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Abstract

We have extended the multiconfigurational Ehrenfest (MCE) approach to the simulation of

four-wave-mixing signals of systems involving multiple electronic and vibrational degrees of free-

dom. As an illustration, we calculate the signals of three widely used spectroscopic techniques,

time and frequency-resolved fluorescence spectroscopy, transient absorption spectroscopy, and two-

dimensional (2D) electronic spectroscopy, for a two-electronic-state, twenty-four vibrational-mode

conical intersection model. It has been shown that all three spectroscopic signals characterize the

fast population transfer from the higher excited electronic state to the lower excited electronic

state. While the time and frequency-resolved spectrum maps the wave packet propagation exclu-

sively on the electronic excited states, the transient absorption and 2D electronic spectra reflect

the wave-packet dynamics on both electronic excited states and electronic ground state. Combin-

ing the trajectory-guided Gaussian basis functions and the nonlinear response function formalism,

the present approach thus provides a promising general technique for the applications of various

Gaussian basis methods to the calculations of four-wave-mixing spectra of polyatomic molecules.

a Electronic address: maxim@hdu.edu.cn
b Electronic address: YZhao@ntu.edu.sg
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I. INTRODUCTION

Modern techniques of nonlinear femtosecond spectroscopy have largely reshaped our un-

derstanding of photoinduced dynamic processes in chemical physics [1, 2]. Femtosecond

spectroscopic signals, representing nonlinear responses of a materials system under study to

external laser fields, are detected as functions of interpulse time delays and/or pulse carrier

frequencies. In so-called four-wave-mixing (4WM) experiments, three coherent laser pulses

are incident on the system, the response of which is measured in a given phase-matched

direction. These 4WM spectroscopies include, among others, coherent anti-Stokes Raman

spectroscopy, transient-grating spectroscopy, photon-echo spectroscopy [2]. In particular,

with much success, two dimensional (2D) electronic spectroscopy has emerged as a powerful

technique to scrutinize the intricate interplay between electronic and vibrational degrees of

freedom (DOFs) in biological systems [3–5]. However, the interpretation of these signals in

terms of dynamic processes in molecular systems is not straightforward. To decipher the

information encoded in the spectroscopic signals, one has to solve coupled electronic and

nuclear dynamics, an increasingly challenging task as the DOFs expand.

The information coded in the 4WM signals is uniquely characterized by the third-order

polarization, which is in turn determined by nonlinear response functions and properties of

the laser pulses involved [2]. For simple materials systems, such as harmonic oscillators or

few-level systems, the response functions can be calculated either by the sum-over-states

method or analytically by the cumulant expansion technique, while for complex materials

systems, the evaluation of the multi-time response functions necessitates numerical methods

capable of treating coupled electronic-vibrational dynamics in a sufficiently accurate and

efficient manner [6–8]. There exist two alternative groups of theoretical methods for simu-

lating many-body quantum dynamics in molecular systems. The methods of the first group

are based on system-bath partitioning and treating the effect of vibrational modes as a ther-

mal bath of harmonic oscillators. One then obtains the equations of motion for the reduced

density matrix of the system, also referred to as quantum master equations (QMEs) [9],

by taking into account the bath-induced relaxation and dissipation via the bath correlation

function. Typical examples of QMEs approaches range from the second-order perturba-

tive Redfield equation [10], approximate QMEs methods based on a polaron transformation

[11, 12], to numerically exact hierarchical equations of motion (HEOM) [13, 14] and methods
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of quasi-adiabatic propagator path integral [15]. While QMEs methods have been widely

used to simulate dissipative quantum dynamics of complex systems, their applicability is

restricted to certain forms of system-bath Hamiltonians and dynamics of vibrational DOFs

cannot be handled explicitly by QMEs. An alternative to the QMEs approaches is the wave

function methods, in which the wave function is expanded in a set of basis functions for both

electronic and vibrational DOFs. One of the most popular, powerful wave function-based

approaches is the multiconfiguration time-dependent Hartree (MCTDH) method [16, 17]

and its multilayer extension (ML-MCTDH) [18, 19], which provides highly efficient tools for

propagating wave packets with many DOFs at low temperatures.

