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SUMMARY

Grass (Poaceae) pollen is themost important outdoor aeroallergen,1 exacerbating a range of respiratory con-
ditions, including allergic asthma and rhinitis (‘‘hay fever’’).2–5 Understanding the relationships between res-
piratory diseases and airborne grass pollen with a view to improving forecasting has broad public health and
socioeconomic relevance. It is estimated that there are over 400 million people with allergic rhinitis6 and over
300million with asthma, globally,7 often comorbidly.8 In the UK, allergic asthma has an annual cost of around
US$ 2.8 billion (2017).9 The relative contributions of the >11,000 (worldwide) grass species (C. Osborne et al.,
2011, Botany Conference, abstract) to respiratory health have been unresolved,10 as grass pollen cannot be
readily discriminated using standard microscopy.11 Instead, here we used novel environmental DNA (eDNA)
sampling and qPCR12–15 to measure the relative abundances of airborne pollen from common grass species
during two grass pollen seasons (2016 and 2017) across the UK. We quantitatively demonstrate discrete
spatiotemporal patterns in airborne grass pollen assemblages. Using a series of generalized additive models
(GAMs), we explore the relationship between the incidences of airborne pollen and severe asthma exacerba-
tions (sub-weekly) and prescribing rates of drugs for respiratory allergies (monthly). Our results indicate that a
subset of grass species may have disproportionate influence on these population-scale respiratory health
responses during peak grass pollen concentrations. The work demonstrates the need for sensitive and
detailed biomonitoring of harmful aeroallergens in order to investigate and mitigate their impacts on human
health.

RESULTS AND DISCUSSION

The quantitative distribution of pollen from grass

species is structured in space and time

Using large-scale sampling and qPCR, we show that grass pol-

len species assemblages vary quantitatively in space and time.

The distribution of airborne pollen from the nine target species

occupied distinct temporal windows across the grass pollen

season (Figure 1). Time, as measured by the number of days af-

ter the first sample was collected in 2016 and 2017 (25 May 2016

and 5 May 2017, respectively), is a good predictor of airborne

grass pollen species composition (LR653,1 = 555.4, p = 0.001;

Figure 1). In addition, pollen abundance from different species

peaked at different times at each location, with latitude and

longitude being good predictors of pollen abundance for

each species (latitude, LR652,1 = 68.3, p = 0.001; longitude,

Current Biology 31, 1995–2003, May 10, 2021 ª 2021 The Authors. Published by Elsevier Inc. 1995
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LR651,1 = 59, p = 0.001; Figure S1). Spatial and temporal patterns

were not consistent between the grass season in 2016 and 2017

(LR650,1 = 96.1, p = 0.001; Figure 1).

Associations between hospital admissions and grass

species vary depending on the target species

Generalized additive modeling indicates variability in the esti-

mated relative contributions of different grass species (and

covariates) on sub-weekly occurrences of asthma-related emer-

gency hospital admissions (STAR Methods) (Figures 2 and S2;

Data S1D). In agreement with previous research,3,4 there are

clear associations with overall concentrations of airborne grass

pollen. High abundances of the pollen of two grass species,Cyn-

osurus cristatus (Crested dog’s-tail) and Phleum pratense

(Timothy), are also associated with increased probability of

occurrence of asthma-related emergency hospital admissions.

The maximum effect associated with C. cristatus is 0.97

(±0.70, 2s), which predicts that peak abundances of its pollen

are associated with asthma-related emergency admissions be-

ing 97% ± 70% more likely (NB: occurrence of admissions is a

Figure 1. Abundances of airborne pollen

from eight grass species during the grass

pollen seasons of 2016 and 2017

Abundance of pollen is measured using targeted

qPCR and is expressed relative to the maximum

abundance for each species. Sampling location is

indicated by colored density lines. The y axis is

restricted to 60% and the diamonds show pollen

abundances higher than 50% with the relative

abundance values. See Figure S1 for a map of

sampling locations and abundances of grass pol-

len at each sample location site. See Figure S4 for

maximum Poaceae pollen concentrations

(maximum measured across one to four consec-

utive days) at sampling sites.

binary variable, and this probability

cannot logically be greater than 100%).

