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Abstract. We present a simple activity based on the liquid-drop model which

allows secondary school students to explore the uses of mathematical models and gain

an intuitive understanding of the concept of binding energy, and in particular the

significance of positive binding energy. Using spreadsheets provided as Supplementary

Material, students can perform simple manipulations on the different coefficients of

the model to understand the role of each of its five terms. Students can use the

spreadsheets to determine model parameters by optimising the agreement with real

atomic mass data. This activity can be used as the starting point of a discussion

about theoretical models, their validation when it comes to describing experimental

data and their predictive power towards unexplored regimes.
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1. Introduction

The Binding Blocks (BB) project is an educational outreach activity developed at the

University of York aimed at promoting the knowledge of nuclear science to a large

audience and in particular to young students‡. In Ref. [1], some of us discussed the main

outlines of the project. By using different towers of LEGO® bricks§, we create a chart of

nuclides in three dimensions. The towers are colour-coded according to the radioactive

mechanism through which isotopes decay. The height of each tower represents the mass

excess per nucleon per kilogram of each isotope relative to 56Fe, the most stable nucleus.

An online version of the nuclear chart has also been created and can be found in Ref. [2].

Using the three dimensional chart, we have also developed a series of activities for

A-level students [3]. The primary goal is to use the striking visual impact of the chart as

a formative tool for teachers to explain complicated aspects related to nuclear science.

On a devoted YouTube® channel, we have also published mini-lectures focusing on

nuclear physics using this three-dimensional LEGO® chart ‖. These efforts have focused

on experimental nuclear data [1] or on nuclear processes [4], but have not addressed

specifically theoretical nuclear physics ideas.

The goal of this paper is to introduce a new series of activities that deal with the

concept of a theoretical nuclear model and its applications. We use, as a representative

case, a set of relatively simple mathematical equations based on the liquid-drop (LD)

model. The LD model, first introduced by George Gamow [5], describes the nucleus as

a drop of incompressible fluid of very high density, held together by the nuclear force.

Our aim is to demonstrate that models can be used to describe physical data; that

models often involve a parameter optimisation process; that they can be exploited to

reach conclusions far beyond their initial remit; and that they bring in their own set

of (systematic) uncertainties. Theoretical model uncertainties are in fact of a different

nature than those addressed in experiments, and can be explored with our proposed

activities. In doing so, we expect to trigger a discussion about the fundamentals of

scientific models and their applicability [6, 7].

In the present activity, we specifically focus on a single nuclear physics concept -

that of binding energy (BE). Binding energies are crucial to understand why a nucleus

exists, and they can be used to explain why only specific combinations of protons and

neutrons are found in nature or in experimental nuclear physics facilities. BEs are

routinely measured in nuclear experiments, so there is a wealth of data to compare

to. Using a very intuitive theoretical model based on the LD binding energy formula,

students can gain insight into the LD model, its merits and applicability. We provide a

series of visualisation tools by means of Microsoft Excel® and OpenOffice worksheets.

By removing the complexity of the simulation and providing an immediate visual output,

‡ https://www.york.ac.uk/physics/public-and-schools/secondary/binding-blocks/

§ LEGO® is a trademark of the LEGO Group of companies which does not sponsor, authorise or

endorse the present work.
‖ https://www.youtube.com/channel/UCvIXlFgJyGh4Jle_4_KE2aA
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students can explore different aspects without mathematical complications. They can,

for instance, use the model to explain the trends observed in nuclear data. Importantly,

they can apply the model to predict binding energies beyond those that have been

measured, thus providing predictions into experimentally unknown regimes. In a follow-

up contribution (Part 2), we explore how the model can be used to extrapolate beyond

its initial remit by discussing neutron stars [8].

Across the paper, we propose a series of questions and challenges that can be

addressed by students. Some of these do not require access to the computational

worksheets, and can therefore be addressed directly in a classroom presentation. The

worksheet activities require access to a computer, but allow for an interactive, and

more active, learning experience. We provide two different worksheets that can be

used in different settings. Worksheet_Instructor contains data for several isotopic

chains, and can be run in in classrooms and computational laboratories, or as outreach

activities in scientific centers with the guidance of teachers, instructors or tutors.

Worksheet_Student is designed to be a standalone online activity, that individual

students can run in an online setting - be it at home or in a classroom. This can

be accompanied by a minimal instruction set and introduced by online means (e.g. a

video like the one here¶).

