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1  |  INTRODUC TION

There is growing evidence that both aerosol and non- aerosol con-

sumer products, including personal care products (PCPs) and house-

hold cleaning products (HCPs), contribute an increasing proportion 

of anthropogenic VOC emissions in high- income countries. The 

significance of these products has grown as historically dominant 

sources of VOCs such as road transport and fuel evaporation de-

cline.1 While atmospheric emissions of VOCs from fuels and vehi-

cle exhaust have been well- characterized for many decades, both in 

terms of speciation and amount emitted, estimates of PCP emissions 

are only now becoming available.2- 8 The environmental and public 

health motivations to quantify and control VOCs from PCP and HCP 

sources are no different to other VOC emission sources. Their oxida-

tion in the presence of NOx leads to the formation of tropospheric 

ozone, and they can form secondary organic aerosols (SOA), a com-

ponent fraction of particulate matter. The impacts on health include, 

but are not limited to, respiratory and cardiovascular diseases,9- 11 

along with several other conditions broadly characterized as “fra-

grance sensitivity” which includes the effects of both inhalation and 
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Abstract
An increasing fraction of volatile organic compounds (VOC) emissions come from the 

domestic use of solvents, contained within myriad commonplace consumer products. 

Emission rates are often poorly characterized and depend significantly on individual 

behavior and specific product formulation and usage. Time- concentration profiles of 

volatile organic compounds (VOCs) arising from the use of a representative selection of 

personal care products (PCPs) during showering are generated, and person- to- person 

variability in emissions calculated. A panel of 18 participants used a standardized set 

of products, dosages, and application times during showering in a controlled indoor 

bathroom setting. Proton transfer mass spectrometry was used to measure the in- 

room VOC evolution of limonene (representing the sum of monoterpenes), benzyl 

alcohol, and ethanol. The release of VOCs had reproducible patterns between users, 

but noticeable variations in absolute peak concentrations, despite identical amounts 

of material being used. The amounts of VOC emitted to air for one showering activity 

were as follows: limonene (1.77 mg ± 42%), benzyl alcohol (1.07 mg ± 41%), and etha-

nol (0.33 mg ± 78%). Real- world emissions to air were between 1.3 and 11 times lower 

than bottom- up estimates based on dynamic headspace measurements of product 

emissions rates, likely a result of PCPs being washed away before VOC evaporation 

could occur.

K E Y W O R D S
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dermal routes of exposure.12 Symptoms of fragrance sensitivity in-

clude headaches, watery eyes, congestion, and contact dermatitis, 

which can lead to itching, swelling, and redness of the skin. These 

negative health effects are not limited to those with allergies, as 

they are not always triggered by an immune response.

A particular challenge associated with the quantification of 

VOCs from PCPs is that there is no common industry or regulatory 

standard for the disclosure of VOC ingredients or likely atmospheric 

emissions. VOCs can be classified in bulk terms, for example, as “par-

fum” or “fragrance,” for reasons of intellectual property protection, 

but also labeling practicality, since many hundreds of VOCs may be 

used in a formulation. Steinemann (2009, 2015) and Steinemann 

et al. (2011) report the range of volatile emissions found in consumer 

products,13- 15 which predominantly comprises of terpenoids and 

alcohols. Headspace speciation of VOCs in consumer products is a 

useful starting point for assessing possible emissions, but in isolation 

does not provide sufficient information to assess how much VOC 

might be released to air from PCPs based on human activity in the 

real world.

Yeoman et al (2020)16 described laboratory- based atmospheric 

emission factors for seven commonly found VOCs in non- aerosol 

PCPs, two of these (limonene— representing the grouping of 

monoterpenes— and benzyl alcohol) being fragrance compounds. Of 

the VOCs released from the products studied, monoterpenes had the 

highest chemical potential for the formation of secondary products 

such as formaldehyde and SOA, dependant on the ingress of ozone 

from outdoors.17 Limonene in particular has been reported previ-

ously by Carslaw and Shaw (2019)18 to be one of the most relatively 

impactful VOCs on indoor chemistry due to its high potential for 

SOA and formaldehyde formation.19- 27 World Health Organization 

Guidelines28 for Indoor Air Quality determine the exposure limit for 

formaldehyde to be 0.1 mg/m3 (30- min average concentration) and 

name HCPs and cosmetics among indoor sources, along with tex-

tiles, insulating materials, and other consumer items.

