The
University
o Of

= -n,‘-_“ u}:_.'!?- Bhe&i{“:ld.

This is a repository copy of The resonant damping of oscillations of coronal loops with
elliptic cross-sections .

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/1716/

Article:
Ruderman, M.S. (2003) The resonant damping of oscillations of coronal loops with elliptic
cross-sections. Astronomy and Astrophysics, 409 (1). pp. 287-297. ISSN 1432-0746

https://doi.org/10.1051/0004-6361:20031079

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

\ White Rose o
| university consortium eprints@whiterose.ac.uk
WA Universiies of Leeds, Sheffield & York https://eprints.whiterose.ac.uk/



mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

A&A 409, 287-297 (2003) Astrono my
DOI: 10.10510004-6361:20031079

© ESO 2003 Astrophysics

The resonant damping of oscillations of coronal loops
with elliptic cross-sections

M. S. Rudermah

Department of Applied Mathematics, University of Sield, Hicks Building, Hounsfield Road, Sffield S3 7RH, UK
Received 16 April 2003 Accepted 7 July 2003

Abstract. Motivated by recenTransition Region and Coronal Explorer (TRACE) observations of damped oscillations in coro-

nal loops, Ruderman & Roberts (2002), studied resonant damping of kink oscillations of thin straight magnetic tubes in a cold
plasma. In their analysis, Ruderman & Roberts considered magnetic tubes with circular cross-sections. Weedxeradysis

for magnetic tubes with elliptic cross-sections. We find that there are two infinite sequences of the eigecifgsapiehe tube
oscillations,{wn} and {wrs}, N = 1,2,.... The eigenfrequenciegu,.} and {wns} correspond to modes witthzhodes at the

tube boundary. In particulaty,. andw;s correspond to two kink modes. These modes are linearly polarized in the direction
of the large and small axis of the tube elliptic cross-section respectively. The seduggics monotonically growing and

{wns} monotonically decreasing, and they both tendjtasn — oo, wherewy is the frequency of the kink mode of tubes with
circular cross-sections. In particular;. < wx < wis. We calculate the decrements of the two kink modes and show that they
are of the order of decrement of the kink mode of a tube with a circular cross-section.

Key words. magnethohydrodynamics (MHD) — plasmas — Sun: corona — waves

1. Introduction oscillation. The characteristic damping time is of order of the

oscillation period times the ratio of the tube radius and the

This study was motivated by the recent TRACE Observatioﬂﬁ_ckness of the inhomogeneous layer. Goossens et al. (2002)
of damped coronal loop oscillations (Aschwanden et al. 199% the expression for the resonant damping rate of kink os-
Nakariakov et al. 1999; Schrijver & Brown 2000; Aschwandegyjations to investigate damped coronal loop oscillations in a

et al. 20025 Schrijver et al. 2092). Aschwanden et al. (19,9§’Ample of 11 loops provided by Aschwanden et al. (2002).
and Nakariakov et al. (1999) interpreted these observations

in terms of the kink mode of oscillation of a coronal loop. One of the main results of Ruderman & Roberts (2002) is
Nakariakov et al. (1999) noted that the loop oscillations wetRgat the asymptotic state attained by an initial perturbation af-
strongly damped with the characteristic damping time equaltr a few periods of the tube kink oscillation is completely de-
a few periods of oscillations. termined by the properties of the damped kink eigenmode of
Different mechanisms of damping of coronal loop os$he tube. This result can be easily generalized for configura-
cillations were discussed by Roberts (2000) and Ofman tfns more complicated than a straight magnetic tube with a
Aschwanden (2002). Ruderman & Roberts (2002) suggestsrtular cross-section in a cold unstratified plasma considered
that the damping of these oscillations is due to resonant absdsp-Ruderman & Roberts (2002). Hence, it is not necessary to
tion, which is the energy transfer from the global mode of oselve the initial value problem every time to study the asymp-
cillation of a coronal loop into quasi-Alfvénic oscillations in aotic state of tube oscillation caused by an initial perturbation.
thin dissipative layer. This layer embraces an ideal resonant Rather it is enough to study the damped eignemodes of the
sition where the frequency of the global mode matches the lotabe oscillations. This observation enables us to concentrate on
Alfv’en frequency. To study this process Ruderman & Robetstsidying eigenmodes in this paper. The aim of the paper is to
(2002) solved the initial value problem for a thin straight magtudy the damped eigenmodes of a thin magnetic tube with an
netic tube with a circular cross-section and a thin inhomelliptic cross-section in a cold plasma. Similar to Ruderman &
geneous layer at its boundary. They showed that a damgsberts (2002), we assume that the damping of oscillations is
kink oscillation of this tube emerges from an arbitrary initiatlue to resonant absorption. This absorption occurs in a dissi-
perturbation after the time of order of a few periods of thigative layer embracing an ideal resonant line inside a thin in-
homogeneous layer at the tube boundary. In the next section
* e-mail:M.S.Ruderman@sheffield.ac.uk we formulate the problem. In Sect. 3 we derive the equations
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z
B \\ p| \\ pe
£ £ Fig. 2. A sketch of elliptic coordinates in the-plane. The ellipses are
/ the ¢ coordinate lines, and the hyperbolas are stowordinate lines.
’ The two thick ellipses are the boundaries of the inhomogeneous layer.