One particularly promising technique for accurate simulation of quantum dynamics of

complex molecular systems is the so-called Gaussian basis methods which employ time-

dependent Gaussian basis functions [20]. Since an arbitrary nuclear wave function can be

expanded as a linear combination of time-dependent coherent states, the Gaussian basis

methods can in principle achieve a formally exact description of quantum dynamics once

the Gaussian basis is sufficiently expanded toward completeness. Typical approaches using

time-dependent Gaussian basis functions include the multiple spawning (MS) method [21,

22], the coupled coherent states (CCS) [23, 24], the multiconfigurational Ehrenfest (MCE)

method [25, 26], the methods of variational Multiconfigurational Gaussians (vMCG) [27], the

hierarchy of the Davydov ansätze (DA) [28–33], and the Gaussian-based multiconfiguration

time-dependent Hartree (G-MCTDH) method [34]. It has been shown that the Gaussian

basis method with the center of each Gaussian moving along the classical trajectory already

yields accurate spectra of time-resolved stimulated emission in molecular systems if sufficient

Gaussians are included [35]. The MS method has been extended to introduce an external

field to drive the combined electronic-nuclear dynamics in photo-excited molecules triggered

by atto- and femtosecond laser pulses [36]. The CCS method has been applied to simulate

the high-order harmonic generation spectra of an electron in strong laser fields, yielding

results in good agreement with exact calculations [37]. By integrating the DA into the

framework of nonlinear response functions, one can calculate the four-wave-mixing signals

of molecular aggregates with both singly and doubly excited electronic states taken into

account [38, 39]. The G-MCTDH method was recently used to evaluate the time-resolved

coherent Raman spectra of the embedded I2Kr18, offering a valuable tool to map calculated

signals to wave packet coherence [40]. Very recently, a single-trajectory semiclassical thawed
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Gaussian approximation has been applied for the evaluation of third-order response functions

[41].

Previously, it has been demonstrated that the absorption spectrum of the S2/S1 pyrazine

model can be efficiently and accurately computed by the MCE approach with a small number

of trajectory-guided Gaussian basis functions [42]. In this paper, an efficient numerical

scheme for the calculation of four-wave-mixing signals is developed by integrating the MCE

method into the third-order nonlinear response functions formalism. The rest of the paper is

organized as follows. In Sec. II we describe the model Hamiltonian, the MCE method, and

the essential theoretical concepts of four-wave-mixing signals. In Sec. III, the application

of the developed method to the pyrazine model is shown and discussed. Conclusions are

drawn in Sec. IV.

II. THEORY

A. The model Hamiltonian

We consider a linear vibronic coupling model of pyrazine, which includes an electronic

ground state |g〉, and two lowest excited electronic states |S1〉 (nπ∗) and |S2〉 (ππ∗) [43, 44].

Let Hg denote the electronic ground state Hamiltonian and He denote the electronic excited

state Hamiltonian. Then the molecular system Hamiltonian HS can be written as a sum of

Hg and He

HS = Hg +He (1)

with

Hg = |g〉hg〈g|, (2)

He =

S1,S2
∑

k

|k〉 (hk + ǫk) 〈k|+
S1,S2
∑

k 6=k′

|k〉Vkk′〈k′| (3)

Here ǫk, k = S1, S2, is the vertical excitation energy of the kth excited state. hg and hk

are vibrational Hamiltonians of the corresponding electronic ground state and kth excited

electronic state, while Vkk′ is the interstate vibrational Hamiltonian. Keeping only the linear
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Table I. Vertical excitation energies ǫ (eV), intrastate electron-vibrational coupling constants κ

(eV), interstate electronic coupling constant λ (eV), vibrational frequencies ω (eV) and periods

τ = 2π/ω (fs).

S1(nπ
∗) S2(ππ

∗) ω τ = 2π/ω

ǫ 3.9283 4.8517

κ6a -0.0964 0.1194 0.0740 55.9

κ1 0.0470 0.2012 0.1273 32.5

κ9a 0.1594 0.0484 0.1568 26.3

κ10a 0 0 0.0936 44.2

λ = 0.1825

vibronic-coupling terms, the vibrational Hamiltonians read

hg =
∑

l=10a,6a,1,9a

ωl

2

(

− ∂2

∂Q2
l

+Q2
l

)

, (4)

hk = hg +
∑

m=6a,1,9a

κk
mQm, (5)

Vkk′ = λQ10a, (6)

whereQl is the dimensionless coordinate of the lth normal mode (labeled as l = 1, 6a, 9a, 10a)

with frequency ωl. The tuning modes (labeled asm = 6a, 1, 9a) have the intra-state electron-

vibrational coupling constants κk
m (k = S1, S2), and the normal mode v10a is the only coupling

mode which connects two excited electronic states with an inter-state coupling constant λ.