While bottom- up estimates provide a standardized laboratory 

method for assessing the possible scale and composition of VOC 

emissions from individual products, they do not quantify the emis-

sions variability arising from how individuals use those consumer 

products in the real world. There is likely to be variability based on 

amount of PCP used, duration and frequency of use, method of appli-

cation, and so on. PCPs are predominantly an indoor VOC emission 

source, the bathroom being a location where they most commonly 

used, followed by the bedroom.8 Showering is one activity, which for 

many people is a daily occurrence, that can include the use of a range 

of different products, and by extension is likely a significant compo-

nent of daily VOC emissions from use of PCPs. There are several pre-

vious works describing exposure to VOCs from a range of consumer 

products, using both top- down and bottom- up approaches. These 

include product- use studies,29- 31 the use of modeling,32,33 analysis 

of air samples,34 direct analysis of consumer products themselves,35 

and combinations of these methods.36 Despite these numerous pre-

vious works, there is no research specifically into the variability of 

VOC emissions from PCPs when in real- world use during specific 

activities such as showering. Known carcinogens and toxicants, 

such as trihalomethanes and chloroform, have already been iden-

tified as harmful compounds released during showering.37,38 They 

are, however, contaminants and resulting reaction products of the 

water supply and are not a result of personal product choices or an 

individual's bathing habits. For consumer products specifically, there 
has been most emphasis in the research literature on quantifying 

real- world VOC emissions from domestic cleaning activities, po-

tentially because in practical terms these are experiments that are 

somewhat easier to simulate, control, and measure. This is illustrated 

by Rossignol et al (2013),39 where studies in an experimental house 

were used to identify and quantify VOCs emitted from a single HCP 

used in a real- life scenario.

The research presented here also takes a real- life approach to 

calculating emissions and concentrations of VOCs generated during 

showering across a cohort of volunteers using a single controlled 

showering facility. A common set of experimental parameters, for 

example, product types, dosages, duration, and ventilation were 

used, allowing an evaluation of the inherent variation in emissions 

between individuals based on their real- world behaviors. As previ-

ous work has measured simplified PCP compositions, we show here, 

through temporal profiles, the reproducibility between participants 

while those products are in- use.

1.1  |  Shower facility

A single shower facility was used for all experiments located in 

the Wolfson Atmospheric Chemistry Laboratories, Chemistry 

Department, University of York. As this study was focused on quan-

tifying VOCs emitted, the shower facility chosen had no windows to 

Practical Implications

• Showering is a common activity that can use multiple 

personal care products; each event is seen to release 

milligram quantifies of VOCs such as limonene, benzyl 

alcohol, and ethanol, and this can perturb transient in-

door concentrations.

• Within a shower room, the amount of VOC emitted var-

ies widely between different users even if the raw mate-

rials and timing of their use are carefully controlled for.

• A personal care product may not emit all its available 

VOC content to air when used because of solubility ef-

fects and because of limited time for volatilization be-

fore being washed away.

• Real- world emissions of VOCs from PCPs used in a 

shower setting are lower by up to an order of magnitude 

than would be calculated based on emissions assessed 

in the laboratory using controlled evaporation rates and 

knowledge of product formulation.
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minimize compound photochemical loss. The room dimensions were 

2.59 m x 2.46 m x 0.93 m (5.96 m3). The ventilation rate of the room 

was controlled using an extractor fan continuously operating at a 

flowrate of 6.3 L/s (measured directly using a handheld Kestrel 5500 

anemometer). The room exchange rate was calculated as 0.06 air 

changes per min (3.8 air changes/h) using Equation 1.

The 18 participants were a mixture of both male and female re-

searchers from the Wolfson Atmospheric Chemistry Laboratories 

who volunteered to take part in these experiments.

