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Abstract

An improved k − ω turbulence model for viscoelastic fluids is developed to

predict turbulent flows, with polymeric solutions described by the finitely

extensible nonlinear elastic-Peterlin constitutive model. The k − ω model

is tested against a wide range of direct numerical simulation data in fully-

developed channel flow, with different rheological parameter combinations,

and can predict all regimes of drag reduction (low, intermediate and high)

with good performance. Closures are improved for the NLTij term, which

captures the polymer extension due to turbulent fluctuations; a modified

damping function, fµ, which accounts for the turbulent kinetic energy re-

distribution process; and the viscoelastic destruction term, Eτp . The main
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advantage of the current model is its ability to predict all flow features with

model simplicity and without the need for friction velocity dependence, im-

portant for flows with reattachment due to their singularity caused by the

stagnation points.

Keywords: Drag reduction, FENE-P fluid, Viscoelastic RANS model,

OpenFoam CFD.

1. Introduction

Predicting the behaviour of turbulent flows containing drag reducing poly-

mer additives has been an active area of research since the experimental dis-

covery of Toms et al. [1], who demonstrated that dilute solutions of flexible

high-molecular weight polymers can drastically reduce the transport energy

in channel flows by upto 80%. Virk [2] quantified many early experimental

studies and proposed a maximum drag reduction (MDR) limit, in which the

polymer chains cannot further relaminarise the turbulent structures. Com-

prehensive studies followed to understand the mechanisms and interactions

between the polymer chains and turbulent structures: Lumley [3] suggesting

that the drag reduction (DR) phenomenon is caused by an effective viscos-

ity outside the viscous layer, whilst the elastic explanation of Tabor & De

Gennes [4] states that polymers inhibit the turbulent energy transfer during

coil-stretch transition, extending the buffer layer.

Several direct numerical simulation (DNS) investigations were carried out

with various rheological models [5; 6; 7; 8] to understand the complex interac-

tions between the polymer chains and turbulent shears within channel flows,

most notably with the FENE-P (finitely extensible nonlinear elastic-Peterlin)
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dumb-bell constitutive model because of its molecular roots in kinetic theory

[9; 10]. The FENE-P model can predict the effects on turbulent shear stresses

via the polymer relaxation time, polymer chain extensibility and the poly-

mer/solvent viscosity ratio. It is now known that drag reduction is strongly

associated with the suppression of near-wall turbulent vortical dynamics by

the extensional motion of the polymer chains [11], inducing a redistribution

of the turbulent energy scales and a global reduction in mean eddy structures.

The abundance of DNS data [12; 13; 14; 15; 8] for Reynolds-averaged

quantities in fully-developed channel flow allows for the development of clo-

sure models, which substantially reduces the high CPU resource demands

associated with the grid resolution required to capture near-wall elongated

velocity streaks. This is ideal for engineering pursuits, and consequently

Reynolds-Averaged-Navier-Stokes (RANS) turbulent viscoelastic models have

been developed in order to capture important mean flow properties.

First attempts to incorporate the viscoelastic rheology of drag reducing

fluids within turbulence models came from the group of Pinho and co-workers

[16; 17; 18; 19; 20], who adopted a Generalised Newtonian Fluid (GNF) con-

stitutive equation and modified it to incorporate the elastic contribution by

involving dependency of the fluid strain hardening on the third invariant of

the rate of deformation tensor. However, GNF models are not true viscoelas-

tic constitutive models as they only account for inelastic effects.

The first elastic model was developed by Leighton et al. [21], based on the

FENE-P dumbbell constitutive equation model. Their study involved the de-

velopment of a polymer strain-stress coupling based on the tensor expansion,

which incorporated the conformation tensor and Reynolds stress. Pinho et al.
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[22] extended the Newtonian k−ε low-Reynolds number turbulence model of

Nagano et al. [23; 24] by introducing new turbulent viscoelastic closures in-

cluding: the non-linear term involving the conformation tensor and the strain

rate fluctuations within the conformation tensor equation (denoted NLTij

following the nomenclature of Housiadas et al. [25] and Li et al. [26]); along

with the viscoelastic turbulent transport terms of the turbulent kinetic en-

ergy. The model could predict low drag reduction (LDR) features, but failed

to capture the increase of turbulent kinetic energy for increasing viscoelas-

ticty as suggested by the DNS findings [13]. Subsequently, Resende et al. [27]

improved the model upto intermediate drag reduction (IDR) by developing

closures for the NLTij term, and introducing a polymer contribution to the

eddy viscosity closure model. Nonetheless, the model still under-predicted

the turbulent kinetic energy with increasing DR, and featured an exceedingly

complex closure for NLTij with many damping functions and model coeffi-

cients. The same closures were later applied by Resende et al. [28] to the

Newtonian k − ω model of Bredberg et al. [29], via a mathematical trans-

formation of the governing terms involving ω, and the turbulent-viscoelastic

correlations. The closures had identical limitations as the k − ε model for

predicting DR behaviour, but demonstrated great versatility and robustness

given its application to alternative two-equation models.

Iaccarino et al. [30] proposed a k−ε−v2−f model for FENE-P fluids in

fully developed channel flow, extending the Newtonian model of Durbin et

al. [31]. In the v2−f model approach, the eddy viscosity depends on a scalar

turbulent velocity scale which incorporates near-wall turbulence anisotropy

as well as non-local pressure strain effects. In their model [30], they introduce
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the concept of a turbulent polymer viscosity which accounts for the combined

effect of viscoelasticity and turbulence on the polymer stress in the momen-

tum equation. The closures developed for NLTij are much simpler than those

developed by Resende et al. [27] for the k − ε isotropic model, but depend

only on the trace of the conformation tensor and not the individual compo-

nents. The NLTyy component is the dominant contributor to the transverse

conformation tensor component (Cyy) and an effective polymer viscosity [32],

meaning the additional anisotropic closures for v2 are forced ad hoc.