Various parameters of the system Hamiltonian are listed in Table I. Fig. 1 shows the

one-dimensional cuts of resulting adiabatic potential energy surfaces (PESs) along the four

system modes Q1, Q6a, Q9a, and Q10a.

The remaining weakly coupled vibrational modes can be considered as a heat bath, which

consists of 20 harmonic oscillators [43, 44]

HB =
20
∑

n=1

ωn

2

(

− ∂2

∂Q2
n

+Q2
n

)

(7)

The system-bath coupling Hamiltonian is set to be diagonal in the electronic manifold

HSB =
20
∑

n=1

∑

k=S1,S2

|k〉〈k|κk
nQn, (8)
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Figure 1. One-dimensional cuts of adiabatic PESs of the electronic ground state (blue), S1 state

(green), and S2 state (red) along the dimensional normal modes Q1 (a), Q6a (b), Q9a (c), and Q10a

(d).

where κk
n denote the linear electron-vibrational coupling constants for bath modes. The

values of the vibrational frequencies and linear electronic-vibrational coupling constants for

bath modes can be found in Table I of Ref. [44].

Finally, the total Hamiltonian is thus a sum of the system Hamiltonian HS, the bath

Hamiltonian HB, and the system-bath coupling Hamiltonian HSB

H = HS +HB +HSB (9)
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B. The multiconfigurational Ehrenfest method

We first use the creation and annihilation operators to rearrange Eqs. (1)-(8) in a compact

form

H =
∑

k=S1,S2

ǫk|k〉〈k|+
∑

q

ωqb
†
qbq+

1√
2

S1,S2
∑

k 6=k′

λ|k〉〈k′|
(

b†10a + b10a

)

+
1√
2

∑

k=S1,S2

∑

q 6=10a

κk
q |k〉〈k|

(

b†q + bq
)

(10)

where q labels 4 primary system modes plus 20 bath modes, b†q(bq) is the creation (annihi-

lation) operator of the qth mode.

To solve the time-dependent Schrödinger equation, we adopt the MCE method in which

the wave function is constructed as a superposition of M configurations

|Ψ(t)〉 =
M
∑

u=1

(

S1,S2
∑

k

Auk(t)|k〉
)

|zu(t)〉

=
M
∑

u=1

(

S1,S2
∑

k

Auk(t)|k〉
)

exp

[

∑

q

(

zuqb
†
q − z∗uqbq

)

]

|0〉ph (11)

where u is the configuration index. Auk is the amplitude in the diabatic state |k〉, and zuq

represent the phonon displacements.

In order to derive the equations of motion for wave function parameters Auk and zu, we

first formulate the Lagrangian L as

L =〈Ψ(t)|i ∂
∂t

−H|Ψ(t)〉

=
i

2

M
∑

nu

S1,S2
∑

k

{

[

A∗
nkȦuk − Ȧ∗

nkAuk

]

+ A∗
nkAuk

∑

q

(

znqż
∗
nq + żnqz

∗
nq − zuqż

∗
uq − żuqz

∗
uq

2
+ z∗nqżuq − ż∗nqzuq

)

}

×Rnu − 〈Ψ(t)|H|Ψ(t)〉 (12)

where

Rnu = 〈zn|zu〉 = exp

{

∑

q

z∗nqzuq −
1

2

(

|znq|2 + |zuq|2
)

}

(13)

and

〈Ψ(t)|H|Ψ(t)〉

=
M
∑

nu

{

A∗
nS1

AuS1

[

ǫS1 +
∑

q

ωqz
∗
nqzuq +

∑

q

κS1
q√
2

(

z∗nq + zuq
)

]

+ A∗
nS1

AuS2

∑

q

λq√
2

(

z∗nq + zuq
)