The temperature and humidity within the room were measured 

using a HM1500LF probe (TE Connectivity). Participants were is-

sued with pre- measured doses of commonly available PCPs selected 

from the general range available in UK supermarkets in 2019. A face 

wash, shampoo, conditioner, shower gel, moisturizer, and aerosol 

deodorants (male and female equivalents) were selected for the 

participants to use. All fragranced wash- off products were “citrus” 

based, with the expectation they would contain limonene, which 

was adopted as an easy to measure tracer of emissions. Participants 

were given the choice of two deodorants, which although differed in 

scent, had the same bulk VOC propellant. Each product to be used 

was pre- weighed in advance and is summarized in Table 1 below.

1.2  |  VOC sampling

Concentrations of selected VOCs were measured using an Ionicon 

(GmbH, Innsbruck, Austria) high- sensitivity Proton- transfer- 

reaction mass- spectrometer (PTR- MS). This instrument has three 

Varian turbo- molecular pumps and a stainless- steel ringed drift 

tube (9.6 cm). The instrument has been described elsewhere40- 42; 

therefore, only a brief description of the instrument set- up will be 

included here.

Air for analysis by PTR- MS was sampled from the shower facil-

ity at a flowrate of 0.4 L/min through a 1.5 m length of 1/8” PFA 
transfer line (Swagelok) heated to 100°C. The PTR- MS was operated 

with the quadrupole scanning through 10 pre- determined masses 

(ion dwell time 0.1 s per m/z) at a cycle time of 0.8 s in selected ion 

monitoring mode (SIM). The targeted protonated masses and likely 

contributing compounds were as follows: m/z 31 (formaldehyde), m/z 

45 (acetaldehyde), m/z 47 (ethanol), m/z 91 (benzyl alcohol), and m/z 

81, 137 (limonene). In addition to these masses, both the primary 

ion count m/z 21 (H3
18O+) and its first cluster m/z 37 (H3

16O H2
16O+) 

were recorded. Cyclic volatile methyl siloxanes (cVMS) were not se-

lected for analysis due to unreliability in detecting compounds with 

high m/z values (cVMS are over 200). Omitting these compounds 

does not hinder the study's aim to better understand the variability 

in VOC emissions between people undertaking the same activity, 

but we recognize that cVMS likely do make a notable contribution 

to the absolute of VOC emitted per showing activity. Prior to each 

participant entering the room, the instrument background was mea-

sured by sampling air from the shower facility which has first passed 

through a custom- built platinum catalyst heated to 380°C. During 

the experimental period of 34 days, the PTR- MS drift tube pressure, 

temperature, and voltage were held constant at 1.80 mbar, 60°C and 

500 V. This maintained an E/N ratio of ~133 Td. The H3O+ primary 

ion count ranged between 1.71 and 8.96 x 106 ion counts per second 

(cps) with a mean of 3.85 x 106 cps. The m/z 37 cps ranged between 

1.68 and 8.44 x 105 with a mean of 5.77 x 105, which represented 

15% of the primary ion signal.

Limonene calibrations were carried out daily using a second-

ary gas standard (37.5 ppb in zero air). This secondary standard 

was quantitatively determined using a thermal desorption- gas 

chromatograph- flame ionization detector (TD- GCFID) against a 
National Physical Laboratory certified stock standard (1 ppm). 

Certified gas standards of 2- propanol, benzyl alcohol, and ethanol 

were not available for calibration. Hence, benzyl alcohol, 2- propanol, 

and ethanol gas standards (approximately 1 ppm) were made from 

liquid standards (Sigma- Aldrich) in 3 L Tedlar bags (Cole Palmer) and 

sampled individually by the PTR- MS to determine the fragmentation 

coefficients for each compound. These are summarized in Table 2.