Masoudian et al. [15] later improved the k − ε − v2 − f model and

predicted flow features upto HDR. The key advancements were a result of the

new NLTij closure being made proportional to the local eddy viscosity based

upon DNS analysis, and an ad hoc closure model for the viscoelastic turbulent

cross-correlation in the v2 equation. This model was improved further by

Masoudian et al. [33] via slight adjustments to the aforementioned closures,

along with adding a simple extension to include heat transfer. However, the

model fails to capture the crucial NLTyy component (zero in their model)

and has an opposite sign for the NLTxy component, which is contrary to

the DNS analysis of the momentum balance in the polymer shear stress.

Furthermore, the dissipation rate shows an opposite trend for increasing DR.

A Reynolds Stress Model was also developed by Masoudian et al. [34] based

upon the Newtonian model of Lai et al. [35], which was previously used by

Resende et al. [20] to predict viscoelastic flows for a constitutive GNF model.

In that work, the correlation between the Reynolds stresses and the NLTij

components was generalised (NLTij ∼ u′

iu
′

j). However, the model required an

additional damping function and further friction velocity dependence for the
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NLTij closure. The model can predict flow behaviour for a reasonable range

of rheological properties, but largely under-predicts the turbulent kinetic

energy magnitude by not capturing the increase of stream-wise turbulence

for high DR (HDR) observed in the DNS studies [13].

Most recently, Resende et al. [36] improved upon the k−ε model [27] via

a modified damping function able to predict the turbulent redistribution pro-

cess and thickening of the buffer layer. The correct increase of the turbulent

kinetic energy was the first of the model’s kind, achieved by analysing the

production term behaviour near the wall [37], and by developing new eddy

viscosity and NLTij closures using strictly DNS data [38]. In their work

[36], they also improved significantly on the NLTij closure and incorporated

small concentration variation via the solvent ratio. The model can predict

most ranges of DR well, but still requires complex un-physical modelling

containing bulk Reynolds number and friction velocity dependence. This oc-

curs predominately within the NLTxx term which accounts for the dominant

stretch of polymer chains from turbulent shear stresses, which fails at higher

Reynolds numbers. These limitations are addressed in the context of a k− ε

model [39], with the model predicting a larger range of DR behaviour, but

without concentration variation.

Earlier proposals of a modified damping function came from Pinho et

al. [16] with a GNF model for FENE-P fluids; and Tsukahara et al. [40]

with a Giesekus model. In the latter study, the turbulent kinetic energy was

largely over-predicted which was compensated for by a lack of closure for

the viscoelastic destruction term within the ε transport equation. In some

instances, the model demonstrated instabilities, predicting a 1% DR for a
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DNS result of 23% DR.

In the present study, a k − ω model is developed based on the recent

k − ε model of McDermott et al. [39] and Resende et al. [36]. The model

here introduces β variation, along with a new formulation of the damping

function from the Newtonian model [29], which was designed to capture fea-

tures in complex geometry such as the backwards facing step. The model

vastly improves on the previous k − ω model of Resende et al. [28; 36].

The shortcomings in the model complexity of the NLTij term and other

viscoelastic turbulent closures are addressed by applying a more physically

based approach, and removing all additional damping functions and friction

velocity dependence. An additional closure for the modified damping func-

tion is also proposed, capable of predicting the decrease of the eddy viscosity

for all ranges of DR. The advantage of the current model is the ability to

predict DR behaviour for a large range of flow and rheological parameters,

with model simplicity and without the need for friction velocity dependence.

This is advantageous for flows with reattachment such as the backward facing

step, which is the key feature of the Newtonian model this work is derived

from.

The paper is organised as follows: Section 2 introduces the instantaneous

and time-averaged governing equations and identifies some of viscoelastic

terms that will require modelling; Section 3 introduces the closures to the

Newtonian turbulence model and changes to the damping function, along

with presenting the other viscoelastic terms that need closures; Section 4

explains in detail the development of the viscoelastic turbulent closures based

on comparisons with DNS data of fully developed channel flow present within
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the literature; Section 5 summarises the model; Section 6 presents the results

of the flow fields in fully developed channel flow, covering all ranges of DR and

flow conditions; and finally in Section 7, the main conclusions are presented.

2. Governing Equations

The exact instantaneous continuity and momentum equations for the tur-

bulent flow of incompressible dilute polymer solution, where the rheological

properties are based on the FENE-P constitutive model [10], are:

∂ûk

∂xk

= 0, (1)

ρ

(
∂ûi

∂t
+ ûk

∂ûi

∂xk

)

= −
∂p̂

∂xi

+
∂τ̂ik
∂xk

, (2)

where the hat represents instantaneous quantities of velocity ûi, pressure p̂,

stress tensor τ̂ik, and fluid density ρ. The stress tensor is the sum of the

Newtonian solvent which obeys Newton’s law of viscosity, τ̂ sik = 2µsŝij, with

µs representing the solvent viscosity coefficient, and polymeric contributions,

τ̂ pik,

τ̂ik = τ̂ sik + τ̂ pik. (3)

The instantaneous rate of strain tensor, ŝij, is defined as

ŝij =
1

2

(
∂ûi

∂xj

+
∂ûj

∂xi

)

. (4)

The definition of the instantaneous polymer stresses based on the FENE-P

closure is given by Eq. (5) and Eq. (6) as a function of the instantaneous

conformation tensor ĉij.

