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Abstract 20 

In recent years deep Recurrent Neural Network (RNN) has been applied to predict daily 21 

runoff, as its ability of dealing with the high nonlinear interactions among the complex 22 

hydrology factors. However, most of the existing studies focused on the model structure 23 

and the computational load, without considering the impact from the selection of 24 

multiple input variables on the model prediction. This article presents a study to 25 

evaluate this influence, and provides a method of identifying the best meteorological 26 

input variables for a run off model. Rainfall and multiple meteorological data has been 27 

considered as input to the model. Principal Component Analysis (PCA) has been 28 

applied to the data as a contrast, to reduce dimensionality and redundancy within this 29 

input data. Two different deep RNN models, a long-short term memory (LSTM) model 30 

and a gated recurrent unit (GRU) model, have been comparatively applied to predict 31 

runoff with these inputs. In this study, the Muskegon river and the Pearl river were taken 32 

as examples. The results demonstrate that the selection of input variables have a 33 

significant influence on the predictions made using the RNN while the RNN model 34 

with multiple meteorological input data is shown to achieve higher accuracy than 35 

rainfall data alone. PCA method can improve the accuracy of deep RNN model 36 

effectively as it can reflect core information by classifying the original data information 37 

into several comprehensive variables. 38 

 39 

Keywords: runoff forecasting; deep learning; recursive neural network (RNN); long-40 
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short term memory (LSTM); gate recurrent unit (GRU); principal component analysis 41 

(PCA) 42 

 43 

  44 
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Abbreviations: 45 

RNN, recursive neural network;  46 

PCA, Principal component analysis;  47 

LSTM, long-short term memory;  48 

GRU, gated recurrent unit;  49 

ANN, artificial neural network;  50 

AI, artificial intelligent;  51 

SVM, support vector machine;  52 

ARIMA, autoregressive integrated moving average;  53 

AR, autoregressive;  54 

ARMA, auto-regressive moving average;  55 

RMSE, the root mean square error;  56 

NSE, Nash-Sutcliffe Efficiency;  57 

R2, the coefficient of determination;  58 

MAE, the mean absolute error 59 

WMAPE, weighted mean absolute percentage error 60 

  61 
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1. Introduction 62 

Water resources are significant for sustainable development of economics and ecology 63 

and runoff forecasting plays a significant role in water resources planning and 64 

management, for example, flood control, dam planning and reservoir operation 65 

(Napolitano et al. 2011; Yuan et al. 2018). However, rain-runoff forecasting is a difficult 66 

issue in hydrological process simulation, because of the highly non-linear behaviour of 67 

the factors governing the hydrology system in the space-time domain (Wang et al. 2009; 68 

Zhu et al. 2016). In the past decades, a great deal of effort has been devoted to runoff 69 

prediction (Yuan et al. 2018). Generally, the existing methods can be divided into 70 

process-driven methods and data-driven methods.  71 

 72 

Process-driven methods are based on partial differential equation and linear equation 73 

which incorporate the physical processes (Bittelli et al. 2010; Partington et al. 2012). 74 

However, runoff is affected by many uncertainties, high complexity, non-stationarity, 75 

dynamism and non-linear factors, so it is difficult to forecast runoff by process-driven 76 

method accurately(Yoon et al. 2011). Data-driven methods are also used for rain-runoff 77 

forecasting. Basically, data-driven methods are statistical methods which just focus on 78 

the input-output relationship without explicit causality between factors in a specific 79 

system (Solomatine&Ostfeld 2008). Some researchers assumed the input-output 80 

relationship is linear and predicted the runoff by methods like the autoregressive 81 

integrated moving average (ARIMA) model (Valipour 2015), autoregressive (AR) 82 
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model (Pulukuri et al. 2018), and auto-regressive moving average (ARMA) model 83 

(Mehdizadeh et al. 2019). Other researchers believe the forecast result can be improved 84 

by considering the non-linear characteristics hidden in runoff series(Amiri 2015). 85 

Machine learning methods like artificial neural network (ANN)(Riad et al. 2004) and 86 

support vector machine (SVM)(Li et al. 2014) are widely used for runoff prediction. 87 

However, one of the limitations of these machine learning methods is that they will 88 

struggle when system behaviour is dominated by spatial or temporal context. 89 

(Reichstein et al. 2019; Zhongrun&Ibrahim 2020). Meanwhile, the simple structure of 90 

these data-driven models limits their ability to address the high nonlinear relationship 91 

between the weather time series data and runoff time series data (Amiri 2015).  92 

 93 

Deep learning (DL) is a new hot topic in mechanical learning. The most distinguishing 94 

characteristic of deep networks is multiple neuron layers in neural network architecture, 95 

which provides a higher ability to represent complex functions than non-deep neural 96 

network (Raghu et al. 2017). DL method has been widely used in language modelling 97 

(Magassouba et al. 2020), image analysis (Litjens et al. 2017), recommendation 98 

systems (Ji et al. 2013) and other fields. 99 

 100 

Recently, researchers have paid attention to RNNs and its variants (such as LSTMs and 101 