However, the confidence intervals sug-

gest that while an association is likely,

the effect size is uncertain. In the case

of P. pratense, the confidence intervals

(±0.84, 2s) are broader than the

maximum effect (0.44), so the reliability

of the association itself is uncertain. The

model also indicates that high abun-

dances of Poa pratensis are associated

with decreased probability of occurrence

of asthma-related emergency hospital

admissions (Figure 2), but the confidence

intervals (±0.38, 2s) are broader than

the maximum effect (�0.24), as with

P. pratense. Other species (Arrhenathe-

rum elatius, Anthoxanthum odoratum,

Alopecurus/Agrostis, Dactylis glomerata,

and Lolium perenne) are not estimated

to have species-specific associations.

(Effects associated with control variables

are presented in Figure 2 and Data S1D.

Discussing these in detail is beyond the scope of the present

paper.)

Species-specific associations between monthly

prescribing rates and different grass species

We demonstrate that different grass species (and covariates,

including overall grass pollen concentrations) have different

associations with monthly prescribing rates for drugs used in

nasal allergies (BNF 12.2.1) (Figures 3 and S3; Data S1E)

and respiratory antihistamines (BNF 3.4.1) (Figures 4 and S3;

Data S1F) (STAR Methods). Abundant grass pollen belonging

to the genera Alopecurus or Agrostis spp., and Cynosurus

cristatus (crested dog’s tail), are associated with higher pre-

scribing rates of drugs used for nasal allergy (Figure 3) and

respiratory antihistamines (Figure 4). However, these effects

require careful interpretation. The maximum predicted in-

crease in drugs used in nasal allergy prescribing associated

with Alopecurus/Agrostis pollen is 0.032 (±0.025, 2s) items

per day per 1,000 population, 1.37% of the total range of

nasal allergy drug prescribing rates (minimum: 0.007,
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maximum: 2.343) (Figure 3). For respiratory antihistamines, the

maximum predicted increase is 0.047 (±0.050, 2s) items

per day per 1,000 population, 0.98% of the total range of res-

piratory antihistamine prescribing rates (minimum: 0.013,

maximum: 4.806) (Figure 4). The maximum predicted increase

in prescribing drugs used in nasal allergy associated with

C. cristatus pollen is 0.045 (±0.045, 2s) items per day per

1,000 population (1.92% of the total range) (Figure 3), and

Figure 2. Estimated effects of qPCR target species and covariates on asthma-related emergency hospital admissions

Graphical summary of a generalized additive model (GAM) (Data S1D) showing the estimated effects of major explanatory variables on the occurrence (binary) of

emergency asthma-related hospital admissions during the grass pollen season (May to early September) in the UKwithin 30 kmof pollenmonitoring stations, with

95% (2s) confidence intervals (Figure S1). Rug plots indicate x axis values. ‘‘Scaled’’ means the variable has been standardized (zero means and unit variance).

(See Figure S2 for unadjusted results and Figure S4 for maximum Poaceae pollen concentrations and other environmental data.)
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for respiratory antihistamines this value is 0.085 (±0.085, 2s)

items per day per 1,000 population (1.77% of the total range)

(Figure 4).

Two grass species, L. perenne and Poa pratensis, are esti-

mated to be associated with lower prescribing rates of both

groups of drugs when pollen abundance is elevated, though

the association is most notable with Poa pratensis (Figures 3

and 4). Themaximumpredicted change in nasal allergy drug pre-

scribing associated with Poa pratensis pollen is �0.073 (±0.046,

2s) items per day per 1,000 population (Figure 3) (3.12% of the

Figure 3. Estimated effects of qPCR target species and covariates on nasal allergy drug prescribing rates

Graphical summary of a generalized additive model (GAM) (Data S1E) showing the estimated effects of major explanatory variables on monthly prescribing rates

of drugs for nasal allergy (BNF 12.2.1) per 1,000 population per day during the grass pollen season (May to early September) in the UK within 30 km of pollen

monitoring stations, with 95% (2s) confidence intervals (Figure S1). Rug plots indicate x axis values. ‘‘Scaled’’ means the variable has been standardized (zero

means and unit variance). (See Figure S3 for unadjusted results and Figure S4 for maximum Poaceae pollen concentrations and other environmental data.)
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total range), and �0.180 (±0.090, 2s) items per day per 1,000

population for respiratory antihistamines (Figure 4) (3.75% of

the total range). The other species (A. elatius, A. odoratum,

D. glomerata [BNF 3.4.1], and Phleum pratense) are not

estimated to have species-specific effects (Figures 3 and 4). (Ef-

fects associated with control variables are presented in Figures 3

and 4 and Data S1. Discussing these in detail is beyond the

scope of the present paper.)