The article is organised as follows. In Sec. 2, we introduce the concept of binding

energy, while in Sec. 3 we present the LD model equations. Section 4 describes simple

paramater optimisation strategies for the model. In Sec. 5 we illustrate how to predict

the binding energies of not yet measured nuclei. We present our conclusions in Sec. 6.

2. Binding energy

The binding energy of a physical system is the amount of energy required to separate any

composite system into all of its constituents. The concept of binding energy is ubiquitous

in science, and is particularly relevant for understanding the chemical properties of atoms

and molecules; the astrophysics of gravitational systems and the physics of nuclei. In

the case of a nucleus, the constituents are the individual Z protons and N neutrons,

inclusively called nucleons. The mass number of the nucleus is A = N+Z. The binding

energy of an isotope of element Z with N neutrons is defined by the difference

BE = Nmnc
2 + Zmpc

2 −MN,Zc
2 , (1)

where mnc
2 = 939.565 MeV+ and mpc

2 = 938.272 MeV represent the rest mass

energies of the neutron and the proton, and MN,Z is the rest mass of the isotope

itself. Reference [9] provides a more detailed discussion and some simple practical

activities to familiarise interested readers with the concept of binding. It is important

to differentiated binding energies from separation energies, which instead correspond to

¶ https://www.youtube.com/watch?v=Qsu7IrGiOIk
+ In nuclear physics activities, it is more natural to work in units of mega-electronvolts (MeV) rather

than Joules (J). We recall that 1 J=6.242 · 1012 MeV
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Figure 1: (Color online) Binding energy per nucleon, BE/A in MeV, as a function of

mass number A. Data points come from the experimental measurements compiled in

Ref. [14]. See text for details.

the minimum energy required to remove one (or more, but not all) the constituents of

the composite system. The typical binding energy per particle of a medium-to-heavy

nucleus is of the order of ≈ 8 MeV.

Using advanced experimental techniques [10–12], it is possible to measure the

binding energies of very short-lived radioactive nuclei, far away from the valley of

stability. According to the most recent nuclear database [13], more than 2400 nuclear

binding energies per particle have been measured with an accuracy of more than 0.005%.

With such remarkable levels of accuracy, the error bars would not be visible on the figures

illustrating experimental values. We have thus decided not to consider the presence of

experimental errors in the activities described below.

We illustrate the evolution of the experimental binding energy per particle, BE/A,

as a function of mass number A in Fig. 1. The black circles correspond to the data for

2411 isotopes from Ref. [14]. On the same plot, we highlight some particular isotopic

chains: O (Z = 8), Ca (Z = 20), Fe (Z = 26) and Pb (Z = 82). A number of interesting

conclusions can be drawn from this figure alone, which could very well be the starting

point for the discussion of the activities we propose below. When illustrating this figure

to students, demonstrators should highlight that BE/A is not a flat line as a function

of A, but rather a curve with a maximum in the region A = 56− 62. We illustrate this

peak with the more abundant isotope of iron, 56Fe, rather than rarer (but most bound

overall) nuclide 62Ni [15]. By moving from the origin up to 56Fe, the BE/A plot shows

that if two light nuclei fuse together, they can gain binding energy [4]. Exothermic fusion

processes are relevant for fusion energy and for stellar astrophysics, where they prevent

the gravitational collapse of stars [16]. In contrast, beyond 56Fe, the fusion of two nuclei
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is an endothermic process. This explains why nuclei in the mass region A = 56−62, like
56Fe, are found as end-points in the fusion cycle of a star, and are copiously produced

in type Ia supernovae [15, 16]. For very massive nuclei, as Uranium for example, the

opposite is true. By splitting an isotope into two smaller nuclei, the binding energy of

the two fragments is larger than the one of the parent nucleus [17]. This well-known

mechanism is called nuclear fission, and it is harnessed in nuclear reactors to produce

energy [18]. For a more detailed discussion on these topics, we refer the reader to Ref. [3].

In addition to the ideas associated to fusion and fission, instructors can use the

data of Fig. 1 to address other relevant questions, like:

• How many nuclei exist in total?

• What is the maximum number of protons we can find in a nucleus?

• What is the heaviest isotope we can find for each chemical element?