GRUs) and have found that deep RNNs have better performance for runoff time-series 102 

prediction. Xiang (2020) applied a runoff prediction model based on LSTM and the 103 
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seq2seq structure to estimate runoff for next 24 hours. Kratzert (2018) employed the 104 

LSTM model in catchments with snow and compared the model prediction result with 105 

Soil Moisture Accounting Model (SAC-SMA) coupled with the Snow-17 snow routine. 106 

Wang (2020) used RNN to perform meteorological statistical downscaling and evaluate 107 

the hydrological response to the downscaled meteorological data by SWAT. Meanwhile, 108 

many researches focused on the time-steps in RNN models, Kao (2020) proposed a 109 

Long Short-Term Memory based Encoder-Decoder (LSTM-ED) model for multi-step-110 

ahead flood forecasting and compared the performance of the FFNN- and LSTM-based 111 

ED models with different time steps; Chen(2020) and Cheng(2020) evaluated the 112 

importance of long lead-time and short lag-time in LSTM. The results prove the 113 

advantage of deep learning model. According to the input variables, the Rainfall-Runoff 114 

studies can be divided into 2 categories:(1) Some researchers employ rainfall data as 115 

input to predict runoff (Hu et al. 2018; Le et al. 2019); (2) Other researchers prefer to 116 

incorporate rainfall data with multiple meteorological as input parameters, enabling 117 

various factors related to runoff to be considered within the model (de la Fuente et al. 118 

2019). However, limited research has been focused on the influence of different input 119 

variables on rain-runoff forecasting by using deep RNN. 120 

 121 

In order to consider the impact from the selection of input variables on the model 122 

prediction and find a way to improve accuracy when multiple input variables were 123 

employed, this study investigates the performance of deep RNN models on runoff 124 
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forecasting with different input variables and an optimized input is identified based on 125 

the PCA method. To make the result more credible, two USGS stations in different 126 

climatic zones were chosen as study areas. A general description of different algorithms 127 

and data source is provided in Section 2. While the predicting results with different 128 

input are discussed in Section 3. Conclusions are presented in the last part of the 129 

manuscript. 130 

 131 

2. Method and data 132 

2.1. Data collection 133 

To cover diverse hydroclimatological regimes, the Muskegon River and the Pearl River 134 

were chosen as the study area. As shown in Fig 1, The Muskegon River is located at the 135 

west of Michigan, U.S. state and it belongs to temperate continental climate. The river 136 

comes from Houghton Lake and flows southwest to Muskegon Lake stretching nearly 137 

384km. Muskegon River basin is nearly 6,100 km2 and is composed of 40 138 

subwatersheds (Ray et al. 2010). Muskegon River plays a crucial role in the social 139 

economy and natural ecology of the basin. Rogers dam, Hardy dam and Croton dam on 140 

Muskegon River provide nearly 23000 people with a cleaner source of electricity. The 141 

runoff of Muskegon River influence ecosystem and biogeochemistry in Lake Michigan 142 

(Johengen et al. 2008). 143 

 144 
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The Pearl River is in southern Mississippi, U.S. state which belongs to humid 145 

subtropical climate. The Pearl River run from Neshoba County and flow to Lake Borgne 146 

with the length of length of 715 km (Taylor&Grace 1995). The Ross Barnett Reservoir 147 

is the most important water facility which provides drinking water for residents in 148 

Metropolitan Jackson. 149 

 150 

 151 

 152 

Figure 1 Overview of two study areas. 153 

 154 

Daily runoff time series data was gathered from USGS Hydrological station 02489500 155 

and 04121970. Daily meteorologicaltime-series data were collected from Weather 156 

Underground and NOAA. The meteorological data includes the following data (Table 157 
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1): 158 

 159 

Table 1 Details of the meteorological data in the Muskegon River and Pearl River 160 

 meteorological time series 

data in the Muskegon River 

meteorological time series 

data in the Pearl River 

Indexes 

 Max-temperature (°C), 

 Mean-temperature (°C), 

 Min-temperature (°C), 

 Max-dew point (°C), 

 Mean-dew point (°C), 

 Min-dew point (°C), 

 Max-humidity (%), 

 Mean-humidity (%), 

 Min-humidity (%), 

 Max-sea level pressure 

(hPa), 

 Mean-sea level pressure 

(hPa), 

 Min-sea level pressure 

(hPa), 

 Max-windspeed (km/h), 

 Max-temperature (°C), 

 Mean-temperature (°C), 

 Min-temperature (°C), 

 Max-dew point (°C), 

 Mean-dew point (°C), 

 Min-dew point (°C), 

 Max-humidity (%), 

 Mean-humidity (%), 

 Min-humidity (%), 

 Max-sea level pressure 

(hPa), 

 Mean-sea level pressure 

(hPa), 

 Min-sea level pressure 

(hPa), 

 Max-windspeed (km/h), 
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 Mean-windspeed 

(km/h), 

 Min-visibility (km), 

 Max-visibility (km), 

 Mean-visibility (km), 

 Precipitation (mm). 