Mixing ratios were then determined using the instrument- 

specific transmission coefficients and reaction rate constants (k) 

taken from the LabSyft kinetic library, which are taken from Wang, 

Spanel, and Smith (2003),43 Wang, Spanel, and Smith (2004),44 and 

Spanel and Smith (1997).45

Despite careful calculation of transmission coefficients, using a 

range of gas standards under laboratory conditions, mixing ratios 

may be subject to systematic errors, which, in some instances, can 

be as much as a factor of two.41 Instrument limits of detection (LoDs) 

for 1 min averaged data were determined by the method outlined 

by Taipale and colleagues (Taipale et al., 2008)46 and were 2.7, 6.4, 

and 3.7 ppt for limonene, benzyl alcohol, and ethanol, respectively. 

Precision of the measurements, assessed as the 1 standard deviation 

of the measured zero value over 60 s, was typically 0.1 ppb for a 

PTR- MS VOC measurement. At higher abundances (ppb- level and 

greater), uncertainty in reported measurement is determined largely 

by the uncertainty in the gravimetric gas standards, reported as 5% 

by the supplier.

Participants were asked to follow instructions shown in 

Supporting Information 1 summarizing the order in which to apply 

(1)ACH =
VentilationRate × 3600

VolumeofRoom

TA B L E  1  Product usage estimates were taken as the median 
usage assumption data from Yeoman et al (2020)

Product Amount used (g)
Time of 
use (s)

Face wash 2 60

Shower gel 4 180

Shampoo 4 120

Conditioner 6 120

Moisturizer 5 120

Aerosol deodorant - 4
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the products and how long for. They were given 3 min between the 

use of conditioner and moisturizer to turn the shower off and dry. 

A stop clock located in the room allowed participants to time them-

selves, and products had already been weighed out and placed into 

capped pots prior to each experiment. Afterward, they were asked 

to complete a questionnaire (Supporting Information 2) regarding 

how well the amount and time assumptions matched their personal 

PCP use.

Aggregate VOC emissions were calculated from the integral 

of the concentration- time profile using R software and a cubic 

spline function to determine the area under each transient time- 

concentration plot for the 15- min showering activity window for 

limonene, benzyl alcohol, and ethanol. These mole fraction val-

ues were converted from ppb into mg/m3, and then accounting 

for room size and ventilation over the measurement period, in-

tegrated to give total amount of VOC emitted as an overall mass 

during the activity. The activity window is considered to begin 

when the first product is applied and ends around 2 min after the 

last product is applied.

Comparisons to bottom- up estimates made in Yeoman 

et al (2020)16 were calculated using Equation 2. 

†From Yeoman et al (2020)16; ‡From Table 1.

2  |  RESULTS AND DISCUSSION

2.1  |  VOC time- concentration profiles

Single- user reproducibility can be determined by a participant show-

ering multiple times under the same conditions (time and dosage). 

An example is presented in Supporting Information 3, showing the 

(2)Product emitted = emission factor
†
× amountused

‡
× time ofuse

‡

Compound
Main product ion
m/z

Significant fragmentation 
ion(s) m/z

Fragmentation 
coefficient

Limonene 137 81, 95 0.36

Benzyl alcohol 91 79 0.37

Ethanol 47 45, 46 0.9

TA B L E  2  Compound product ions and 
corresponding significant fragmentation 

ions, used to calculate fragmentation 

coefficients

F I G U R E  1  VOC evolution profile of limonene. Top: Data from all 18 participants. Bottom: Median participant VOC profile
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concentrations arising indoors from a single participant that is repro-

ducible to within a factor of two for most VOCs.

The shower data from all 18 participants are presented as tem-

poral profiles for each compound (Figures 1- 3) where each colored 
line represents one of the 18 participants. Mixing ratios are pre-

sented on the left- hand y- axis, and a concentration in mg/m3 on the 

right- hand y- axis.

In order to assess the overall amount of VOCs emitted from fixed 

amounts of products, we consider the concentration over one 15- 

min shower activity. Data for individual participants are presented 

in Supporting Information 4, with Figure 4 displaying the variation 
between participants, and a summary in Table 3.