}

Rnu

+
M
∑

nu

{

A∗
nS2

AuS2

[

ǫS2 +
∑

q

ωqz
∗
nqzuq +

∑

q

κS2
q√
2

(

z∗nq + zuq
)

]

+ A∗
nS2

AuS1

∑

q

λq√
2

(

z∗nq + zuq
)

}

Rnu

(14)
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The equations of motion for AnS1 and AnS2 can be obtained from the Euler equations

− d

dt

[

∂L

∂Ȧ∗
uS1

]

+
∂L

∂A∗
uS1

= 0, (15)

− d

dt

[

∂L

∂Ȧ∗
uS2

]

+
∂L

∂A∗
uS2

= 0. (16)

yielding

i

M
∑

n

{

ȦnS1 + AnS1

∑

q

[

z∗mqżnq −
żnqz

∗
nq + znqż

∗
nq

2

]

}

Rmn

=
M
∑

n

{

AnS1

[

ǫS1 +
∑

q

ωqz
∗
mqznq +

∑

q

κS1
q√
2

(

z∗mq + znq
)

]

+ AnS2

∑

q

λq√
2

(

z∗mq + znq
)

}

Rmn,

(17)

i
M
∑

n

{

ȦnS2 + AnS2

∑

q

[

z∗mqżnq −
żnqz

∗
nq + znqż

∗
nq

2

]

}

Rmn

=
M
∑

n

{

AnS2

[

ǫS2 +
∑

q

ωqz
∗
mqznq +

∑

q

κS2
q√
2

(

z∗mq + znq
)

]

+ AnS1

∑

q

λq√
2

(

z∗mq + znq
)

}

Rmn.

(18)

The equation of motion for zn is obtained by considering that each zn follows its own

Ehrenfest trajectory, i.e.,

iżn =
∂HEhr

n

∂z∗n
,

HEhr
n =

〈Ψn|H|Ψn〉
〈Ψn|Ψn〉

,

|Ψn〉 = (AnS1 |S1〉+ AnS2 |S2〉) |zn〉 (19)

where

〈Ψn|H|Ψn〉

=A∗
nS1

AnS1

[

ǫS1 +
∑

q

ωqz
∗
nqznq +

∑

q

κS1
q√
2

(

z∗nq + znq
)

]

+ A∗
nS1

AnS2

∑

q

λq√
2

(

z∗nq + znq
)

+A∗
nS2

AnS2

[

ǫS2 +
∑

q

ωqz
∗
nqznq +

∑

q

κS2
q√
2

(

z∗nq + znq
)

]

+ A∗
nS2

AnS1

∑

q

λq√
2

(

z∗nq + znq
)

(20)
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and

〈Ψn|Ψn〉 = A∗
nS1

AnS1 + A∗
nS2

AnS2 (21)

One thus arrives at the equation of motion for znq

iżnq =
A∗

nS1
AnS1

(

ωqznq +
κ
S1
q√
2

)

+ A∗
nS1

AnS2
λq√
2
+ A∗

nS2
AnS2

(

ωqznq +
κ
S2
q√
2

)

+ A∗
nS2

AnS1
λq√
2

A∗
nS1

AnS1 + A∗
nS2

AnS2

(22)

In our simulations, the quantum superposition sampling [45] is used to obtain the am-

plitudes of the diabatic states Auk, and the phonon displacements zuq (both the real and

the imaginary part) are sampled from a uniformly distributed noise within the range [−δ, δ]

(δ=5 × 10−2 for the system modes and δ = 10−2 for the bath modes, respectively). A

configuration of M = 800 is employed to achieve converged results.

C. Third-order response functions

To simulate 4WM signals, one needs to evaluate the response of the system on three laser

fields. The system-field interaction Hamiltonian is defined in the rotating wave approxima-

tion as

HL = −
3
∑

α=1

(Eα(r, t) · µ+ + E∗
α(r, t) · µ−) (23)

Here, vectors are denoted in boldface. µ+ and µ− are the up and down transition dipole

moment operators and

Eα(r, t) = eαEα(t− τα)e
ikα·r−iωαt (24)

where eα, Eα(t), τα, kα, ωα are the polarization, dimensionless envelope, central time, wave

vector, and the frequency of the αth laser pulse, respectively. In a typical 4WM experiment,

the central times of the first three laser pulses are defined as

τ1 = −Tw − τ, τ2 = −Tw, τ3 = 0, (25)

Here, τ is the time delay between the second and the first laser pulses, and Tw (the so-called

population time) is the time delay between the third and the second laser pulses.