 Mean-windspeed 

(km/h), 

 Precipitation (mm). 

 

 

Duration 01/10/1995-01/01/2020 01/01/2000-01/01/2020 

  161 

2.2 Data pre-processing 162 

Data pre-processing consists of data division and data cleaning. In addition, as 18 163 

indicators of data were collected, PCA was employed to reduce the dimensionality of 164 

the input data, to provide an alternate input dataset (See below.) 165 

 166 

Data cleansing: The missing or the outlying points in time series data reduce accuracy 167 

and quality of training and prediction. To discount the influence, the outlying data were 168 

identified by 6𝜎 rule which assumes data outside the range of 𝐷̅ ± 6𝜎 is outlying data 169 

(Jeong et al. 2017), where 𝐷̅ and 𝜎 are the average value and the standard deviations 170 

of time series data respectively. The outlying points and vacancy were replaced by 171 

average value of the same date in different years. 172 

 173 

To avoid the influence of dimension on the training process, data were normalized into 174 
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a standardized range by the following equation: 175 

 𝐷𝑁 = 𝐷−𝐷̅𝜎(𝐷) (1) 176 

Data division:  To prevent overfitting and test the predictive capabilities of the model, 177 

the data was divided into two parts: 80% was used to train the suggested models, and 178 

the other 20% was used to test the trained models. In process-driven modelling, the 179 

value of past history is tied to the time lag between input and output response, such as 180 

the rainfall and the ground water table response. However, in data-driven modelling, 181 

the past history is just a hyperparameter which is not directly related to the physical 182 

behaviour (Jeong&Park 2019). So, in the training and testing part, the value of history 183 

was identified by trial-and -error. 184 

 185 

The PCA method: The PCA method extracts several principal comprehensive 186 

variables form original data by covariance matrix, to persist core information and 187 

eliminate noise. PCA has been widely used in the literature and data mining since its 188 

introduction by Pearson (1901). The calculation processes of PCA method are as 189 

following (Hotelling 1933): 190 

 191 

1) Processing the normalized data as matrix 𝐷𝑁; 192 

2) Calculating the correlation coefficient matrix 𝐶𝑐𝑚 based on the matrix 𝐷𝑁 as: 193 𝐶𝑐𝑚𝑖𝑗 = 𝐶𝑜𝑣(𝐷𝑁𝑖, 𝐷𝑁𝑗) (2) 194 

    where 𝐷𝑁𝑖 is the indicator vector in matrix 𝐷𝑁. 195 
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3) Calculating feature values 𝜆 and feature vectors of matrix 𝐶𝐶𝑀 and put feature 196 

values in orderas 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑛. 197 

4) Calculating the principal component contribution rate 𝐶𝑐𝑟𝑖  and the cumulative 198 

contribution rate 𝐶𝑐𝑟: 199 𝐶𝑐𝑟𝑖 = 𝜆𝑖∑ 𝜆𝑘𝑛𝑘=1  (3) 200 

𝐶𝐶𝑅 = ∑ 𝜆𝑝𝑖𝑝=1∑ 𝜆𝑘𝑛𝑘=1  (4) 201 

5) When the cumulative contribution rate was greater than 85%, the number of 202 

principal components can be determined. Processing the respective feature vectors 203 

as matrix 𝑀, the data after dimension reduction 𝑋𝑃𝐶𝐴 can be calculated as: 204 𝑋𝑃𝐶𝐴 = 𝑀𝑋 (5) 205 

 206 

2.3 Baseline model 207 

In data-driven model research, it is recommended to use some simple but effective 208 

forecasting method as baseline model to provide benchmarks 209 

(Hyndman&Athanasopoulos 2018). In this article, ridge regression is employed as the 210 

baseline model. Ridge regression (Hoerl 1959) is an effective method which is widely 211 

used in machine learning and hydrology (Chen et al. 2018; Miche et al. 2020). Based 212 

on linear regression, an L2 regularization term is applied in the loss function of ridge 213 

regression. By this way, ridge regression gains a better ability of generalization. To 214 

make the baseline model concise, rainfall data is input as it is the common variables in 215 
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different inputs considered in this paper. 216 

 217 

2.4 RNNs 218 

RNNs consist of the input layer, hidden layer (or hidden layers) and the output layer, 219 

but different from other ANNs (artificial neural network), RNNs have the fabulous 220 

memory ability as these networks introduce state variables to store past information, 221 

and then determine the current outputs, together with the current inputs.  222 

The RNNs model can be trained by the BPTT (Back Propagation Through Time) 223 

method which calculates not only the gradient of the cost corresponding to the input 224 

weights but also the gradient of the cost corresponding to the hidden weights of the 225 

previous time steps. However, the error of partial derivative accumulates through time 226 

steps in the BPTT method. Meanwhile, when the time step T is large, the gradient will 227 

either get very small and vanish, or get very large and explode. This problem is 228 

commonly known as the vanishing/exploding gradient problem. In recent years, the 229 

hidden block in RNNs is replaced by LSTM block or GRU block to combat 230 

vanishing/exploding grad. 231 

2.4.1 LSTM 232 

LSTM neural network (Hochreiter&Schmidhuber 1997) replaces the hidden block in 233 