τ̂ pij =
µp

λ
(f(ĉkk)ĉij − f(L)δij) (5)
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with Peterlin function

f(ĉkk) =
L2 − 3

L2 − ĉkk
and f(L) = 1, (6)

where δij is the Kronecker delta function and f(L)δij represents the limit on

the Peterlin function for the equilibrium point of the dumbbell model. ĉkk is

the trace of the instantaneous conformation tensor, and the other parameters

are associated to the rheological model: L2 denotes the maximum molecular

extensibility of the model dumbbell; λ is the relaxation time of the fluid and

µp is the polymer viscosity coefficient. The conformation tensor behaviour

obeys the following hyperbolic differential equation

∂ĉij
∂t

+ ûk
∂ĉij
∂xk

−
(

ĉkj
∂ûi

∂xk

+ ĉik
∂ûj

∂xk

)

=
∇

ĉ ij = −
τ̂ pij
µp

. (7)

The
∇

ĉ ij term denotes Oldroyd’s upper convective derivative of the instanta-

neous conformation tensor. The first two terms are the material derivative

and represent the local and advective derivatives, and the terms in brackets

account for the polymer stretching by the instantaneous flow.

The Reynolds averaged equations can be obtained by applying the Reynolds

decomposition to the instantaneous quantity, ûi = Ui + ui, where upper-case

letters or overbars represent average/mean quantities and lower-case letters

or primes represent fluctuating quantities. The Reynolds averaged Navier-

Stokes (RANS) equations are given by:

∂Uk

∂xk

= 0, (8)

ρ
∂Ui

∂t
+ ρUk

∂Ui

∂xk

= −
∂p

∂xi

+ µs
∂2Ui

∂xk∂xk

−
∂

∂xk

(ρuiuk) +
∂τ pik
∂xk

, (9)
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where p is the mean pressure, Ui is the mean velocity, −ρuiuk is the Reynolds

stress tensor and τ pik is the Reynolds-averaged polymer stress, taking the form

τ pij =
µp

λ

[

f(Ckk + ckk)(Cij + cij)− f(L)δij

]

. (10)

The mean conformation tensor, Cij, is determined by the Reynolds-averaged

Conformation Evolution (RACE):

DCij

Dt
−Mij + CTij −NLTij =

τ pij
µp

, (11)

Mij = Cjk
∂Ui

∂xk

+ Cik
∂Uj

∂xk

, (12)

CTij = uk
∂cij
∂xk

, (13)

NLTij = cjk
∂ui

∂xk

+ cik
∂uj

∂xk

, (14)

where Mij, the mean flow distortion term, is non-zero, but requires no clo-

sure. The remaining two terms are related to turbulent correlations and,

following the analysis and nomenclature of Li et al. [26] and Housiadas et al.

[25] are labelled with CTij, representing the contribution to the transport of

the conformation tensor due to the fluctuating advective terms, and NLTij

which accounts for the interactions between the fluctuating components of

the conformation tensor and the velocity gradient tensor. A contribution

comparison was made to the terms of the average conformation tensor equa-

tion, Eq. (11), and confirmed that the CTij term can be neglected for all

regimes of DR, in agreement with the finding of Housiadas et al. [25] and

Li et al. [26]. However, the NLTij term cannot be neglected since it is a

significant contribution and therefore requires a suitable closure.

10
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3. Turbulence Model

The Reynolds stress tensor is computed by adopting the Boussinesq tur-

bulent stress strain relationship,

−ρuiuj = 2ρνTSij −
2

3
ρkδij, (15)

where k is the turbulent kinetic energy, Sij is the mean rate of strain tensor

and νT is the eddy viscosity. νT is modelled by the typical isotropic k − ω

turbulence model, which includes a damping function fµ to account for near-

wall effects,

νT = fµ
k

ω
, (16)

where ω is the specific rate of dissipation of k. The k−ω Newtonian transport

equations are represented by the Bredberg model [29] which is presented fur-

ther but with an alternative representation of fµ. In their work, the damping

function was derived from semi-empirical data and the final form is given as,

fBredberg
µ = 0.09 +

(

0.91 +
1

R3
t

)[

1− exp

{

−
(
Rt

25

)2.75
}]

, (17)

with Rt = k/(νsω
N). The alternative formulation is based on the Newtonian

model of Nagano et al. [23] [24] which employs a Van-Driest type damping

function of the form,

fNagano
µ =

[

1− exp

(

−
y+

26.5

)]2

, (18)

where y+ = uτ0y/ν0 is the dimensionless wall scaling, uτ0 is the friction

velocity, y is the distance to the nearest wall, and ν0 is the sum of solvent

and polymer viscosity coefficients (ν0 = νs + νp).
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An adjustment is made to our model to remove the friction velocity de-

pendence by using an alternative representation of y+, with the near-wall

scaling, y∗, motivated by Wallin et al. [41] such that,

y∗ = Cy1Re1/2y + Cy2Re2y, (19)

where Rey ≡
√
ky/ν0, with Cy1 = 2.2 and Cy2 = 0.003. The model constants

are slightly adjusted from [41] as they apply a damping function of power 1.

The final form of our Newtonian damping function model is given by,

fµ =

[

1− exp

(

−
y∗

aµ

)]2

, (20)

with aµ = 26.5 and y∗ given as Eq. (19). The damping function requires

further modelling to include viscoelastic effects of the drag reducing flow, to

be discussed further in the study.

The governing transport equation for the turbulent kinetic energy for

turbulent FENE-P fluids was initially developed by [28], and is given by,

ρ
∂k

∂t
+ ρUi

∂k

∂xi

=
∂

∂xi

[(

µs +
ρνT
σk

)
∂k

∂xi

]

+ Pk − ρCµωk

+QV − ρεV , (21)

where Pk = −ρuiuj
∂Ui

∂xj
is the rate of production of k, and σk = 1.0. The last

two terms on the right side of Eq. (21) are:

QV =
∂τ ′ik,pui

∂xk

and εV =
1

ρ
τ ′ik,p

∂ui

∂xk

, (22)

which are the viscoelastic turbulent transport and the viscoelastic stress

work, respectively. They represent the fluctuating viscoelastic turbulent part

of the k transport equation and require suitable closure models.