The interest of these questions is not purely academic. At present, about ≈ 3400

isotopes have been discovered [19], but the number of new isotopes increases by about

≈ 10−30 per year [20,21]. Some of these isotopes are relevant for a variety of purposes,

including nuclear medicine [22]. The teacher can refer also to the recent discovery of the

new chemical elements Z = 117 [23] and Z = 118 [24]. The latter was recently named

Oganesson by the IUPAC, in honour to the superheavy-element scientist Y. Oganessian,

who discovered it [25, 26].

Knowledge on the limits of the chart of atomic nuclei is also relevant to current

astrophysical research. In particular, the rapid neutron capture process (or r-process) is

partly responsible for the nucleosynthesis of nuclei above 56Fe [27]. This process takes

place in the neutron-rich side of the nuclear chart, way beyond the stability valley,

and in some cases also beyond the limits of presently known isotopes. The very recent

discovery of gravitational waves from a neutron star merger [28] and its counterpart

electromagnetic signal has unambiguously proven that these mergers are sites for the

r-process [29] - something that was only predicted by theory before [30].

All in all, there is a strong motivation to perform experiments that can extend

our knowledge of the nuclear landscape. Measuring new nuclei is, however, not an easy

task. Moving away from the valley of stability, the lifetime of nuclei becomes shorter and

shorter. This requires both innovative production methods as well as complex detection

techniques. It is therefore important to have theoretical guidance indicating which

nuclei are bound, and can be detected. In addition, to address important astrophysical

questions, it is crucial to develop mathematical models [6] that can reliably reproduce

current data, but can also be used to predict new phenomena. Prediction and validation

are key steps of the scientific process. Ultimately, if models are robust enough, one can

use them to predict the properties of nuclei in regions of the Segré chart where no

experimental evidence exists.
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Coefficients [MeV]

aV 15.8

aS 18.3

aC 0.714

aA 23.2

aP 12.0

Table 1: Coefficients (expressed in MeV) of the LD mass formula Eq. (2).

3. The Liquid Drop model

Within the scientific literature, it is possible to find a variety of nuclear models that

have been developed to analyse nuclear BEs [31]. By “model”, here, we specifically

refer to a mathematical formula that is optimised to fit a restricted dataset, and can be

used to provide an understanding of data and to extrapolate to unknown domains. We

provide relatively simple worksheets that can help instructors develop useful teaching

tools which address different aspects of the scientific practice. The expected learning

outcomes of these worksheets are:

• To familiarise students with the concept of theoretical mathematical models.

• To introduce the concept of stability and the nuclear landscape.

• To develop simple computational skills to perform predictions based upon numerical

applications of the model.

To this purpose, we have select a simple equation based on the LD model and used

to obtain the well known Bethe-Weizsäcker (BW) mass formula [17]. Before entering

into a detailed discussion of the model, it is worth recalling that any model is based

on physical insight of the system under study. In the case of the LD discussed here,

one assumes that protons and neutrons form an incompressible droplet with a relatively

sharp surface. The BE is only function of neutron number N and proton number Z,

which appear individually in the formula or added up in the mass number variable A.

In particular, the model yields the binding energy per particle of an atomic nucleus as

the sum of five terms:
BE

A
= aV −

aS
A1/3

− aC
Z2

A4/3
− aA

(N − Z)2

A2
+ aP

δN,Z

A
, (2)

where

δN,Z =



















1

A1/2 , N is even and Z is even

− 1

A1/2 , N is odd and Z is odd

0, N is even and Z is odd

0, N is odd and Z is even

(3)

The multiplicative coefficients in front of each term, aX , are provided in Tab. 1 and taken

from Ref. [32]. We refer to Ref. [33] for a detailed discussion on how these parameters

are usually determined.
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Volume Surface Coulomb Asymmetry Pairing

Figure 2: (Color online) Graphical illustration of the various terms of the LD formula

given in Eq. (2).

A key advantage of using the LD mass formula is that we can associate a physical

meaning to each term appearing in Eq. (2) [34]. The arguments are relatively simple and

only require a general understanding of nuclear physics terms. A deeper understanding

of the analytical forms may require the relation between nuclear radius and mass

number, using the formula

R = r0A
1/3 , (4)

where the parameter r0 = 1.2 fm is obtained by fitting experimental matter radii

[17, 34, 35]. In Fig. 2, we provide a graphical illustration of the five terms involved

in the LD formula. The physical content of each term is summarised below:

• Volume term (coefficient aV ): nucleons are subject to the nuclear strong force only

if they are very close to each other [36]. Because of this short-range nature, the

total binding energy of the nucleus should scale approximately linearly with the

number of nucleons, with each nucleon contributing a constant, positive amount,

aV .