RNNs with three logic gates and a memory cell as it is shown in Fig 2. 234 
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 235 

Figure 2 Neuron in the hidden layer of LSTM at time step t 236 

 237 

In the training process, the memory cell state 𝐶𝑠𝑡  and hidden state 𝐻𝑠𝑡  would be 238 

updated selectively based on the input gate 𝐼𝑔𝑡 and output gate 𝑂𝑔𝑡. The irrelevant 239 

information in long-term memory would be forgotten by forget gate 𝐹𝑔𝑡.The hidden 240 

block of LSTM neural network can be represented as following (Amiri 2015): 241 

Input gate: 242 

 𝐼𝑔𝑡 = 𝜎(𝐷𝑡𝑊𝑥𝑖 + 𝐻𝑠𝑡−1𝑊ℎ𝑖 + 𝑏𝑖) (6) 243 

Forget gate: 244 

 𝐹𝑔𝑡 = 𝜎(𝐷𝑡𝑊𝑥𝑓 + 𝐻𝑠𝑡−1𝑊ℎ𝑓 + 𝑏𝑓) (7) 245 

Output gate: 246 

 𝑂𝑔𝑡 = 𝜎(𝐷𝑡𝑊𝑥𝑜 + 𝐻𝑠𝑡−1𝑊ℎ𝑜 + 𝑏𝑜) (8) 247 

Cell state: 248 

 +

 

Igt

 Dt

Cst-1
Cst

Fgt Ogt

tanh

 

Cst

~
Cst

~

Hst-1 Hst
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 𝐶𝑠𝑡 = 𝐹𝑔𝑡 ⊙ 𝐶𝑠𝑡−1 + 𝐼𝑔𝑡 ⊙ 𝐶𝑠~ 𝑡 (9) 249 

 𝐶𝑠~ 𝑡 = 𝑡𝑎𝑛ℎ(𝐷𝑡𝑊𝑥𝑐 + 𝐻𝑠𝑡−1𝑊ℎ𝑐 + 𝑏𝑐) (10) 250 

Hidden state: 251 

 𝐻𝑠𝑡 = 𝑂𝑔𝑡 ⊙ 𝑡𝑎𝑛ℎ( 𝐶𝑠𝑡) (11) 252 

where   is sigmoid function   1

1 x
x

e
 


 , which can be used as the activation 253 

function in this step to transform input to the range of 0-1; 𝑊𝑥𝑖, 𝑊𝑥𝑓 , 𝑊𝑥𝑜 , 𝑊𝑥𝑐 ∈254 𝑅𝑑×ℎ, 𝑊ℎ𝑖 , 𝑊ℎ𝑓 , 𝑊ℎ𝑜 , 𝑊ℎ𝑐 ∈ 𝑅ℎ×ℎ  are weight matrixes;and𝑏𝑖, 𝑏𝑓 , 𝑏𝑜 , 𝑏𝑐 ∈ 𝑅1×ℎ  are 255 

biases. ⊙ is the Hadamard product of two matrixes. The activation function in this 256 

step is 𝑡𝑎𝑛ℎ which can ensure hidden states range from -1 to1. 257 

2.4.2 GRU 258 

The GRU(Cho et al. 2014; Chung et al. 2014)neural network is similar to the LSTM 259 

neural network. It replaces the hidden block in RNNs with two logic gates and the 260 

candidate hidden state 𝐻𝑠𝑡~
 as it is shown in Fig 3.  261 

 262 

 +

1-   

Rgt Zgt Hst

 Dt

Hst-1 Hst

~
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Figure 3 Neuron in the hidden layer of GRU at time step t 263 

 264 

The hidden block of GRU neural network can be represented as following(Cho et al. 265 

2014; Chung et al. 2014): 266 

Reset gate： 267 

 𝑅𝑔𝑡 = 𝜎(𝐷𝑡𝑊𝑥𝑟 + 𝐻𝑠𝑡−1𝑊ℎ𝑟 + 𝑏𝑟) (12) 268 

Update gate： 269 

 𝑍𝑔𝑡 = 𝜎(𝐷𝑡𝑊𝑥𝑧 + 𝐻𝑠𝑡−1𝑊ℎ𝑧 + 𝑏𝑧) (13) 270 

Candidate hidden state： 271 

 𝐻𝑠𝑡~ = 𝑡𝑎𝑛ℎ(𝐷𝑡𝑊𝑥ℎ + (𝑅𝑔𝑡 ⊙ 𝐻𝑡−1)𝑊ℎℎ + 𝑏ℎ) (14) 272 

Hidden state: 273 

 𝐻𝑠𝑡 = 𝑍𝑔𝑡 ⊙ 𝐻𝑠𝑡−1 + (1 − 𝑍𝑔𝑡) ⊙ 𝐻𝑠𝑡~
 (15) 274 

where 𝑊𝑥𝑟 , 𝑊𝑥𝑧, 𝑊𝑥ℎ ∈ 𝑅𝑑×ℎ  and 𝑊ℎ𝑟 , 𝑊ℎ𝑧 , 𝑊ℎℎ ∈ 𝑅ℎ×ℎ  are weight 275 

matrix;𝑏𝑟 , 𝑏𝑧, 𝑏ℎ ∈ 𝑅1×ℎare biases. 276 

 277 

The update gate 𝑍𝑔𝑡  is used to capture long-term dependencies in time series. 278 