12
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A budget analysis for each term in the k transport equation was performed

by Pinho et al. [22] for different regimes of DR. They demonstrated that the

magnitude of QV has more impact on the overall budget in the IDR, and

also developed a closure. In the HDR, the amplitude of QV is the same as

εV but has a different location in the buffer layer, in which the effects of QV

are overcome by the turbulent diffusion, thus revealing negligible effects to

overall flow predictions. Masoudian et al. [15] and Resende et al. [36] chose

to neglect the QV contribution and this is also ignored here. However, εV

cannot be neglected and a suitable closure model is required.

The corresponding transport equation for the specific rate of dissipation,

ω, in turbulent channel flow for FENE-P fluids is defined by,

ρ
∂ω

∂t
+ ρUi

∂ω

∂xi

=
∂

∂xi

[(

µs +
ρνT
σω

)
∂ω

∂xi

]

+ Cω1

ω

k
Pk − Cω2

ρω2

+
Cω

k
(νs + νT )

∂k

∂xi

∂ω

∂xi

+ Eτp , (23)

where Cω = 0.9, Cω1 = 0.49, Cω2 = 0.072 and σω = 1.8. The last term of

Eq. (23) is the viscoelastic contribution to the ω transport and is given by,

Eτp =
2µsµp

λ(L2 − 3)

∂ui

∂xm

∂

∂xk

{
∂

∂xm

[f(Cnn)f(Ĉpp)cqqCik]

}

. (24)

It has non-negligible effects on flow predictions for all DR regimes and thus

requires a suitable closure model. The full details of these equations can be

found in Pinho et al. [22] and Resende et al. [28].

The performance of the Newtonian model and the effect of the damping

function (Eq. (20)) with y∗ (Eq. (19)) is analysed in Fig. 1 for fully developed

turbulent channel flow at different friction Reynolds number regimes, Reτ0 =

180, 395 and 590. The correspondence between y∗ and y+ is good for y+ <

13
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(a) (b)

Figure 1: (a) Near-wall scaling comparison between y+ (solid line) and y∗ (Eq. 19) (dashed

lines). (b) The damping function (Eq. 18) compared with Eq. 20 in Newtonian turbulent

channel flow at Reτ0 = 180, 395 and 590.

100, with deviations at the lower Reynolds numbers (Fig. 1a). The damping

function can be viewed in Fig. 1b where the deviations at Reτ0 = 180

are not sufficient to have a significant impact on model predictions, with

higher Reynolds numbers showing excellent agreement. The mean stream-

wise velocity profile can be viewed in Fig. 2, predicting low, intermediate

and high Reynolds number behaviour very well.

14
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Figure 2: Comparison of the velocity profiles for Newtonian turbulent channel flow at

Reτ0 = 180, 395 and 590 with DNS data [42] (symbols) and model predictions (solid

lines).

4. Development of viscoelastic closures

In this section, closure models are developed for the turbulent viscoelas-

tic cross-correlations, namely: NLTij (Eq. (14)); εV (Eq. (22)); Eτp (Eq.

(24)) and a modified damping function, fµ (Eq. (20)). The closure model

predictions are validated against DNS data of fully developed channel flow

at an intermediate friction Reynolds number of Reτ0 = 395 with a range rhe-

ological parameters, then subsequently compared to other DNS data sets for

accurate turbulence modelling. The DNS data pertains to a large collection

of studies (Table 1) in fully developed channel flow performed by Li et al.

[13], Thais et al. [43], Masoudian et al. [15; 33; 44], Iaccarino et al. [30] and

Ptasinski et al. [14].
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Case Reference Rheological parameters Drag reduction (%)

Reτ0 =
huτ

ν0
β = νs

ν0
Wiτ0 =

λu2
τ

ν0
L2 DNS Model

(1) Li et al. [13] 125 0.9 25 900 19 19

(2) Li et al. [13] 125 0.9 25 3600 22 23

(3) Li et al. [13] 125 0.9 50 1800 35 33

(4) Li et al. [13] 125 0.9 100 900 37 34

(5) Li et al. [13] 125 0.9 100 3600 56 49

(6) Masoudian et al. [15] 180 0.9 25 900 19 20

(7) Li et al. [13] 180 0.9 50 900 31 28

(8) Masoudian et al. [15] 180 0.9 100 900 38 34

(9) Masoudian et al. [15] 180 0.9 100 3600 54 47

(10) Thais et al. [43] 180 0.9 116 10000 64 58

(11) Iaccarino et al. [30] 300 0.9 36 3600 33 33

(12) Iaccarino et al. [30] 300 0.9 120 10,000 59 59

(13) Masoudian et al. [33] 395 0.9 25 900 19 23

(14) Masoudian et al. [33] 395 0.9 50 900 30 30

(15) Masoudian et al. [33] 395 0.9 50 3600 38 39

(16) Masoudian et al. [33] 395 0.9 100 900 37 35

(17) Masoudian et al. [33] 395 0.9 100 3600 48 48

(18) Masoudian et al. [44] 395 0.9 100 10000 55 58

(19) Masoudian et al. [33] 395 0.9 100 14,400 63 63

(20) Thais et al. [43] 395 0.9 116 10,000 62 60

(21) Li et al. [13] 395 0.9 200 14,400 75 70

(22) Masoudian et al. [33] 590 0.9 50 3600 39 39

(23) Thais et al. [43] 590 0.9 116 10,000 61 61

(A) Ptasinski et al. [14] 180 0.8 54 1000 40 40

(B) Ptasinski et al. [14] 180 0.6 54 1000 61 63

(C) Ptasinski et al. [14] 180 0.6 72 1000 66 65

Table 1: Independent DNS data of fully-developed turbulent channel flow for FENE-P

fluids with DR model predictions.
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4.1. Closures for the conformation tensor

The first term that needs a closure is the mean polymer stress, Eq. (10).