U

The equation of the tube boundaryss= 5. Hence, the tube
Fig. 1. A sketch of the equilibrium state, showing a magnetic flux tubeross-section is an ellipse with the large and small half-axis,
with plasma density; embedded in a plasma with densjty. The andb, given by

equilibrium magnetic field is everywhere has strengtfhe equilib-

rium density varies in the thin layer from to pe. The dashed lines @ = o coshsy, b = o sinhs,. )

show the perturbed magnetic tube in its kink mode of oscillation. . C .
P g The ellipse eccentricity is = 1/ coshsy. The density mono-

tonically increases frome to pj in a thin layersy — 6 < s< 5,

relating the pressure perturbation at the boundaries of the\}\ﬂiereé < 5. The thickness of this layer increases frém

homogeneous layer. In Sect. 4 we study undamped waves iﬂ #he x-direction ( = 0) to as in the y-direction ¢ = 7/2).

homogeneous tube and obtain the dispersion relations forth?ﬁg equilibrium density remains constant and equat tior
waves in the approximation of an infinitely thin tube. In Sect. éh '
t

invest damping of kink modes. W 20
we investigate resonant damping of kink modes. We present eEIiminatingbx andb, from (1), we obtain
summary of our results and their discussion in Sect. 6.
v L,  1_ P 9P
— -V - =-2V,—, —=—pV2V, 0. 4
2. Formulation o2~ VAGZ T o e et T PYAYs )
We consider a magnetic tube in a cold ideal plasma. To ddereP, VZ andV, are the perturbation of the magnetic pres-
scribe plasma motions we use the linear system of ideal MHiDre, the square of the Ak speed, and the perpendicular gra-

equations dient given by
o 1 ob Bb B2 9
—==(VxbxB, —=V B). 1 -z 2 _ —V_e—
pat #( X )X ot X(UX ) ( ) P = s VA_,up’ vV, =V ezaz’ (5)

'.*efe" is the vgloqty,p the equilibrium dgnsﬂyB the €qu \vhereb, is thez-component of the perturbation of the magnetic
librium magnetic field, andb the perturbation of the magneticg, 4 ande, is the unit vector in the-direction

field; « is magnetic permeability of empty space. We assume that the magnetic tube is bounded=ab and
The equilibrium configuration is a straight magnetic tub.

2= L by dense ideal infinitely conducting plasmas with the

(see Fig. 1). The equilibrium magnetic field is everywhere , ,qvic field frozen in these plasmas. This implies the bound-
along thez-direction of Cartesian coordinates y, z, and it ary conditions

also has everywhere the same magnit8ddhe equilibrium
density is equal t@; inside the tube, and. outside the tube, v =0 at z=0,L. (6)
pe < pi. It monotonically increases fropy to p; in a thin layer

at the tube boundary. Equation (6) coupled with the second equation in (4) im-

In what follows we assume that the tube has as elliplies that
tic cross-section. We introduce elliptic coordinaesnd¢e p_qg at z=0,L. @)
in the xy-plane (see Fig. 2). These coordinates are related to
Cartesian cordinates by We consider only the fundamental mode of the tube oscillation

with respect ta. Then it follows from (6) and (7) thatandP

are proportional to simfz/L). Our analysis remains applicable
whereo is a quantity with the dimension of length. We asto an overtone if we regaldas the distance between successive
sume that the equilibrium density dependssamly, p = p(s). nodes along the loop. We also restrict our analysis to the normal

X = o-coshscosy, y = osinhssing, (2)
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modes and take and P proportional to €. Then Egs. (4) Ruderman & Wright (2000) to study nonstationary driven os-
reduce to cillations of a thin planar magnetic cavity, and by Ruderman &
2 2 i i > Roberts (2002) to study resonant damping of kink oscillations
p(e?~w})o=-iwV. P iwP=pViV, v, (8)  of a magnetic tube.

wherewa = 7Va/L is the local Alfvén frequency. The only quantity that we need for what follows is the jump

Equations (8) are used in what follows for studying th@f U across the inhomogeneous layefso, ¢) — u(so - &, ¢).
damped oscillations of a magnetic tube. Eliminatingv from (8) with the use of (9) yields

d(HU) _ iw (HZP 1 62P) (14)
3. Equations for boundary values of pressure ds pPAVR -0} 042
perturbation SinceP is determined by its values at the boundaries of the in-

. . . . . homogeneouslayer, this equation can be considered as an equa-
In this section we derive the equations relating the pressure sl 9 y q d
t

. . : n with known right-hand side. In what follows we shall see
turbation at the boundaries of the inhomogeneous layer. We 9t the real part of the frequency of a weakly damped eigen-

this by steps. First we obtain the solution in the inhomogeneor%

layer (g — 6 < S < &). Then we obtain the solution in the iN-tat there is such avals, -0 < Sa < So, thatwa (sa) = wr.

temnal § < s - 6) and externalg > s) homogeneous regions. g any fixedyp, the positions = s, is called the Alfen res-

Finally we match these solutions at the boundaries of the 'mb%'ant position. In the vicinity of this position there are large
mogeneous layer.

gradients of the velocity, so that dissipation is important. In
weakly dissipative plasmas dissipation is only important in a
3.1. Solution in the inhomogeneous layer thin dissipative layer embracing the A#a’resonant position
e.g., Goosens 1991; Goossens & Ruderman 1995). In very

Let us introduce the characteristic thickness of the 'nhomoéﬁéakly dissipative plasmas, like the solar coronal plasma, the

neous layer. Since. the thickness of the inhomoggneous Iayﬁ{ickness of the dissipative layer is of ord&p; /|, wherew;
varies frombo to ag, it follows that{ <« a. Let us also introduce is the imaginary part of the eigenfrequency (e.g., Ruderman

the ve_IOC|ty components in tr_reanqw_—dlrectlo_n,u ando. The etal. 1995; Tirry & Goossens 1996). Inside the dissipative layer
following formulae are valid in elliptic coordinates (e.g. KorrIhere are spatial oscillations of all quantities with the wave-
& Korn 1961): length much smaller than the thickness of the dissipative layer.
1 o o 1 [d(Hu) d(Hv) In what follows we shall see thaii/w; ~ €/a, so that the
Vi=g (esa_s + ew@)’ Viv=151"8s F g ] (9 thickness of the dissipative layer is of ord@fa < ¢. This
_ ) o observation inspires us to consider the dissipative layer as a
wherees ande, are unit vectors in the ande-direction, and gyrface of discontinuity and solve the ideal MHD equations to
the Lan€ codficientH is given by the left and the right of this surface. It turns out that, to connect
2 2 . the solutions to the left and the right of the dissipative layer,
H=o (smh2 st sz"o)’ (10) it is enough to know the jumps afandP across the dissipa-
We shall see in what follows that the eignefrequencies of tkiee layer. The formulae expressing these jumps are called the

tube oscillations are of the order @f,. Using this fact and (9), connection formulae.
we obtain from (8) the estimates This method of studying resonant MHD waves in weakly