Generally, the temporal pattern of concentrations is consis-

tent between participants and the concentrations measured are 

broadly compatible (same order of magnitude) as a bottom- up esti-

mate of likely in- room emissions modeled in Yeoman et al (2020).16 

In Table 4, we calculate the estimated “bottom- up” emissions of 

limonene and benzyl alcohol based on emissions in Yeoman 

et al (2020)16 using Equation 2, during dynamic headspace analy-

sis and compare to the “top- down” assessment in this study. Both 

methods have their limitations but can be used in a complemen-

tary fashion. The top- down approach highlights the importance of 

accounting for real- world variability in how products are used, and 

wider environmental effects, like wash- off and solubility. These 

show the possible over- estimation of emissions that would arise 

if those estimates were based solely on laboratory- based experi-

mentation on raw materials.

It is important to bear in mind that as citrus- based products were 

selected for this investigation, the limonene emission estimates re-

ported here do not represent all PCPs used and may represent a 

worst- case emission scenario in terms of total mass of VOC emitted. 

Having said this, a high proportion of PCPs are citrus scented, and 

those that are not still contain a combination of monoterpenes to 

create a desired scent, even if it is not explicitly citrus.

Relative amounts of each VOC emitted between products in 

real- world use are consistent with the median in- use emission fac-

tors previously reported. A notable peak arises for limonene from 

the use of shampoo, with the smaller peak before it correlating to 

emissions from the shower gel product, as seen in Figure 1. The main 
benzyl alcohol peak can be attributed to conditioner (Figure 2), with 
moisturizer seeming to be the main contributor to the emission of 

ethanol (Figure 3). The ethanol peak also coincides with the water 
being turned off and may be linked to the decrease in liquid water 

content in the room, something that is further discussed in a later 

section.

In other literature, limonene concentrations reported during the 

use of consumer products are very varied. Rossignol et al (2013)39 

report up to 0.07 mg/m3 emitted from the use of a high- emitting 

HCP, while another real- life product- use study, Singer et al (2006),36 

reports much higher limonene, as 1- h average concentrations, from 

the use of surface cleaner (0.96– 2.5 mg/m3) and a floor cleaner 

(1.13– 6.2 mg/m3) at different dilutions. Residential and workplace 

air- sampling studies report maximum limonene concentrations of 

0.49 mg/m3 (Edwards et al, 200147) to as low as 0.05 mg/m3 (Su et al, 

F I G U R E  2  VOC evolution profile of benzyl alcohol. Top: Data from all 18 participants, Bottom: Median participant profile
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201834). Our shower activity experiments yield results toward the 

higher end of this range; Figure 1 shows a median limonene peak of 
around 0.5 mg/m3, with a maximum of 2 mg/m3 reached.

Table 5 presents the median emission rate for each com-

pound, with full per person emissions rates detailed in Supporting 

Information 5.

The data presented here indicate that the overall emissions of 

VOCs from a single measured dose of PCP are affected by person- 

to- person variations in how the products are used, even when ap-

plication amount and time is controlled for. Variations arising from 

different interpretations of timing instructions with regard to rinsing 

were assessed in a further experiment. The experimental details and 

results from this can be found in Supporting Information 6 and 7. 

Briefly, it was found that lower VOC concentrations were detected 

when the participants spent a longer period rinsing the products. 

This explained how small deviations in how products are used can 

yield significant differences in emissions, and likely accounts for 

some of the variation in participant data. This is reflected in the 

spread in the interquartile range, 0.89 mg, which implies that emis-

sions in real- world settings for controlled amounts could be esti-

mated to within a factor of around two.

Although this is a relatively large source of uncertainty in emis-

sions, it is small compared to the variability associated with the total 

amount of product used by individual consumers, the frequency of 

use, or indeed product to product formulation differences. It would 

suggest that to narrow further the uncertainties in PCP emissions it 

is the overall consumption and content of VOCs that would benefit 

from additional study, in advance of further data on variability in use 

between individuals.