Next we need to evaluate four third-order response functions Ra, a = 1, 2, 3, 4, which

are in turn calculated by the four-time correlation function of the transition dipole moment
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operators as [1]

R1(t3, t2, t1) = Φ(t1, t1 + t2, t1 + t2 + t3, 0), (26)

R2(t3, t2, t1) = Φ(0, t1 + t2, t1 + t2 + t3, t1), (27)

R3(t3, t2, t1) = Φ(0, t1, t1 + t2 + t3, t1 + t2), (28)

R4(t3, t2, t1) = Φ(t1 + t2 + t3, t1 + t2, t1, 0). (29)

The four-time correlation function at zero temperature limit can be further simplified as

[38, 39, 46]

Φ(τ4, τ3, τ2, τ1) = 〈Φ0|µ−e
− i

~
H(τ4−τ3)µ+e

− i
~
Hph(τ3−τ2)µ−e

− i
~
H(τ2−τ1)µ+|Ψ0〉, (30)

Here, Hph =
∑

q ωqb
†
qbq, and |Ψ0〉 = |g〉|0〉ph denotes the initial state before photoexcitation,

which is the vibrational ground state of the electronic ground state. The up and down

transition dipole moment operators are defined as µ+ = µS1 |S1〉〈g|+µS2 |S2〉〈g| and µ− = µ†
+.

The value of µS1 and µS2 are set to 0.0478 and 0.177, respectively [47]. By substituting MCE

wave function of Eq. (11) into Eq. (30), one obtains the expressions for the four response

functions Ra, a = 1, 2, 3, 4 as follows

R1(τ, Tw, t) =
M
∑

nu

∑

k,k1,k2,k3

(

e∗4 · µ∗
k2

)

(e1 · µk3) (e
∗
2 · µ∗

k) (e3 · µk1)A
k∗
nk1

(Tw)A
k3
uk2

(τ + Tw + t)

× exp

{

∑

q

zk∗nq(Tw)z
k3
uq(τ + Tw + t)eiωqt

}

e
− 1

2

∑

q

(

|zknq(Tw)|2+|zk3uq (τ+Tw+t)|2
)

R2(τ, Tw, t) =
M
∑

nu

∑

k,k1,k2,k3

(

e∗4 · µ∗
k2

)

(e∗1 · µ∗
k) (e2 · µk3) (e3 · µk1)A

k∗
nk1

(τ + Tw)A
k3
uk2

(t+ Tw)

× exp

{

∑

q

zk∗nq(τ + Tw)z
k3
uq(t+ Tw)e

iωqt

}

e
− 1

2

∑

q

(

|zknq(τ+Tw)|2+|zk3uq (t+Tw)|2
)

R3(τ, Tw, t) =
M
∑

nu

∑

k,k1,k2,k3

(

e∗4 · µ∗
k2

)

(e∗1 · µ∗
k) (e2 · µk1) (e3 · µk3)A

k∗
nk1

(τ)Ak3
uk2

(t)

× exp

{

∑

q

zk∗nq(τ)z
k3
uq(t)e

iωq(Tw+t)

}

e
− 1

2

∑

q

(

|zknq(τ)|2+|zk3uq (t)|2
)

R4(τ, Tw, t) =
M
∑

nu

∑

k,k1,k2,k3

(e∗4 · µ∗
k) (e1 · µk3)

(

e∗2 · µ∗
k2

)

(e3 · µk1)A
k∗
nk1

(−t)Ak3
uk2

(τ)

× exp

{

∑

q

zk∗nq(−t)zk3uq(τ)e
−iωqTw

}

e
− 1

2

∑

q

(

|zknq(−t)|2+|zk3uq (τ)|2
)

(31)
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Here, e4 is the polarization of the local oscillator field, and Ak3
uk2

(t) denotes the probability

amplitude of the electronic state |k2〉 at time t given that the system resides in the electronic

state |k3〉 initially and with configuration u. zk3uq(t) is the corresponding phonon displace-

ment at time t, also starting from |k3〉|0〉ph. In the calculations, the response functions

Ra(τ,Tw, t), a = 1, 2, 3, 4 (Eq. (31)) are further multiplied by exp {−(τ + t)/τd} with a de-

phasing time τd = 80 fs in order to take into account additional optical dephasing, which is

not described by the Hamiltonian of Eq. 10.