• Surface term (coefficient aS): the nucleus has a relatively sharp surface. Nucleons

at the edge do not interact with as many nucleons as those in the interior. The

surface term corrects the volume term to account for the smaller contribution of such

surface nucleons. This term can be explained in terms of a nuclear surface tension,

which grows approximately with the size of the nuclear surface, A2/3/A ≈ A−1/3.

• Coulomb term (coefficient aC): protons repel each other via the electromagnetic

Coulomb interaction. The more protons in a nucleus, the larger the Coulomb

repulsion and the lower the binding energy. Since the electromagnetic interaction

has a long range and acts at any distance, the energy scales as the square of the

number of protons, Z2.

• Asymmetry term (coefficient aA): this term is related to the Pauli principle [37,38].

Two fermions (in this case, nucleons) can not occupy the same quantum state. This

implies that if we increase the difference between protons and neutrons, an excess

of nucleons is forced to occupy levels at higher energies, making the nucleus more

unstable. This term therefore provides a penalty in the binding energy for systems

that are asymmetric in isospin, N 6= Z.
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Figure 3: (Color online) Contribution to the total binding energy per particle of the

different terms appearing in Eq. (2) for Pb isotopes as a function of mass number, A.

Solid circles refer to the total binding energy per nucleon. The sign in front of the

contributions is neglected for illustrative purposes.

• Pairing term (coefficient aP ): nucleons in nuclei are eager to form coupled pairs,

with anti-aligned spins in order to increase the binding energy [39, 40]. This

pairing mechanism is akin to electron pairing in superconducting systems. This

is represented in terms of a function δN,Z that brings in more binding when N and

Z are even, and decreases binding when N and Z are odd.

The last two terms of the LD are intrinsically related to the quantum features of the

atomic nucleus. They require physical knowledge which is likely at an undergraduate

level. Having said that, the formula is simple in mathematical terms, and a deep physics

understanding of each individual term is not necessary to engage with the activities in

the worksheet.

We illustrate the contribution to BE/A of the five different terms for Pb (Z = 82)

isotopes in Fig. 3 . The overall binding energy per nucleon (solid circles) is approximately

8 MeV across the whole isotopic chain. In the scale of the graph, this appears to be

relatively constant although, in fact, it has a maximum around A ≈ 198 and changes

by about 0.2 MeV from its minimum to its maximum values. As discussed previously,

the volume term is constant and it gives a positive contribution of approximately 16

MeV. In theoretical studies, one often considers a system akin to a nucleus that has

an infinite extent; an equal number of neutron and protons; and the electromagnetic

repulsion switched off. This artificial system is called nuclear matter and is a useful

testing ground for several theoretical considerations [41]. One typically assumes that

the binding energy per particle of such system should equal aV , although caveats have

been raised about the extrapolation of the LD formula in the limit A → ∞ [42].
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The surface and Coulomb term introduce major corrections to the binding energy,

of the order of 3 − 5 MeV. In contrast, the asymmetry term starts becoming relevant

only when there is a a strong imbalance between the neutron and proton number at

relatively large values of A. Even then, its contribution is well within ≈ 1 MeV in size.

The pairing term is multiplied by a factor of 100 to make it visible in the figure. This

term therefore represents a minor correction, and it may eventually be discarded to

further simplify the model without loosing too much accuracy.

To get a better understanding of the LD model, we suggest two activities

based on relatively simple spreadsheets, in both Microsoft Excel® and OpenOffice.

Worksheet_Instructor contains experimental information on several isotopic chains

and allows for wider applications of the formula. Because of the relatively large amount

of information in this spreadsheet, we expect that students will require guidance by

tutors to work with it. As such, this spreadsheet is devised as a hands-on activity

with tutor support in a shared environment (like a computer classroom). In contrast,

Worksheet_Student provides a simpler and self-contained exploration of the LD model,

and has been devised as an individual, online activity. Both worksheets facilitate the

following three activities:

(i) An optimisation exercise of some of the coefficients of the LD formula,

(ii) A validation process in terms of experimental data, and

(iii) A prediction assignment, looking for the limits of nuclear stability.

The following section discusses each one of these activities in more detail.

