform and software 
development (Metallo et al., 2018), acquisition, mining, and analysing data (Rymaszewska et 
al., 2017; Turunen et al., 2018) along with common standardised and modularised functions 
are significant key activities in IoT business model. To perform crucial activities, human 
resource roles are changed from operators to sophisticated controllers and problem solvers, 
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thus, new skills and qualifications in IT, CPS, and data analytical know-how are required 
(Arnold et al., 2016). Sensors, software components, and relevant IT systems, such as cloud 
technologies are other key resources in IoT business models (Rymaszewska et al., 2017).  
 
Key partnership is another building block, which is considered more important and complex 
than in conventional business models (Dijkman et al., 2015; Kiel et al., 2017a). Collaborating 
with software and app developers, hardware partners, and data analysis companies through a 
secure, robust, and consistent platform-based network is a prerequisite in IoT business models. 
Besides these key partnerships shaped on the IoT-inherent horizontal connectivity (Arnold et 
al., 2016), customers are considered as a strategic partner in developing, engineering, and 
designing the products and services (Abbate et al., 2019). Considering the value capture 
dimension, IoT enables novel revenue streams, such as pay-by-usage models, dynamic pricing, 
performance-based payment, and licensing models (Arnold et al., 2016). Finally, the 
technology-driven character of IoT necessities new cost structure related to IT facilities, 
software, and platforms (Arnold et al., 2016). 
 
t2. IoT Business Model Typology 

Suppatvech et al. (2019) identified four archetypes of IoT-enabled business models according 
to their main value propositions. In the ‘add-on business model’, companies use IoT to provide 
additional utilities or personalised services to the existing physical products or services. 
‘Sharing business model’ is close to renting, in which ownership of the physical good is not 
transferred and the customers pay only for using or accessing it. ‘Usage-based business model’ 
adopts pay-per-use and subscription revenue models, and deploys IoT to measure the actual 
usage and needs. In a B2B context, the ‘solution-oriented business model’ refers to business 
models that utilize IoT in enabling the provision of availability and optimization/consulting 
solutions to business customers.  
 
IoT mobile apps provide machine-to-machine connectivity, allow sharing of data services, and 
facilitate ubiquitous computing across various devices. Guo et al. (2017) propose four possible 
business models for such apps including ‘novelty’, ‘efficiency’, ‘lock-in’, and 
‘complementarity’ that if properly selected by developers assist them to satisfy their customers 
and retain IoT value. Therefore, businesses have different options for defining IoT-enabled 
business models based on their target market and value configuration. 
 
t3. Strategic Venture Development 

It has been argued that IoT brings advantages for organisational adaptation, innovation,  and 
success in a dynamic world, especially for companies with large amounts of data and 
connectivity (e.g. Guo et al., 2016; Yu et al., 2016). Although IoT pervasive connectivity 
provides various opportunities for entrepreneurs, it lacks successful reference business models 
(Guo et al., 2016), particularly, for new ventures. One of the main challenges in IoT venturing 
is how different organizational resources should be utilized, combined, or transformed to 
achieve success or growth. Two venturing principles, ‘effectuation’ and ‘causation’, guide 
entrepreneurs’ decision-making in ‘resource bundling’. Resource bundling helps entrepreneurs 
creatively combine IoT resources, such as smart objects with traditional resources to create 
extraordinary venturing growth (Guo et al., 2016). Based on a dynamic capability perspective, 
IoT capability can be defined as the ability to align IoT resources, knowledge, and skills with 
organizations’ strategic directions and innovations. With IoT capability as a competitive 
advantage, organizations can make strategic decisions effectively and efficiently, exploit 
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business opportunities, counter to environmental threats, and sustain their competitiveness (Yu 
et al., 2016).  
 