The expansion of this term can be written in the form,

τ pij =
µp

λ
[f(Ckk)Cij − f(L)δij] +

µp

λ

[

f(Ckk + ckk)(Cij + cij)− f(Ckk)Cij

]

.

(25)

The magnitude of both terms on the RHS of Eq. (25) were analysed a priori

using DNS data by [22]. They showed that at different values of L2 and

Wiτ0 , the first term is nearly 20 times larger regardless of the rheological

parameters. In this work, the mean polymer stress is approximated by the

first term as with other models [30; 15; 33; 28], hence given by

τ pij =
µp

λ
[f(Ckk)Cij − f(L)δij] . (26)

To compute the polymer stress, we need to calculate the components of the

conformation tensor, Cij, which are computed with the RACE (Eq. (11)).

The set of analytical equations for fully developed channel flow can be viewed

in Appendix 1 of [22]. The polymer shear stress component can be written

as

τ pxy =
νp
λ
f(Ckk)Cxy = νp

(
λNLTyy + 1

f(Cmm)

)

︸ ︷︷ ︸

Cyy

dU

dy
+ νpNLTxy. (27)

In order to obtain predictions for the polymer shear stress in fully developed

channel flow, one requires a closure model for Cxy and Ckk. The NLTyy

and NLTxy terms act towards an effective polymer viscosity [32; 30]. The

stretching of the polymer chains is accounted for by NLTkk, and predomi-

nantly occur in the direction of mean flow or direction of the largest normal

Reynolds stress, xx.

17



M. McDermott et al. International Journal of Heat and Fluid Flow

Here, a closure is developed for all relevant components based on the k−ε

model of Resende et al. [36]. The NLTij closure is presented below in three

key parts, with a detailed explanation of each term:

NLTij ≈ fNCN1Cµ
λ
√
Lkω

ν0f(Cmm)
δij

︸ ︷︷ ︸

I

− f
1/4
N CN2Mij
︸ ︷︷ ︸

II

+ CN3
k

ν0

√

L(1− β)Mnn

γ

∂Ui

∂xk

∂Uj

∂xk

γ2

︸ ︷︷ ︸

III

, (28)

where fN = νT/ν0 is the local eddy viscosity, γ =
√
2SpqSpq is the shear rate

invariant, with model constants CN1 = 0.02, CN2 = 0.3 and CN3 = 0.18.

- Term I captures the NLTyy component and is similar to the model

found in Resende et al. [36]. The adjustments were made in the context of

the k − ω model, with minor corrections to the parameter values.

- Term II is primarily responsible for capturing the shear component,

NLTxy, which is a key component in predicting Cxy. The correlation here is

with the exact term, Mij (see Eq. (12)), and by the local eddy viscosity, f
1/4
N .

The L0.15 variation is removed from the model developed by Resende et al.

[36]. The negative part of the NLTxx component is also captured here via

the Mxx term, with this component acting as a destruction term near walls.

- Term III is developed to predict the NLTxx component which is the

dominant term in the trace of NLTij, responsible for the stretch of the poly-

mer chains due to turbulent fluctuations. Following the same assumption as

Masoudian et al. [34], one can see that NLTxx ∼ u′
xu

′
x ∼ k. In physical

terms, the turbulent stretching terms represent the ability of the turbulent

fluctuations to act on the polymer chains. This stretching is effective if the
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(a) (b)

(c) (d)

Figure 3: Comparison of the NLTij components between DNS data (symbols) and model

predictions (lines) for channel flow at Reτ0 = 395: (a) NLTxx (legend used for all figures);

(b) NLTyy; (c) NLTzz; (d) NLTxy. Each colour represents a different drag reduction

regime: case 13 (LDR); case 16 (IDR); case 17 (HDR).
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polymer shear, maximum extensibility and/or polymer concentration is large

enough. So
√

L(1− β)Mnn/γ is included here with k. Note that for fully

developed channel flow, this term reduces to
√

L(1− β)Cxy which increases

proportional to drag reduction. This new term includes the same physical

assumption as Masoudian et al [15; 33], and is simplified from the ad hoc

approach of Resende et al. [36] which contained bulk parameters.

The performance of the individual components of NLTij can be analysed

in Fig. 3 by comparing current model predictions against DNS data for

low, intermediate and high DR in fully-developed turbulent channel flow at

Reτ0 = 395. The previous k − ω model closure of NLTij from Resende et

al. [28] can also be viewed comparatively here. Fig. 3a shows NLTxx, the

dominant polymer stretching term. It is clear that the model predictions

match well with DNS data and improve significantly on the previous k −

ω model of Resende et al. [28], requiring a much simpler closure without

additional damping functions. Fig. 3b & 3d show the NLTyy and NLTxy

terms respectively, needed for the polymer shear stress. The flow features

are well captured such as the peak location and shift away from the wall for

increasing viscoelasticity. Fig. 3c shows the NLTzz component and generally

under-predicts due to the isotropic assumption made between NLTyy and

NLTzz based on term I in Eq. (28). Pinho et al. [22] showed that NLTzz

has low impact on flow features and thus the current model predictions are

adequate for the purposes of this study. All flow features are well captured

such as the magnitude and peak locations, improving significantly on the

previous model. The effect of the NLTij closures on the mean conformation

tensor are analysed in the results section.
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4.2. Model for the modified damping function, fµ