4. How are liquid drop models optimised?

The first activity is focused around the idea of optimisation of the parameters of a

model. In other words, once a mathematical model has been established, it is important

to determine the coefficients (or coupling constants) of the model. It is worth recalling

that, while the terms of the LD model are fixed by the hypothesis we made to derive the

model, the coefficients (aV , aS, . . .) are adjusted to reduce the discrepancy between the

theoretical predictions and the observed data. The learning outcomes of this activity

are:

• To introduce the concept of a mathematical model.

• To understand the concept of parameter optimisation with a simple example.

• To analyse the data and identify patterns and trends that are described by a

mathematical model.

In Tab. 1, we provide the coupling constants appearing in the LD formula. These

values are obtained by fitting the model over a selected pool of experimental binding

energies. Rather than using complex statistical techniques, we want students to get

acquainted with the idea of parameter optimisation by simple means, using an intuitive
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Figure 4: (Color online) Screen shot of the Microsoft Excel® version of

Worksheet_Student used for this optimisation activity.

graphical interface. This immediate visualization is provided by figures in each tab of

our spreadsheet.

The first tab of the Microsoft Excel® Worksheet_Student is shown in Fig. 4. This

standalone worksheet is divided intro three different “challenges” - each one in a different

tab in the spreadsheet. Challenge 1 is used to determine two of the coefficients in the

formula, aV and aA, by using existing nuclear binding energy data of oxygen isotopes.

The oxygen isotopic chain is rather robust for independent studies of LD coefficients,

since the dependency on the volume term is not quite as strong and the limits for

“acceptable” asymmetry term values can be rather well constrained.

The two parameters aV and aA are originally set to zero in the spreadsheet, and the

student is requested to find acceptable values following the protocol discussed below.

By inspecting Eq. (2), one notices that the asymmetry term does not contribute in

N = Z nuclei. As a consequence, we suggest to adjust the value of the volume term

using the binding energy of a single isotope, 16O, which is highlighted in green in the
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table of binding energy data. This optimisation is easily performed by a trial and error

procedure, following a suggested initial range of aV values.

Once the volume term is fixed, the asymmetry coefficient aA can be adjusted to

reproduce the experimental masses along the entire isotopic chain. This can be done

again by trial and error on the aA constant, until the shape of the theoretical binding

energy curve matches the experimental data as well as possible. The demonstrator (or

the online material) can give a reasonable range of values for such a parameter, typically

aA ∈ [10− 20] MeV.

Finally, students are asked to switch off the pairing term, setting aP = 0. The

student will then observe the appearance of a zig-zag behaviour in the data - the so-

called odd-even staggering of BEs [34]. The emergence of such a trend motivated the

inclusion of the pairing term in the microscopic mass formula of Eq. (2), well in advance

to the discovery of the theory of superconductivity [39] and its application to the case

of nuclear physics [40].

Alternatively, the extended datasets in Worksheet_Instructor can be used to

provide a wider analysis of nuclear data with the help of tutors or demonstrators. We

envisage the use of this worksheet in a larger computer classroom activity, where students

may be divided into different working groups. This file is composed of multiple tabs

containing various comparisons of the LD model predictions to experimental data. The

tabs named after some well known isotopic chains, namely Oxygen (Z = 8), Calcium

(Z = 20), Nickel (Z = 28), Tin (Z = 50) and Lead (Z = 82), are to be used in this first

optimisation and validation activity. In this spreadsheet, the 5 LD coefficients are set

to their optimal values from the start. Students should compare the predicted binding

energies with the experimental ones. To identify and understand specific patterns in

the data is a key element in the construction of any nuclear model.

Demonstrators can ask the students to freely modify the parameters of the LD

formula provided in the file, and observe how those changes affect the reproduction

of experimental values. We note here that, by default, the constants provided in the

worksheets have been obtained using a global adjustment, i.e. using information from all

known masses. It is therefore possible to perform local adjustments (or fits) to improve

the reproduction of a specific isotopic chain. In activities with large student numbers,

tutors could assign different isotopic chains in Worksheet_Instructor to different

student groups to avoid repetition. The optimisation process could be “gamified” by

requesting each group to minimise the theory-experiment discrepancies, and establish a

competition for the “best” parameters sets. One can then compare the values obtained

in different chains, as a starting point for a discussion about statistical and systematic

errors in the fit.