Furthermore, IoT capability provides entrepreneurship opportunities by (1) bridging vertical 
markets; (2) enabling the growth and rising of new market segments and applications; and (3) 
optimising business processes (Miorandi et al., 2012). However, using IoT alone is not 
sufficient for fully actualising the benefits. Akhtar et al. (2018) argued that companies should 
link IoT capabilities with productive data and information processing competences to enhance 
agility and achieve a better competitive advantage. Balancing exploration and exploitation is 
an important concern for many businesses. Ambidexterity is not easily achievable, especially 
in complex contexts, such as integrating IoT into big and multinational organizations. Today, 
companies are looking for the exploitation of business opportunities that come from the 
application of IoT technologies to new markets. Nevertheless, they also try to explore new 
profitable business models to commercialise and to profit from different products and services 
presented by IoT capabilities (Bresciani et al., 2018). 
 

t4. IoT Business Model Innovation 

Several researchers and futurists posit that smart IoT objects are reshaping industries and the 
nature of competition, thus companies need new business models. Business model innovation 
as an umbrella term outlines companies’ attempts to find new business logic or new ways to 
create and capture values (Casadesus‐Masanell & Zhu, 2013). At the core of business model 
innovation is the transformations triggered by new technological means (Cortimiglia et al., 
2016). IoT as an emerging technology has driven new opportunities for designing and 
redesigning business models (Rymaszewska et al., 2017). Yu et al. (2016) demonstrated that 
IoT capability could enhance product innovation. However, IoT capability alone is not enough 
and IoT strategic alliance with external entities is also required for both product and process 
innovation.  
 
Finally, there are different pathways to actualize business model innovation, such as 
developing and commercialising customer-centric novel business models based on innovative 
servitization and individualization (Kiel et al., 2017b) and offering to retrofit to customers 
(Amshoff et al., 2015) to equip and prepare customers for IoT implementation. IoT-based 
servitization (Turunen et al., 2018) and IIoT-driven innovation (Kiel et al., 2017b) exemplify 
generating higher value and reaching competitive advantage through combining data from 
many sources, providing platforms that facilitate combinatory innovation, as well as reducing 
time-to-market and increasing flexibility (Moeuf et al., 2018). 
 
t5. IoT Ecosystem Business Model 

There is a rising trend among IoT scholars (Leminen et al., 2018; Papert & Pflaum, 2017; Rong 
et al., 2015; Westerlund et al., 2014) to examine the expansion of business model boundaries 
from an individual company to an ecosystem perspective. In today’s networked economy, firms 
are often members of complex business ecosystems and having direct experience with the IoT 
contributes to their partnerships. The core of an IoT ecosystem is bridging the physical world 
of things with the digital world of software, Internet, and standards (Kim et al., 2017; Mazhelis 
et al., 2012). Westerlund et al. (2014) identified four key areas of value in IoT business model 
ecosystems including ‘drivers’, ‘nodes’, ‘exchanges’, and ‘extraction dynamics’. Value nodes 
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are members, activities, and systems that are linked together in an ecosystem, while value 
drivers are the motivations of members to extract and exchange value in the ecosystem. 
 
 IoT is a novel infrastructure for collaborative value creation; however, it is strategically 
important to examine the ecosystem contextual issues, such as interdependencies, interactions, 
and partnerships in designing IoT business models. Leminen et al. (2018) propose four types 
of IoT ecosystem business models based on the nature of service and the type of ecosystem: 
‘value chain efficiency model’, ‘industry collaboration model’, ‘horizontal market model’, and 
‘platform model’. Burkitt (2014) further argues that there are three different strategic roles in 
these ecosystem business models: ‘enablers’ who develop and implement the core technologies 
underpinning the ecosystems, ‘engagers’ who plan, implement, integrate, and deliver IoT 
services to customers, and ‘enhancers’ who devise value-added services on the top of the 
services provided by engagers.  
 