Since we only consider two lowest electronic excited states of pyrazine (higher excited

electronic states are neglected in our model), the third-order polarization P (τ,Tw, t) includes

contributions from the stimulated emission (SE) and the ground state bleaching (GSB),

each of which can be further decomposed into rephasing (superscript r) and nonrephasing

(superscript nr) contributions

PSE(τ,Tw, t) =P
(r)
SE (τ,Tw, t) + P

(nr)
SE (τ,Tw, t), (32)

PGSB(τ,Tw, t) =P
(r)
GSB(τ,Tw, t) + P

(nr)
GSB(τ,Tw, t). (33)

In the ultrashort pulse approximation (the so-called impulsive limit), we have

P
(r)
SE (τ,Tw, t) ∼ −iR2(τ,Tw, t),

P
(nr)
SE (τ,Tw, t) ∼ −iR1(τ,Tw, t),

P
(r)
GSB(τ,Tw, t) ∼ −iR3(τ,Tw, t),

P
(nr)
GSB(τ,Tw, t) ∼ −iR4(τ,Tw, t). (34)

By performing two-dimensional Fourier transforms, one obtains

S
(r)
SE(ωτ ,Tw, ωt) =Re

∫ ∞

0

dτdtiP
(r)
SE (τ,Tw, t)e

−iωτ τ+iωtt,

S
(nr)
SE (ωτ ,Tw, ωt) =Re

∫ ∞

0

dτdtiP
(nr)
SE (τ,Tw, t)e

iωτ τ+iωtt,

S
(r)
GSB(ωτ ,Tw, ωt) =Re

∫ ∞

0

dτdtiP
(r)
GSB(τ,Tw, t)e

−iωτ τ+iωtt,

S
(nr)
GSB(ωτ ,Tw, ωt) =Re

∫ ∞

0

dτdtiP
(nr)
GSB(τ,Tw, t)e

iωτ τ+iωtt. (35)

The 2D electronic spectroscopy is a third-order photon-echo technique. The SE and GSB

contributions to 2D spectra can be written as

SSE(ωτ ,Tw, ωt) = S
(r)
SE(ωτ ,Tw, ωt) + S

(nr)
SE (ωτ ,Tw, ωt), (36)

SGSB(ωτ ,Tw, ωt) = S
(r)
GSB(ωτ ,Tw, ωt) + S

(nr)
GSB(ωτ ,Tw, ωt). (37)
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The total 2D spectrum is a sum of above two contributions

S(ωτ ,Tw, ωt) = SSE(ωτ ,Tw, ωt) + SGSB(ωτ ,Tw, ωt). (38)

The transient absorption (TA) spectroscopy is another popular 4WM technique, probing

changes in the absorbance/transmittance of the system [2]. In a typical pump-probe exper-

imental setup, the signal is measured in the probe laser direction. The TA polarization is

evaluated by setting k1 = k2 = kpump and k3 = kprobe, and in the impulsive limit, one has

PTA(Tw, t) ∼ −i [R1(0,Tw, t) +R2(0,Tw, t) +R3(0,Tw, t) +R4(0,Tw, t)] (39)

The dispersed TA spectrum is defined as follows

STA(Tw, ωt) = Re

∫ ∞

0

dtiPTA(Tw, t)e
iωtt. (40)

The time and frequency-gated (TFG) fluorescence spectrum provides a detailed charac-

terization of the excited state wave packet dynamics. It can be calculated as [48]

STFG(Tw, ωt) ∼ Re

∫ ∞

0

dt2dtR2(0, t2, t)e
iωttEf (t+ t2 − Tw)Ef (t2 − Tw) (41)

Here, Ef (t) is the envelop of the gate pulse, which is taken as Gaussian Ef (t) = exp {−(t/τf )
2}

with τf being the pulse duration. It should be noted that the time and frequency resolution

of the signal is controlled by the gate pulse and the impulsive limit is not appropriate for

the simulation of this signal.