After students have optimised their fit using data with either worksheet, they can

validate it by comparing the predictions of the model to the experimental data. We

recall here that the typical accuracy of the LD model is 0.1 MeV per particle, so it

should be made clear that discrepancies of this size are acceptable in the optimisation

and validation procedure.
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Figure 5: (Color online) Binding energy per nucleon, BE/A in MeV, as a function of

mass number, A, for the Calcium (Z = 20) and Lead (Z = 82) isotopic chains. Lines

represent the results obtained with the LD formula in Eq. (2). Symbols refer to measured

experimental values. The arrows point to the predicted maximum bound nucleus.

5. Limits of nuclear stability

In this section, we discuss the concept of prediction based on a mathematical model.

In other words, having optimised the coefficients in a given mathematical expression,

one can use the model to conjecture new ideas. If these predictions sit within the range

of data used to fit the model, one typically states that this is an “interpolation”. In

contrast, if the predictions lie outside of the optimisation data set, the model we are

using is extrapolating. For instance, using the LD model presented before to discuss the

BE energy of unknown nuclei with similar masses can be considered a prediction. In

contrast, the use of this model to discuss the neutron-rich dense matter inside neutron

stars is clearly an extrapolation procedure. Extrapolation is generally less reliable than

interpolation, but it is nonetheless a key aspect of the scientific method. The second

paper in this series will look in more detail to these extrapolation procedures in the

context of neutron stars.

The learning outcomes of this section are:

• To introduce the concept of prediction within a scientific model.

• To understand the concept of stability of a nuclear system.

• To explain ideas around the validity of scientific models.

Having optimised and validated the model in the previous activity, students can

now turn and use it to make predictions. For a given isotopic chain (constant Z), one
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can increase the number of neutrons N to systematically reduce BE/A. At a given

maximum neutron number Nmax (or a corresponding maximum mass number Amax) the

binding energy changes sign. A nuclear configuration with a negative BE is unbound

with respect to the decay of all its constituents.

In Fig. 5, we illustrate the evolution of the binding energy per particle for two

isotopic chains: Calcium (Z = 20) and Lead (Z = 82). We have used for this purpose

the parameters of the LD model given in Tab. 1. On the same figure, we also provide

the available experimental masses (filled circles). A very striking observation is that the

number of nuclei predicted by the LD model is much larger than the number of measured

masses. Demonstrators may use this figure as an introduction and may highlight the

following two main features:

• For any chemical element, several tens (or even hundreds) of isotopes may exist.

• Despite all experimental efforts, the number of nuclei that may exists is still much

larger than the number of nuclei observed.

For calcium, the set of parameters in Tab. 1 predicts Amax = 140, whereas for lead one

gets the surprisingly large value of Amax = 636. If students use their own fits for the

LD coefficients derived in the previous activities, these numbers can typically change

by 10 − 20 mass units. This can give rise to a discussion about the systematic errors

associated to predictions.

These predictions are of course not fully reliable due to the several approximations

used to derive Eq. (2) and, importantly, due to the nature of nuclear stability itself.

Typically, neutron-rich isotopes with N ≪ Nmax are already unbound to other

constituent decays. In the neutron-rich side of the table, the dominant mechanism

is likely to be one-neutron emission. In other words, above a given Ndrip, the isotopes

of a given element are unstable to the decay of a neutron. The boundary between

bound and one-neutron unbound isotopes correspond to the so-called neutron dripline.

Similarly, on the proton-rich side of the nuclide chart, there is a line that separates

bound and proton unbound nuclides. This is the proton dripline.

Neutron and proton driplines are typically used to denote the limits of nuclear

stability in the Segrè chart. Even though typically Ndrip ≪ Nmax, the neutron dripline

has only been confirmed experimentally up to Z ≈ 8− 9. Advanced theoretical nuclear

models [43] predict the limit of existence of the calcium and lead isotopic chains at 70Ca

and 274Pb. We note however that even these models have a relatively large systematic

errors, and several current research efforts are aimed at improving the quality and

reliability of such predictions [44,45]. For simplicity, we keep the discussion in terms of

stability at the level of the change in sign of BE/A, to avoid having to introduce further

nuclear physics ideas.

Keeping in mind that the LD model is a simple approximation, one can also build

the entire mass table from it. In other words, we can look at the full evolution of the

theoretical binding energy per particle as a function of N and Z from Eq. (2). We

present the results for this theoretical exercise in the density contour plot of Fig. 6.
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Figure 6: (Color online) Binding energy per nucleon in MeV as a function of neutron

number, N , and proton number, Z, obtained from Eq. (2). The dashed lines give

contours in the range from 1 to 8 MeV in spaces of 1 MeV. The contour at BE/A = 0 is

shown with a solid (red) line. The background black shape represents the nuclear chart

of ≈ 3400 known isotopes according to Ref. [19].