1P 19HY) o dissipative plasmas was first suggested by Sakurai et al. (1991)
—— ~pwal, — ~ZAp (11) and then improved by Goossens et al. (1995) for the so-called
H ds HZ s pV} driven problem. In the driven problem, plasma oscillations are
imposed by an external source of energy, and assumed to
be real. The thickness of the dissipative layer is determined by
dissipation. Sakurai et al. (1991) derived the connection formu-
190P (P (12) lae for the driven problem. It follows from the results obtained
Hos L2 by Ruderman et al. (1995) and Tirry & Goossens (1996) that
Using the approximate formula the same connection formulae are valid in the case of weakly
damped oscillations even in very weakly dissipative plasmas
(13) where the thickness of the dissipative layer is determined by
the damping rate.
and the estimatis—so| < £/H, we now obtain, with the account ~ Sakurai et al. (1991) and Goossens et al. (1995) derived
of (12), that|P(s, ¢) — P(s0, )| < (£/H)?P. This result shows the connection formulae in cylindrical geometry under the as-
that we can neglect the variation Bfin the s-direction in the Sumption that all equilibrium quantities depend on the radial
inhomogeneous layer and taReés, ¢) ~ P(sp, ¢). This approx- coordinate only. However, it is straightforward to generalize
imation significantly simplifies the analysis. It was first used iese formulae for a particular equilibrium considered in this
Hollweg (1987) and subsequently by Hollweg & Yang (1988)aper. As a result, we obtain
to study resonant absorption of MHD waves in a thin inhomo- nlw 9%P

geneous layer in a planar geometry. Recently, it was usedﬂdjy]] =0, [ul = HpAlAla—tpzl (15)

dewr, satisfies the inequalityai < wr < wae. This implies

Now we notice thaH~29(Hu)/ds ~ u/¢. With this estimate in
mind we obtain from (11)

P(s.6) = P(50.9) + 5 (5 %)
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Here [f] is the jump of the functiorf (s, ¢) across the dissipa- wheree = §/5 < 1. Sincew;j/w; ~ £/a ~ €, we can takeuvg
tive layer,oa = p(sa), andwa andH are calculated a = sy.  to be real. Using the expression ff in elliptic coordinates
The quantityA is given by (e.g. Korn & Korn 1961), we obtain from (20) in the zero order

9 approximation

A= do (16) 2 2

=gl 1 (6°Py  9°Po\ 46,
S=Sa m(ﬁ‘l‘a—‘pz +FPO—0, (23)

When we neglected the variation Bfacross the inhomoge-

neous layer then, strictly speaking, we only could assuméhathere

is a piece-wise constant functiongfin general, discontinuous o2 (wz _ wz_)
ats = sa. It follows from the first connection formula in (15)6, = #- (24)
thatP is continuous as = sy and, therefore, it is independent Ny

of sinside the inhomogeneous layer. Let us look for the solution to Eq. (23) in the forly =

_ Sinces <« 5, we can negl_ect the variation &f across the S(9)@(y). Substitution of this expression in (23) yields
inhomogeneous layer. Then it follows from (14) that

S// . q)// .
iwH(S— S +6) . iwdP — + 46, S|nl'125=—( + 46; sngo), (25)
(4 . — L .
s p gg where the prime indicates the derivative. Since the left-hand
f > , S—-0<S< S, side of this equation depends only grand the right-hand side
Uz s0-0 P(S)[w? — Wi ()] (17) only ong, they both have to be constant. In particular, it follows
- 5 that® satisfies the equation
u(so) iwH(s - 9) iw 0P
% YA H g2 @ + (h— 26 cOs ) D = 0, (26)
il ds
NNaZ — a2 (ST Sa <S< . whereh is a constant to be determined. The functiipip) has
s p(S)[w? - wi(9)] to be periodic with the period2 Equation (26) is the Mathieu
Neglectingw; in comparison witho,, we obtain from (17) equation. The theory of Mathieu equation states that, for any
. 6;, there are two infinite monotonically growing sequences of
[ul = lim[u(sa + &) — u(sa — &)] = U(So) — U(So - 9) positive numbersyo, 1, (2, . . ., andvi, va, . .., such that (26)
. N % has a periodic solution with the period & and only if either
iwHG iwr 0°P ds ] ;
—— 2 P~z —— (18) h = up, orh =, (e.g., Bateman 1955; Abramowitz & Stegun
PVa 09° Jsos p(s) [w2 - wA(S)] 1964). Whenh = u,, the corresponding periodic solution is

afienoted by cdy, 6). This function is even and haszeros
Ih the interval 0< ¢ < 7. Whenh = v, the corresponding
periodic solution is denoted by ge, 6;). This function is odd
mlwrl 2P iwH6 and, once again, it haszeros in the interval & ¢ < 7.