Figure 4. Estimated effects of qPCR target species and covariates on respiratory antihistamine prescribing rates

Graphical summary of a generalized additive model (GAM) (Data S1F) showing the estimated effects of major explanatory variables on monthly prescribing rates

of respiratory antihistamines (BNF 3.4.1) per 1,000 population per day during the grass pollen season (May to early September) in the UK within 30 km of pollen

monitoring stations, with 95% (2s) confidence intervals (Figure S1). Rug plots indicate x axis values. ‘‘Scaled’’ means the variable has been standardized (zero

means and unit variance). (See Figure S3 for unadjusted results and Figure S4 for maximum Poaceae pollen concentrations and other environmental data.)
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Species-level effects of grass pollen on human

respiratory health

The grass species studied show different relationships with

population respiratory health, demonstrating the potential

importance of species-specific grass pollen monitoring. For

certain taxa, including Alopecurus/Agrostis spp., Cynosurus

cristatus, and Poa pratensis, the relationships are broadly

consistent between health outcome measures (sub-weekly

hospital admissions and monthly prescribing rates), and

models are also consistent with studies that demonstrate asso-

ciations between overall grass pollen and population respira-

tory health response.3,4 This consistency suggests that

predicted relationships are plausible and may reflect reality,

but the overall picture warrants discussion. There are a number

of reasons why certain taxa may be more (e.g., Alopecurus/

Agrostis spp., C. cristatus) or less (e.g., Poa pratensis) harmful

than others (though associations with overall grass pollen con-

centrations are also consistent between models). Different

quantities and types of allergenic proteins (not measured

here) have been noted in the pollen of different grass species,16

and greater concentrations of more potent mixtures of aller-

genic proteins could result in greater respiratory health impacts

associated with certain species, and the reverse for less harm-

ful species. Sensitization is also known to vary between

different allergenic proteins in grass pollen.17 However, while

we demonstrate the potential for species-specific effects

through associations with health outcomes over two pollen sea-

sons, individual species should not currently be identified as

either most or least harmful beyond the specific spatiotemporal

context of these models. There may also be undetected taxon-

specific effects associated with grass species that were not

studied here (though these would be included in overall grass

pollen concentrations). Future research would benefit from

studying a greater number of species. In addition, while ozone,

nitrogen dioxide, and particulate matter (PM2.5) have been

controlled for in the present study (STAR Methods; Figures 2,

3, and 4; Data S1), other airborne pollutants not included may

represent additional, complex sources of uncertainty.18 For

example, certain urban pollutants (e.g., sulfur dioxide, SO2)

may have direct respiratory health impacts,19 while also

decreasing pollen production20 or pollen allergen production21

in some plants. Further research is required to understand

how intra- and inter-species-level variation in allergens relate

to the relative allergenicity and respiratory health impacts of

grasses and potential confounding effects of air pollution.

Patient and doctor behavior, particularly with regard to pre-

scribing, is an important and complex variable that must also

be considered. There is evidence that GP (general practitioner)

consultations for allergic rhinitis are associated with environ-

mental factors22 and tend to be sought in response to the occur-

rence of symptoms,23,24 though some patients seek prescription

drugs for respiratory allergies pre-emptively of the grass pollen

season. While GP practices, sub-national (e.g., clinical commis-

sioning groups), and national (e.g., NHS Scotland) administrative

structures have been included as variables (e.g., ‘‘Country’’) in all

GAMs to account for variation in prescribing behavior, it remains

a source of uncertainty. Similarly, differences between UK coun-

tries in the costs of prescriptions to patients may influence pa-

tient and doctor behavior.

Spatiotemporal factors underpin the distribution and

taxonomic composition of airborne grass pollen

Understanding the distribution, composition, and abundance of

airborne grass pollen is key for understanding associations with

human health. We found that variation in species composition is

explained by the time of year and location of pollen sampling,

which takes into account differences in local meteorological ef-

fects and climatic factors associated with plant flowering

times.25 This result is supported by a previous investigation

that used eDNA metabarcoding to unravel the community

composition of airborne pollen in 2016.26 Microscopy-based

measures of airborne grass pollen abundance, derived from

traditional Hirst-type 7-day volumetric samplers, displayed

peaks of ‘‘high’’ or ‘‘very high’’ concentrations (>50 grains

m�34,27) within a 4-week window between late May and June,

and the latter was an especially important month, showing

some of the highest airborne grass pollen abundances across

the UK (Figure S4).

Some species, such as C. cristatus, exhibit singular annual

peaks in qPCR-measured abundance in June while other spe-

cies, such as L. perenne, display multiple peaks from May and

June onward and some peaks occur as late as July (Figure 1).