In viscoelastic turbulent flow, there is a reduction in the Reynolds shear

stress and shift away from the wall as observed in the DNS [13]. There is

a thickening of the buffer layer causing a turbulent kinetic energy redistri-

bution, increasing in magnitude with viscoelasticity. The cause of this is in

part due to a reduction in the pressure-velocity correlation found in the full

Reynolds Stress Model [11]. In the context of RANS modelling, Iaccarino

[30] attempted to model this effect implicitly by proposing an effective rate

of production within the f equation of the v2 − f model, where f repre-

sents the turbulent redistribution process. Direct modelling of this term is

complex and can lead to numerical stiffness and complete relaminarisation

in previous models [30; 21]. An alternative is to model this effect implicitly

with a modified damping function, which can capture the dynamics of the

eddy viscosity in viscoelastic flows. Here the constant aµ in Eq. (20) is en-

hanced to incorporate an effective thickening of the buffer layer, as similarly

presented in [36]. This term is made proportional to the polymer stretching

term, Ckk/L, which is shown to be proportional to DR in the DNS studies

[13]. The term (1−A) ensures smooth variations in the buffer and logarith-

mic layer, causing a global reduction in the eddy viscosity as shown in the

DNS studies [13].
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(a) (b)

Figure 4: Comparison of the (a) local eddy viscosity and (b) mean production of turbulent

kinetic energy between DNS data (symbols) and model predictions (lines) for channel flow

at Reτ0 = 395. Newtonian [42] and case 16 (IDR).

The complete modified damping function is presented as,

fµ = (1− A)

[

1− exp

(

−
y∗

aµ (1 + B/aµ)

)]2

, (29)

A = CA

(

fN
λ2

f(Ckk)2

(
L

30

)3/2
ε

ν0

)0.3

, (30)

B = CB(1− β)0.2
(Ckk − 3)1.25

L
, (31)

with y∗ given by Eq. (19) and model constants CA = 0.071 and CB = 0.69 .

The performance of fµ is tested against DNS data (case (16), IDR) in fully

developed channel flow by analysing the effects on the local eddy viscosity

(Fig. 4a). As viscoelasticity is increased, the decrease of the eddy viscosity is
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captured well. The thickening of the buffer layer is a result of the high near-

wall polymer extension, along with an overall global reduction in the eddy

viscosity compared with the Newtonian case, both of which are accurately

predicted within the closure model. The effect on the mean production is

also shown in Fig. 4b, capturing the peak location and magnitude well. A

sensitivity study was performed by varying the fµ parameters CA and CB by

±10% and ±20% (Table 2) with drag reduction as the output. The effect

on the mean velocity can be viewed in Fig. 5. The overall change in drag

reduction predictions with varying parameters does not substantially change

the results, thus confirming the robustness of the closure presented.

CA DRA (%) CB DRB (%)

0.057(−20%) 33.55(−4.8%) 0.62(−20%) 32.31(−8.3%)

0.064(−10%) 34.31(−2.7%) 0.62(−10%) 33.82(−4.1%)

0.071(0%) 35.26(0%) 0.69(0%) 35.26(0%)

0.078(10%) 36.06(2.2%) 0.76(10%) 36.55(3.6%)

0.085(20%) 36.99(4.9%) 0.83(20%) 37.82(7.2%)

Table 2: Sensitivity study of drag reduction value with variations in fµ parameters CA

and CB by ±10% and ±20%.
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Figure 5: Effect of varying parameters CA and CB on the mean velocity profile for IDR

(case 16). DNS given by blue cross (×).

4.3. Development of closures within the k and ε transport equations

The viscoelastic closure models required in the k and ε transport equa-

tions are εV and Eτp , respectively. The viscoelastic stress work, εV , can be

expressed as

εV =
νp
λ

[

Cijf(Cmm + cmm)
∂ui

∂xj

+ cijf(Cmm + cmm)
∂ui

∂xj

]

. (32)

Pinho et al. [22] verified that in LDR, the triple correlation can be decoupled

into a double correlation and product of f(Ckk), which isNLTkk/2. Therefore

the viscoelastic stress can be approximated by,

εV ≈
νp
2λ

f(Cmm)NLTmm. (33)

This approximation is well founded and is applied in previous models [15; 33;

36]. Masoudian et al. [15] confirmed the model capabilities within 5% accu-
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racy for all DR regimes via an extensive pdf (probability density function)

study.

The closure model derived for Eτp assumes that it depends on the same

quantities as the classical Newtonian destruction term of the transport equa-

tion of ω, but involving a viscoelastic quantity, typically with the viscoelastic

stress work used by Resende et al. [27; 28; 36] and Masoudian et al. [15; 33].

However, the models of Masoudian et al. [15; 33] show an opposite trend in

ε for increasing DR, which could be explained by the negative contribution

of εV in the buffer layer.

The closure derived by Resende et al. [28] in the previous k − ω is very

complex with Wiτ0 dependence to force the correct trend in ε. Here, a much

simpler approach is obtained with dependence through k which increases with

DR, along with the polymer length and concentration via L and 1−β = νp/ν0

respectively. The closure is given by

Eτp ≈ −CN4
ω

k

[

νp
√

Cµfµ

(
L

30

)0.65(
k

ν0

)2
]

, (34)

with model constant CN4 = 0.026. The effect of Eq. (34) on ε predictions

can be viewed in the results section for LDR and HDR.

Overall, it is clear that all the developed viscoelastic closures presented

in this study perform well compared with DNS data. Most importantly,

this was achieved without the need for extra damping functions or the use

of friction velocity dependence. The simplicity of the governing closures

allows easy implementation into 3D codes and can be extended to flows with

reattachment when DNS data becomes available.

25



M. McDermott et al. International Journal of Heat and Fluid Flow

5. Summary of the present model

The governing and transport equations are given below, using the closures

developed in the previous section.