HoalAl 6_902 + PV/§ It is straightforward to see that the points with elliptic co-
. ) o ordinatess = 0, ¢ = ¢g ands = 0, ¢ = —¢g correspond to the
lwr 0 pr L (19) same point in thew-plane. This implies that the solution has

-2 p(9[w? - W} (9)]

where® indicates the principal Cauchy part of an integr
Comparing (15) and (18), we obtain

Uu(so) — U(so—96) =

+_ [
H 0¢?" s to satisfy the regularity conditions at= O:

P(O’ QD) = P(O’ _QO)’ U(O, 90) = —U(O, _QD) (27)

_ o _ ) _ Using (21), we rewrite the second condition as
Now we obtain the solution in the internal region determined by

3.2. Solution in the internal region

the inequalitys < so—d. In this region all equilibrium quantities 9P(S¢)|  _ _ IP(s —¢)| (28)
are constant. Eliminatingfrom (8), we obtain ds  ls=0 s lso
W02 — W2 It follows from (25) and (26) thaB(s) has to satisfy the modi-
viP+ —Ap=o. (20) fied Mathieu equation
VAi
S” — (h—-26,cosh)S = 0. (29)

The velocity component is determined by
Ciw oP Whenh = p, and® = cey(p, 6), the first equation in (27) is
= (21) satisfied automatically, while (28) gives(0) = 0. With the
piH (‘”2 - ‘Uii) as accuracy up to a multiplicative constant, there is only one solu-
i@n to (29) satisfying this condition. It is denoted by C&6,)
ateman 1955; Abramowitz & Stegun 1964). WhHenr= v,
and® = seg(y,6), (28) is satisfied automatically, while the
P=Py+ePi+..., U=Up+eUp+..., (22) first equation in (27) give_s(O) = 0. Once ag_ain, with the ac-
w=wo+eEw+..., curacy up to a multiplicative constant, there is only one solution

u

In what follows we use the regular perturbation method to fi {
the solution to the problem, and expaRdi andw in the series
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to (29) satisfying this condition. Itis denoted by.&&6;). Note  3.4. Matching solutions
that Cg(s, ) is an even and $6s, 6;) an odd function o§, and

they are related to the functions,cand sg by To obtain the dispersion equation determining the eigenfre-

guencies of the tube oscillations, we need to match the solu-
Ce(z0) = ca(iz6), Se(z6) = —ise(izb). (30) tions in the internal, intermediate and external regions. Since
we neglected the pressure variation in the intermediate region,
the pressure at the boundary of the internal region has to coin-
Pio - CB Ce(s 6) ce(e, 6) (31) C|d.e with tlh_e pressure at the bour)dary of the .external region.
o This condition gives us two equations of the first and second
+ " |Ch Canls ) canle. ) + Dy San(s @) s, )], Order approximation:

n=1

The general solution to (23) is given by

. . 0Py
= Pb, PE = Pll - SOE (36)
perscript 1" to indicate that this is the solution in the internall-0 derive the second equation in (36) we have used the expan-
region. sionPi (s — 6) = Pl (s0) — § 9P,/ds. All quantities in (36) are
. . . . 0 0 0
In the first order approximation we obtain from (20) calculated at = s. o o
32p|1 32p|1 4H2%, _ B 2wow1H2Pi 2 The st_acgnd boundary condlt_lon is the c_ontlnwtyl_olit has _
98 g o2 1Tz o (32) to be satisfied at both boundaries of the intermediate region.
Al This implies that we can substituii®(s) for u(s) andu'(s—9)
o . for u(so—9) in (19). Then, using (21) and a similar equation for
3.3. Solution in the external region the external region, we rewrite (19) as

The motion in the external region is described by (20) and (21), iw opPe
however withwae andVae substituted fotwa; andVai. We once
again use the expansions (22) and arrive at the equation

. . e
whereCj, and D}, are arbitrary constants, and we use the st

B Ui
=% pIH(wi| _wZ) 9s S=5—0

piwh, =) ds

5 .
tained from (23) by substituting for 6;, where _ mlwr| 9°P° + 'er5Pe
HpalAl 92— pVZ
o-z(wé - wi ) . A
Qo = — 2 A€, (33) iwp 0°P8 [ ds
vz, " 3a — (37)
¥ Jsomo p(9[wf - R (9)]

Looking for a solution in the fornPy = S(s)@(p), we obtain
Egs. (26) and (29) fob andS with 6, substituted fos;. Similar WhereP* on the right-hand side of this equation is calculated
to the previous subsection, we obtain that eithes i, and at'S= So. SinceA ~ Hwg /s, we conclude that the right-hand
® = cen(g,6e), N =0,1,2,..,0rh = v, and® = se(e,6), Sideof(37)is ofordee. This, in particular, enables us to sub-
n=12... stitute wg for wy on the right-hand side of (37). Then, making

In what follows we study only non-leaky modes and afoper expansions, we obtain from (37) in the zero and first
sume thatuy < wae, SO that, < 0 (Cally 1986). In a non-leaky Order approximation

mode, the perturbation have to vanish far from the tube. This 1 IpPe 1 Ipi
implies the condition Ta—o = ﬁa_o’ (38)
. e (‘”Ae - ‘“0) Soop (‘”Ai - ‘”o) s
lim S(s) = 0. (34) . ,
s 1 P 1 oP}

With the accuracy up to a multiplicative constant, the solutiolg3 (wz _ wz) Fr o1 (wz_ _ wz) 9s

to the modified Mathieu equation with, < 0 satisfying (34) he 0 A0

is equal to Fekg 6s) whenh = yu,, and it is equal to Gels(6e) w1 { wi +wy 0Py wa, +wy P
whenh = v,, where Fek and Gek are the modified Mathieu™ /| ) N2 9s
functions of the third kind (Bateman 1955). Hence, the general L (“’Ai - ‘”0) Pe (“’Ae - ‘*’0)

solution in the zero order approximation in the external region S PPy inwolso 9°P§  H2sy

- - +
reads oi (‘*’/2«1 - wg) 09 wopalAls dg?  pV2 O

P§ = C§ Fek(s be) cenly, be) % 9P f ® ds

o +— _7)

5 0p?

+3 [CEFek(s f) cen(y. ) v
n=1 .
. o oe : _—
D8 Gek(S 6e) S& (e, 6e)] (35) :;tshlsse)quanorPQl, Po.1 and all their derivatives are calculated
whereCt and D¢ are arbitrary constants, and we use the su-
perscript “e” to indicate that this is the solution in the extern%rl
region. '
In the first order approximation we obtain Eq. (32), howin this section we consider waves in a homogeneous mag-

ever withfe, Vae, Pg andP? substituted fo#;, Vai, Py andP;  netic tube, where there is no inhomogeneous layer i-e 0.