In another study, Papert and Pflaum (2017) examined the role of solution integrator as a central 
role in the IoT ecosystem. They assert that the main duty of solution integrator is to produce a 
complete IoT platform involving hardware, applications, and connectivity. In addition, this role 
maintains and orchestrates network formation and coordinates and integrates knowledge across 
the diverse actors of the heterogeneous network (Prince et al., 2014). Finally, Rong et al. (2015) 
highlight that IoT-based business ecosystems are much more complex networks than ordinary 
ones. To understand how IoT-based business ecosystem works, they proposed a 6C framework: 
‘context’, ‘construct’, ‘configuration’, ‘cooperation’, ‘capability’, and ‘change’. 
 
4. Conclusion and Implications 

4.1. Theoretical Implication and Future Research 

Our findings contribute to the literature on business and management of IoT in three ways. 
First, the findings of this study uncover and present a thematic map of IoT research streams in 
business and management domains. This study is a response to a call by Lu et al. (2018) that 
highlight a need for a more quantitative approach to drive and present the inductive 
classification framework for eliciting the latent structure of IoT extant literature. To map out a 
broad and rich picture of the business and managerial related thematic landscape of IoT, we 
designed a computational thematic analysis method as a new mixed-method approach, 
addressing the call for methodological pluralism to study organizational phenomena 
(Schmiedel et al., 2018).  In the current paper, we proposed a research framework to incorporate 
topic modelling as a computational technique into inductive thematic analysis to cover both 
the breadth and depth of the subject. The results of topic modelling by applying LDA method 
reveal 10 topics for IoT in the business and management areas. For each topic, we presented 
the most probable terms, top journals, most correlated articles, and its distribution over time. 
Then, by following a thematic analysis process, we discussed and critically analysed the latent 
themes.  

Second, tracing the studies in each topic shows that identified themes can be allocated to the 
juxtaposition of three main spaces: individual, organizational, and supra-organizational (Figure 
5). To deepen our understanding of extracted topics, we focused on two key dimensions of 
IoT—interconnectivity and smartness—to realize how IoT could create value for its 
stakeholders. Focusing on three distinct but interconnected levels of analysis, we examined the 
affiliation of topics with these two IoT features and different beneficiaries. IoT unique 
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capability of interconnecting physical and digital world provides great exceptional 
opportunities for innovative applications that were not possible before. IoT interconnectivity 
capacity could link human, things and software at individual, organizational, supra-
organizational levels in ways that can radically transform many aspects of functions and 
interactions. Some examples of emerging applications of IoT in business are: making products 
smart and connected, facilitating sharing and collaborative economies, restructuring industries 
and supply chains, contributing to realizing circular economy and sustainability, and 
developing new business models. 

At the individual level, smart connected products offer new functionality, greater 
performances, higher engagement, and capabilities that cut across and transcend traditional 
product boundaries (Porter & Heppelmann, 2014), offering new emerging relationships from 
consumers’ interactions with them (Novak & Hoffman, 2019). At the organizational level, IoT 
provides a smart, connected infrastructure for modern product management, dynamic 
intelligent manufacturing, and differentiating businesses by moving beyond merely selling 
products to delivering integrated product-service solutions to their customers. At the supra-
organizational level, IoT improves collaboration and coordination between members of a 
supply chain by bringing visibility and traceability to the entire chain, enables social 
environments like cities to make their critical infrastructure, services, and resources more 
interconnected and intelligent, and provides a novel infrastructure for collaborative value 
creation in the networked economy.  

Finally, at the intersection of these spaces, digital knowing and big data could be positioned. 
IoT by its pervasive interconnectedness capability at different levels generates and collects 
huge amounts of data, which might be correlated to any level of its applications from individual 
to supra-organizational. Furthermore, this huge amount of data is processed and analysed to 
create rich biographies about how products are used and humans interact with them. 