Multiple peaks may be the result of multiple flowering events

over the summer in a single species, such as L. perenne, which

is the dominant forage crop species, and bred to mature at

different times throughout the year.28 Given that health out-

comes are not equal throughout the grass flowering season, it

is reasonable to deduct that Lolium cultivars do not convey an

acute contribution to environmental-derived allergies in the UK.

It should be noted that many commercial varieties of

L. perenne are the result of hybridization with closely related spe-

cies andmolecular-based approaches do not discriminate these

species reliably.26 For example, broad-leaved fescues (currently

named Festuca or Schedonorus arundinacea/pratensis) are

genetically very close to and hybridize with Lolium spp. and

the two groups cannot be genetically distinguished via ITS2/

rbcL barcode markers, in contrast to narrow-leaved fescues

(Festuca ovina/rubra), which are clearly distinct.29 Since

L. perenne is one of the most abundant grasses in the UK,26

measuring the abundance of pollen from this species is essential

for exploring relationships between grass pollen and human

health. The occurrence of multiple peaks of pollen from some

qPCR probes may be partly explained by the amplification of

non-target species during the qPCR reactions (STAR Methods;

Data S1B). For example, in silico analysis demonstrates that

grass species belonging to the genera Alopecurus and Agrostis

could not be genetically distinguished by the qPCR probes, but

they can be separated by annual flowering times (Data S1B).

Agrostis stolonifera and Alopecurus pratensis are both common

and widespread grass species in the UK. However, Agrostis sto-

lonifera has a later annual flowering time (observed flowering

time in June to late August) compared with Alopecurus pratensis

(one of the earliest observed flowering times in April–May),30

likely explaining the two peaks of airborne grass pollen in 2016

and 2017 measured in this study using the Alopecurus/Agrostis

spp. qPCR probe (Figure 1).

We demonstrate the enormous potential of aerial eDNA bio-

monitoring for studying associations between species-specific

pollen abundances and respiratory health responses. However,
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while we have captured a broad range of abundances for each

species, we are unlikely to have captured the potentially finer-

scaled distributions of these values, which would require more

temporally resolved sampling (e.g., daily resolution) over a longer

period. Furthermore, pollen collection, over multiple years, is

required in order to make accurate predictions about the spatio-

temporal composition of airborne pollen. The pollen data are

also assumed to be representative within a 30 km radius, which

is a reasonable ‘‘rule of thumb,’’31–33 but a more spatially

resolved sampling would be preferable in future research.

Conclusions and future prospects

The research presented here represents the first of its kind to use

a nationwide, ecological approach to biomonitoring for the pur-

pose of exploring relationships between airborne pollen and hu-

man health. We demonstrate that different species of airborne

grass pollen are associated with differing respiratory health re-

sponses, as well as overall concentrations of grass pollen. The

data suggest that certain species may have disproportionate im-

pacts, relative to overall grass pollen concentrations, potentially

as a result of species-specific allergenmixtures, while other spe-

cies may have lower impacts. We show that grass pollen assem-

blages are quantitatively, spatiotemporally structured during

each pollen season, and health impacts may be further moder-

ated on this basis. We envisage the development of a global

network of autonomous aerial samplers, able to discriminate

and quantify airborne pollen, allowing sensitive biomonitoring

of important aeroallergens at high spatial and temporal

resolutions.

STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY

B Lead Contact

B Materials Availability

B Data and Code Availability

d EXPERIMENTAL MODEL AND SUBJECT DETAILS

d METHOD DETAILS

B Airborne pollen sampling

B DNA extraction and quantitative PCR (qPCR)

B Public health data and study population

B Additional variables

d QUANTIFICATION AND STATISTICAL ANALYSIS

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

cub.2021.02.019.
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead Contact

The lead contact for resource availability is Georgina Brennan (g.l.b.doonan@gmail.com).

Materials Availability

This study did not generate new unique reagents.

Data and Code Availability

Original qPCR data have been deposited to NERC EIDC: https://doi.org/10.5285/28208be4-0163-45e6-912c-2db205126925. Stan-

dard pollen monitoring ‘count’ data were sourced from the MEDMI database,34 with the exception of data from Bangor which were

produced as part of the present study and are available on request. Prescribing datasets are publicly available,35–39 as are weather,40

air pollution,41 deprivation (IMD)42,43 and rural-urban category43,44 data. Hospital episode statistics (HES) datasets are sensitive, in-

dividual-level health data, which are subject to strict privacy regulations and are not publicly available. The study did not generate any

unique code.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

This study uses abundance data (derived from qPCR analysis) of airborne pollen including Anthoxanthum odoratum (sweet vernal-

grass), Arrhenatherum elatius (false oat-grass), Cynosurus cristatus (crested dog’s-tail), Dactylis glomerata (cock’s-foot), Lolium

perenne (perennial ryegrass), Phleum pratense (Timothy), Poa pratensis (smooth meadow-grass), grass species within the genera

Alopecurus/Agrostis, and one probe that was found to be degenerate and unable to discriminate grass species (‘Poaceae indet.’).