S (39)
AL CIRAC]

Eigenmodes of a homogeneous tube



292 M. S. Ruderman: Oscillations of coronal loops with elliptic cross-sections

In this case the solution is given by the first terms in the eand
pansions (22). Substituting (31) and (35) in the first equatiog,

in (36) and in (38), we obtain the system of equations Z Seoms1+j(So, Hi)Bgnmfll:jj(Hi)DEmlﬂ
m=0
ChCen(so. ) Canle, 6) + ¥ . |Cl Cen(So. 1) Canlep. 6 N 2mi1
oCen(s0, 6) cen(e, 6) nZ:;[ n Cen(so, 6i) cen(e, 6) :ZGek2m+1+j(50’9e)82nm:1:]J(9e)D2m+1+J, (46)

+D}, Sen(So, ) s&(w, )] = C§ Feko(so, ) Can(, b)

1 - 2mi1+j
> ——— ), S€&m,1.i(%,6)B (6)D:
n Z [Cﬁ Fe%(So, ee) CE‘n(gD, 9e) 0i (“’ii — wz mzo e2m+1+] 1722n+1+j V17 2me 1+
n=1
2m+1
+D§ Gek(S0, 0e) Sa (¢ be) | 40) =—5—5 Z Gk, 1, (S0, ) By} (6) DSy
pe(wAe - wo)
(47)
1 4
ﬁ{cb Ce)(s0. 1) cenle, 64) wheren = 0,1,2,... Each of the system of Egs. (44), (45)
pi(wy — wp)

. and (46), (47), represent two systems of equations, one for
i ; ; i ; ; j = 0 and the other fofj = 1. The condition of existence of
" nZ:; [C“ C(So, ) Cenlsp, 1) + D S&(So. ) Sl 6')]} a non-trivial solution to each of these systems is that the cor-
1 responding infinite determinant is zero. This conditions gives
= ﬁ{cg Felg(so, fe) cenly. Oe) four dispersion equations determiniog.
pelwje = wp) In general, the dispersion equations fay can be solved
only numerically. However the analysis is strongly simplified
in the approximation of a thin magnetic tube, wharex L.
Sincea = o coshsy > o, it follows that6e ~ 6 ~ (a/L)? < 1.
+DEGeK (S0, Be) sa(e, Ge)]}, (41) Now we use the expansionsAf'(6) andBI(#) in power series
of 6 (Abramowitz & Stegun 1964) to obtain

+Z |CEFek (0. ) cen(e. 6c)

n=1

where the prime indicates the derivative with resped to 12 . . ) . )
The functions ce(e, 6) and se(s, 6) can be expanded in” =2 +0(6?), Ay=1+0(%), B=1+0(¢),

the Fourier series (e.g. Bateman 1955; Abramowitz & Stegun = _ o(gm BN . = (g™ m=12 (48)
An_2m =0@M), Bl ,,=00™)., (Mm=12...[n/2]),
Com: (@, 6) = ZAg:Tjj(g) cos[( + j)¢l, (42) wheren = 0,1,2,..., and p/2] indicates the integer part
=0 of n/2. Using the relations (30), the Fourier expansions (42)

and (43), and the asymptotic formulae (48), we obtain the

* _— . asymptotics valid fofy|*/%e® < 1:
Seme1+i(p:0) = ) BYT(O) sinf(2r + 1+ )], (43)
=0 Cen(s.6) ~ 2712, Cey(s 6) ~ coshfis), 4e)
wherem = 0,1,2,... andj = 0,1. The codiicients AZ"(6), S&(s.0) ~ sinh(s),
r =0,12,..., are related by recurrence relations, and thgheren=1,2,...
same s true forAZT 1 (6), BATY(6) and B7(6). These re-  Let us introduce new variables
currence relations can be found in, e.g., Bateman (1955) and Do (1"
Abramowitz & Stegun (1964). Substituting (42) and (43) m::0 = —CO, Cgm_ = %Cgm_l,
(40) and (41) and collecting terms proportional to ogg@nd l6el AT
sin(ny), we obtain four infinite systems of linear homogeneouge (=1 psze
algebraic equations with respect@§® andD;*: 27mAZ" 2m (50)
e _ (_1)mq2m—l e e _ 2m(_1)mq2m
Z CeZm+](SO7 9|)A§nm:11 (9')C2m+1 Dzm_l - 72'|9e|1/2|3§m_1 D2m—17 D2m - ﬂHeBﬁm 2m’

) wherem = 1,2,... We substitute (50) in the four systems of
= Z Fekom: | (So, Be) Ao [ (0e)Cons (44) equations, the first and second given by (44), (45) with0, 1,
m=0 and the third and fourth given by (46), (47) with= 0, 1. As
a result, we obtain four infinite systems of linear homogeneous

_(w—_w Z C&mej(Sos 6.)A§nmfj' (6.)C2erJ algebraic equations, the first one o5 andC¢_, the second

pi(wh; = @) one forCj,_, andC¢_ ., the third one foD}, . andD§ .,
1

— Z FeKZmﬂ(so, 9e)A§nm:,' (99)C2m+]’ (45) and the fourth one fol':)2m+2 and D2m+2, wherem=10,1,2,...

Pe(wAe wj Using (48), (49), and (A.11)—(A.15), it is straightforward to
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show that all elements of the infinite matrices of the four sys-
tems except the diagonal elements tend to zerg as- O.
Then, in the leading order approximation with respec/b,

the first and second systems reduce to

2Y2C) = —(In|fel + 250 + 2y — 2In 2)C¢, } (51)

iR~ ) G = 0

coshfis)Cl, = e "Ce,
sinh(iso) i _ e (52)

e

R =) " pelwie—wf)

while the third and fourth system reduce to
sinh(isp) D}, = e " D8,

cosh(iso)) i B e Se

pi(ed-aB) " pe(whe-wd)
wheren=1,2,...