 

 
Figure 5. Venn diagram of identified themes 

Further, using a thematic analysis approach we explored and discussed latent sub-themes in 
each topic. Figure 6 shows the knowledge structure of the IoT business and management 
research at a glance. 
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Figure 6. Mind-map of the IoT business and management research domain 

 
Finally, drawing on the results of the mixed-method analysis, the third theoretical contribution 
of our study is identifying and proposing future research avenues for IoT business and 
management. The future research streams are discussed as follow: 
 
IoT shapes new interactions, consumers’ consumption habits, and engagement. Analysing 
related theoretical models and frameworks used by current studies reveals a heterogeneous set 
and different paradigms. Some scholars have considered pre adoptions behaviours of IoT; 
while the others have focused on its usage and satisfaction, mostly by testing classical theories 
and models. However, future research may leverage other theoretical lenses, especially in 
social contexts, like the theory of self-expansion and consumer culture theory and broaden their 
studies to consider context-specific factors, or economic and social factors, such as price, social 
presence, and co-presence modes. Most of the studies have examined human and IoT object 
relationships, but future research could explore social interactions through IoT and consider a 
new perspective and expand the boundaries to nonhuman-centric consumer behaviours 
(Hoffman & Novak, 2017). Scholars have increasingly addressed servitization, yet, there is still 
a paucity of well-suited theoretical and empirical models and methods, in applying IoT 
technologies and shaping inter-company relationships to exploit opportunities provided by PSS 
(Böhmann et al., 2014; Kamp & Parry, 2017). IoT facilitates inter-organizational collaborations 
by enabling visibility, but future research could consider IoT roles in less studied supply chain 
activities, such as sourcing or reverse logistics, and also offer solid and comprehensive 
frameworks for IoT adoption in a digital supply chain context. While many believe IoT has 
disruptive power and put emphasis on the scientific theory and its engineering design, analysis 
of its innovation dynamics has been largely overlooked. Future studies could examine the 
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commercialization, standardization, and diffusion of IoT technologies. Smart products, built 
with sensing and embedded control features is a hot topic in integrating IoT with product life 
cycle management. IoT impacts in shaping collaborative consumption experiences and 
examining consumers’ active role in smart product lifecycle are worth further investigation. 
Most of important IoT applications involve solutions that are not merely technical, thus for 
studying them considering socio-technical perspective is necessary. Interoperability, 
compatibility, standardization and risk management in the entire lifecycle of smart products 
are critical areas for future research. Future research on smart manufacturing can investigate 
regulatory framework and end-to-end digital integration, reference architectures for crucial 
infrastructures for IIoT and return on investment of advanced IoT innovations in industry 4.0 
initiatives. IoT holds the promise of improving humans’ life which requires using tons of 
things, with seeing, sensing, hearing, and smelling capabilities. Social policies and legal 
systems in the national and international levels should consider the impacts of IoT technologies 
on people’s life. Examining the influence of different factors on successfully deploying IoT 
services in human life and investigating security and privacy issues are potential research 
streams in this topic. Designing appropriate tools that could measure other dimensions of smart 
living experiences is also suggested (i.e. social, psychological, emotional, and cognitive 
dimensions). With the rapid expansion of IoT, many scholars have tried to explore different 
ways to extract useful information or knowledge from a large volume of generated data. 
Potential emphases for future research in IoT big data are considering temporal aspect, 
metadata and semantics, management, authority, integrity, and governance of IoT data. 
Research on IoT emerging impacts on business models is discussed largely. Some studies have 
examined the IoT potential changes on main elements of established business models, and the 
others attempted to design novel business models based on IoT innovative products and 
services. Future research should discuss the benefits of different business models from a 
customer’s point of view, as innovative business model adoption is also likely to rely on 
customer perspective (Suppatvech et al., 2019). Given the fact that IoT business models are 
still in their early stage, conducting longitudinal surveys to observe the IoT business models’ 
evolution and their effect on long-term performance is beneficial. Finally, the strategic values 
of implementing and deploying IoT are less considered by scholars. Therefore, future studies 
could take the perspective of dynamic capabilities or resource-based view to explore how 
businesses can exploit the combination of IoT resources and capabilities with existing ones. 
 