Momentum equation:

ρ
DUi

Dt
= −

∂p

∂xi

+
∂

∂xk

[

(µs + νT )
∂Ui

∂xk

]

+
∂

∂xk

(µp

λ
[f(Ckk)Cij − δij]

)

, (35)

where the eddy viscosity is given by

νT = fµ
k

ω
, (36)

with modified damping function

fµ = (1− A)

[

1− exp

(

−
y∗

aµ (1 + B/aµ)

)]2

, (37)

A = CA

(

fN
λ2

f(Ckk)2

(
L

30

)3/2
ε

ν0

)0.3

, (38)

B = CB(1− β)0.2
(Ckk − 3)1.25

L
, (39)

with constants aµ = 26.5, CA = 0.071 and CB = 0.69. y∗ given by Eq. (19).

Conformation tensor equation:

DCij

Dt
−Mij −NLTij = −

1

λ
[f(Ckk)Cij − δij], (40)

with Mij given by Eq. (12) and

NLTij =fNCN1Cµ
λ
√
Lkω

ν0f(Cmm)
δij − f

1/4
N CN2Mij

+ CN3
k

ν0

√

L(1− β)Mnn

γ

∂Ui

∂xk

∂Uj

∂xk

γ2
, (41)
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where fN = νT/ν0 is the local eddy viscosity, γ =
√
2SpqSpq is the shear rate

invariant, with model constants CN1 = 0.02, CN2 = 0.3 and CN3 = 0.18.

Transport equation of k:

ρ
Dk

Dt
=

∂

∂xi

[(

µs +
ρνT
σk

)
∂k

∂xi

]

+ Pk − Cµρωk

−
νp
λ
f(Cmm)

NLTmm

2
. (42)

Specific rate of dissipation transport equation:

ρ
Dω

Dt
=

∂

∂xi

[(

µs +
ρνT
σω

)
∂ω

∂xi

]

+
Cω

k
(µs + νT )

∂k

∂xi

∂ω

∂xi

+
ω

k

(

Cω1
Pk − CN4νp

√

Cµfµ

(
L

30

)0.65(
k

ν0

)2
)

− Cω2
ρω2 (43)

and model constant CN4 = 0.026.

The remaining constant are of the Newtonian model and are Cω = 0.9,

Cω1
= 0.49, Cω2

= 0.072, Cµ = 0.09, σk = 1.0 and σω = 1.8.

6. Results and discussion

In order to examine the viscoelastic turbulence model against the avail-

able DNS data identified within the literature, a new finite volume C++

computational solver was developed in the OpenFOAM software. A fully-

developed channel flow using half of the channel height, h, is applied given the

symmetry of the governing geometry. 100 cells are assigned in the transverse

(y-direction) with approximately 10 cells located inside the viscous sublayer.

This is to provide mesh independent results, with errors within 0.5% for the
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mean velocity and the friction factor compared with a very fine mesh as re-

ported in [33]. To improve numerical stability, an artificial diffusion term

is added to the RACE in the form, κ∂2
kCij, where κ denotes a constant,

isotropic, artificial numerical diffusivity. In earlier studies [33], the dimen-

sionless artificial numerical diffusivity is taken to be κ/huτ ∼ O(10−3) and

is also implemented here. The diffusion has a negligible impact on overall

DR predictions. No-slip boundary conditions are imposed on the solid wall

for the velocity field U , along with k = 0. The specific rate of dissipation, ω,

follows the asymptotic formed by Wilcox [45] such that, ω → 2νs
Cµy2

as y → 0.

A Dirichlet boundary condition for Cij is applied as reported in [39].

The model performance is assessed against a range of different flow and

rheological parameters presented in the DNS data within Table 1.

Fig. 6 plots the components of the conformation tensor (Czz excluded)

and shows good agreement with the DNS data for LDR and HDR. The

Cxx component is dominated by NLTxx, the new term modelled. The peak

location near the wall and decay towards the centre is well captured (Fig.

6a). The shear component Cxy (Fig. 6c) has most effect on the flow in a

region y+ < 50 according to the findings of Li et al. [13], which is captured

here for LDR and HDR. Finally the Cyy component is shown in Fig. 6b,

which is important for an effective polymer viscosity, shown here to capture

the shift away from the wall for increasing DR.

Fig. 7 shows the turbulent kinetic energy profiles for Newtonian and IDR.

The increase of k and peak location is captured well, improving greatly upon

previous model predictions. Fig. 8 demonstrates the model capabilities of

predicting low and high DR.
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(a) (b)

(c)

Figure 6: Comparison of the conformation tensor components between DNS data (sym-

bols) and model predictions (lines) for channel flow at Reτ0 = 395: (a) Cxx/L
2 (legend

used for all figures); (b) Cyy/L
2; (c) Cxy. case 13 (LDR) and case 17 (HDR).

The Newtonian dissipation of k is plotted in Fig. 9 and shows good

agreement with DNS for LDR and HDR. The near-wall values lose accuracy
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Figure 7: Comparison of the turbulent kinetic energy, k, between DNS data (symbols) and

model predictions (lines) for channel flow at Reτ0 = 395. Newtonian [42], case 16 (IDR).

which is a known defect in isotropic k−ε models. The closure for Eτp predicts

well the decrease in ε as viscoelasticity increases.

The local eddy viscosity is plotted in Fig. 10 for all ranges of DR at

Reτ0 = 395. The decrease of νT with increasing viscoelasticity is predicted

well, capturing the thickening of the buffer layer and reduction in the log-

layer ascertained by the modified damping function.