It is obvious that system (51) has only the trivial solution
C§ = 68 = 0 for any value ofwg. A non-trivial solution of
this system would give us the only wave mode that changes the. 3. A sketch of the tube boundary perturbed by eigenmodes. The
area of the tube. It would be similar to the axisymmetric wawgper, middle and bottom panels corresponchte 1, n = 2 and
propagating along a thin magnetic tube with a circular crogs= 3. The left panels correspond ég, and the right tawns. The
section. This wave propagates with the tube spee®efouw dashed and solid lines show the unperturbed and perturbed boundaries
1976), which is zero in a cold plasma. This implies that th’gspectively._ln the middle pa_nel the perturbed boundary_ is shown for
axisymmetric wave cannot be described in the cold plasma &f§ Successive moments of time separated by a half period.
proximation. The non-existence of a non-trivial solution to sys-
tem (51) is in a good agreement with this result. obtain a well-know result for waves in thin magnetic tubes with

A non-trivial solution to system (52) exists only when thejrcular cross-sections (e.g. Spruit 1982):
determinant of this system is zero. This condition results in

(53)

2 [l + tanhhSo)] Wnc = Wns = Wk (n =12,.. ) (58)
w
= : (54) o o
pi + petanhfiso) In the opposite limit, wherey — 0, the tube cross-section is

o - ) o ~shrunk into the intervaHo, o] of the x-axis. In this limit
Similarly, the condition of existence of a non-trivial solution to

2 _ 2
Wo = Wne

system (53) results in Wne = wai, Wns=wae (N=1,2,..). (59)
) ) pwf\[l + tanhsp)] These results are not surprising at all. In the modes corre-
Wy = Whs = — ‘ (55) di he motion is along the-axis, so it d
i tanhis) + pe sponding tawnc, the motion is along the-axis, so it does not

perturbed the external plasma. As a result, the magnetic field

When deriving Egs. (54) and (55), we have taken into accolfifos inside the tube oscillate with their own Adfia frequency,

2 _ .,2 _ 2
thatpewpe = piwy = pwy. The tube boundary perturbed by, hich js equal tava. In the modes corresponding i, the
the modes corresponding d@c andwns is shown in Fig. 3 for 4o is perpendicular to the-axis, and it perturbes a re-

n=1,23. Itis straightforward to show that gion of the external plasma with the characteristic siz&he

Wi < Wy < Wk < ..., mass of the plasma inside the tube can _be ngglected in com-

(56) parison with the mass of the plasma in this region. As a result,
Wis > Ws > W3s > ... the plasma oscillates with the frequency equal to the external
In addition Alfv’en frequencywae. Forn = 1 this result recovers the cor-

responding result for kink oscillations of a magnetic slab (e.g.
Enwin & Roberts 1982).

2005
i +pe’ Expressions (54) and (55) take especially simple forms for
n=1:

where wy is the frequency of the kink mode of a thin mag-
netic tube with a circular cross-section (e.g. Ryutov & Ryutova, pwi(a+ b) ) pwi(a+ b)
1976; Edwin & Roberts 1983). It follows from (56) and (57W1c = aoi + bpe 15~ “hoi + ape
thatwpe < wms foranyn>1andm> 1

The limit 5 — oo corresponds to a tube with a circulaRecall thata andb are the small and large half-axis of the el-
cross-section, because in this limjtb — 1. In this limit we liptic cross-section. Whea = b, wic = wi1s = wk.

P 2 _ 5 2 _ 2
lim wic = lim wps = Wi
nN—oo

nN—oo

(57)

(60)



294 M. S. Ruderman: Oscillations of coronal loops with elliptic cross-sections

Let us study polarization of the two kink modes. When ~ 7-4|

wo = wig, it follows from (51)—(53) that ) 2i U ]
Ci=C:=0 (n=0,23..), Co=i(+1)]C, o e *

(61) LT ]

D,=De=0 (=12..) S 7.0\
3 F |

Similarly, L |

0.8 b

C' Ce 0 n=0,12,..), r
) (62) 0.61 ‘
Di=D¢=0 (n=23,..) D¢=1(e%-1)Di, 1 5 2 4
whenwg = wis. Using (42), (43) and (48) we obtain that, for a,/b
Ohel <1, Fig.4. The solid and dashed curves show the dependences. by
ce(p,bie) ~ COSp, sea(p, b e) ~ Sing. (63) andwis/wk ona/b respectively folpi/pe = 10. The dotted horizontal
line shows the limiting value ab;./wy for a/b — co.

It follows from (50), (61), (62), (A.12) and (A.14) that, for
6] < 1,

5. Resonant damping of kink oscillations

CeFeky(s be) ~ (€% + 1)Cles, 64

DS Geki (s 60) ~ 1(€ — 1)Die". (64) In this section we study resonant damping of the two linearly
polarized kink modes in the long wavelength approximation.

Then, making use of (49) and (61)—(64), we obtain from (31ye start our calculation with determinif®j andP. To do this

and (35) we use (32) and a similar equation for the external region with

a/L < 1. Then, neglecting terms of ordex/()?, we conclude

P. = C! coshscosy, Pt =1(e® +1)CleScosy, 65 : -
0=%1 s, P5=3( JCie=cosp,  (65) thatP} andP$ satisfy

-2
whenwg = w1, and

82Pi’e 82Pi’e
P, = D} sinhssing, P§=1(e? -1)Die®sing,  (66) i

1
0% o2

=0. (71)

whenwy = wis. Using Egs. (8), (65), (66), and the relation
between unit vectors of ellipties ande,, and Cartesian coor-
dinatesg, ande,,

ﬁ'aking into account thaP‘1 has to satisfy the first boundary
condition in (27) and the boundary condition (28), we arrive at

) . - ) ) _ [} . .
es = H™Y(e,sinhscosy + g, coshssing), 67) Pi= Uj+ > [U} cosh@s) costis) + W sinh(is) sin(ng) ] .(72)
e = H~1(—e, coshssing + g, sinhscosy), i

we obtain for thex andy-component of the velocity, andv,, whereU}, andW, are arbitrary constant®? has to vanish as
s — oo. The solution to (71) satisfying this condition is
Ux=voe, Uy =0 (wo=wic), (68)