2.2  |  Concentrations profiles and links to 
VOC properties

There is link between VOC solubility in water and its concentration 

profile; the less soluble a compound is, the more defined and higher 

its concentration during showering. Limonene is the best example 

of this; it has a relatively high octanol/water partition coefficient 

(logKow) and two distinct concentration maxima arising from shower 

gel and shampoo applications. Conversely, ethanol decreases in con-

centration when the shower starts, and only peaks after the water 

is turned off, when moisturizer and deodorant are used. The liquid 

water content during showering itself had a temporary effect on 

concentration, with concentrations increasing once liquid drop-

lets were removed (an example humidity profile can be found in 

Supporting Information 8). The behavior of VOCs and interactions 

with the wider in- house environment are therefore potentially im-

portant. While a simple bottom- up evaluation of VOCs from many 

of these PCPs would indicate substantial VOC emissions, when used 

in practice the low logKow of some VOCs led to efficient scaveng-

ing to the aqueous phase. This potentially represents a route by 

which those VOCs may be overestimated in terms of atmospheric 

emissions based solely on their presence in the raw product itself. 

This was observed for both 2- propanol and methanol (Supporting 

F I G U R E  3  VOC evolution profile of ethanol. Top: Data from all 18 participants. Bottom: Median participant profile
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Information 9 and 10), which were determined to be present in con-

sumer products by Yeoman et al (2020),16 but displayed inconsistent 

temporal profiles from this study. As the peaks do not correlate to 

a change in the humidity profile, temperature profile, or any non- 

experimental activity such as opening the shower room door, we are 

left to believe that the release of 2- propanol is associated with other 

impurities in the environment. It is not a known contaminant of tap 

water, nor is it commonly found in water pipes. As such, we have no 

explanation other than it being carried into the shower room by the 

participants (on clothing, towels, PCPs they had already used, etc.) 

and is released at times when they had finished following the show-

ering instructions and that we were unable to monitor.

A compound's potential for dermal absorption through skin lip-

ids may also be an influencing factor on concentration, and there 

is potential for all of the products used in this study to be dermally 

absorbed, even if this is just through hands while applying to the hair 

in the case of conditioner. Limonene is very effective at penetrating 

the skin,48 and there is evidence it could be used as an enhancer for 

drug delivery for this reason.49,50 Consequently, this may have a pro-

nounced effect on the amount of limonene available for evaporation. 

F I G U R E  4  Variation in total mass of 
limonene, benzyl alcohol, and ethanol 

emitted to air over the 15- min activity 

window, having taken ventilation rate and 

room size into consideration

TA B L E  3  Summary of variation between participants

Median concentration
(mg/m3) Median emission (mg)

Relative standard deviation 
(%)

Interquartile 
range (mg)

Limonene 0.23 1.77 42 1.10

Benzyl alcohol 0.18 1.07 41 0.57

Ethanol 0.06 0.33 78 0.21
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Although also dermally absorbent,51 benzyl alcohol does not have 

the drug delivery enhancement potential limonene does, which may 

explain why the bottom- down calculations for limonene have been 

overestimated to a much greater degree, as seen in Table 4.

The production of secondary pollutants is possible, formalde-

hyde in particular from the reaction of limonene with OH radicals, 

and subsequent unimolecular decomposition.52 OH radicals are 

present in indoor air and are produced in a variety of ways, includ-

ing in the reaction of limonene with ozone, making limonene both 

a source and sink for hydroxyl radicals, with ozone driving the pro-

duction of OH.53 It might therefore be expected that formaldehyde 

be present in this microenvironment during or after showering has 

occurred as a secondary product. The measured formaldehyde pro-

file in Supporting Information 11 is different in both its shape and 

magnitude to that modeled in Yeoman et al (2020),16 where levels 

reached 7 ppb. Formaldehyde has a logKow value of 0.35, indicat-

ing the liquid water may be an effective scavenger mechanism from 

the air in the room, coupled to air exchange. In this case, although 

limonene was clearly present in substantial amounts, the bathroom 

microenvironment did not lead to any detectable formaldehyde for-

mation inside.

The influence of ventilation on VOC profiles over the course of 

sampling must also be considered. The air in the room would have 

been replenished about 4 times (once every 15 min), meaning the 

initial release and measurement of compounds should be accurate, 

but their persistence dependent on air exchange rate. A bathroom 

with a lower ventilation rate would allow for higher accumulated 

concentrations in the room. Many situations can be envisaged where 

ventilation is lower than the values reported here: People may not 

open bathroom windows, or turn extractor fans on, especially in the 

winter months.