We used qPCR to track the seasonal progression of airborne grass pollen, in time and space. To do this we collected aerial samples

from thirteen sites across the UK during the pollen seasons (May to September) of 2016 and 2017. Two proxies of respiratory health

responses were used in this study: prescribing rates for drugs used in treating respiratory allergies, and records of asthma-related

emergency hospital admissions. Full details are provided in the following sections.

METHOD DETAILS

Airborne pollen sampling

Airborne pollen was collected from 13 sites across the UK (Figure S1). The sites are permanent pollen monitoring stations, apart from

Bangor, which supply pollen count information for the UK forecast. Airborne pollen samples were collected using Burkard Automatic

Multi-Vial Cyclone Samplers (V2; Burkard Manufacturing) which are similar to the Hirst design (Burkard Manufacturing), a.k.a. the

seven-day volumetric trap. However, instead of a collection onto an adhesive-coated tape for microscopy, the aerial particles are

collected into 1.5 mL sterile microcentrifuge and DNA from the entire contents of the tubes are extracted for downstream molecular

analysis. In 2016, pollen was collected at 6 sites, then in 2017 a further 7 sites were added (n.b. samples for molecular analysis were

not collected from Invergowrie in 2017). Daily samples were taken during the grass pollen seasons (samples were collected between

25th May to 28th August 2016 and 5th May to 10th September 2017) (Brennan et al.26; STAR methods).

DNA extraction and quantitative PCR (qPCR)

Pollen collected in 2016was extracted as described in Brennan et al.26Daily airborne pollen samples were pooled over three consec-

utive days and on one occasion four days. Due to the large sample sizes, slight modifications to the DNA extraction protocol were

made for the extraction of pollen from samples collected in 2017 that were extracted using DNeasy 96 Plant Kits (QIAGEN, Valencia,

CA, USA). Of 1,400 daily aerial samples, 1,210 were selected for downstream molecular analysis (samples were excluded if pollen

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

qPCR data NERC EIDC https://doi.org/10.5285/28208be4-0163-45e6-

912c-2db205126925

Oligonucleotides

Primers and probes manufactured by Primer Design Data S1A N/A
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could not be reliably extracted due to large volumes of rainwater in collection tubes). Daily samples were pooled into consecutive 48 h

samples at the binding stage of the DNeasy 96 Plant Kit and eluted into 120 ml of elution buffer, yielding 605 pools of DNA for down-

stream analysis.

Quantitative polymerase chain reaction (qPCR) was performed using a QuantStudio 6 Flex Real-Time qPCR machine (Thermo-

Fisher Scientific). Species-specific primers were designed to target the ITS2 region of abundant grass species in the UK including

Anthoxanthum odoratum (sweet vernal-grass), Arrhenatherum elatius (false oat-grass),Cynosurus cristatus (crested dog’s-tail),Dac-

tylis glomerata (cock’s-foot), Lolium perenne (perennial ryegrass), Phleum pratense (Timothy), Poa pratensis (smooth meadow-

grass), grass species within the genera Alopecurus/Agrostis, and one primer set that was found to be degenerate and unable to

discriminate grass species (Poaceae indet.) (Data S1A). The ITS2 region was selected as it is multiple copy and all UK native species

have DNA reference barcodes for both the ITS2 and rbcL markers.45 Preliminary experiments using single copy qPCR primers/

probes and comparisons with metabarcoding data generated from the same DNA samples confirmed that single copy primers

were unreliable for detecting target species at low concentrations (low concentration of DNA is common in eDNA samples). For quan-

tification, dilution series of a copy number DNA control carrying the target sequence were used with each species specific primer /

probe. Negative controls were run under the same conditions, but nuclease-free water replaced DNA in these wells. Each 10 mL

qPCR reaction contained 1 3 PrecisionPLUS qPCR Master Mix, with ROX at a lower level (PPLUS-LR, Primer Design, UK),

6 mmol L-1 species specific probe and forward and reverse primer, 0.5 mL of DNA template and 4 ml of nuclease-free water. The ther-

mocycling program began with an initial 95�C step for 2 min followed by 50 cycles of 10 s at 95�C and 1 min at 60�C, as per the man-

ufacturer’s instructions.