Meanwhile, the reset gate 𝑅𝑔𝑡  and the candidate hidden state are used to learn the 279 

short-term dependencies in time series. The candidate hidden state presents the 280 

influence of the previous hidden state on present hidden state. If the elements in the 281 

reset gate are close to 1, the hidden state of the previous hidden state will be reserved. 282 



18 

 

If the elements in the reset gate are close to 0, the hidden state of the previous hidden 283 

state will be forgotten. 284 

2.4.3 Dropout 285 

Deep RNN is an effective method to deal with big data due to its memory ability. 286 

However, it would be overfitting when the input is high-dimensional. Dropout is a 287 

regularization method and provides an effective solution for this problem (Srivastava 288 

et al. 2014). 289 

 290 

The main idea of dropout is that there is a certain probability that every neuron in a 291 

certain layer where the dropout method is applied will not be updated during each 292 

training iteration. By this way, the output will not be overly dependent on some 293 

elements of hidden layer. However, due to the memory ability of RNNs, the dropout 294 

method can only be applied to no-recurrent connection between layers. 295 

2.5Model evaluation criteria 296 

The root means quare error (RMSE), Nash-Sutcliffe Efficiency (NSE), the coefficient 297 

of determination (R2), the mean absolute error (MAE) and the weighted mean absolute 298 

percentage error (WMAPE) are used to evaluate the model performance. 299 
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3. Results and discussion 300 

3.1 Data pre-processing 301 

Time series datasets were normalized by their mean and standard deviation and the 302 

SPSS 21 was used to identify the principal component. The correlation coefficient 303 

matrix is shown in Table 2.  304 

Table 2a The correlation coefficient matrix of multiple meteorological data in 305 

Muskegon River 306 
 

MAXTEMP MEANTEMP MAXDEW MINTEMP … MEANVIS PRECI 

 

MAXTEMP 1.00  0.98  0.94  0.93  … -0.26  0.04  MAXTEMP 

MEANTEMP 0.98  1.00  0.96  0.98  … -0.21  0.07  MEANTEMP 

MAXDEW 0.94  0.96  1.00  0.94  … -0.18  0.16  MAXDEW 

MINTEMP 0.93  0.98  0.94  1.00  … -0.16  0.10  MINTEMP 

MEANDEW 0.93  0.96  0.99  0.96  … -0.22  0.15  MEANDEW 

MINDEW 0.91  0.95  0.95  0.96  … -0.25  0.12  MINDEW 

MAVHUM 0.15  0.15  0.34  0.17  … -0.26  0.21  MAVHUM 

MEANHUM -0.13  -0.06  0.16  0.02  … -0.04  0.32  MEANHUM 

MINHUM -0.30  -0.21  -0.02  -0.10  … 0.14  0.28  MINHUM 

MAXSEA -0.35  -0.40  -0.44  -0.44  … -0.14  -0.19  MAXSEA 

MEANSEA -0.20  -0.25  -0.33  -0.29  … -0.31  -0.26  MEANSEA 

MINSEA -0.07  -0.11  -0.21  -0.15  … -0.41  -0.29  MINSEA 
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MAXWIND 0.04  0.03  0.00  0.01  … 0.01  0.01  MAXWIND 

MEANWIND 0.31  0.28  0.14  0.23  … -0.09  -0.29  MEANWIND 

MINVIS 0.24  0.20  0.03  0.14  … -0.09  -0.34  MINVIS 

 307 

Table 2b The correlation coefficient matrix of multiple meteorological data in 308 

Pearl River 309 

 