3  |  CONCLUSIONS

Having observed the emissions from the real- life usage of PCPs 

during showering, we find that personal differences in product- use 

behavior result in variations in VOC emissions and in- room concen-

trations. Maintaining consistent time and dosage does not eliminate 

differences in absolute peak concentrations, and most notable of the 

factors introducing variability is the presence of liquid water and the 

effect of rinsing time. This makes predicting emissions during this 

activity more complex as compound solubility must be taken into 

consideration, along with the amount of liquid water that may be 

present. Other consumer product usage circumstances where liquid 

water is involved, washing- up or doing laundry for example, would 

be affected by this.

These data are informative in terms of the peak concentration of 

VOCs individuals may be exposed to during a single, common activ-

ity. For context, in 1998 the World Health Organization (WHO) re-

ported no indication of inhalation risk from limonene due to limited 

data on the rate in which a harmful concentration can be reached 

on evaporation.54 Although this paper does not attempt to address 

this specifically, it provides a possible timescale for reaching high 

concentrations during one activity. As previously described, fra-

grance sensitivity, and the health risks associated with it, can occur 

through routes other than that of inhalation, such as the dermal 

route. Contact dermatitis usually relates to direct application of a 

compound to the skin and is known to occur with limonene as it is 

oxidized.55- 57 However, if exposure levels are high enough in the gas- 

phase, there may also be potential for a dermal reaction to be trig-

gered, particularly to the eyes which can be especially sensitive.58

As limonene is relatively unaffected by the presence of liquid 

water, it can be used as a “tracer” for the variability and uncertainty 

in emissions of other compounds from PCPs when dosage and time 

are closely controlled. Hence, it can be assumed that in the absence 

of liquid water, benzyl alcohol and ethanol are emitted consistently 

within a factor of 2.

Although variable between individuals, there is modest agree-

ment between emissions estimated from the real- world activity 

and the bottom- up emission values for PCPs reported in Yeoman 

et al (2020).16 For both limonene and benzyl alcohol, the median 
real- world shower emissions were lower, by a factor of 1.3 and 11, 

than the bottom- up estimate. This is potentially rationalized through 

product being washed away before vapor exchange could occur, 

in contrast to laboratory estimates which quantify VOC emissions 

assuming vapor exhaustion. The loss of compound through dermal 

absorption should also be noted as a potential contributing factor.

Although there remain considerable uncertainties in PCP emis-

sions, and this field of work is in its infancy, it seems plausible that 

greatly improved domestic VOC emissions estimates could be 

TA B L E  4  Bottom- up and top- down estimates using emission 
factors calculated in Yeoman et al (2020),16 product usage 

estimates found in Table 1 and the median real- world emission 

value

Product Limonene (mg)
Benzyl 
alcohol (mg)

Shampoo 12.0 0.5

Shower gel 7.9 0.3

Moisturizer 0.3 0.1

Conditioner 1.2 0.5

Total (bottom- up)a  21.4 1.4

Median (top- down)b  1.8 1.07

aSum of shampoo, shower gel, moisturizer, and conditioner, calculated 

using Equation 1. 
bValues taken from Figure 4 

TA B L E  5  Median emission rates calculated from all 18 
participants using total mass emissions data found in Supporting 

Information 4

Emission Rate (μg/s)

Limonene Benzyl alcohol Ethanol

Median 2.02 1.19 3.65 x 10−1
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constructed. These could be based on a knowledge of typical prod-

uct composition (based on bottom- up laboratory emissions screen-

ing), the total amount of materials sold (and industry reported trade 

figure), and a correction factor for real- world use, accounting for the 

reality that only a fraction of the VOC content in a product is re-

leased to air when used. Although scaling up emissions from a very 

small study such as this carries with it large uncertainties, using a 

median emission of 1.8 mg limonene per showering activity, and as-

suming this activity is replicated by half the UK population each day, 

would lead to an annualized emissions of around 13 tonnes of limo-

nene per year from showering.
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