Values produced for each species using qPCR methods are not comparable on an inter-species basis in terms of their relation to

biomass (i.e., pollen grains or individual flowering plants).46 These data were therefore standardized (zero means and unit variance,

i.e., ‘z-scores’) prior to statistical analyses involving public health data (values reflect the number of standard deviations from the

mean and this is referred to as ‘scaled’ in axis labels). This facilitates analyses on the basis of the direction and relative magnitude

of changes in taxon abundances. For abundance analysis of qPCR data, where negative values cannot be used, the quantity of each

target species was normalized relative to the maximum value for each species, across both 2016 and 2017. See Data S1C for sum-

mary statistics.

qPCR primers/probes were designed to be species-specific. However, there are instances where additional grass species may be

detected (STAR methods; Data S1B), yet, this does not prevent us from addressing our focal questions. The risks of false detection

can be assessed in silico by comparing the sequence of the primers and probes with the target species and closely related species

found in the UK alongside consideration of the phenology (i.e., flowering time) and rarity of grasses with similar primer and probe

target sequences (Data S1B). For instance, the Cynosurus cristatus probe may also detect the closely related Catapodium rigidum

(fern grass). However, the abundance/distribution of C. rigidum is much more limited than C. cristatus.30 Furthermore, its pollen was

only detected in two of the samples analyzed in Brennan et al.,26 and at much lower levels thanC. cristatus. Based on this evidence, it

is very unlikely that we are detecting C. rigidum in our environmental samples when using the primer/probe designed to detect

C. cristatus (Data S1B).

Public health data and study population

Two proxies of respiratory health responses were used in this study: prescribing rates for drugs used in treating respiratory allergies,

and records of asthma-related emergency hospital admissions.

Prescribing rates for two categories of drugs were used in the analyses: respiratory antihistamines (British National Formulary (BNF

3.4.1) (e.g., Cetirizine Hydrochloride) and drugs used in nasal allergy (BNF 12.2.1) (e.g., Beclometasone Dipropionate). There is no

overlap between these categories of drugs. Prescribing rates were calculated as items (the number of times a product appears

on a prescription) prescribed per 1000 population per GP practice per month, using GP list sizes as a proxy for population (data

were obtained from open sources35–39). These rates were divided by the number of days in themonth (to account for varying numbers

of days each month), providing monthly averages of items prescribed per day per 1000 population. Equivalent data are not available

at finer temporal resolutions at population scale. However, the data presented here are at population scale and are highly spatially

resolved (per GP practice), allowing analysis of less severe respiratory health responses at population scale, complimentary to par-

allel analyses involving more temporally resolved hospital admissions data. See Data S1C for summary statistics.

Data for emergency asthma-related admissions were obtained from hospital episode statistics (HES) datasets, from NHS Digital

andNHSWales Informatics Service. These data were filtered to derive daily counts of admissions per GP practice, age category (0-5,

6-18, 19-64, 65+) and sex, with primary diagnosis assigned to ICD (International Classification of Disease) code J45 (asthma) or J46

(acute severe asthma) (England and Wales only). See Data S1C for summary statistics.

The two to five day lag between high pollen concentration exposure and asthma exacerbation4,47must be accounted for. Doing so

is not straightforward given the constraints imposed by the uneven temporal structure of the pollen dataset (airborne pollen was

collected over 24 h periods, and these samples were combined into one to four day ‘pools’ for eDNA analysis), and standard time

series analytical approaches cannot be used. A blanket three-day lag was therefore applied to the admissions data prior to analyses,

which was achieved by moving admission dates backward three days to coincide more closely with relevant exposures. Admissions

counts were then grouped according to the temporal structure of the pollen dataset (one to four-day pooled airborne pollen samples)
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and treated as a binary variable indicating either the presence or absence of emergency asthma admissions within each set of one to

four days. This results in a complex temporal structure, with resolution ranging from daily to four-daily. We refer to this with the term

‘sub-weekly’ (i.e., finer resolution than weekly).

GP practices within 30 km of pollen monitoring stations (Figure 1) were used as the primary geographic units. Airborne pollen con-

centrationsmeasured atmeteorological stations are considered to be reasonably representative of concentrations within 30 km.31–33

Analyses using prescribing data included pollen measurements from all 13 monitoring stations, while for analyses involving hospital

admissions data only the 10 stations in England and Wales were used (admissions data were only available for England and Wales).