III. RESULTS AND DISCUSSION

The TFG fluorescence spectroscopy monitors the wave packet movement of excited elec-

tronic states projected onto the electronic ground state of the system [48, 49]. We pre-

viously used the HEOM method to simulate the time and frequency-resolved fluorescence

spectra of a two-state two-mode pyrazine model coupled to a dissipative environment, which

demonstrates the close connection between the excited state wave packets and the time and

frequency-resolved fluorescence spectra [50]. In Fig. 2, we display the TFG fluorescence

spectra STFG(Tw, ωt) of 24-mode pyrazine model for a good time resolution (a) and a good

frequency resolution (b). The spectrum in the left panel reflects the vibronic wave packets

of the excited S1 and S2 states. The signal is dominated by the emission from the S2 state

12
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Figure 2. TFG fluorescence spectra STFG(Tw, ωt) of 24-mode pyrazine model in the cases of (a)

good time resolution (τf =12 fs) and (b) good frequency resolution (τf= 60 fs).

at short Tw due to a much larger transition dipole moment of the S2 state as compared to

that of the S1 state. The emission from the S2 state gradually quenches as waiting time

Tw increases, and one clearly observes the fast population transfer from the S2 state to the

S1 state within ∼ 25 fs. However, this population transfer is not monotonous as can be

seen from the recurrence of the S2 state emission at Tw ∼ 85 fs, which is also consistent

with the diabatic populations shown in Ref. [32]. As illustrated in Fig. 2(b), STFG(Tw, ωt)

calculated with a longer gate pulse (τf= 60 fs), on the other hand, exhibits a ridge pattern,

which corresponds to emissions from the individual vibronic levels of the excited electronic

states. Once again, the CI-driven fast population transfer from the S2 state to the S1 state

is seen to occur within ∼ 25 fs, and the signal is dominated by the S1 emission after Tw >

60 fs. The TFG fluorescence spectra presented in Fig. 2 can be contrast with those of the

2-state 5-mode pyrazine model depicted in Ref. [51], which reveals that the addition of extra

tuning modes accelerates the initial population transfer and suppresses the recurrence of the

S2 state emission at later times.

In contrast to the TFG fluorescence spectra, the TA spectrum monitors the wave packet

dynamics on both the electronic excited states and ground state. Fig. 3 plots the dispersed

TA STA(Tw, ωt) as a function of ωt and time delay Tw between the pump and probe pulses.

The TA spectrum includes contributions from the GSB and the SE. The GSB contribution

is manifested as the strong ridge centred around 4.76 eV and several weak stripes in the

range 3.69-4.09 eV. The former is originated from the S2 state, and the latter can be traced
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Figure 3. Dispersed transient absorption signal STA(Tw, ωt) as a function of ωt and time delay Tw

between the pump and probe pulses.

back to the S1 state. It is worth noting that the Tw-dependent oscillations of the GSB

contribution have small amplitudes, typical for the TA spectrum calculated in the short-

pulse approximation [52]. The SE contribution features the fast population transfer from

the S2 state to the S1 state within ∼ 25 fs, similar to the TFG fluorescence spectrum with

a good time resolution. While the GSB and SE contributions coexist at longer delay time

Tw, the signal is dominated by the GSB contribution.

Electronic 2D spectroscopy is known to provide detailed information on the ultrafast

relaxation process at conical intersections (CIs)[53–55]. Fig. 4 displays the 2D spectra

S(ωτ ,Tw, ωt) of 24-mode pyrazine model at different population times Tw. At Tw = 0

fs, the spectra show pronounced vibronic multi-peak structure around ωτ = ωt = 4.765 eV

as well as much weaker diagonal peaks ranging from 3.69 eV to 4.09 eV, which correspond

to the S2 and S1 bands in the absorption spectrum, respectively. Moreover, the S2-S1 and

S1-S2 cross peaks are also pronounced . From Tw = 5 fs to Tw = 25 fs, one can clearly see

the shift of the stimulated emission peaks along the ωt axis to lower energies, which directly

reflects the fact that the wave packet in the upper S2 surface gradually approaches the CI

and transfers to the lower S1 surface. In addition, the intensity of S1 diagonal peaks is also

significantly decreased with Tw. Due to the fast CI-driven S2-S1 population transfer, the
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Figure 4. Real part of the total 2D electronic spectra S(ωτ ,Tw, ωt) of 24-mode pyrazine model for

different population times Tw.

overall intensity of the 2D spectrum at Tw = 25 fs is roughly half of that at Tw = 0 fs.