0x=0, vy =vos (wo=uwis) (69) P§ =) e™[UScosti) + Wesin(ng)]., (73)
n=1

Here v is a constant proportional t6', andvgs is a con-

stant proportional t®}. Hence, the kink oscillation with the Where once agaity and Wy are arbitrary constants. Now
frequencywsc is polarlzed in the direction of the large axigve substitute (65), (66), (72) and (73) in the second equation
of the elliptic cross-section. The kink oscillation with the freln (36) and in (39), neglect terms that tend to zeragds— 0,
guencywss is polarized in the direction of the small axis of theind collect the terms proportional either to ¢o®r to sing.
elliptic cross-section. As aresult we arrive at equations

Let us study the dependences ©f; and wis on a/b.

i _118aS — :
Using (57) and (60) we obtain U3 coshsy — Uje™ = C; o sinhsy, (74)
i . =
i _ (A+a/b)A+plpd @i _ (L+a/DAtple) 0 S'z”hso U Ug
2 2L+ @D)plpal . o2 2@/b+ pilpe) pi(wdi —od) T pe(wd, - o)

In Fig. 4 the dependences afi¢/wk andwis/wx ON a/b are i | imsocoshsy S coshsy

shown forpi /pe = 10, which is typical value for coronal loops. = 1) palAld o (wz_ W2 )
Whena/b — oo, wic/wx — (o1 + pe)/(20) ~ 0.742 and AL Te
wis/wx — (oi +pe)/(2pe) ~ 2.345. The limiting value for w1

wic/wk is shown in Fig. 4 by the dotted horizontal line. The +J 5 2\2 ) 2\2
. L ¢ pi(w.—w ) pe(w -—w )

quantity wis/wx becomes close to its limiting value only for Al 1c Ae e

unrealistically large values /b, so that it is not shown in B socoshsopfs‘) ds }

Fig. 4. 0 5 ([, — w3 (9)]

(wii + cufc) sinhsy (wie + a)fc) coshsy

(75)
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whenwg = w1c. Forwg = w1s we obtain Since the area of the cross-section is equé&do= mab, the
) ) condition thatSj, /S = const. reduces to
W, sinhsy — Wje™® = D) sy coshsy, (76) 2a/b
" T ajbp %)
CSShSO > 1 e= e wheredg corresponds to the circular cross-sectian-(b).
pilwy; — wip) pe(wde - wh) In what follows we assume that the density varies linearly
. ] ] in the inhomogeneous region in the direction perpendicular to
_ni ) irosinhsy, s sinhs the region boundary. Sinee < &, it is equivalent to the as-
Yl palAls oi (“’ii - ‘”is) sumption thap is a linear function o8, i.e.p in the inhomoge-
] neous region is given by
w1 (wii + wfs) coshsy (wie + wfs) sinhsy
P 2 2 P = pe+ (S0 — 9)(oi —pe)/0. (81)
w1s ( 2 _ 2) (2_ 2)
Pi\Wpy — Wig Pe\Wpe — Wig .. 2 > 2 >
. . . The conditionsv]; = wj andwig = wy reduce g = pac and
n =
B SoSI6 S pa f . S _ _ 77 0 = pas respectively, where
%0 p(S) [wls - wA(S)] _ api + bpe _ @pe+bpi ©2)
PAc = —a+b > PAs = —a+b
The system of Egs. (74) and (75) is an inhomogeneous lingar. . . :
system of algebraic equations fof andU?. Its determinant ‘Ej’ismg (16) and (81) we immediately obtain
coincides with the determinant of the system (52) with 1. m°pVA (pi — pe)
Since the latter is zero wham = wic, system (74), (75) has® =~ 02125 ' (83)
a solution only if its right-hand side satisfies the compatibil- _ A . .
ity condition. This condition determines, for the mode with Then, with the aid of (82), we arrive at
wp = wyc. Similarly, the determinant of the system of Eqgs. (76) 2,\/2(a+ b)2(or —
and (77) is also zero, and the corresponding compatibility cofs = _Ie ’2*( NG ZPE) (84)
dition determines; for the mode withwg = w1s. L25(api + bpe)
The real part ofu; gives only a s_maII .correctlon o and nzpvf\(a + b)(pi - pe)
can be neglected. In contrast, the imaginary patofs very As= — L25( o) (85)
important because it describes resonant damping of the oscilla- ape + Do
tions. Introducing the decremept= —eJ(w1), whered indi-  Now, usingy to indicate the common value ¢f andvys for
cates the imaginary part of a quantity, we obtain a = b, we obtain
5/2 3 10 Y3/2
Jem ﬂazbwic(Pi — pe)? (78) Yo _ 2°%(a/b)*(1 + pi/pe) 75 (86)
2/Al(a + b)(api + bpe)?’ Y [1+(a/b)?](1+a/b)¥2[1+ (a/b)(pi/pe)]
nab’wi (pi = pe)? Ys _ 2@/b)°(1 + pi/pe)” (87)

¥s (79) 7y [T+ @/bBPI A+ a/0)¥3a/b+ pi/pe)

" 20Al(a+ b)(bpi + ape)?
) ) _ Itis easy to see that,/y — 0 andys/y — 0 whena/b — oo.
Itis straightforward to show that, for not very large eccentricity -5 pe shown thag. < y for anya/b > 1. In Fig. 5 the

& Yo ~ ¥s ~ 6wigs, Whereas is the maximum andé the mini- - gependences ok /y andys/y ona/b are shown fop; = 10pe.
mum thickness of the inhomogeneous layer at the tube bouggs can see that, for moderate valuea (a/b < 2) yc andys
ary. Whena = b, yc andys coincide with the decrement of they, not difer fromy very much.

kink mode oscillation of a thin tube with circular cross-section

given by Eq. (56) of Ruderman & Roberts (2002).