Prescribing and hospital admissions datasets derive from National Health Service (NHS) primary and secondary care activity,

respectively. Since the NHS accounts for a large proportion of clinical activity in the UK, it is reasonable to assume that the pri-

vate-sector healthcare excluded here is a negligible omission, and NHS data resources are frequently used for population-scale

studies.4,48,49

Additional variables

Additional variables were included in the respiratory health models to adjust for potential confounding effects of the associations be-

tween pollen abundances, hospital admissions and prescribing rates. We included variables relating to social, demographic and

behavioral factors at unit (age category, sex) and population levels (deprivation indices, rural-urban classification, day of the

week), as well as those relating to air quality and the physical environment (total airborne grass pollen concentrations, temperature,

precipitation, nitrogen dioxide, ozone, particulate matter). Age category, sex and day of the week are only included in analyses

involving hospital admissions data.Where appropriate, data have been averaged according to the temporal structures of each public

health dataset (e.g., for variables with sub-monthly temporal resolutions, location-specificmonthlymean valueswere calculated prior

to joining with monthly prescribing datasets). See Data S1C for summary statistics.

Daily concentrations of airborne grass pollen averaged according to the temporal structures of each type of data (monthly for pre-

scribing data, and sub-weekly for admissions data), were included in the models alongside species-specific qPCR data. Daily air

concentrations of grass pollen (derived from traditional sampling using Hirst-type seven-day volumetric samplers) were sourced

from the MEDMI database,34 from data provided by the Met Office (the UK’s meteorological service), with the exception of data

from Bangor which were produced as part of the present study.

Monthly values of mean air temperature (�C) and total precipitation (mm) were used with prescribing data, and daily values of

maximum air temperature (�C) and total precipitation (mm) were used with admissions data. Openly available, interpolated observa-

tional weather datasets (1 km grids)40 were used in these analyses. The daily data were grouped to correspond with multi-day pollen

sample ‘pools’ and averaged across these days. Weather data were linked spatially to health data according to the nearest cell to

each GP practice (usually, the cell in which GP practice postcode centroids are located).

Daily mean values (averaged for monthly health data) of nitrogen dioxide (NO2), ozone (O3) and particulate matter (PM2.5) were

derived from ensemble model datasets on a 0.1� grid, based on interpolated observations41 and associations between pollen and

health outcomes adjusted for these pollutants. Daily values used with admissions data were grouped to correspond with multi-

day pollen sample ‘pools’ and averaged across these days. Spatially, these were linked to health data according to the nearest

cell coordinates. Points derived from NetCDF coordinates represent southwestern corners of grid cells, rather than centroids, but

given the grid’s fine scale (0.1�, which is ~6-11 km for the UK) this is a reasonable pragmatic compromise for a non-critical dataset,

which was necessary to efficiently link datasets with different underlying architectures.

Social environmental factors which influence health, such as rural-urban status and socioeconomic status,50,51 were accounted

for. For administrative reasons, urban-rural classifications and indices of multiple deprivation (IMD) are determined separately in

each of the countries within the UK. In order to conduct analyses involving multiple UK countries, common measures of these vari-

ables must be used. We use openly available IMD rankings (higher scores relate to greater deprivation) for lower layer super output

areas (LSOAs) for the whole UK, which have been based primarily on income and employment metrics.42 For analyses involving pre-

scribing data, we use openly available LSOA-level urban-rural classifications for thewhole UK, developed by unifying categories from

different administrations.43 Official, unified LSOA-level rural-urban classifications for England and Wales are openly available,44 and

these are used in analyses involving hospital admissions.

QUANTIFICATION AND STATISTICAL ANALYSIS

Following molecular data collection, pollen qPCR data were analyzed using QuantStudio Software V1.3 (Thermo Fisher Scientific).

The number of copies for each target species was quantified using copy number standards provided by Primer Design (standard

curves ranged from 2 to 2 3 105 copies per ml for each species). Quantitative PCR runs with PCR efficiencies less than 85% and

greater than 115% were not used for further analysis (efficiency of qPCR data used in downstream analysis ranged between

88.5% and 106%). The variability of all molecular data was quantified in R (version 3.6.0) and data points with a large standard de-

viation between three technical replicates (> 6.95, based on the upper quartile range of the data) were removed. In addition, samples

which amplified before 10 cycles and after 38 cycles were removed to reduce the chance of detecting false positive or false negative

amplification respectively.