At longer population time Tw, the SE contribution becomes small and the total spectrum

is dominated by the GSB contribution. The 2D spectra exhibit recurrence pattern as a

function of Tw modulated by the tuning mode Q1, which reflects the wave-packet evolution

along the mode Q1 in the electronic ground state. Since the vibrational period of mode Q1

is 32.5 fs, S(ωτ ,Tw, ωt) evaluated at Tw = 32, 65, and 98 fs look quite similar. It should be

noted that the enhancement of the S2 − S1 cross peaks at population time Tw = 85 fs (due

to the SE contribution) is consistent with those shown in the time-resolved fluorescence and

TA spectra (see Figs. 2(a) and 3).

To retrieve the fine details of the evolution of 2D spectra, we also plot the Tw-evolution of

the intensities of two diagonal peaks (DPs) at (ωτ = ωt =4.64 eV) and (ωτ = ωt = 4.765 eV)

and two cross peaks (CPs) at (ωτ =4.64 eV, ωt =4.765 eV) and (ωτ =4.765 eV, ωt =4.64 eV)

in Fig. 5. Due to the fast decay of SE contribution, the amplitudes of both DPs and CPs

decrease rapidly at short Tw. The peak evolutions at longer Tw are dominated by the GSB

contribution, which reflects the evolution of the ground state wave packet. The Tw-evolution
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Figure 5. Amplitudes of the diagonal peaks (left panel, (ωτ=4.64 eV, ωt=4.64 eV), red and

(ωτ=4.765 eV, ωt=4.765 eV), blue) and cross peaks (right panel, (ωτ=4.64 eV, ωt=4.765 eV),

red and (ωτ=4.765 eV, ωt=4.64 eV), blue) as a function of population time Tw.

of both DPs and CPs exhibits irregular beating patterns, which cannot be assigned to the

specific vibrational modes, in agreement with Ref. [51].

IV. CONCLUSIONS

In summary, we have extended the MCE method to the simulation of time and frequency-

resolved 4WM signals by incorporating the dynamical equations of the MCE method into the

nonlinear response function formalism. The method developed here has been utilized to sim-

ulate signals of three widely used spectroscopic techniques, time and frequency-resolved flu-

orescence spectroscopy, transient-absorption spectroscopy, and electronic 2D spectroscopy,

for a two-state, 24-vibrational-mode CI model of pyrazine. It is found that the time and

frequency-resolved fluorescence spectrum provides faithful mapping of the wave-packet mo-

tions in the electronic excited states and characterizes the ultrafast population transfer from

the S2 state to the S1 state. The transient absorption spectrum also monitors fast initial pop-

ulation transfer due to the SE contribution and exhibits the almost static GSB contribution

which dominates at a longer delay time between pump and probe pulses. The 2D spectrum

tracks the transfer of the wave packet from the upper S2 surface to the lower S1 surface at

short population time Tw. The recurrence of 2D spectra at longer Tw is modulated by the

tuning mode Q1, which reflects the wave packet dynamics in the electronic ground state.
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Integration of the trajectory-guided Gaussian basis functions with the nonlinear response

function formalism proposed in this work also allows for a general theoretical framework

to extend various Gaussian basis methods to the calculations of 4WM signals of molecular

systems.

It is straightforward to include higher-lying excited electronic states (which are responsi-

ble for the excited state absorption) into the present methodology by propagating the system

in the higher excited state manifold between τ2 and τ3 in Eq. (30), which is essential, for

example, to understand the mechanism of singlet fission in organic crystals [56]. It is also of

great interest to study finite temperature effects on the 4WM signals, using the thermo-field

dynamics approach [57] or the method of Monte-Carlo importance sampling [58]. Adopting

independent trajectories of the Gaussian basis functions for the MCE method proposed in

Ref. [42], the present approach can also be readily extended to ab initio on-the-fly calcula-

tions of various 4WM spectra of polyatomic molecules [59, 60]. Work in these directions is

in progress.
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