Let us study howy. andys depend ora/b. We assume that 8- Summary and discussion
the (small) ratio of the area of the inhomogeneous region to fiethis paper we have studied the damped oscillations of a thin
area of the total tube cross-section remains constant @hen strajght magnetic tube with an elliptic cross-section in a cold
varies. Since the equations of the boundaries of the inhomoggsa| plasma. The damping of the oscillations is due to resonant

neous region are= sp—¢ ands = s, ands < 1, the thickness apsorption in a thin inhomogeneous layer at the tube boundary.
of this region is approximately equal t(so, ¢). The length  oyr main results are:

of an infinitesimal arc of the boundary corresponding to the (j) There are two infinite sequences of the tube eigenmodes,
yariation ofp from ¢ 'FO ©+ .dtp i§ H dy. Hence, the area of the{wnc} and {wns} (0 = 1, 2,...), corresonding to the global
inhomogeneous regioS;y, is given by modes of the tube. The sequeneg.} is monotonically in-
o on creasing, and the sequenegs} is monotonically decreasing.
5f H%(s0, ¢) dp = 60'2f (sinl*? S + Sir? ¢) de Whenn — o, wnes = wk, Wherewy is the frequency of kink
0 0 oscillations of a tube with a circular cross-section. The modes
60 (1+ 2 sinif o) = 76 (8% + b?) . corresponding tey,c s have 2 nodes at the tube boundary.

Sin
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function of the third kind (McDonald function). As a result,
we obtain the following expressions valid ok O:

Fekon(z 0) = i(—l)fAs:“ Ir (161/%€7) Ke (161"2€%).
r=0

P\
\‘ ﬂAém
o> (A.2)
Pomel
Felom1(2 6) = — 7 ) (1Y AZTY
| 2 3 4 T
1/24-s 1/2 s
/b x[1r (161%€7°) Kroa (101%°)
_ 1/2 s 1/28
Fig. 5. The solid and dashed curves show the dependencggénd 1 (|H| € )Kr (|9| e)]’ (A-3)

vs/y ona/b respectively fop;/pe = 10.

Gelomo(2.6) = 2L N1y Bgm
r=0

7z'Bim+l
(i) The eigenfrequencies; s correspond to the two kink 1/; _ 12
modes of the tube. They are given by Eq. (60). The kink mode X[If (IGI € s) Kret (IGI es)
with the frequencyw. is polarized along the large axis, and +lag (|9|1/2e‘5) K, (|6|1/2e5)], (A.4)
with the frequencywis along the small axis of the elliptic
cross-section.

(iii) The ratio of the mode decrements to the mode fr&Sekm.2(z 6) = % Z(—l)f Bam™2
quencies are of the order éfa, where( is the characteris- By
tic thickness of the inhpmogeneous layer at the tube boundary. X[|r(|9|1/2e—5) Krs2(1612€5)
The decrements are given by Egs. (78) and (79). For moderate Vo s L2.s
values of the ratio of the large, and smallp, half-axis of the —lrr2(l017 7€) K (1617 e )], (A.5)

elliptic tube cross-sectiora(b < 2) the decrements of the tWoherem = 0. 1. 2 ... and
kink modes do not dier very much from the decrement of the

kink mode of a tube with the circular cross-section. AZ"Pom = Cem(0) Com(m/2), (A.6)
The results obtained in this paper may be important for ins1/2 yom+1 —ic 0)c 2 A7

terpretation of the observed coronal loop oscillations. Whiﬂ 1 Pamiy = 1 Cemi2(0) ey (7/2). (A7)

analyzing the results of the observations it is assumed that|@H?BZ™qpm,1 = —i S&,,,1(0) Sems1(7/2), (A.8)

oscillation of a coronal loop is a damped harmonic oscillation. ,,

Then the best fit is used to determine its amplitude, phase &8 dem+2 = S&m,2(0) S8, (7/2). (A.9)

decrement.

Using Eq. (48) together with the asymptotics for the modi-

The results obtained in this paper imply that coronal logpyg Bessel functions valid for smail(Abramowitz & Stegun
oscillations may be superpositions of two damped harmonic 9%64),

cillations with diterent frequencies rather than a single damped
) — . : z 2"n!
harmonic oscillation. It would be rather interesting to analyzgz) ~ ——, =
observations of coronal loop oscillations assuming that these 2™ ra
oscillations are superpositions of two harmonic oscillations. wheren = 0,1, 2, ... andy ~ 0.577 is Euler’s constant, we ob-
tain from (A.2)—(A.5) the following asymptotics for the modi-
fied Mathieu functions valid fog|¥/%e® <« 1:

z
Ko(2) ~ —In 577 Kni1 ~ (A.10)

Appendix A

. | |  Fek(z6) ~ —2 (gl + 22+ 2y - 2In2), (A.11)
In this Appendix we calculate the asymptotic expressions for 2n
Feky(z 6) and Gek(z 6) valid whenf < 0 and|f < 1. ~1)"Pami1 _(omi1
We use the expansions of €& 6), s&(s. 6), and the modified F&¥em:1(Z 6) ~ 7r|9|1/2A2m+1e e, (A.12)
Mathieu functions Fe)z 6) and Gey(z 6) in series of prod- !
ucts of Bessel functions, the relations (30), and the expres:-, )"z _ome2e
sions of Fek(z 0) and Gek(z 6) in terms of Cg(z 0), Se&\(s, 6), isekzmﬂ“Z(z’ 0) 27(m + 1)Agm+2 € ’ (A.13)
Fey,(z 6) and Gey(z 6) (Bateman, Sects. 16.5 and 16.6). In 1y
addition, we use the relations _ED T ema emiay

2
@i =M@, HP = Zi K2, (A1) 1yl
n b8 GE|(2m+2(Z, 6) - 2(m + 1)( 1) q2m+2 e—(2m+2)z’ (A15)

72.982m+2
whereJ, is the Bessel function,, the modified Bessel func- 2

tion, HY the Hankel function, an&, the modified Bessel wherem=0,1,2, ...
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