MAXTEM MEANTEM MINTEM MAXDEW MEANDEW … MINSEA PRE 

MAXTEM 1.00 0.96 0.86 0.87 0.87 … -0.38 -0.10 

MEANTEM 0.96 1.00 0.94 0.93 0.94 … -0.44 -0.04 

MINTEM 0.86 0.94 1.00 0.91 0.93 … -0.43 0.02 

MAXDEW 0.87 0.93 0.91 1.00 0.97 … -0.53 0.08 

MEANDEW 0.87 0.94 0.93 0.97 1.00 … -0.50 0.05 

MINDEW 0.80 0.87 0.91 0.87 0.93 … -0.41 0.03 

MAXHUM 0.19 0.21 0.24 0.41 0.42 … -0.29 0.20 

MEANHYM 0.04 0.14 0.27 0.42 0.45 … -0.33 0.30 

MINHUM -0.05 0.11 0.29 0.35 0.38 … -0.29 0.28 

MAXWIND -0.10 -0.05 -0.01 0.05 0.01 … -0.27 0.16 

MEANWIND -0.27 -0.18 -0.12 -0.08 -0.13 … -0.19 0.15 

MAXSEA -0.57 -0.62 -0.60 -0.64 -0.65 … 0.87 -0.13 

MEANSEA -0.47 -0.53 -0.51 -0.59 -0.58 … 0.93 -0.19 

MINSEA -0.38 -0.44 -0.43 -0.53 -0.50 … 1.00 -0.22 
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PRE -0.10 -0.04 0.02 0.08 0.05 … -0.22 1.00 

 310 

The eigenvalues, variance contribution rates and cumulative variance contribution rates 311 

of the correlation coefficient matrix is shown in Table 3. 5 components in each study 312 

areas were extracted and the cumulative variance contribution rates are 92.102% and 313 

91.84%  314 

 315 

Table 3 The Eigenvalues and variance contribution rates  316 

Muskegon River Pearl River  

Ingredient Eigenvalues 

% of 

Variance 

Cumulative % Ingredient Eigenvalues 

% of 

Variance 

Cumulative % 

1 6.41  35.63  35.63  1 7.27 48.49 48.49 

2 4.35  24.19  59.82  2 2.64 17.62 66.11 

3 2.63  14.61  74.43  3 1.82 12.11 78.23 

4 1.16  6.42  80.84  4 1.23 8.23 86.46 

5 1.04  5.78  86.62  5 0.81 5.39 91.84 

6 0.74  4.13  90.76  6 0.54 3.58 95.42 

7 0.61  3.39  94.14  7 0.21 1.39 96.81 

8 0.45  2.48  96.62  8 0.14 0.90 97.71 

9 0.18  1.00  97.62  9 0.09 0.599 98.30 

10 0.16  0.89  98.51  10 0.08 0.56 98.86 
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11 0.13  0.70  99.22  11 0.06 0.41 99.26 

12 0.05  0.26  99.48  12 0.06 0.39 99.66 

13 0.04  0.21  99.69  13 0.03 0.20 99.85 

14 0.02  0.13  99.82  14 0.02 0.12 99.97 

15 0.01  0.08  99.90  15 0.01 0.03 100.00 

16 0.01  0.07  99.96      

17 0.00  0.03  99.99      

18 0.00  0.01  100.00      

 317 

The principal component matrix of time series dataset is shown in Table 4. 318 

 319 

Table 4 The principal component matrix of time series dataset 320 

 Muskegon River  Pearl River 

Indicator 1 2 3 4 5 Indicator 1 2 3 4 5 

MAXTEMP 0.92 0.33 -0.01 0.10 -0.03 MAXTEM 0.83  -0.49  -0.12  0.10  0.07  

MEANTEMP 0.95 0.26 -0.02 0.12 -0.04 MEANTEM 0.90  -0.37  -0.10  0.16  0.08  

MAXDEW 0.97 0.06 0.06 0.13 0.01 MINTEM 0.90  -0.24  -0.02  0.23  0.08  

MINTEMP 0.95 0.18 -0.01 0.13 -0.04 MAXDEW 0.95  -0.11  0.03  0.17  0.04  

MEANDEW 0.98 0.07 0.10 0.11 0.00 MEANDEW 0.96  -0.13  0.08  0.17  0.02  

MINDEW 0.96 0.09 0.13 0.09 -0.01 MINDEW 0.90  -0.17  0.12  0.21  0.03  

MAVHUM 0.35 -0.51 0.55 -0.12 0.19 MAXHUM 0.46  0.35  0.59  -0.16  -0.17  
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MEANHUM 0.18 -0.78 0.48 -0.02 0.13 MEANHYM 0.48  0.62  0.57  0.05  -0.13  

MINHUM 0.01 -0.76 0.30 0.04 0.07 MINHUM 0.42  0.64  0.41  0.22  -0.09  

MAXSEA -0.59 0.45 0.41 0.45 0.09 MAXWIND 0.06  0.61  -0.53  0.42  -0.06  

MEANSEA -0.46 0.61 0.51 0.38 0.05 MEANWIND -0.08  0.63  -0.54  0.45  -0.03  

MINSEA -0.32 0.66 0.55 0.30 0.03 MAXSEA -0.80  -0.14  0.29  0.42  0.09  

MAXWIND 0.00 0.22 -0.20 -0.17 0.89 MEANSEA -0.75  -0.27  0.34  0.44  0.08  

MEANWIND 0.13 0.76 -0.31 -0.17 0.23 MINSEA -0.68  -0.37  0.38  0.43  0.09  

MINVIS 0.03 0.78 -0.29 -0.16 -0.02 PRE 0.13  0.49  0.10  -0.15  0.84  

MAXVIS -0.08 -0.34 -0.72 0.46 0.03       

MEANVIS -0.19 -0.35 -0.71 0.41 -0.01       

PRECI 0.18 -0.46 -0.05 0.41 0.35       

 321 

As shown in Table 4, there was a strong positive correlation between the first 322 

component and Max-temperature (°C), Mean-temperature (°C), Min-temperature (°C), 323 