4.2. Managerial Implication 

This study offers a range of insight for entrepreneurs and managers. Mangers can augment IoT 
into their existing services and products and make them more efficient for their customers. 
They should consider IoT capabilities for offering customized products or services, and the 
cooperation with customers through IoT networks as a differentiating competitive advantage. 
Additionally, inheriting automated analysis capacity in IoT technologies or processing big data 
sensed and collected enable managers to gain more knowledge about their customers and their 
operations. Managers can leverage these new insights to initiate the corrective actions, adjust 
business rules and optimize business processes as well as systems in real-time. To take the 
advantages of IoT business opportunities, changing the role of workforces from operators to 
problem solvers is extremely important but it requires companies to make a serious effort for 
educating their employees to gain new skills, abilities, and knowledge. Supply chain 
practitioners can also use various IoT technologies to enhance visibility and increase efficiency 
and effectiveness of operations. Managers can integrate IoT to create more innovative, 
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beneficial business values for their customers. They should consider utilizing IoT as a central 
feature in proposing innovative PSS that support their customers’ requirements. Reconfiguring 
business models according to IoT capabilities is another strategic concern for innovative 
companies. 

Entrepreneurs who intends to develop IoT solutions for consumers should employ smart 
technologies that are compatible and interoperable with greater ease of use, superior 
functionality, and high usefulness. Moreover, entrepreneurs need to ensure that the IoT 
solutions encompass hedonic and social dimensions. In designing IoT services, both quality of 
service and quality of experience should be considered. Security and privacy are also 
significant factors for consumers, particularly where sensitive personal data is collected. 
Companies, thus should invest in their IoT platforms security and privacy. In designing novel 
business models, entrepreneurs also can incorporate IoT capabilities in configuring value map 
to fulfil their customer needs, to optimise their resources and partnership or to transform their 
revenue streams.   
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Appendix A 

Topic modelling sensitivity analysis 

We followed Griffiths and Steyvers (2004) recommendations to run LDA on our corpus using 
Gibbs sampling with T ranging from 6 to 24 and 1000 iterations. The LDA packages4 that we 
used for sensitivity analysis, estimates the values of alpha and beta parameters with starting 
score of T/50, 0.1, respectively. We calculated the metrics of four LDA models and presented 
the normalized results of them in the left part of Figure A-1. In two of these models, i.e. 
Griffiths and Steyvers (2004) and Deveaud et al. (2014) we seek maximum scores, while for 
the other two models, i.e. Cao et al. (2009) and Arun et al. (2010), we look for minimum scores. 

Following Geva et al. (2019), we summed the scores of the four models for each number of 
topics to find a topic number with good aggregated score. We computed (1-score) for two 
models in which higher values consider better (i.e. Griffiths and Steyvers, 2004; Deveaud et 
al., 2014). As a result, the optimal number of topics was the one with the minimum overall 
score. The aggregated scores of four models are shown in the right part of Figure A-1. 
 

 

Note: Series A-1: Griffiths and Steyvers (2004); Series 2: Cao et al. (2009); Series 3: Arun et al. (2010); Series 4: Deveaud et 
al. (2014). 

Figure A-1. Left: results of four models, Right: aggregated results of sensitivity analysis 
 

We further used 10-fold cross-validation analysis to evaluate the performance of our LDA 
model. In 10-fold cross-validation, the dataset is randomly partitioned into 10 equal size 
subsamples. Of the 10 subsamples, a single subsample is retained as the validation data for 
testing the model, and the remaining 9 subsamples are used as training data. We computed the 
perplexity of LDA models with different numbers of topics to find the optimal number. From 
the figure A-2, we can see 10 number of topics yields the best results, with the lowest average 
perplexity on the 10 different hold-out sets. 
 
 
 

                                                           
4 topidmodels package: (https://cran.r-project.org/web/packages/topicmodels/index.html), and ldatuning package: 
(https://cran.r-project.org/web/packages/ldatuning/index.html) 
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Figure A-2 Perplexity results of LDA models with different number of topics 
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