The overall stress balance is plotted in Fig. 11a, with the Reynolds stress,

solvent stress and polymer stress. Good predictions of the stress balance de-

termines the velocity profile accuracy. The mean stream-wise velocity profiles

for all ranges of DR at Reτ0 = 395 are plotted in Fig. 11b. The maximum

drag reduction asymptote of Virk [2] is also plotted here, along with the vis-

cous sub-layer and log law equations. The model can predict well the increase
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(a) LDR (b) HDR

Figure 8: Comparison of the turbulent kinetic energy, k, and damping function, fµ, be-

tween DNS data (symbols) and model predictions (lines) for channel flow at Reτ0 = 395:

(a) case 13 (LDR); (b) case 17 (HDR).

in the log law for increasing DR. At LDR the model over-predicts, but has

an improved performance at different Reynolds numbers. For MDR there

is an under-prediction due to the limitations of the isotropic assumptions,

where the near-wall eddies become excessively dampened, but still captures

fairly well the overall increase of the log law profile. Fig. 12 shows the model

capability in predicting a range of Reynolds numbers and flow parameters.

This is extended with small β variation as shown in Fig. 13 which shows

good agreement with the DNS data.

Overall it is evident that the model can predict drag reducing features well

for a range of flow and rheological parameters, where the main advantage is

through model simplicity and without friction velocity dependence compared
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(a) LDR (b) HDR

Figure 9: Comparison of the true Newtonian dissipation rate of k between DNS data

(symbols) and model predictions (lines) for channel flow at Reτ0 = 395: (a) case 13

(LDR); (b) case 17 (HDR).

to the previous isotopic models [27; 28; 36].

7. Conclusions

A viscoelastic turbulence model in fully-developed drag reducing chan-

nel flow is improved, with turbulent eddies modelled under a k − ω rep-

resentation, along with polymeric solutions described by the finitely exten-

sible nonlinear elastic-Peterlin (FENE-P) constitutive model. The Newto-

nian model of Bredberg [29] is modified to include a new Van-Driest type

damping function but including a near-wall scaling, y∗, such that y+ ∼

y∗ for y+ < 100. The model performance is evaluated against a variety

of rheological parameters within the DNS data literature including: fric-

tion Reynolds number Reτ0 = 125, 180, 300, 395, 590; Wiessenberg number
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Figure 10: Comparison of the local eddy viscosity between DNS data (symbols) and model

predictions (lines) for channel flow at Reτ0 = 395. Each colour represents a different drag

reduction regime: Newtonian [42]; case 13 (LDR); case 16 (IDR); case 17 (HDR); case 19

(Very HDR); case 21 (MDR).

Wiτ0 = 25, 36, 50, 54, 72, 100, 116, 200; polymer concentration β = 0.9, 0.8, 0.6;

and maximum molecular extensibility of the dumbbell chain L2 = 900, 1000,

1800, 3600, 10000, 14400. The DNS data for Reτ0 = 395 in Table 1 is used for

the calibration of the closures developed for the turbulent cross correlations

identified in section 4. The model is capable of predicting a large range of

flow features for low and high Reynolds number at all regimes of DR and

improves significantly on the model of Resende et al. [28], with its ability to

capture higher Reynolds numbers with simpler closures.

The main feature is the modified damping function, fµ, which is capa-

ble of predicting the reduction in the eddy viscosity and effective thickening

33



M. McDermott et al. International Journal of Heat and Fluid Flow

(a) (b)

Figure 11: Comparison of (a) normalised shear stresses (case 16 (IDR)) and (b) mean

stream-wise velocity profiles between DNS data (symbols) and model predictions (lines)

for channel flow at Reτ0 = 395. Each colour represents a different drag reduction regime:

case 13 (LDR); case 16 (IDR); case 17 (HDR); case 19 (Very HDR); case 21 (MDR). The

viscous sub-layer equation, log layer equation, and Virk’s asymptote [2] are also shown

(dotted lines) in (b).

of the buffer layer as viscoelasticity increases. The correct increase in the

turbulent kinetic energy, k, is also shown and improves greatly on the previ-

ous model [28]. The model can also capture small β variation in accordance

with the FENE-P limits, highlighted with the dependence on 1 − β, which

is proportional to the polymer concentration. Further improvements are de-

veloped within the closures of the NLTij and Eτp terms present within the

governing equations after the Reynolds averaging process. The NLTij model

presents a better performance for all regimes of DR when compared with the

previous k − ω model [28]. The main advantage of the closure is the reduc-
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(a) (b)

Figure 12: Comparison of the mean stream-wise velocity profiles between DNS data (sym-

bols) and model predictions (lines) for channel flow at various Reynolds numbers. Each

colour represents a different case. See Fig. 11b for dotted lines.

tion in the complexity and damping functions in the dominant contribution,

NLTxx, modelled here to increase with turbulent kinetic energy as the flow

viscoelasticity increases. In terms of the viscoelastic destruction term, Eτp ,

previous isotropic models developed by Resende et al. [27; 28; 36] required

friction velocity dependence which is here removed and greatly simplifies the

model, keeping the same prediction accuracy of ε.

Overall, the model predicts very well across a wide range of DNS data

and significantly improves on capturing all flow features with simplicity and

performance compared with the most recent k − ω model developed by Re-

sende et al. [28], which was limited to a few DNS data cases. The current

model extends on the recently developed k−ε model [39], but here including

β variation up-to the FENE-P limits, and with a Newtonian model based on
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Figure 13: Comparison of the mean stream-wise velocity profiles between DNS data (sym-

bols) and model predictions (lines) for channel flow at varying β at Reτ0 = 180. Each

colour represents a different case. See Fig. 11b for dotted lines.

k − ω that is naturally more numerically stable and is designed for predic-

tions in complex flow such as the Backward-facing step. The simplicity of

the present model allows easy implementation into 3D codes and increases

numerical stability. All friction velocity dependence is removed in the present

model which is the first of its kind for isotropic models with damping func-

tions, whose main advantage is the development of simulations in geometries

with reattachment.
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