Dash-line contours are spaced by 1 MeV in BE/A, and the solid line represents the

limit of stability at BE/A = 0. We also show the Segrè chart of experimentally detected

isotopes according to the NuBASE 2016 compilation [19]. We observe that the LD model

predicts the existence of many more nuclei than actually measured experimentally, as

expected. This figure can be used by demonstrators as a starting point for several

discussions, including ideas around the differences in the limits of nuclear stability in

the neutron- and proton-rich sides of the chart; the total number of bound isotopes; and

the shapes of the contour lines for BE/A.

The two worksheets we provide can be used to answer relevant nuclear physics

questions in different settings. Worksheet_Instructor provides a more complete

set of predictions for the five isotopic chains discussed earlier - in the tabs called

Prediction (Oxygen), Prediction (Calcium), etc. As such, these tabs can be used

to answer questions like:

• Which is the heaviest isotope (fixed number of protons) of oxygen (Z = 8)?

• Which is the heaviest isotope (fixed number of protons) of lead (Z = 82)?

• Which is the heaviest nucleus with N = Z we can produce with the LD formula?

All these question rely on finding the combination of N,Z for which Eq. (2) becomes

equal to zero. This procedure is implemented approximately in the spreadsheets by
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calculating the binding energy for several N (Z) configurations and finding where BE/A

changes sign. Students may be asked to explore the differences between the global fit

provided initially and their own (local) fits derived in the first activity. We leave it to

the demonstrators to adapt the questions and spreadsheets to the needs of the teaching.

To expand the activity, the demonstrator may use the Prediction N=Z tab, which

uses the LD formula to find the limit of stability for isotopes with N = Z. This

may be used in the context of a discussion about recent discoveries of super-heavy

elements [23,24,26,46]. We point out again that these activities are easily amenable to

a group setting, and may be used as the start of a competition. An advanced activity for

interested students could involve an analytical derivation of Nmax or Amax from Eq. (2),

as typically discussed in undergraduate textbooks [34].

In contrast, the discussion in Worksheet_Student is focused in a single isotopic

chain, that of oxygen, as we expect that this will be easier to tackle at an individual

level in an online environment. By using the parameters adjusted in the first activity,

students should be able to predict the heaviest oxygen isotopes that may exist in nature.

The accompanying text to the activity or the online demonstrators should stress here

that predictions are sensitive to the choice of the parameters aV and aA. To this purpose,

this second challenge asks to explore the robustness of the prediction by performing

small variations on the aV and aA parameters determined in the previous section. This

method is usually called sensitivity analysis, and is typically performed a posteriori in

optimisation setups. This type of analysis is used to determine the parameters that are

most important for predictions [33, 47].

6. Conclusions

We have presented a simple activity for young students focused on the concept

of modelling. By using a simple mathematical formula based on few physical

considerations, it is possible to explain a large variety of nuclear data for binding

energies. The activity requires the use of simple spreadsheet software. This intuitive

and interactive setting allows for a discussion on 3 key stages of theoretical modelling:

optimisation, validation and prediction. Using the worksheets, students can visually

optimise the model and explain observed trends in nuclear data. They can also predict

the limits of nuclear stability for different isotopic chains.

This provides an operational, and thus hopefully deeper, understanding of

theoretical modelling in (nuclear) physics, which often involves these 3 stages.

Importantly, the activity also provides a feel for the order of magnitude of BEs; for

the different terms within the LD formula; and also for the number of bound isotopes

per isotopic chain. In a follow-up paper, we use the model to extrapolate into the

unknown domain of neutron-rich, macroscopically large objects called “neutron stars”.

These have been of course been observed by different astrophysical means and have their

own relevance.

We provide two different spreadsheets, so that each stage can be explored either
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individually or in group settings. It is relatively easy to modify these activities, so

demonstrators may want to extend them according to the physics and computer skills

of the classroom. At the end of the activity, demonstrators may also want to test the

success of the learning experience. We are developing a series of evaluation tools (quizzes

and questions) that may provide such an evaluation in the context of an online Nuclear

Masterclass. Additional material will be made available at our website∗.
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