Max-dew point (°C), Mean-dew point (°C), Min-dew point (°C) in both areas. These 324 

indexes reflected the temperature of study areas. However, in Pearl River, there was a 325 

negative correlation between the first component and sea level pressure indexes while 326 

in Muskegon river it was positive correlation. The second to the fifth component in 327 

Muskegon river are the combination of other indexes, while the second to the fifth 328 

component in Pearl river are humidity indexes, wind indexes, sea level pressure and 329 

precipitation indexes respectively. The similarities and differences between principal 330 
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components in Muskegon river and Pearl river showed that PCA method has the ability 331 

of extracting climatic characteristics in the different area. The result of PCA method is 332 

as Fig.4 333 

 334 

Figure 4a Five Principle components in Muskegon river 335 

 336 

Figure 4b  Five Principle components in Pearl river 337 

 338 

3.2 Training for the ANN  339 

Different RNN models (LSTM and GRU) were developed to test the influence of 340 

different input on runoff forecasting. These models were implemented using Python 3.7 341 
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and TensorFlow 2.0. The structure includes the input layer, hidden layer 1 with 16 342 

hidden neurons, hidden layer 2 with 8 hidden neurons and output layer,. Dropout 343 

method was used between the hidden layers to deal with over fitting. Meanwhile, the 344 

RMSprop algorithm was used for training of LSTM and GRU in this study. The 345 

hyperparameter, past history, was set to 30 days, which means input data of every 30 346 

days was used to predicate runoff of next day. 347 

3.3 Performance of ANN 348 

Different hidden block and input were compared to evaluate their effect on model 349 

performance and to identify the best-hidden block- input combination. 6 different 350 

scenarios were proposed as in Table 5 to predict the runoff. Ridge regression was used 351 

as a baseline model. These models were run on a computer with intel core i7-9750H 352 

CPU, 16GB memory. 353 

 354 

Table 5 Different scenarios of hidden block and input 355 

 

Input Hidden block kind 

Scenario 1 Rainfall LSTM 

Scenario 2 Rainfall GRU 

Scenario 3 Multiple meteorological data LSTM 

Scenario 4 Multiple meteorological data GRU 
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Scenario 5 Multiple meteorological data with PCA 

method 

LSTM 

Scenario 6 Multiple meteorological data with PCA 

method 

GRU 

Parts of the forecasting results were provided and compared with the baseline model in 356 

Figure 5a-d. Other results can be found in the support information (Figures S1-14). The 357 

model evaluation criteria results were provided in Table 6. 358 

 

Figure 5a Baseline model: Ridge regression based on rainfall data in Muskegon 

river 
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Figure 5b Scenario 1: LSTM neural network based on rainfall data in Muskegon 

river 

Figure 5c. Baseline model: Ridge regression based on rainfall data in Pearl river 
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Figure 5d. Scenario 1: LSTM neural network based on rainfall data in Pearl river 

Figure 5 shows runoff forecasting by different model and input. The observation value 359 

(blue line) is castrated with different models. (a) Ridge regression based on rainfall 360 

data in Muskegon river; (b)LSTM neural network based on rainfall data in Muskegon 361 

river; (c) Ridge regression based on rainfall data in Pearl river; (d) LSTM neural 362 

network based on rainfall data in Pearl river;   363 

 364 

 365 

Table 6 Model evaluation result 366 
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model 
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Input Rainfall Rainfall Rainfall 

multiple 

meteorologic

al data 

multiple 

meteorologic

al data 

multiple 

meteorologica

l data with 

PCA method 

multiple 

meteorologica

l data with 

PCA method 

 Hidden block 

kind 

- LSTM GRU LSTM GRU LSTM GRU 

Muskegon 

river 

NSE -0.186 0.003  -0.012  0.343  0.372  0.844  0.842  

RMSE(ft3/s) 1358.09 1245.65  1254.90  1010.72  988.31  492.23  496.54  

MAE(ft3/s) 979.40 872.57  895.68  674.75  659.16  276.65  279.60  

R2 6E-06 0.15  0.127  0.46  0.49  0.85  0.84  

 WMAPE 40.38% 35.98% 36.93% 27.18% 27.82% 11.41% 11.53% 

 Time(s) - 403.00  403.000  451.00  405.00  436.00  407.00  

Pearl river NSE -0.2821 0.101 0.102 0.163 0.156 0.292 0.31 

RMSE(ft3/s) 11279.87 10788.80 10781.84 10410.34 10454.19 8672.03 8549.07 

MAE(ft3/s) 9104.67 6064.07 6164.57 6252.14 6341.64 5376.65 5107.27 

R2 0.003 0.27 0.25 0.37 0.31 0.38 0.41 

 WMAPE 86.04% 54.41% 57.90% 57.57% 58.44% 53.77% 55.06% 

 Time(s) - 410.00  407.000  442.00  409.00  435.00  412.00  

 367 

As shown in Fig 5 and Table 6,all deep learning models have better performance than 368 