To understand how the grass pollen composition changed quantitatively with space and time, the effect of time (measured as the

number of days after the first sampling date for 2016 and 2017), year of sample collection, latitude and longitude of sampling location
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were included in a two-tailed generalized linear model (GLM) using the ‘manyglm’ function in the R52 package ‘mvabund.’53 The

quantity of each grass species (collected using qPCR) was set as the response variable. The effects of time, year, latitude and longi-

tude were included as explanatory variables in the models, specifically assuming a linear association with each covariate and the

mean of the response. Overfitting of the models was tested using ‘dropterm’ in R and based on the lowest Akaike Information Cri-

terion (AIC) score and the Bayesian information criterion (BIC) score. In addition, the appropriateness of the models was checked by

visual inspection of the residuals against predicted values from the models. The R code to run these models with ‘mvabund’53 fol-

lowed a general form, outlined here:

manyglm(mvadbund object = relative abundance of grass taxon ~Time + Latitude + Longitude, family = ‘‘negative binomial,’’

metadata)

Generalized additive models (GAMs) are employed here as the primary tool for statistical analyses involving health data. These are

highly flexible models, which do not assume linearity in the relationships between the mean of the response and the explanatory vari-

ables.54,55 GAMs are an extension of generalized linear models (GLMs), with the exception that the effects of the explanatory vari-

ables on themean response are defined by ‘unknown’ smooth functions that are estimated from the data, rather than being assumed

to be known (e.g., linear) a priori. As such, GAMsmay be considered data-driven as opposed tomodel-driven.54 These analyses were

carried out using the R package ‘mgcv.’56 This particular implementation of GAMs avoids overfitting by objectively penalizing the

unknown functions as a compromise between in-sample and out-of-sample predictive accuracy.

The construction of GAMs for each type of response variable (prescribing rates and hospital admissions), was broadly similar. All

explanatory variables were included in each, as well as random effects for pollenmonitoring site, primary care organization and coun-

try (i.e., England, Scotland, Wales and Northern Ireland), and categorical terms to account for variability attributed to month, week of

the year (i.e., 1-52), and weekend days (n.b. the latter two only apply to daily admissions data). GP practices (n»2500) were initially

treated as individual random effects, but this resulted in highly inefficient models, and so GP practice postcode coordinates (latitude

and longitude) were used to treat these as a spatial (smooth) surface instead. This results inmore efficientmodels, and also allows the

model to account for spatial autocorrelation between GP practices (practice catchments overlap geographically, and therefore prox-

imity will result in similarity). Prescribing data (for both BNF 3.4.1 and BNF 12.2.1) are ‘heavy-tailed’ compared to the Normal distri-

bution, and so a scaled t-distribution was utilized. Emergency asthma-related hospital admissions are a rare occurrence, particularly

during pollen season months (May to September), and so these data are treated as binary (i.e., occurrence or no occurrence) and a

binomial distribution was used (with the covariates influencing the probability of occurrence at the logistic level). The R code to run

these models with ‘mgcv’56 followed a general form, outlined here (n.b.models based on prescribing datasets used the ‘gam()’, fam-

ily = ’’scat,’’ and did not include ‘Days’, ‘Weekend’, Week’, ‘Sex’ or ‘AgeCategory’):

bam(HealthOutcome ~s(A.elatius, bs = ’’ts’’) + s(A.odoratum, bs = ’’ts’’) + s(Alopecurus_Agrostis, bs = ’’ts’’) + s(C.cristatus, bs =

’’ts’’) + s(D.glomerata, bs = ’’ts’’) + s(L.perenne, bs = ’’ts’’) + s(P.pratense, bs = ’’ts’’) + s(P.pratensis, bs = ’’ts’’) + s(PoaceaeIndet,

bs = ’’ts’’) + s(MaxPoaceaeConc, bs = ’’ts’’) + RuralUrban + s(IMD, bs = ’’ts’’) + s(Temperature, bs = ’’ts’’) + s(Rainfall, bs = ’’ts’’) +

s(NO2, bs = ’’ts’’) + s(O3, bs = ’’ts’’) + s(PM2.5, bs = ’’ts’’) + s(Site.ID, bs = ’’re’’) + s(GP_Lat, GP_Long, bs = ’’ts,’’ k = 50) +

s(CCG, bs = ’’re’’) + s(Country, bs = ’’re’’) + Days + Weekend + s(Week, bs = ’’re’’) + Month + Year + Sex + AgeCategory, discrete =

TRUE, nthreads = 8, data = hes, family = ’’binomial,’’ method = ’’fREML’’)
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