the baseline model with higher NSE and R2 and lower RMSE, MAE and WMAPE, 369 



30 

 

which prove the advantage and effectiveness of the deep learning model. 370 

 371 

In Table 6, different input has a great influence on model accuracy. Deep RNN models 372 

with multiple meteorological data inputs (Scenario 3 and Scenario 4) had a better 373 

performance than rainfall data input only (Scenario 1 and Scenario 2). In both areas, 374 

NSEs of Scenario 1 and Scenario 2 were nearly 0, which means the results of deep RNN 375 

models with rainfall data input can only reflect the overall trend of runoff. Compared 376 

with Scenario 1 and Scenario 2, NSE and R2in both areas were much higher in Scenario 377 

3 and Scenario 4, meanwhile, RMSE and MAE reduced by nearly 20% in Muskegon 378 

river. The improvement of models in Pearl River was relatively small. This may be 379 

because multiple meteorological data included not only rainfall data, but also wind 380 

speed, temperature and other meteorological indicators that directly or indirectly affect 381 

the runoff generation process. This means that meteorological data can provide more 382 

effective information to achieve higher accuracy. 383 

 384 

With the same hidden block, the accuracy of deep RNN model with PCA input 385 

(Scenario 5 and Scenario 6) may outperform model with normal multiple 386 

meteorological data inputs (Scenario 3 and Scenario 4) NSE and R2 of Scenario 5 and 387 

Scenario 6 were nearly twice as much as Scenario 3 and Scenario 4 in both areas. 388 

Meanwhile, in Muskegon river, RMSE, MAE and WMAPE were nearly 50% less than 389 

Scenario 3 and Scenario 4. This means PCA method can reflect core information by 390 



31 

 

classifying the original data information into several comprehensive variables and 391 

prevent the interference of useless information. 392 

 393 

With the same input, deep GRU model can achieve the same accuracy as deep LSTM 394 

model, and reduce the computational load. This phenomenon is more obvious when 395 

processing high-dimensional input data. When the input data were just rainfall 396 

(Scenario 1 and Scenario 2), the calculation time of deep LSTM model and deep GRU 397 

model were the same. With the input data changed to PCA data (Scenario 5 and 398 

Scenario 6) and multiple meteorological data (Scenario 3 and Scenario 4), the 399 

calculation time of deep LSTM model rose dramatically to 436s and 451s in Muskegon 400 

River and 435s and 442s in Pearl River, while the calculation time of deep GRU model 401 

ascended slightly to 405s and 407sin Muskegon River and 407s and 412s in Pearl River. 402 

This phenomenon could be due to the structure of the hidden block. The number of 403 

parameters which need to be identified in each GRU block is 9 (6 weights and 3 biases) 404 

while 12 parameters (8 weights and 4 biases) in each LSTM block need to be trained. 405 

With the same optimization method and input data, the less the number of identification 406 

parameters, the faster to get the optimal solution. 407 

 408 

4. Conclusion 409 

In order to evaluate the influence of different input variable on runoff forecasting by 410 

RNN approach and identify the best input, Muskegon River and Pearl River were taken 411 
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as examples. Rainfall data, multiple meteorological data and multiple meteorological 412 

data with PCA method were considered as input of deep LSTM model and deep GRU 413 

model. Four evaluation criteria were employed to evaluate the influence of different 414 

input variables on the accuracy of model quantitatively.  415 

 416 

Several key conclusions can be made as follows: 417 

1) The selection of model inputs has a great influence on model accuracy. Deep RNN 418 

model with multiple meteorological data inputs achieves higher accuracy than 419 

rainfall data input for runoff forecasting. 420 

2) PCA method can be applied to improve the accuracy of deep RNN model effectively 421 

as it can reflect core information by classifying the original data information into 422 

several comprehensive variables. 423 

3) The accuracy of deep LSTMs model and deep GRUs model is much the same, but 424 

the computational load of deep GRUs model is lower, especially with high 425 

dimension input. 426 

 427 

Although ANNs or DNNs have a astonishing performance in hydroloy and we get 428 

satisfactory result, the black-box nature of ANNs or DNNs is still a barrier to 429 

application. In this study, the rainfall-runoff process between meteorological data and 430 

rainfall was fitted by LSTMs model and deep GRUs model and the noise in input data 431 

was filtered by PCA method. We believe that the surprising accuracy of model 432 
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performance and increasing studies on ANNs would increase the trust in data-driven 433 

approaches and lead to more practices in hydrologic sciences. Meanwhile, it is still a 434 

significant work to consider the constraints of physical process in data-driven model 435 

and explain the physical meaning of parameters and hyperparameters in the data-driven 436 

model.  437 
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